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Abstract

Imperative extensions of higher-order functional languages are highly expres-
sive media for reasoning about programming problems and solutions. They directly
support a broad variety of programming paradigms and their associated facilities,
e.g., lexical scoping with blocks and modules, object-oriented programming with
message-passing entities, backtracking with relations and coroutines. Purely func-
tional languages can also emulate these facilities, but, in general, this requires a

(re-) formulation of the entire program in a special style.

The advantage of functional programming languages is that they automati-
cally come with a powerful, symbolic reasoning system. They are syntactically and
semantically variants of the A-calculus, and this connection provides an abstract
understanding of programs, independent of any implementation machinery. Thus,
for verifications, transformations, and comparisons, programmers can manipulate
programs in an algebra-like manner. However, the A-calculus is too weak to support
imperative extensions of functional programming languages. Consequently, it has
been impossible to reason algebraically about imperative programs. We have solved

this problem with the construction of the A,-CS-calculus.

The \.-CS-calculus is a conservative extension of the A-calculus. Its principal
syntactic facilities are variables and assignable variables, functional abstractions,
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function applications, and two new expression types for the manipulation of evalu-
ation control and program state: ubiquitous building' blocks of most practical lan-
guages. The extended set of axioms is derived from an abstract machine semantics.
They satisfy a variant of the Church-Rosser Thedrem, the Curry-Feys Standard-
ization Theorem, and Plotkin’s Correspondence Theorems. With the calculus, it
is easy to establish and prove equational properties of such facilities as loop exits.
cell objects, and generators. Since the calculus-language can express high-level con-
structs and their low-level, assembly-like implementations, we can also formalize
and establish the correctness of classical compiler techniques with simple program
transformations. Examples are the elimination of tail-recursion and the implemen-

tation of recursion with self-references.

The construction of the \,-CS-calculus is a contribution to the study of fun-
damental concepts in programming languages. It is an attempt to bridge the gap
between mathematically elegant and realistic programming languages. A further
exploration of the calculus will certainly produce deeper insights into imperative

higher-order programming and its paradigms.
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Preface

This preface provides a high-level survey of our technical contributions, an ex-
planation about their relationship to mathematics, and some basic definitions of

notation and terminology.

Overview. The \,-CS-calculus is an equational theory about the ubiquitous pro-
gramming language concepts of function, control operation, and assignment. The
theory is a conservative extension of a variant of Church’s A-calculus. For the treat-
ment of control and assignment operations, the calculus includes two new sets of
term relations: reduction and computation rules. The former are freely applicable
term relations like Church’s B-rule; the latter are program relations that can only
be applied to a redex at the root of a program. The division is necessary for the
coordination of imperative effects, but it does not constitute an infringement on the
calculus’s properties or capabilities. The A,-CS-calculus satisfies a modified version
of the Church-Rosser Consistency Theorem and the Curry-Feys Standardization

Theorem.

We derive the calculus from and for a programming language called Idealized
Scheme. The language generalizes the principal computational primitives of most
sequential imperative programming languages. Most facilities of other languages can
be expressed as syntactic abbreviations of Idealized Scheme expressions and can be
treated in the calculus with simple equivalences. The syntax of Idealized Scheme
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is an extension of the A-calculus-term language. Beyond constants, variables, A-
abstractions, and applications, the term set contains two new expression categories:
F-applications for the manipulation of evaluation control and o-capabilities for the
manipulation of state. The former are related to label values in Algol derivatives and
to continuation values in Scheme-like languages; the latter are expression-oriented
variants of assignment statements. The semantics of the entire language is defined

via a denotational-style abstract machine.

From the abstract machine semantics we systematically derive the above-men-
tioned set of term relations for the \,-CS-calculus. The main result with respect
to the relationship between Idealized Scheme and the calculus is a generalization
of Plotkin’s Correspondence Theorem. The theorem verifies that, under certain
conditions, the equality of two programs in the calculus implies operationally in-
distinguishable behavior and is thus a major tool for reasoning about imperative
programs. With such a symbolic reasoning system, a programmer can manipulate
imperative programs like algebraic expressions—on a symbolic-syntactic level. The
programmer can algebraically determine the result of a program, prove the equiv-
alence of two programs, or transform an obviously correct program into a more ef-
ficient version. For example, with a few, simple equations we prove the correctness
of the elimination of tail-recursive function applications in favor of unconditional
jumps and the implementation of recursive functions with self-referential structures,

two traditional compiler techniques that are usually justified on informal grounds.

In some sense, our research attempts to reconcile the premisses of two diverging
currents in the programming language research community: the one striving for
mathematically-based languages, the other for expressive ones. The advantage of a
mathematical language is that it automatically comes with an equational reasoning

system, e.g., all functional languages directly correspond to some variant of the
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A-calculus. Imperative extensions of functional languages, on the other hand, are
much better equipped for expressing an exceptional flow of control and the occur-
rence of a state-changing event. Unfortunately, because of the additional imperative
operations, the usual mathematical theories cannot support equational reasoning
with these languages. The \,-CS-calculus resolves this dichotomy by providing an

algebra-like system for the manipulation of imperative programs.

Prerequisites and Mathematics. The goal of our research is a deeper under-
standing of imperative computations in an extended functional programming lan-
guage. The major tool for this endeavor is the mathematics of sets, terms, term
relations, and induction. Accordingly, we concentrate on the interpretation and
application of mathematical results. Informative or constructive proofs are devel-
oped together with the theorems; long proofs that do not immediately further the
understanding of a topic are moved to subsections. The proofs are kept informal so

long as it is easy to fill in the gaps.

We assume that the reader is acquainted with the contents of an undergraduate
and a graduate course on the principles of programming languages as they are
taught at a university like Indiana University; that the reader has been exposed
to the notion of a state transition system; and at various places we assume some
superficial familiarity with the organization of a denotational programming language
semantics—for example, that the separation of environment and store is necessary
for an imperative higher-order language—and its realization as an abstract machine.
Further knowledge of denotational semantics is also helpful for the analysis of the

dichotomy between functional languages and imperative extensions in Chapter 1.

The necessary mathematical background is developed in Chapters 2 and 3. The
second chapter is an introduction to the concepts of abstract machines and calculi

for functional languages; the third introduces an abstract machine for imperative
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extensions of functional languages. We assume that the reader is knowledgeable of
induction principles.

Notation and Terminology. Three basic mathematical notions deserve some
general explanation. First, we use the word domain when talking about sets for
meanings of programs, but also when referring to the range of values that the
independent variable of a function can assume. Domains in the first sense are
generally defined by a system of mutually recursive equations. In order to improve
readability, the meta-language for these equations contains some elements from

abstract syntax. For example, an equation of the form
A = B X token X C

defines the set A as the cartesian product of B, {token}, and C. A typical element

from this set may be written as

(b token c).

Second, many domains are sets of partial or finite functions from a set A to a

set B. We denote these domains with
A -+ B.

If fis a finite function on A, then the domain of f, Dom(f), is the subset of A on
which fis defined. In some cases it is more convenient to perceive a finite function
as a set of pairs. We shall switch to whatever variant is more convenient. The

update of a finite function f for z with value y is written

flz :=y]

and denotes a new function such that

Y ife =z

flz = yl(z) = {f(z) otherwise.
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Warning. We overload this notation twice: for term substitution and labeled-value
substitution. Both are syntactic counterparts to function updates. The textual

context should distinguish the different uses. End

Finally, besides the relations proper, we frequently need transitive and reflexive
closures. If

A— B

stands for a single step relation from A to B, then

A—sT Band A —* B

denote the transitive and transitive-reflexive closures. Exceptions to this rule are

clearly indicated.

We use ordinary programming language terminology which generalizes math-
ematical usage. Thus, we call a programming language object a function if it 1s
applicable to different values and yields values, even though it may not correspond
to a mathematical function. If it does, we call the function pure. We refer to
apparent or bound variables for the syntactic objects that define an equivalence
relation on term positions. With application we mean two different things, namely,
the syntactic juxtaposition of two objects and the computational process of call-
ing a function. To emphasize that we mean the latter, we sometimes use function

mvocation.

For talking about terms and programs, we make use of abstract syntax termi-
nology and freely mix it with tree terminology. Hence, we shall call the outermost
syntactic construction the root and parts of a term the sub-expressions. Other words

should be self-explanatory.
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1. Expressiveness versus Mathematics

The programming language research community knows two diverging currents:
one striving for mathematically elegant formalisms, the other for highly expres-
sive thought media. In general, the basis of a mathematically-oriented language
consists of a single concept from mathematics. The set of syntactic categories 1s
small, each category and its interaction with others is well-understood. The un-
derlying mathematical theory provides a foundation for symbolic reasoning about
programs in the language. Two prominent examples are pure! Lisp and Prolog.

The former is associated with A-calculus, the latter with Horn-clause logic.

With a symbolic reasoning system, a programmer can manipulate programs like
algebraic expressions—on a symbolic-syntactic level. T his is useful in determining
the result of a program, proving the equivalence of two programs, or transforming
programs into more readable or efficient versions. In short, a symbolic reasoning
system provides an abstract understanding of programs, independent of any imple-

mentations or annotations.

The mathematical elegance of a programming language/reasoning-system pair
is obviously appealing. The exploration of this direction of language design has led

to the discovery of many programming principles, to an improved understanding

1 Full-funarg, lexically-scoped Lisp.




2
of structural elements in language designs, and to novel implementation strategies.
Yet, when it comes to realistic programming, mathematical languages are usually
offered as impure realizations with imperative operations. Their addition is justified
on grounds of efficiency; their use, however, is discouraged because the underlying

mathematical theory cannot account for the imperative effects.

An advocate of expressive languages rejects restrictions on the use of linguistic
facilities. If an imperative facility can succinctly express the idea of a particular
program, then it is appropriate to use. After all, a programming language 1s a
vehicle for formalizing and organizing thoughts about problems and their solutions,
and some problems and solutions are better expressed in an algorithmic, event-
based manner. From this perspective, the design of a programming language means

anticipating the needs of a language user and building in useful facilities.

At first sight, this argument leads to big and baroque languages, but this is
not necessary. A series of experimental language designs from the mid 60’s to the
late 70’s has demonstrated that a practical language can be simultaneously small
and expressive. The important insight is to distinguish between a language core
and syntactic abstractions. A language core is the set of facilities that are truly
necessary essentials of a language; the set of syntactic abstractions comprises all

those constructs that are abbreviations of typical usage patterns of core facilities.

From this point of view an analysis of Algol-style languages and sub-languages
produces an interesting result: higher-order functions, access to an abstraction of
the current thread of program control, and lexical assignment suffice to treat prac-
tically all traditional language facilities as syntactic abstractions. The range of
expressible facilities includes looping constructs, blocks, modules, structured data

objects, function exits, co-routines, and quasi-parallel processes.

The meaning of this finding is clear. Not only are control facilities and assign-
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ments ubiquitous building blocks of programming languages, but they also express
fundamental concepts that are difficult to formulate within a functional framework.
However, as mentioned above, adding these imperative facilities to a functional
language invalidates the correspondence between the language and the reasoning

system. And thus,

it appears [that] we have a choice: we can either define weak sys-
tems, such as purely functional languages, about which we can prove
theorems, or we can define strong systems which we can prove little
about.?

We are more hopeful and accept both premisses: a language should simultane-
ously be expressive and associated with a symbolic reasoning system. Consequently,
our goal must be the construction of a symbolic reasoning system for the core of
expressive languages. In the rest of this chapter, we further explore the notion
of expressiveness, first in an historical, then in an analytical setting. The presen-
tation is informal and assumes a superficial knowledge of programming language
concepts and algebra-like calculi. In the third section, we investigate and formulate
the problem statement. The last section contains an outline for the main body of

the report.

1.1. A Short History of Expressiveness

The history of the systematic analysis and design of expressive programming lan-
guages contains three major milestones. The first to explore the idea of mathe-
matical programming and its relationship to imperative programming was Landin.
His major idea is to map out the space for programming languages in a system-
atic manner. Reynolds’s contribution is the realization that this design space has

a small basis with regard to traditional languages, and that language research is

2 This quote is attributed to M. Minsky by T. Knight [32:105].
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to investigate this basis. The credit for making these ideas practical goes to Steele

and Sussman.

Landin’s starting point was a simple observation: a computation should be
construed as the mechanical evaluation of a mathematical expression [40]. Fur-
thermore, to conceal the intricasies of computers, programming languages should
formalize mathematical notation in a most general sense. Landin chose the A-cal-

culus as his notational framework.

The A-calculus [10] is a formal system for studying “the concept of a function
as it appears in various branches of mathematics”[10:1]. It consists of a simple
term language, and its semantics is defined via a small set of equational axioms.
The term language consists of three classes of expressions: variables, functional or
M-abstractions, and function applications. Whereas variables and function applica-
tions are traditional mathematical notation, functional abstractions are somewhat
unusual. A A-abstraction defines a function by combining the independent vari-

able and the result expression in a A-tagged pair, e.g., Az.z?

. Furthermore, a \-
abstraction can occur wherever an ordinary expression can occur. It is thus possible
that a function’s result is a function; in other words, the calculus is a higher-order

system.

Semantically, the calculus is equivalent to other computational formalisms like
Turing-machines [5:ch6], but syntactically it is rather austere. Nevertheless, it of-
fers a natural framework into which most mathematical notation can be translated.
Landin refers to the calculus language as applicative expressions (AE) and to other
notations as “syntactic sugaring.” Put differently: all systems of functional pro-
gramming notation are syntactic variants of the A-calculus, and the study of func-

tional languages and their reasoning systems is based on the study of the A-calculus.

The kind of syntactic transformation that Landin had in mind for the expansion
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of “syntactic sugar” into AE is best illustrated with an example. In mathematical

contexts, statements are often qualified with a where-clause, e.g.,
2% + az + b = 0 where a = 2.
Such a qualified statement can be restructured into A-notation as
(Aa.z? 4+ az + b = 0)2.

More generally,

M where ¢z = L

translates into the application of a function (of argument z) to the value L:
(Az.M)L.

The translation has three characteristics: (1) it is independent of the context in
which the expression occurs, (2) it cannot be formulated in terms of functional
abstraction because it manipulates the scope of variables, and (3) sub-expressions
of the abbreviation become sub-expressions of the expansion. Due to the first and

second characteristics, syntactic variants are also called syntactic abstractions.

Landin’s next step was to design an abstract machine for the implementation
of the mechanical evaluation rules: the SECD-machine. This abstract machine 1s a
rather simple state-transition system, based on machine-related constructions like
stacks, dumps, and control memories. It simultaneously provides a formal semantics

and an implementation strategy for AE and for its syntactic variants.

This success in explaining a large body of mathematical symbolism in a sin-
gle framework led Landin to attempt a bigger project: the formalization of Algol’s

semantics via a syntactic correspondence to a simple AE-like language [35, 37].
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In order to capture the meaning of imperative Algol-statements with syntactic ab-
stractions, Landin [39] introduced the language of imperative applicative expressions
(IAE). IAE extends AE with two new facilities: the J-operator and the assignment
operator. The former is used to model the meaning of labels. In simplistic terms,
the J-operator provides the program with instantaneous access to the current con-
trol state of the machine [7:ch 2]. The result is a label-like value with the same
status as a function. When invoked on a value, it resumes the evaluation at the
labeled point and discards the current state. The assignment operator resembles
the usual side-effect statements in Algol-like languages, but in conjunction with
higher-order functions it can achieve new effects. The language semantics is based

on an extended SECD-machine, called sharing machine.

In his final, seminal paper on language design, Landin [38] extrapolated his
experience into a single framework: ISwWiM. ISWIM is a family of programming lan-
guages. The family members share a common abstract part and differ in their choice
of primitive mathematical entities and functions,? e.g., numbers, strings, vectors,
etc., an idea originally due to McCarthy [45]. A particular choice of mathematical

entities determines the application area of a member language.

The abstract part of the IswiM-language is constructed from a language core,
the prototypical core being IAE. Other language constructs are expressed via defini-
tional equations as patterns of core expressions. The semantics of the core language
is defined by an abstract machine. Introducing different syntactic abstractions or
a different core produces a different family of languages. Within a given family,
the language design process has become simple. Arbitrary choices are eliminated.

Landin explains that ... a new language is a point chosen from a well-mapped

3 The members also differ in their written representation—concrete syntax, an aspect of language design
that we disregard.
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space, rather than a laboriously devised construction” [38:164]. He does not further

explore the idea of varying sets of syntactic abstractions.

The idea of splitting the abstract part of a language into a core and a set of
syntactic abstractions naturally provokes the question of how large the core must
be. Reynolds [51] investigated this problem by constructing a language GEDANKEN
(for Gedanken experiment). GEDANKEN is a minimalistic, Algol-like language based
on the principle of completeness: all values, including functions, labels, and cells
can be used in any appropriate context. This implies that functions can return
labels, that functions can be stored in structures, and that cells can be passed as
arguments. The importance of “GEDANKEN lies primarily in the language features
which have been excluded”[51:308]. The language proper only contains five major
facilities: variables, functions, applications, assignments, and jumps, but still, all
traditional constructs of Algol-like languages and extensions of those can be pro-
grammed. Reynolds’s examples include functional data structures, lists, records,
arrays, co-routines, and quasi-nondeterministic computations. Although the term 1s
never mentioned, the programming style for all but the last example recalls Landin’s
“syntactic sugar.” Reynolds’s conclusion is that simplicity does not impair expres-

siveness, except that the implementation of GEDANKEN is extremely ineflicient.

In the mid-70’s, Sussman and Steele [68] started another experiment of mod-
eling programming languages with the A-calculus. To this end, they implemented
a programming language called Scheme. Scheme is an extension of the A-calculus-
term set that structurally resembles IAE. The major semantic differences between
the two languages are the parameter-passing technique and the control operator.
Whereas IAE passes arguments by reference, Scheme passes arguments by value.

The manipulation of the flow of control in (original) Scheme is based on catch-



expressions. An expression of the form
catch L Body

constructs a continuation value—an abstraction of the rest of the computation—
and binds it to L for the evaluation of Body. A continuation value has the same
status as a function, it can be the result of an expression, passed to functions, and
so on, but upon invocation it behaves like a label value and passes its argument
back to the labeled point in the evaluation. Syntactically the facility is equivalent to
the J-operator, semantically it is simpler, avoiding interference with A-axioms [14].
A superficial difference between Scheme and IAE is the concrete syntax. Since
early implementations were based on Lisp, Scheme’s syntax is Lisp-oriented and it
is occasionally called a Lisp dialect. Scheme implementations also inherited Lisp’s
macro facility. Because of this, experimenting with syntactic abstractions is rather

convenient, and unlike in ISWIM, the set of syntactic variants is not fixed.

Sussman and Steele’s initial goal was to implement Hewitt’s actor model of
computation, but they soon discovered that Scheme could also express numerous
other linguistic facilities [64]. Some of the results were rediscoveries of Landin’s
and Reynolds’s work, others were new, e.g., models for dynamic variable bind-
ing and calling mechanisms such as call-by-name and call-by-need. They realized
that practically all facilities could be rephrased in terms of functional notation,
but that some, including control and assignment operators, were better left in as
primitive computation vehicles. Steele [61, 62, 63] then set out to look for efficient
implementation techniques. The outcome was a compiler and a set of compilation
techniques, which implemented Scheme and its macro-based syntactic extensions
quite efficiently.

In the meantime, Scheme has left the laboratory environment and is used as

a teaching, research, and industrial programming vehicle. A textbook [2] has ap-
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peared that successfully uses Scheme for teaching the current programming para-
digms in a single language framework. Research about Scheme concentrates on
improved compiler techniques [34], the use of Scheme as a language development
framework [11], and practical additions of syntactic abbreviation as a programming,
tool [33]. Research and programming with Scheme happens in all areas that in the

past have been dominated by Lisp and Algol-derivatives.

The Scheme community has recently begun to standardize the language [49].
The development of Scheme is the proof of practicality of Landin’s programming
language design philosophy. Imperative higher-order languages not only provide a
theoretical test-bed for language design ideas, they are also practical programming

tools.

1.2. The Essence of Expressiveness

The preceding history of language design teaches that an expressive language need
not be complex. The important distinction between core facilities and syntactic
abstractions is the foundation for a structural, hierarchical design of a language.
For an analysis of languages, it is crucial to understand the core facilities. Syntactic
abstractions can be explained via their definitional equations.? Thus, language
analysis and design reduces to the question whether a given construct is a core
facility or not. The answer hinges on what is acceptable as a syntactic abbreviation

technique. This is, reduced to a single point, the problem of expressiveness.

Throughout the evolution of expressive languages, the notion of expressiveness
has been kept vague. There is no formalization of the meaning of expressiveness.
A few hints come from Landin [38] and Sussman and Steele [64]. The former says

that a transliteration of a syntactic variant into its expansion must be indepen-

4 Gee also Subsection 7.3.2 on this topic.
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dent of whatever its context is; the latter notice that ordinary transformations for
syntactic variants are “syntactically local” whereas eliminations of control and as-
signment operations in favor of functional notations involve complex reformulations.
In other words, access to the current continuation and lexical assignment are just

as fundamental as functions and function applications.

Landin’s syntactic abstractions exhibit another important attribute. As men-
tioned above, his transliterations are usually of denotational character, that is,
the result of a syntactic expansion for a complex term depends only on the sub-
expressions, not on their structure. This further simplifies the expansion algorithm
and preserves the possibility of proving and inferring structural properties by in-

duction.

Based on these characteristics, we define syntactic abstractions as syntactically
local (possibly denotational) transformations. For the comparison of languages we
concentrate on fundamental concepts and ignore all syntactic extensions because
they are trivially equivalent to core expressions. It immediately follows that a func-
tional language with a control operator is more expressive than a (mathematically)
functional language. Take as an example the abort-operation. When evaluated,
the expression abort(v) is to terminate a program and must return the value v as
the result of the entire program. Now suppose that some functional expression A,
is syntactically equivalent to abort(v). Since abort(v) is defined so is Ay, but we
also know that A, is equivalent to its value in any context. If A, is equal to v, then

a program of the form

F(abort(1)) where F(z) = 0%z

cannot yield 1; similarly, if A, is not equal to v, the expression

abort(1)
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is not equal to 1. Consequently, there is no syntactically local translation of abort-

operations into functional expressions.

In an absolute but trivial sense this statement is counter-intuitive to the develop-
ment of denotational semantics. The latter has shown that all sequential program-
ming languages can be assigned mathematical meaning, and hence, can be expressed
with a functional notation. Indeed, there are well-known techniques for reformulat-
ing imperative programs into functional ones, but the emphasis here is on program.
These reformulations cannot be performed as syntactically local translations of one
construct into an equivalent expression: the entire program must be restructured.
The crucial idea for modeling exceptional flow of control and state variables with
a functional program is to make all control and state information explicit. As a re-
sult, such a program contains many recurring programming patterns. In addition,
the program is generally less modular than its imperative counterpart, since a local
change in an imperative program—Ilike the insertion of an abort-statement—may

require a global restructuring of the program.

We illustrate the pattern-oriented programming style of functional versus im-
perative programs with an example for the (relatively local) emulation of a catch-
expression. For the example we work in a programming language with a built-in
data type binary number tree. Such a tree is either empty, which can be tested with
the predicate empty?, or it is non-empty, in which case it consists of two sub-trees
and a number. The parts of a non-empty tree can be accessed with Ison, rson, and
info. Provided recursive functions are available, it is straightforward to write a re-
cursive program Y* that sums up the numbers in a tree. In an Algol-style language,
this could be expressed as

integer procedure *(T); tree T;

if empty?(7T') then 0
else info(T) + Z*(Ison(T)) + Z*(rson(T)).
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Next we consider a slightly modified version of £*, namely, a function T; that
walks through the tree and adds up the numbers, but immediately returns 0 upon
encountering 0. With a Scheme-like catch-facility, this is only a minor extension

of the above program:

integer procedure Z3(T); tree T}
catch Exit
begin
integer procedure S(T); tree T}
if empty?(T') then 0 else
if info(T) = 0 then Ezit(0)
else info(T) + S(lson(T')) + S(rson(T'))
S(T)
end {=}.

Informally, when § encounters 0, it invokes the continuation value Ezit with 0 and

thus jumps back to the caller of &f, returning 0 as required.

A functional version of this program that preserves the one-parse-early-exit
property is more complicated. It is based on the idea of a denotational continuation
1, 21, 44, 67].5 That is, every function takes an additional parameter that represents
the computation after the function invocation. If the function wants to continue
the computation, this extra parameter must be invoked in such a position that

after its return nothing is left to do. Also, the current function must pass along

5 Indeed, the origin of the concept of a continuation can be traced back to A. van Wijngaarden who
pointed out in a discussion at the IFIP Working Conference on Formal Language Description Languages, 1964
[59:24] that “this implementation [of procedures] is only so difficult because you have to take care of the goto
statement.” He went on to explain his newly designed implementation strategy:

[N]o procedure ever returns because it always calls for another one before it ends, and all
of the ends of all the procedures will be at the end of the program: one million or two
million ends. If one procedure gets to the end, that is the end of all; therefore, you can
stop. That means you can make the procedure implementation so that it does not bother
to enable the procedure return.

Or, put differently, “... it’s exactly the same as a goto, only called in other words”[ibid].
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a representation of the rest of its computation to invocations of other functions.
When a computation is to be terminated, the extra parameter is simply ignored.

In a first-order Algol-style language, this program becomes:

integer procedure Z3(T); tree T;
begin
integer procedure Id(z); integer z; z;
integer procedure S(7,C); tree T; integer procedure Cj
begin
integer procedure Si(sumy); integer sumy;
begin
integer procedure S,(sum.); integer sum,;
C(sumy + sum, + info(T));
S(rson(T), S;)
end {S};
if empty?(7T') then C(0) else
if info(T) = 0 then 0
else S(lson(T), S1)
end {S};
S(T, Id)
end {7}

Our complaint with this second version is not that it is longer. This could be
improved with a better syntax and higher-order functions. The important drawback
of this programming style is that it introduces recurring programming patterns,
e.g., every call to the auxiliary function § uniformly takes an extra parameter. A
programming language, however, should not introduce patterns into programs, but

it should hide them. Constructing highly repetitive programs is an error-prone task

6 There are various other ways to achieve the correct effect, e.g., with explicit stacks, but these can be
derived from this solution [72].
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and should be avoided with appropriate abstractions. This is the essence of the
desire for abstract programming notation. To conclude this part of the discussion,
we recall McCarthy’s argument about the advantages of introducing conditional

expressions into the theory of recursive functions:

[B]oth the original Church-Kleene formalism and the formalism us-
ing the minimalization operation use integer calculations to control
the flow of the calculations. That this can be done is noteworthy, but
controlling the flow in this way is less natural than using conditional
expressions which control the flow directly [45:64].

The same arguments hold for the elimination of assignments in favor of func-
tional notation. This technique enforces an explicit passing around of the current
state variables of a program [8, 30]. If a program models many objects with state,
this structure—generally a state-tree—becomes large. Changing one component
means finding the place of the current value in the state structure, putting in the
new value, and re-constructing the state structure. This can be expensive, yet,
more importantly this strategy induces a notational overhead. With an assignment
operation, the first and the third part of this state transformation need not be pro-
grammed. Since the program text naturally organizes the state structure in the
shape of a tree, these parts are automatically a part of the assignment statement.
Again, functional programs that emulate state variables and state changes contain
recurring program patterns.

In summary, the essence of expressiveness is a set of fundamental computa-
tional abstractions. These abstractions are chosen in order to avoid a repetitive
programming style. Other facilities that abstract patterns of core expressions are
explained via syntactic equivalences. Accordingly, they are called syntactic ab-
stractions. Writing down a syntactic abstraction should be considered as a mere
editorial task. For traditional languages, five fundamental facilities are sufficient: a

set of names, means for functional abstraction and function application, and oper-
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ations for the manipulation of control and state. The need for a naming capability
is obvious. Functional abstraction binds expressions together via names and is the
main tool for structuring programs. Function application is the means of employing
functions: it relates names to values. A control operator has the task of manipu-
lating the thread of control for exceptional cases. An assignment statement finally
expresses the occurrence of a state-changing event. Equipped with this understand-

ing of expressiveness, we can now proceed to our problem statement.

1.3. A Calculus for Imperative Higher-Order Programming Languages

The historic evolution and the analysis of expressive programming languages shows
that they share with mathematical languages the tendency towards simplicity. The
point of contention is the inclusion of two imperative operations for expressing

events. As McCarthy remarks:

A programming language should include both recursive function def-
initions and Algol-like statements. However, a theory of computa-
tion certainly must have techniques for proving algorithms equiv-
alent, and so far it has seemed easier to develop proof techniques
like recursion induction for recursive functions than for Algol-like
programs [45:65].

The apparent reason for the problem is captured in Landin’s complaint that

[flor both of these [jumps and assignments] the precise specification
is in terms of the underlying abstract machine [38:159].

In other words, there is no method for understanding these operations solely on the
basis of program text and program equivalences.

At the outset of this chapter, we briefly alluded to the importance of program
equivalences. Both McCarthy and Landin clearly foresaw the possible need for and

uses of calculi. The former anticipated transformational programming:

[Equivalence preserving] transformations can be used to take an al-
gorithm from a form in which it is easily seen to give the right
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answers to an equivalent form guaranteed to give the same answers
but which has other advantages such as speed, economy of storage,
or the incorporation of auxiliary processes [45:34];

the latter perceived a need to put available techniques on solid ground:

The practicability of all kinds of program-processing (optimizing,
checking satisfaction of given conditions, constructing a program
satisfying given conditions) depends on there being elegant equiva-
lence rules [38:160]. 7

That is, if computer science wants a well-founded theory and practice of compilation
and optimization or a sound understanding of the construction of programs, then an
equivalence theory for expressive programming notations is the absolutely necessary

starting point.

The central clue to the precise formulation of our problem statement comes from
our characterization of an expressive language core: an imperative extension of a
functional language. Given that the A-calculus is the principal reasoning system
for functional languages and that it is based on a small set of basic rules, we must
accept Talcott’s challenge, who asked in the conclusion of her dissertation:

What rules should be added to the rules for ... lambda-calculus to
obtain a Rum calculus with reasonable properties? [70:199],

where Rum is a functional language with a syntactic variant of catch-expressions.

Our own starting point is a version of the programming language Scheme.
Scheme is well-explored and practical. Its current fundamental abstractions are
almost orthogonal, that is, their (syntactic and semantic) tasks do not overlap; its
syntax is expression-oriented, the only exception being the assignment operator.
Scheme is thus an acceptable extension of the A-calculus-language and a well-suited

candidate for our project.

7 Emphasis ours.
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The real question then becomes: when do we know that we have the correct
calculus? Or, more precisely, what does it mean for a calculus to correspond to a
programming language? The first to investigate this question systematically was
Plotkin [47]. He noticed that Landin’s abstract machine for AE/IsWIM was not in
accord with the A-calculus. There are two problems with the relationship. First, the
SECD-machine reduces programs to values as opposed to normal froms. Second,
the SECD-machine may stop and yield a value when the calculus fails to produce
a normal form and vice versa. One possible solution is to change the programming
language so that it fits to the calculus, but since we are interested in studying
programming languages, this is the wrong solution. Instead—and this is Plotkin’s

insight—we must look for the correct version of the calculus.

For Landin’s AE/IswWIM-language the correct calculus is the A-value-calculus. It
differs from the original A-calculus in the basic axiom and incorporates the notion of
a value. Plotkin showed that the relationship between the programming language
and the new calculus satisfied a set of correctness conditions. The same criteria are
also valid for the correspondence between the original A-calculus and a modified
AE/IswiM-language. The difference between the two programming languages 1s
the argument evaluation strategy. Whereas Landin’s original language evaluates
the arguments to a function before the application, the modified version does not.

The two strategies are known as call-by-value and call-by-name.

In Algol 60, both argument evaluation strategies are available. Most practical
languages, however, realize (a form of)) call-by-value over call-by-name.# Scheme is
among those. There are two reasons for this choice. Since a function generally uses

an argument more than once, it is more efficient to evaluate the argument expression

8 While agreeing on when to evaluate an argument, they generally disagree on what to pass as an argument,
i.e., the value of the argument or a (machine) pointer to the value. We reject the idea of meshing machine
concepts with abstract semantics and therefore only accept the first alternative.
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only once for every function call. Furthermore, as Church already remarked in

conjunction with his own A-calculus, call-by-name is unnatural in some sense:

Indeed if we regard these and only these formulas as meaningful
which have a normal form, it becomes clearly unreasonable that
FN should have a normal form and N have no normal form [10:59].

That is, with call-by-name
1
F(a) = 5 where F(z) =5

is valid, even though the argument to F is meaningless. The call-by-value strategy
is in this sense preferable: it evaluates the argument once and this happens before

the function application takes place.?

We have now explored all essential aspects of our problem statement. Put

briefly, the task is:

— to analyze the correspondence between call-by-value functional languages and

the A,-calculus,

— to extend the call-by-value based functional language with Scheme-like opera-

tions for the manipulation of program control and state, and

— to construct a conservative extension of the A,-calculus that reflects the ex-
tended programming language and that satisfies the correspondence criteria for

languages and calculi.

1.4. Qutline

The main body of the thesis has three parts. Chapters 2 and 3 form an introduction

9 Church’s way out of this dilemma was the A-I<alculus. This calculus has a different term language in
which functions must use their argument. This solves the problem by avoiding vacuously abstracted variables.
Chureh’s original paper also contains a proposal that is reminiscent of the X, -calculus. It is based on a restriction
of the ground axiom such that “if M is a meaningful formula containing no free variables, the substitution of
(Az.M)N for M ought not to be possible unless N is meaningful” [10:59]. Put differently, the A-I-calculus
solves the problem of vacuous abstraction with a syntactic, i.e. static, restriction, while the A,-calculus uses a
semantic, ¢.e. dynamic, restriction.
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to the general area of higher-order languages, calculi, and imperative extensions.
Chapters 4 through 6 contain the main results. Chapter 7 summarizes the research

and provides a perspective.

Following the above problem statement, we must first develop a formal setting
for the analysis of functional programming languages and their relationship to the
M-caleulus. This is the contents of Chapter 2. We formalize the concept of a
family of programming languages and their semantics, the construction of a calculus,
and their mutual correspondence. The descriptions draw on work by Barendregt,
Reynolds, and Plotkin, but are presented in a single, unified framework. With a

few examples, we illustrate (meta-) programming with functional languages.

In the third chapter, we extend the functional language of Chapter 2 with
two imperative operations: F-applications for the manipulation of control and o-
capabilities for the manipulation of state. The former is a semantic (and syntactic)
improvement of Scheme’s catch-expressions, the latter is an expression-oriented
syntactic variant of assignment statements. Accordingly, we refer to the extended
language as Idealized Scheme. The semantics is defined via an abstract machine,
based on a denotational semantics. The chapter ends with a section on programming

with Idealized Scheme.

Chapter 4 leads up to and states our first result. In a series of four steps,
we transform the abstract machine into a program rewriting system. The new
semantics is built on a set of six rules that rewrite a program to another program
until a value is reached. The rules only apply to entire programs and are therefore
not suited for a calculus. Nevertheless, they provide a symbolic evaluation strategy,
which is a major improvement from the perspective of the programmer. At the
same time, they are a good starting point for the design of a programming language

calculus.



20

The fifth chapter contains the main result. First, we derive a set of term re-
lations from the rewriting rules such that the context sensitivity of the latter is
concentrated on a small subset of the former. From this set we construct the A.-
CS-caleulus. In the remainder of the chapter, we show that the calculus has the
usual properties, i.e., it is consistent and has standard sequences, and that it corre-
sponds to Idealized Scheme. The correspondence relationship is more complex than
the one for functional languages, but it still induces a method for the construction

of program equivalence proofs.

In the sixth chapter we exploit the correspondence theorem and apply it to some
programming examples. We prove the correctness of the catch-based version of ¥;
an implementation of cells based on higher-order functions and assignments; a fast
implementation of recursion in terms of self-referential assignments; the removal
of tail-recursion in favor of jumps; and the characteristic idempotent behavior of
generators on finite objects. This set of examples covers the two important fields
that McCarthy and Landin predicted: program processing and program correct-
ness. For example, the implementations of recursion as self-referential code and the
elimination of tail-recursion by jumps are traditional compiler techniques. As far
as we know, this is the first time that they are justified with simple, algebraic cal-
culations. The T-example, on the other hand, is a typical case where an obviously
correct, but slow program is equivalent to a faster, but less perspicuous program.
All the proofs are simple and easy to construct. They demonstrate that reasoning
with imperative programs has the same algebraic flavor as reasoning with func-
tional programs. Although we explore a wide range of examples, this field needs

more consideration.

The last chapter is devoted to a summary, a comparison to other work, and pro-

posals for future research. Although we are not the first to construct an equational
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theory for imperative languages, the design of a symbolic rewriting semantics and
a calculus for the full core of traditional imperative languages are unique results.
The major limitations of our approach is the concentration on type-free, traditional
imperative languages. This is addressed in the section on future work where we
suggest an investigation of a type structure and additional fundamental abstrac-
tions. There are also numerous other theoretical directions that promise fruitful
extensions, e.g., a direct axiomatization of syntactic abstractions, a systematic ex-
ploration of proof principles, and the incorporation of intensional calculi. On the
practical side, we perceive two main application areas, namely, a visual, animated
implementation of our symbolic rewriting semantics as a debugging and learning

aid and new implementation strategies for imperative languages.



2. Programming Languages, Calculi, and Correspondence

The three basic concepts of our development are programming languages, their
calculi, and the notion of correspondence between the two. The definition of a
programming language consists of two parts: one for the syntax and one for the
semantics. An associated calculus is approximately an equivalence relation over the
same syntax, i.e., it equates programs and program pieces with respect to some

behavioral understanding,.

Put differently, a programming language semantics and a calculus interpret a
common syntax: the semantics is a map from programs to results, the calculus a
set of equivalence classes. On the other hand, the semantics also defines a calculus
and vice versa. The semantics-based calculus is called operational equivalence. Two
program pieces are operationally equivalent if one can be replaced by the other in
any arbitrary context without changing the result. A calculus-based semantics can
be built upon the standardization procedure for derivations in a calculus. For every
equation in a calculus, the standardization procedure determines a standard way
of deriving this equation. It follows that the standardization procedure associates
a unique value with a program if the calculus equates the program with any value
at all. Thus, the standardization procedure defines a function from programs to
values: the standard reduction function.

22
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According to the preceding argument, the correspondence between a language
semantics and a calculus has two aspects. First, the calculus perceived as a language
semantics must equal the original semantics. Second, equivalence in the calculus
must imply semantic equivalence. This second criteria accounts for our understand-
ing that we accept the programming language as a given specification of a calculus,
and that we actually investigate the correctness of a calculus with respect to this
language semantics. We cannot expect the two equivalence relations to be equal
because the semantic equivalence collectively assigns all diverging computations to

the same equivalence class.

In the following sections we develop the necessary mathematical machinery for
a formalization of these basic concepts. Because our work is an extension of the
relationship between pure AE/ISWIM and the A.-calculus, we explore this corre-
spondence as a prototypical example. The first section contains a specification of
pure AE-syntax, i.e., the A-calculus-term language. In the second one we define an
operational semantics in the form of an abstract machine. The third section is a
primer on the construction of a calculus, in particular the Ay-calculus. Section 4
pulls the first three sections together by examining the correspondence question. In

the last section we illustrate programming and reasoning with the X,-calculus.

2.1. The Programming Language A

The term language of the A-calculus, A, is defined inductively over the terminal
symbols (, ), . (dot), and A; over an infinite set of variables, Vars; and over a set of
constants, Const. The syntax is formalized in Definition 2.1. The language contains

four classes of terms:

— constants: a, which are interpreted symbols;!

1 We do not make a distinction between a constant symbol and the constant it denotes.
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— variables: z, which are placeholders for values;

— A-abstractions: Az.M, which play the role of lexically-scoped, call-by-value func-

tions; accordingly, M is called the function body, z is the function parameter;

— applications: MN, which serve as the computational vehicle, applying the func-

tion part M to the argument part N.

Constants, variables, and abstractions are collectively referred to as values.

Definition 2.1: The programming language A

Syntactic Domains:

a € Const (constants)
T € Vars  (variables)
M,Ne A (A-terms)

Abstract Syntax:
M:=a|z| (Aa.M)| (MN).

The union of constants, variables, and A-abstractions is the set of (syntactic)
values; we refer to it by Values.

Convention. a,b, ..., f,g,... are meta-variables for Const, but are also used as
if they were members of Const, and similarly for x,y, ..., which range over Vars.
M,N,... denote terms, U, V, ... stand for values. End

The set of constants represents the primitive or built-in data types of a program-
ming language. It is intentionally left unspecified in order to separate the logical
design issues from the application-oriented ones, but we assume that the set is the
disjoint union of basic constants, BConst, and functional constants, FConst. Thus,
the language definition for A actually specifies a family of programming languages.
A particular instantiation of the constant set yields a special-purpose language. In

principle, every algebra with its carrier set and its operations i1s a suitable basis
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for a set of constants. For example, if we take the integers with the successor and
predecessor function constants, 17 and 17, we get a primitive language for numer-
ical applications. Some terms in this language are (Az.1), a function that maps
everything to 1, (Az.(1T(1*z))), a function that increases every integer by 2, and
((Az.1)0), an application that combines the first sample function with 0. More
useful constant sets include rational and complex numbers for advanced numerical
applications, strings for language processing, etc. Constants play an important role

in the comparison of language semantics and calculi.

We adopt the notational convention of using Azy.M for (Az.(Ay.M)), LMN for
((LM)N), and other shorthands with an obvious meaning; similarly, we write about
two-place functions or of the application of a function to two arguments. When we
write Az.\y.M we wish to emphasize that this expression is a higher-order function,
i.e., a function that maps every argument to a function. The usual terminology of
(abstract) syntax applies to A. For example, the term (Az.z)z contains the subterms
z and z, or z and Az.z occur nested in this term. We also refer to the root of a term,

meaning the outermost syntactic construction, generally an application.

Two important syntactic notions are the set of free and the set of bound vari-
ables, FV (M) and BV (M), of a term M. An occurrence of a variable z is free if it is
not a part of a Az.M-abstraction; otherwise, the occurrence is bound. For example,
in (Az.z)zz there are two free and two bound occurrences of the variable z. We

define the two sets by induction on the structure of a term:

FV(a) =0, BV(a) = 0,
FV(z) = {«}, BV(z) =0,
FV(hz.M)=FV(M)\ {z}, BV(\z.M) = BV(M)U {«},

FV(MN) = FV(M)U FV(N);  BV(MN) = BV(M)U BV(N).

Terms with no free variables are closed terms and play the role of programs in our
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language. Open terms are sometimes referred to as program pieces.

Bound variables often cause confusion in dealing with substitution. To avoid

this, we adopt two of Barendregt’s conventions [5:26]:

e Terms that are equal except for some unique renaming of bound variables are
identified, e.g., Az.x = Ay.y, but Ay.zy = Az.zz F Az.22 [a-congruence con-
vention];

e In all mathematical definitions, theorems, etc. the sets of bound and free vari-

ables of all A-terms are assumed to be mutually disjoint [hygiene convention].

The first convention reflects the fact that the actual name of a parameter is irrelevant
for the functionality of an abstraction. Together, the two conventions permit a
naive treatment of terms and term-substitutions. The definition of the substitution
operation M|z := N] becomes straightforward. Informally, M [z := N] denotes the
term that is like M but with all free occurrences of z replaced by N; formally, we

define:

8
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=
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(z Z9),
(\y.M)[z := N] = (A\y.M[z := N)),
(LM)[z := N] = (L[x := N]M|[z := NJ).
For an illustration of the above conventions, suppose we wish to substitute z
in M = Ay.zy by N = Xz.y. First, this is illegal because it violates the hygiene
convention: M’s bound variable is not distinct from N’s free one. If we want to

apply the substitution algorithm, we must rename the bound variable of M, e.g.,

M = Mu.zu. Assuming this, the result of M[z := N] is Au.(Az.y)u.

An important fact about substitution is captured in the

Substitution Lemma [5:27]. If z Z y and z € FV(L), then

Mlz := N][y := L] = M|y := L][z := N[y := L]].
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Several proofs in the main body of the work use this fact.

The last major syntactic notion that we introduce in this section is the concept
of a one-hole contezt, which is a term with a hole. We use [ | to indicate a hole
and C[ ],... as meta-variables ranging over the set of contexts, indicating that a
context is a term which is a function of its hole. The formal definition is given by

an abstract syntax:

Cl 1==[110QaC[ ]| (CL M) | (MC] ]).

We use the notation C[M] to denote a term that is like the context C[ ], but
with M put into the hole. Unlike terms, contexts do not need to satisfy the above
conventions about terms. The filling of a context C[ ] with a term binds free
variables in M. That is, we do not assume that bound variables in C[ ] are distinct
from the free variables in M, e.g., take M = z and C[ | = Az.[ ] which yields
C[M] = Xz.z. Later, contexts will also appear in a more specialized version,

namely, as evaluation contexts.

2.2. An Abstract Machine Semantics

The first formal semantics of AE/ISWIM as a programming language was Landin’s
SECD-machine [7, 39, 36, 40, 47]. The machine is a state transition system and thus
provides an abstract operational semantics.” The operational character facilitates
the comparison with a calculus since a calculus also operationally reduces terms to
values. A major disadvantage is that the SECD-machine is hard to compare with a
corresponding denotational semantics, the predominant method for formal semantic
specifications [54, 66]. To combine the best of both worlds, we follow Reynolds and

others [31, 50, 74] and specify the language semantics with an operational version

2 Considering the results in the following sections, the equational theories also define an operational pro-
gramming language semantics, but of course a kind that is only remotely related to state-of-the-art machines.
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that is derived from a denotational semantics. This should help to clarify the
definitions and later it ties in neatly with the design and proof of correctness of our

calculus.

The abstract machine for A is a classical state transition system. Some states
are designated as initial, others as terminal. For the evaluation of a program, the
machine’s current state is set to some appropriate initial state. Given a current
state, a state transition function determines the next current state. When the
current state becomes a terminal state, the evaluation stops. Unloading this final

state yields the program result.

Since our language definition actually specifies a family of languages, parame-
terized over constant sets, the semantics depends on an interpretation of constant
applications. We assume that the specific sets of constants come equipped with an

interpretation function

§: FConst X BConst —o— ClosedValues,

where Closed Values is the set of closed values. Consider the set of natural numbers

with the function constants +, 11, ... A well-suited definition of é for this set is

§(+,n) = n* and §(n",m) = n + m.

The function + acts like a one-place function and depends on the existence of
the functions n*. Although this treatment is cumbersome, it is sufficient for our

investigations.

The formalization of the abstract machine requires the specification of a state
space and a state transition function. A machine state is a triple of a control string,
an environment, and a continuation code. Accordingly, the machine is called CEK-

machine.
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Definition 2.2: The CEK-machine, part I: the computational domains

Computational Domains:

s € States = Controls X Envs X Conts (machine states)

c € Controls=A+1 (control strings)

p € Envs = Vars —e— Closures (environments)

Ve Closures= Values X Envs (closures)

k € Conts = ret-Conts+ p-Conts (continuation codes)

where p-continuations and ret-continuations are

p-Conts =stop + p-Conts X fun X Closures + p-Conts X arg X A X Enwvs
ret-Conts = p-Conts X ret X Closures

A control string is either a A-term or the unique symbol f. If the current
control string is a proper term, it determines the next transition step; otherwise,
the continuation code is the deciding criteria. In denotational semantics, this latter
situation corresponds to the application of a continuation function to a value. We
call a transition sequence starting in (M, -, +) an evaluation of M. An environment
is a finite map from variables to closures. The machine uses environments to store
the meaning of free variables in the control string. A CEK-machine closure 1s an
ordered pair of a constant and the empty environment—a constant-closure—or of
an abstraction and an environment whose domain covers the free variables in the
abstraction—a A-closure. Closures are semantic equivalents of values. All these

concepts are formalized in Definition 2.2, part L.

The definition of a continuation code is more complex. A continuation code
remembers the remainder of the computation after the current control string is

evaluated. The domain of continuations consists of two subdomains: p- and ret-
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Definition 2.2: The CEK-machine, part II: the transition function

The CEK-transition function maps states to states:

States CEK States,

according to the following cases:

(a, p, &) 5 (1,0, (rret (a,0))) (0)

(@, p, k) 25 (1,0, (x ret p(z))) (1)

(Az.M, p, &) CER (1,0, (kret (\z.M, p))) (2)

(MN, p,s) ¥5 (M, p, (s arg N p)) (3)

(1,0,((x arg N p) ret V)) CEE (N, p, (r fun V)) (4)

(1,9, ((x fun (Az.M, p)) ret V)) CEK (M, plz := V], k) (5)

(1,0, ((x fun (f,0)) ret (a,0))) ¥ (1,0, (x vet (§(f,a),0))) (6)

continuations. A ret-continuation consists of a p-continuation code x and a seman-
tic value V. It results from an evaluation that started in (M, p, k), and we therefore
say M evaluates to V. The value is supplied to the p-continuation so that it can
finish whatever is left to do. p-Continuations are defined inductively—see Defini-

tion 2.2—and have the following intuitive function with respect to an evaluation:
— (stop) stands for the initial continuation, specifying that nothing is left to do;

— (karg Np) indicates that N is the argument part of an application, that p is

the environment of the application, and that « is its continuation;

— (% fun V) represents the case where the evaluation of a function part yielded

V as a value, and « is the continuation of the application.

A CEK-machine state is either a triple of the form (}, @, k) where « is a ret-

continuation, or a triple of the form (M, p, k) where M is a A-term, p is an environ-
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ment that provides a meaning for all free variables in M, and « is a p-continuation.
A machine state of the form (M, 0, (stop)) is initial; (},0, ((stop) ret V)) is ter-
minal. We sometimes refer to the state components as registers, thinking of every

transition as an assignment to the three registers.

The state transition function is displayed in Definition 2.2, part II. The first
three transition rules evaluate syntactic values to semantic values in a single step.
Indeed, it is because of these single-step evaluation rules that syntactic values are
called values: once a value is encountered, it is immediately clear what the result
of this term is and no further evaluation of subterms is necessary. The (semantic)
value of variables is looked up in the environment; constants and abstractions are
combined with the empty and current environment, respectively, to yield closures.
Since the occurrence of a A-abstraction corresponds to the definition of a function,
the A\-closure is the result of a definition. The inclusion of the definition-time en-
vironment in the closure is necessary for the lexical scoping of its free variables.
Otherwise, occurrences of free variables in the abstraction body could not refer to
the value they had at definition-time. Rules (CEK3) and (CEK4) cause the machine
to evaluate the two parts of an application to values; the function part is hereby con-
sidered first. The last two rules perform the actual application of a function value
to an argument value. If the first is a A-closure, the machine continues with an eval-
vation of the abstraction body in an extended closure-environment that maps the
parameter to the argument value. Installing the closure-environment ensures the
required lexical scoping of function definitions. If both parts are constant-closures,
the first a function, the second a basic constant, the machine uses the é-function
to determine the result. The machine is stuck if none of the two application rules

matches or if § is undefined on the given constants.

From the description of the machine it follows that the machine may stop in
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the terminal state, it may stop in a stuck-state, or it may run forever. When it
terminates in (}, @, ((stop) ret V)), we say that the program M yields the closure
V. For a programmer, however, a semantic value makes little sense. The result
must be translated back into the comprehensible world of syntax. In case V is a
constant-closure, this is simple: the first part directly corresponds to a syntactic
value. Otherwise, V is a A-closure and naturally we would then like to see the
abstraction part of such a closure since it determines the functionality. But in order
to understand the abstraction completely, we must also say what its free variables
mean. This, in turn, can be done by extracting the corresponding values from the
environment part. Of course, values in the environment are closures and therefore,
this translation is recursive. We call this procedure Unload because it constitutes
the interface between the machine and the user and define it as a map from closures
to syntactic values:
Unload({V, p)) = V[z1 := Unload(p(z1))] ... [zn = Unload(p(zn))]
where FV(V) = {z1,..., 2}

This definition is well-founded due to the finiteness of terms and environments.

With the Unload-function we can formalize an evaluation function that hides

the machine details and maps programs to values:

evalomi (M) = Unload(V) iff (M, 0, (stop)) £E5 (1,0, ((stop) ret V).

Another view of this definition is that the evalcgi-function is the extensional se-
mantics of A whereas the CEK-transition function is the intensional semantics.
In other words, evalgrpxk defines which value is the result of a program, and the
transition function says how this result is computed.

The distinction between extensional and intensional semantics is important for
practical purposes. From the extensional point of view, which is that of a program-

mer, the programming language A is an entirely sequential language. Events in an
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evaluation are ordered and thus, for example, no function can compute the math-
ematical (symmetric) or-function.®  However, the sequentiality of our intensional
semantics is not inherent. In Section 2.4 we shall discuss an alternative intensional

framework that is extensionally equivalent, but gives rise to parallel evaluations.

A different issue is the nature of the extensional results. The evalc ek -function
is partial; if it diverges, we say the program under consideration is undefined. If
the function returns a value, the value is either a basic constant or a function. In
general, basic constants are the final answers which a programmer expects from a
computation. They can be effectively compared and the correctness of the com-
putation can be decided. On the other hand, if a function is the result, we must
assume that this is an intermediate computation step, and that the final answer is
eventually found by further applications of this function. Since there is no effective
procedure for deciding on the equality of functions, the display of a A-abstraction
or a primitive function as a result is merely an attempt to provide some information

on the progress of the computation.

At this point some examples are appropriate for clarifying the formal definitions.
Assume that A is defined over the set of natural numbers with the function 17 and

consider the following three programs:
(Az.17(1*2))0, 017, and (Az.1)((Az.zz)(Az.27)).

The first program should yield 2. This can be verified by tracing the machine steps:1

((A\z.1t(172))0, 0, (stop))

3 A proof of this statement goes beyond the scope of this introduction to the A-calculus. The reader is
referred to either Berry’s original work [6] or Barendregt’s reformulation [5:375-382].

4 In evaluation traces we let constants stand for constant-closures.
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FE5 (A2.1%(1%2)), 0, ((stop) arg 00))

PEE (1,0, (((stop) arg 00) ret ((Az.1%(172)), 0)))
25 (0,0, ((stop) fun (a1 (172)), 0)))

F25 (1,0, (((stop) fun ((Az.17(172)), B)) ret 0))
X (1t (1t 2), {(z, 0)}, (stop))

EEL (1%, {(=,0)}, ((stop) arg (1*=) {(2,0)}))

“EE (1,0, (((stop) arg (17 z) {(z,0)}) ret 17))
F= (1), {(=,0)}, ((stop) fun 11))

FEL (1%, {(=,0)}, (((stop) fun 17) arg = {(z,0)}))
CEE ({,0, ((((stop) fun 1*) arg = {(z,0)}) ret 1)
P55 (2, {(2,0)}, (((stop) fun 17) fun 11))

F25 (1,0, (((stop) fun 1%) fun 17) ret 0))

FZ5 (4,0, (((stop) fun 17) ret 1))

CEK (1,0, ((stop) ret 2)).

The second program does not return a value because the machine gets stuck:

(01, 0, (stop)) £5 (0,0, ((stop) arg 1+ 0))

25 (4,0, (((stop) arg 1* ) ret 0))
28 (1, 0, ((stop) fun 0))
“E5 (1,0, (((stop) fun 0) ret 1*)).

This last clause is not matched by any of the cases in the definition of the CEK-

transition function. The third program causes the machine to run forever:

{((Az.1)((A\z.zz)(Az.22)), D, (Stop))

CEE™((Az.zz)(Az-z2)), 0, ((stop) fun ((Az.1),0)))

CEKT (4 0, ((((stop) fun ((Az.1),8)) fun ((Az.zz),0)) ret ((Az.zx),0)))
CER (22, {(x, ((Aa.zx), 0))}, ((stop) fun ((Aa.1),0)))

CEKT (1,9, ((((stop) fun {(Az.1),0)) fun {(Az.zz),0)) ret {(Az.zz), 0)))

CEK™T
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This transition sequence proves that the machine returns to the same state after a
few steps and hence goes into an infinite loop. Beyond this, the trace exemplifies
that a functional simulation of a loop can be implemented as efficiently as a hand-
compiled construct.” The CEK-machine acts like a true register machine, and, in

particular, it implements tail-calls in a goto-like fashion.

To the same degree as the abstract semantics is suited for realistic implementa-
tions, it is unfit for human consumption. The above examples illustrate how hard it
is to reason about programs with the CEK-machine. The need for a program-based,

human-oriented reasoning system is obvious.

2.3. The )\-value-Calculus

A calculus is an equational theory over a term language. There are two equivalent
ways to construct a calculus: as a logic-like system with axioms and inference rules
or as a term relation built from a set of term reductions. Since reducing a program
to a value is closer to the computational understanding of a program evaluation
than axiomatically proving its equivalence to a value, we develop the mathematical
background for the A-value-calculus in Barendregt’s [5:ch 3] framework of reduction

and congruence relations.

A notion of reduction is a relation between terms. For example, the f-value

relation is
Be = {(((MUM)N),M[JU =N])| M,N €A, Nisa value}.
A more conventional notation is

By : (Az.M)N) — M|z := N] provided that N is a value.

5 This is not true for implementations based on the SECD-machine. The very same program causes a
constant growth of the machine state, and on a finite computer this sooner or later exhausts the available
machine space and (abnormally) terminates this infinite loop.
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The é-function on A-constants provides another notion of reduction:
8 : fa — V provided that 6(f,a) = V.

If M is related to N via a notion of reduction R, then M is an R-redez, N is a

contractum, and reducing M to N is called R-contraction or R-step.

Notions of reduction roughly correspond to basic computation steps. For the A,-
calculus, no notions of reduction are needed for values, 1.e., constants, variables, and
abstractions: they are already results. On the other hand, the B.-relation explains
how to understand the application of a A-function to a value, § does the same for
built-in primitives. Since this covers the entire set of syntactic constructors, these
two relations are in some sense sufficient for defining computations in A. However,
these notions of reduction only apply to the actual applications, they do not re-
late terms in which such applications occur as subterms, e.g., (Az.(Azy.2y)170) or
17(170). In order to provide computations for these cases, we introduce the concept

of compatible term relations.

A relation is compatible with syntactic constructions if a relationship between
two terms implies that the relation also holds between all terms that contain the
original pair. With the notion of a context this can be expressed more succinctly:
a relation R is compatible if (M, N) € R implies (C[M],C[N]) € R for all M, N,
and contexts C[ ]. Since A is defined inductively, every notion of reduction has
a compatible closure, that is, there is a smallest relation that contains the notion
of reduction and is compatible. Given R, — g is its compatible closure and it 1s

defined by
(M,N) € R = M——grN

M—>gN = \z.M—>gpAz.N

M—gN = LM——grLN and ML—pgNL.

The compatible closure of R is also called one-step R-reduction. The one-step
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Definition 2.3: The \,-calculus

The basic notion of reduction is v = 8, U §, where

By : (Az.M)N) — M|z := N] provided that N is a value, and
§: fa — V provided that 6(f,a) = V.

The one-step v-reduction —,, is the compatible closure of v:

(M,N) € v=>M—N;
M— N = Az.M—,Az.N;
M_—')vN => L.Ad’_)uLN’ ML__)UNL.

The v-reduction is denoted by —, and is the reflexive, transitive closure of
——,. We denote the smallest equivalence relation generated by —, with =,
and call it v-equality:

M= M
M— N =>M =, N

M= N=>N=M

L=, M\M =, N=L=, N.

Formally, the A,-calculus is the congruence relation =.; informally, we also refer

to the entire system of relations as A,-calculus.

B,-reduction, for example, relates (Az.(Azy.zy)170) to (Az.(Ay.17y)0) and further-
more, (Az.(Ay.17y)0) to (Az.(170). To allow for a direct connection of terms that
are related via several single steps, we define R-reductions, — g, as the reflexive,
transitive closures of one-step reductions. Finally, an R-equality or R-congruence,
=g, is the equivalence closure over the one-step reduction. It is customary to write

MR M = N for M =r N when the calculus is perceived as an axiom system.

The general development of a calculus is instantiated for the A,-calculus in

Definition 2.3. The basic notions of reduction are the B.- and the é-relation. The
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Ay-calculus is the congruence relation =,.

Two central notions in the study of calculi are normal forms and values. A term
is in normal form if it contains no redexes. We say a term M has a normal form N
if M equals N and N is in normal form; the process of going from M to N is called
normalization. Similarly, the terminology M has a value N means that M equals N

and N is a value; going from M to N is an evaluation [in the calculus].

Given the claim that M has a normal form or a value N, the question arises
of how to prove or disprove the equivalence between M and N. This directly leads
to the more general question whether the calculus does not prove too much, i.e.,

M = N for all M and N, or, in technical terms, whether the calculus is inconsistent.

Answering the consistency question for a calculus is equivalent to showing that
there are distinct normal forms. This, in turn, is true if the diamond property holds

for the system. A term relation — satisfies the diamond property if for all L, M,
and N such that

L— MandL — N

there exists a K such that
M — Kand N — K,

i.e., two reductions that start from the same term are confluent. A notion of reduc-
tion is Church-Rosser if the corresponding reduction, :.e., the reflexive, transitive,
and compatible closure, satisfies the diamond property. Given that a notion of

reduction is Church-Rosser, we can prove [5:54]°

Theorem 2.4. Let R be a notion of reduction that is Church-Rosser. Then

(i) M =g N implies that there exists an L such that M—»pgL and N—>RL;

6 Unless indicated otherwise, the proofs of the theorems in this chapter can be found in the associated
references.
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(ii) If M has an R-normal form N, then M —»grN.

The proof of the Church-Rosser property for the original A-calculus exists in
many different variations [52]. The shortest one was developed by Tait and Martin-
Lof [5]. The same proof technique also yields a Church-Rosser Theorem for the
Ay-calculus [47]:

Theorem 2.5 (Church-Rosser). The reduction v =8, U ¢ is Church-Rosser.

The theorem implies an appropriate version of Theorem 2.4 and [47]

Corollary 2.6. If an application M has a value V, then M — V.

With the Church-Rosser Theorem we can now illustrate how the A.-calculus
facilitates reasoning about A-programs. Let us return to the three examples of the
preceding section. The first program was (Az.17 (17 2))0. It reduces to a value and

a normal form in three steps:
(Az.17 (11 2))0—, 1T (170)—, 1T 1—,.2.

Our second example was 017. This application is already in normal-form, hence,
it cannot be further reduced, and therefore, it does not have a value. The third

program finally was (Az.1)((Az.zz)(Az.zz)). Its only redex is the underlined part

and a contraction of this redex leaves the term unchanged:

(Az.1)((Az.zz)(Az.22))—> (Az.1)((Az.22)(Az.2T)) —0 - - -

Since the term is not in normal form, by Theorem 2.4 it does not have a normal form;
since the application contains a redex in the argument part that never disappears,

it does not have a value either.

For the above sample programs an evaluation in the calculus yields the same

result as an evaluation on the machine. That this need not be the case is demon-
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strated by (Azy.(Az.2)r)1, which reduces to two distinct, but equivalent, values:
(Azy.(Az.z)z)l— Ay.(Az.2)1

and

(Azy.(Az.2)z)l1— (Azy.2)1— Ay. L.

The CEK-machine evaluation yields the first value. Hence, we must ask whether
there is a way to evaluate a program in the calculus such that we find the “right”
value, that is, the machine result. This problem, together with the connection

between the machine and the calculus in general, is the topic of the next section.

2.4. The Correspondence of Programming Languages and Calculi

In the two preceding sections we have developed an operational semantics and a
calculus for A. Thus far, we have kept the two perspectives separate. To investigate
the mutual relationship, we construct a programming language semantics from the
calculus and compare it with the original CEK-machine semantics. Similarly, we
define a congruence relation for program pieces based on the CEK-machine and

study its connection to the A,-calculus.

An evaluation in the \,-calculus is a reduction of a program to a value. As
demonstrated at the end of the preceding section, the reduction of a program can
yield many different values. With respect to the CEK-machine, only one of these
values is correct. Thus we must find an algorithm which always reduces a pro-
gram to the correct value. Put into a broader context, the problem generalizes to
the following: given that M reduces to N, is it possible to construct a standard-
ized sequence of reduction steps from M to N? For the traditional A-calculus this
standardization question was raised and solved by Curry and Feys [13, 5]. Plotkin
[47] showed that the same theorem holds for the A,-calculus and that standardized

reduction sequences reduce a program to the machine value.



41

Definition 2.7: Standard reduction function and sequences

The standard reduction function, denoted by ——,, is defined by:

(M,N) € v = Mr—N,;
M— M = MN+—— M'N;
M is a value, N— s, N’ = M N+ MN’.

Standard reduction sequences, abbreviated SRS, are defined by:

1. all constants and non-assignable variables are SRS-s;

2. if My, ..., My and Ny,..., N, are SRS-s, then

Ax. My, ..., .My and MiNy, ..., MnNy, ..., M Ny

are SRS-s;
3. if M——s My and My, ..., My, then M, M, ..., My is an SRS.

Historically, a standard reduction sequence is defined in terms of positions and
residuals of redexes. Plotkin’s proof is more elegant. Following his proof strategy,
we first define a standard reduction function, which maps a term M to a term N
by reducing the leftmost-outermost redex not inside a A-abstraction. The standard
reduction function is undefined on values. A standard reduction sequence combines
a series of terms. It is constructed by applying the standard reduction function to
some subterm of a given term and by appending standard reduction sequences with
a common beginning and end. The reduced subterm need not contain the leftmost-
outermost redex, but once a leftmost-outermost redex is not reduced, it must remain
unreduced for the rest of the standard reduction sequence. In short, a standard
reduction sequence is approximately a series of terms that are related via almost-

leftmost-outermost reductions. The two concepts are formalized in Definition 2.7.

An alternative characterization of the standard reduction function is based on
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the notion of an ewvaluation contezt. Such an evaluation context is a context with
exactly one hole for which the path from the root to the hole leads through appli-
cations only and the terms to the immediate left of the path are values. Letting

C[ ] range over evaluation contexts, we define the set of evaluation contexts by
Cl le=[]1C[ IM|VC] ]

Since these contexts never contain a hole inside of abstractions, putting an expres-

sion into the hole cannot bind free variables. We can now state and prove

Proposition 2.8. Mw——,, N iff there exists an evaluation context C[ | such that

M = C[P], N = C[Q], and (P, Q) € V.

Proof. Straightforward induction on the standard reduction step. O

This characterization of standard reduction functions will be helpful for the design

of the \,-CS-calculus.

The importance of standard reduction sequences is captured in the following
two theorems. The first says that if there is a reduction from M to N, then there

must be a standard reduction sequence [47]:

Theorem 2.9 (Standardization). M —», N iff there exists an SRS L1,...,Ln

such that M = Lj and L, = N.

The theorem determines a semi-decision procedure for finding normal-forms and
values. Indeed, the first value in a standard reduction sequence of a program is the
correct value with respect to a machine evaluation, i.e., the standard reduction

function simulates evalopi [47]:

Theorem 2.10 (Simulation). evalcpix (M) =V iff M—3 V.

This theorem justifies the use of our terminology “evaluation in the calculus” for

the reduction of a program to a value, and it motivates the restriction of this idiom
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to standard reductions from programs to values. It is essential for the symbolic

evaluation of programs by programmers.

The calculus viewpoint is also potentially beneficial for a machine implementa-
tion of the language semantics. Whereas the intensional formulation of evalocgk on
the basis of the CEK-transition function is sequential, a reformulation according to
the standard reduction function reveals opportunities for parallel evaluations:

evalcpg (V) =V

5(f,a) if evalcgx(M) = f, evalocprg(N) = a
evalocpx (MN) = evalopi (Plz == Q) if evalopx (M) = Az.P
and evalcpx(N) = Q.
In other words, evaluating a value is immediate; evaluating an application depends
on evaluating the two parts and the transition step. Therefore, the evaluation of

the two components of applications can proceed in parallel.

A different way of comparing a machine semantics with a calculus-based lan-
guage semantics was developed by J “H. Morris [46] and adapted for the A,-calculus
by Plotkin [47]. Mathematically, a program maps inputs to outputs and is ex-
tensionally equivalent to a function; the intention behind a program is neglected.
The desire to compare these functionalities for different frameworks requires a re-
striction to effectively comparable values.” For the traditional A-calculus, these are
normal forms; for the A -calculus, we pick basic constants. Furthermore, without
evaluating the application of a A-expression to basic constants, it is impossible to
determine how many arguments a particular expression consumes until it yields a
basic constant. We therefore consider all possible arities n > 0. With respect to the
CEK-machine, the functionality of an expression is determined by the evaluation

function. For a given arity n, the machine assigns to a program M the function

" Ia slightly different context, these values are called obseruable [26].




44
Mﬁfﬁ

M = {{a1,...,an,c) | evalcpg (May ... an) = c}.

The calculus, on the other hand, interprets a program according to the equivalence
relation:

Iy = {{a1,...,an,c) | Ay F Mai...an = c}.

The consistency of this function definition is based on the Church-Rosser Theorem.
The above Simulation Theorem, together with the Church-Rosser Theorem, implies

that the two functional interpretations of an expression agree [47]:

Theorem 2.11. For alln > 0, I}, = Mj,.

Since—as discussed above—Dbasic values are what the programmer is interested
in, this theorem liberates us from using the standard reduction function for evalu-

ations. Every strategy that reduces programs to values is appropriate.

The theorem also leads to the second central issue of this section. Provided that
the calculus is a system for reasoning about the equality of functions and programs,
the question arises what equivalence proofs mean for the behavior of programs on
the machine. To this end, we derive a compatible equivalence relation on terms

from the evaluation function and compare this relation to the A,-calculus.

The CEK-evaluation function defines an equivalence relation on programs in a
rather natural manner: two programs M and N are equivalent if they return the
same answer. However, in order to extend this equivalence relation to a calculus-like
system over all kinds of terms, we need to form a compatible closure. The original
definition of compatibility in Section 2.3 points out the correct way to construct
the appropriate relation as can be seen from the following proposition. It is a

generalized construction, originally due to Morris [46:58]:

Proposition 2.12. Let ~ be an equivalence relation on A-terms. Define >~ as
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follows: M ~ N if for all contexts C| ], C[M] ~ C[N]. Then =~ is a compatible

equivalence relation.

In other words, an equivalence relation induces a congruence relation by re-
quiring equivalence in all possible contexts. The proposition reduces our task to
specifying precisely the comparison of program answers. Naturally, we would like
to use the identity relation, but this is impossible since there are many programs
that only return functions for use on other problems. Hence, once again we take

refuge in basic constants and otherwise simply require that programs terminate:

Definition 2.13. M, N € A are operationally equivalent, M ~cgx N, if for any
program context C[ | such that C[M] and C[N] are closed, evalcpk is undefined
for both C[M] and C[N], or it is defined for both and if one of the programs yields

a basic constant, then the value of the other is the same constant.

From an extensional point of view this operational equivalence is also how an
end-user perceives, tests, and compares programs. For such a user, a program is
a black-box that produces some outputs. A comparison of this output with the
expected result decides about the correctness of a program. Thus, operational
equivalence is a natural means for specifying the correctness of a program. A
specification can require either the equivalence of a program to a value or to another
program. The second possibility is preferred when a solution is easily specified with
a simple, but inefficient program. A proof of correctness in either case means a
verification of the operational specification, and in the second case, it also means
an improvement of the solution with respect to efficiency. In light of this, the

following, second correctness theorem of the A.-calculus is important [47]:

Theorem 2.14 (Soundness and Incompleteness). If M =, N, then M ~cgx

N. The converse is false.
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The theorem is a consequence of the Church-Rosser Theorem and the Standardiza-
tion Theorem. A typical example that proves the claim about the converse direction
is based on programs with infinite loops. Whereas all diverging programs are oper-
ationally equivalent, the calculus cannot prove the equivalence of such programs in
general. Consider the two programs (Az.z)((Az.zz)(Az.zz)) and ((Az.zz)(Az.22)).
Both programs diverge. There is clearly no program context that can differentiate
the two. Hence, they are equivalent in ~cgx. But, at the same time, there is no

reduction such that )\, can eliminate the extraneous Az.z in the first program.8

The expressiveness of the machine calculus is captured in a stronger variant of

the above theorem. It characterizes ~cEgx as the largest extension of =, of its kind:

Theorem 2.15. ~cgk is the largest consistent extension of =, that respects equal-

ity on the set of basic constants and that is also
— compatible: M ~cgx N implies C[M] ~cgx C[N] for all C[ ], and
— evaluating: M ~cgx N implies C[M] has a value iff C[N] has a value for all

contexts C[ ] that close M and N.

Proof. Morris’s corresponding proof [46] relies on clever techniques by Béhm [4,
5:254-260] for the separation of normal forms. The proof of this theorem is similar,

but simpler, because it can assume separability of observable values. O

The main point of the theorem is a reinforcement of the arguments preceding
the Simulation Theorem. The machine-calculus is a true calculus that can be used
to specify the behavior of program pieces without reference to the program context.
Since it is the largest relation of its kind, everything that can be specified at all,

must be specifiable in ~cgk.

8 Another counterexample concerns the parameterization of recursive functions. If a recursive function
is independent of an argument, this argument can be passed before the recursive function is constructed.
Although this yields two operationally equivalent programs, the A,-calculus cannot prove this equivalence.
[Talcott, private communication]
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Before leaving the section, we quickly summarize the theoretical part of the
presentation. A is the set of terms and programs of the A-calculus; the relation = 1s
the term identity equivalence. The CEK-machine defines an operational semantics
for A, which is close to machine implementations. For reasoning about A-programs,

we use the \,-calculus. This is based on the fact that
e an evaluation in the calculus agrees with the machine evaluation (Theorem 2.10);
e equality in the calculus, =, implies behavioral equality on the machine, ~orK
(Theorem 2.14).
Together the two respective theorems are called correspondence theorems. The
usefulness of the calculus for programming and reasoning in A is demonstrated

next.

2.5. Programming and Reasoning with A

At first glance, A is a rather primitive programming language. Here, primitive
does not refer to computational power, but it means lack of such traditional pro-
gramming facilities as blocks, branching expressions, complex data structures, etc.
Fortunately, the literature provides a wealth of studies [2, 5, 7, 35, 40, 51] on how
to perceive these presumably fundamental necessities as syntactic embellishments

to pure A.

In order to demonstrate this point, we present a series of meta-programming
examples in A. For most examples, we first introduce a well-known programming
language construct by giving an intuitive machine behavior; then, if possible, we
formalize this specification or some property with the CEK-calculus; and finally we
discuss and prove an implementation in pure A.

The examples make use of two definitional techniques. We write combinator
specifications of the form

df
Name = A-term,
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where Name is some string of characters, the combinator name. A combinator is
simply an abbreviation for the closed term on the right-hand side of the definition.

New syntactic forms are defined with equations of the type’

a

(keywordl Ezp! keyword2 Ezp2) A-term(Ezpl,Exp2).

The meaning of this kind of equation is that every occurrence of the left-hand
pattern in an expression is an abbreviation of the right-hand pattern with the
expressions Ezp! and Ezp2 appropriately instantiated. To allow for pyramided
dependencies, the defining terms may contain previously defined combinators and
syntactic forms. Every occurrence of such a combinator or syntactic form should
be thought of as being replaced by the defining side of its specification. With these

preliminaries in place, we are now ready for the actual examples.

Some programs in A have traditional names and, for completeness sake, we shall
introduce them here. The identity function is

dj
é Az.2

and it maps every value to itself.

dj
K :_-f_ Azy.x

is a constant-function producing function, i.e., when applied to a value, it returns
a function that maps every defined argument to this value. Functional composition

is accomplished by
df
B = \fgz.f(gz).
One more combinator with an important role is

S g Afgz.fz(gz).

Kohlbecker’s [33] extend-syntax-facility provides an implementation of this technique for Scheme.

9
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Together, K and S are sufficient to compute every definable function, but of course
the respective programs are practically unreadable because of the lack of high-level

syntax.

Blocks appear in programming languages in various forms, yet these forms share
a number of traits. Most generally, a block consists of a variable declaration and
a block expression. The variable declaration is valid inside the block expression as
long as the variable is not declared again. Also, outside of the block the variable is
invisible. In some languages, a block initializes a variable to a possibly user-specified
value; in others, the variable is left uninitialized. In a functional setting only the first
version makes sense and a block is essentially a shorthand for improving readability

and performance of programs. A suitable syntax for block-notation is

(let (z Init) Body),

where z is the new variable that is initialized to the value of the expression Init and
that is accessible from within Body. From the discussion it is clear that in A such

a block is syntactically equivalent to an application of the form

(Az.Body)Init.

In this application, the A-abstraction binds z in Boedy; when Init is evaluated to

Val, the block becomes equivalent to
Body[z := Val]

making every reference to = a reference to the value of Init. The variable conventions
automatically take care of redefinitions of z. Therefore, we may define the syntactic

abstraction for a block by

=

(let (z Init) Body) = (Az.Body)Init.
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A generalized version of the let-facility permits the simultaneous declaration of

two or more variables:

4

(let ((z1 Init1)...(zn Inity)) Body) = (Azy ... zn.Body)Inity ... Init,.

Of course, the order of variable declarations should not matter. In the machine

calculus, we express this for a block with two variables by requiring
(let ((z Initz)(y Inity)) Body) ~cex (let ((y Inity)(z Initz)) Body)

for all Initz and Inity. The proof of this proposition is easy. Assume that either
Inite or Inity has no value. Since both sides of the equation force the evaluation
of these subexpressions, neither side has a value, and hence, they are operationally
equivalent. Otherwise, both initialization expressions have values, and the equiva-

lence follows from a simple calculation in the Ay -calculus:

(let ((z Initz)(y Inity)) Body) = (Azy.Body)Initz Inity by definition
=, Body[z := Initz]ly := Inity]
= Bodyly := Inity][z := Initz]
by hygiene convention, substitution lemma
=, (Azy.Body)Inity Initz

= (let ((y Inity)(z Initz)) Body).

Convention. As in the proof above, we shall henceforth treat an expression that

has a value as if it were a value. End

The notion of a branching construct in a programming language presupposes the
existence of truth values True and False. Given this, a generic branching construct
of the form

(if Test Then Else)
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evaluates its Then-subexpression if Test has the value True, and the Else-part if
Test yields False. An important characteristic is that either the Then- or the Else-
branch affects the final outcome, but never both. With our machine calculus this

can be formalized as

(if True Then Else) ~cEK Then,

(if False Then Else) ~cEK Else.
In other words, the final value of a program only depends on the correct branch of
an if-expression.

The programming language A can achieve the effect of an if-expression by rep-

resenting True and False as functions which throw away one of their two arguments:

df
True = Azy.z,
df
False = Azy.y;
and by encapsulating the Then- and Else-part in abstractions which delay undesired

evaluations:

d
(if Test Then Else) é Test(Ad. Then)(Ad.Else)l,

where d is a fresh variable, i.e., d € FV(Then) U FV(Else). The correctness of
this definition is verified by the following analysis. Assume T'est has the value True,

then
(if True Then Else) =, True(Ad. Then)(Ad.Else)l

=, (Azy.z)(Ad. Then)(Ad.Else)
=, (Ad.Then)!

=, Then.

Similarly, we get

(if Test Then Else) =, Else

if Test yields False.
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Our representation of the if-expression blends in with the parameterization of
A over constant sets. All we require is that predicates in the constant set respect
our representation of truth values. For example, a constant zero? over the set of

natural numbers is defined by
5(zero?,0) = True and §(zero?,n + 1) = False.

Furthermore, with the definition of if, it is also possible to realize more elabo-
rate branching facilities like cond- and case-expressions by reducing them to if-

expressions.

Next we turn to the specification of recursive functions. A-abstractions provide
functions per se. However, the lack of a name for the entire abstraction in the
function body prohibits the usual, self-referential definition of recursive functions,
which is the main characteristic of a recursive function specification. Nevertheless,
recursion can be achieved in A. Consider a typical mathematical definition of a

recursive function
fr=...z...fer...fea...

Using A-abstraction, we can eliminate the argument name z and we can concentrate

on the use of f on the right-hand defining side to a single occurrence:

f:(Agw....x...gel...962---)f-

From this equation, a recursive function can be considered as the fixpoint of a
defining functional. Fortunately, it is well-known [51, 70] how to find such fixpoints

in the A-value-calculus. With the combinator

Yo L sfe.(let (g (Ag-f(Az.992))) (g 9))z,

one can find the fixpoint of any functional F, i.e., Y, F satisfies

Y.Fz =, F(Y.F)zx for all x.
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Thus, a recursive function definition is a syntactic abstraction of an application of

Y, to a defining functional.

A more readable syntactic form for recursive function definitions is the rec-

expression:
df
(rec (f z) = M) = Yo(Afz. Mgy).
The notation My, indicates that M’s free f and z are bound by Afz....1°

Recursive functions make the implementation of many iteration and looping
facilities easy. Consider the most basic loop-construct for a functional language,
namely, the m-fold iteration of a function F over a value V. In other words, if F*V
stands for (F' ... m-times ...(FV)...) then we are looking for an iterate-expression

that satisfies
(iterate F over V times m) ~cek Fm™V, m > 0.

In A this construct can be realized with a recursive function:

d
(iterate F over V times m) Ef

(rec (I m) = (if (zero? m) V F(I(17m))))m.

For the correctness proof of this claim let L = Mm.(if (zero? m) V F((17m))).
Since

Yo Lm =, L(Y,L)m =, (if (zero? m) V F((Y,L)(1™m)))

by the fixpoint property of Yy, it is easy to verify by induction on m, that
YyLm =, F(...m-times ... (FV)...) = F"V.

The realization of this iterate-construct does not rely on jump-operations; it is

solely based on functions. This is also true for other looping facilities like iterating a

10 In terms of contexts: Afx.M/, is the result of filling Afz.[ ] with Mp,.
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function while or until a condition holds for the current value. It is probably for this
reason that these control expressions and related imperative statements are called
structured: their effect can be explained by a simple mathematical transliteration

and is entirely independent of the program context.

Another important ingredient of programming languages is the domain of com-
plex data structures. Prominent examples are pairs, lists, vectors, trees, graphs,
and records. Often a restricted form of these structures is built into the constant
set of a particular A-language. However, A itself can perfectly simulate appropriate
data sets by means of functional abstraction. The set of arbitrary value-pairs, for
example, is isomorphic to the cartesian product of the set of values. Hence, it may
be defined via the specification of an injection function or constructor and two pro-
jection functions or selectors. If we let [, ] be an infix-notation for the constructor
and (+)1 and (+)2 infix-notation for the respective selectors, then their operational

specification is

([U,VIh ~cex U and ([U,V])2 ~cEK V,

for all values U and V. One possible implementation is

[, )] = Auv.Am.muv,
()1 = Ap.p(Auv.u),

(+)2 = A\p.p(Auv.v).

The functions obviously satisfy the above operational specification. If the data
structures are only specified via the operational equivalence relation such that other
programmers cannot rely on the properties of the concrete realization, then they

can safely be called abstract. Programmers must use the combinators since they are
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not guaranteed that the data structure is not implemented as
[+, )] = Auv.Am.mou,
()1 = Ap.p(Auv.v),
()2 = Ap.p(Auv.u),

or something else.

The implementation strategy for pairs generalizes to vectors of arbitrary length.

Let
L df .
7= AT ... Tn T forl1 <:<n.
Then we can define an n-place constructor [+,.. ., |n and respective selectors (+)n,i
as

=

[reesoln
()n,i

Their characteristic equations are

AZL ... Tp. AM.MIT] ... T,

1<

Av.or!.

(Vi,...,VaDni = Vi for1 <i<n.

Pairs and vectors are a good basis for the implementation of Lisp-like list struc-

tures. Recall that a list is either
— the empty list, or
— a node, consisting of an arbitrary value and a list.

Since the definition contains two clauses, we need two constructor functions. Follow-
ing Lisp, we call them NIL and cons. The selectors are car and cdr. The predicate
that distinguishes between the two cases is null?. In order to correspond to the

informal definition, the functions must satisfy

null? NIL ~cgx True and null?(consV L) ~cpxk False
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and

car(cons V' L) ~cgx V and cdr(cons V L) ~cex L

where [ is a list. Our implementation of these list structures is

HI%

NIL = [True, False]

1%

cons

vl .[False, [v,]]

AL((D2)h
df
cdr = AL((D)2)2

1%

car

daf
null? = AL(D1.
Again, the verification of the correctness of these definitions is straightforward.

With the preceding exercises we have indicated how to embed pure Lisp (with
higher-order functions) in A. Before we end this exercise on programming in A,
we reformulate some well-known Lisp-functions with our newly introduced syntax.

Given a list of numbers, the function ¥ produces the sum of the numbers:
Y= (rec(sl) =
Gf (null? 1) O
(+(car D(s(cdr D))).

Another useful program is the map-functional which applies a function f to every

element of a list [ and constructs a list out of the results:
map = Af.(rec (m l) =
(if (null? 1) NIL
(cons (f(car )(m (cdr 1))
With Lisp-lists we can define other data structures using familiar programming

techniques and thus avoid falling back on pure A. For example, a binary tree

structure as defined in the introduction is an easy programming exercise. If we let
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NIL stand for the empty tree, a node can be constructed with two cons-es

mk-nd = Alovr.cons {(cons v r).

This is possible because we never ruled out lists as first arguments to cons. The
predicate empty? is of course equivalent to null?; the selectors Ison, rson, and info
are suitable combinations of car and cdr:
empty? = null?,
Ison = car,
info = B carcdr,

rson = B cdr cdr.

Finally, the function ©* from the introduction becomes:
T = (rec (s t) =
(if (empty? t) O
(+(info t)(+(s(Ison t))(s(rson t)))))).

We have omitted an expansion of these definitions into pure A since the additional

syntax truly improves the readability of programs.

The programming examples in this section have illustrated how the language
can easily support a broad variety of additional features and that programming in
an enriched A is a feasible endeavor. However, as discussed in the introduction, A
like any other functional language fundamentally suffers from a lack of imperative
facilities. The addition of these facilities to A as a programming language is treated

in the next chapter.



3. Idealized Scheme: An imperative extension of A

The definition of an imperative extension of A as a programming language is the first
step in constructing a calculus for imperative higher-order languages. Originally, our
goal was a calculus for a Scheme-like core language, but in the course of our research
we discovered that some minor modifications simplify the resulting calculus! [15,
19]. Since the work is a feasibility demonstration, we take the improved version as

the new starting point and call it Idealized Scheme.

According to our framework, the definition of a new programming language re-
quires the specification of a syntax and a semantics. This is done in the first two
sections. In the third section we continue our meta-programming exercise from Sec-
tion 2.5 and show how to embed imperative programming facilities from traditional

and modern programming languages.

3-1. Afo'

The term set of Idealized Scheme is Ax,, an extension of A. The syntax is summa-

rized in Definition 3.1. The language contains two new classes of expressions:

— F-applications: (FM), which are control expressions; M is called the F-argu-

ment;

See section 7.3.5 for a discussion on this feedback relation between programming language design and
calculus design.

58



59
— o-capabilities: (oz.M), which roughly correspond to assignments; z is the

assignable variable, M is the o-body.

The set of values in Ar, includes o-capabilities. A term in the A-subset is called

pure.

When evaluated, an F-application applies its argument to a functional abstrac-
tion of its current continuation, i.e., the rest of the computation. This action gives a
program complete control over the continuation. Upon application, a continuation
performs the actions of the encoded rest of a computation, and, upon completion,
a functional continuation returns the final value to the point of its invocation. A
o-capability encapsulates the right to assign the o-variable a new value. It does
not bind the variable. The application of a o-capability to a value is called a o-
application. Intuitively, a o-application first assigns the variable the new value and
then continues to evaluate the o-body. The value of the o-body is the result of the
entire application. The meaning of the remaining constructs should be adapted ac-
cordingly: variables are assignable placeholders for values, abstractions correspond
to call-by-value procedures, and applications invoke the result of the function part,
possibly a o-capability, on the value of the argument part. If the result of the func-
tion part is a A-abstraction, the application is a function application; otherwise, we

refer to it as o-application.

The language satisfies our outlined philosophical criteria. First, it is a minimal
extension with respect to A; there is exactly one new form for evaluation control
and one for state manipulation. Second, the new expression types are orthogonal
to each other and to the original constructs in A. A-abstraction is still the only
binding construct, applications are the only evaluation vehicle. And finally, the
language syntax is entirely expression-oriented, whereas generally the introduction

of imperative facilities splits a language into a statement and an expression cate-
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Definition 3.1: The programming language Ars

Syntactic Domains:

a € Const (constants)
T € Vars  (variables)
M,Ne A (A-terms)

Abstract Syntax:

Miu=al|z|(Oe.M)| (MN) | (FM)| (cx.M).

All conventions for A are applied mutatis mutandis.

gory. The advantage of our treatment is that the syntactic homogeneity permits a
straightforward transliteration of the framework from Chapter 2. This can already

be seen from the re-definition of the static semantics.

The concepts of free and bound variables carry over unchanged. For example,

the additional clauses for FV(-) and BV (+) are
FV(FM) = FV(M), BV(FM)=BV(M),

FV(oz.M) = FV(M); BV(oz.M)= BV (M).
All other syntactic definitions and conventions for A are adapted with changes

similar to these, e.g., the definition of a one-hole context becomes
Cl J==[110Gzc DIl M) MC[ DI (FC[ ]| (oz.C[ ]

The definition of an evaluation context does not change.

3.2. The CESK-Machine

The formal semantics of Ary-programs is defined via an extension of the CEK-

machine to a CESK-machine. The additional letter S stands for the new store
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component. A store is needed to implement the effect of assignments. Since contin-
uations are already present in the machine, the implementation of F-applications

only requires the addition of new transition rules.

Definition 3.2: The CESK-machine, part I: the computational domains

Computational Domains:

s € States = Controls X Envs X Stores X Conts (machine states)

c € Controls= Ars + 1 (control strings)

p € Envs = Vars - Locs (environments)

6 € Stores = Locs —e— Closures (stores)

V€ Closures= Values X Envs + p X p-Conts (closures)

k € Conts = ret-Conts+ p-Conts (continuation codes)

where Locs is an arbitrary infinite set

and p-continuations and ret-continuations are defined by:

p-Conts = stop + p-Conts X fun X Closures + p-Conts X arg X Axs X Envs
ret-Conts = p-Conts X ret X Closures.

Auxiliary Function:

«® -:p-Conts X p-Conts —> p-Conts
k ® (stop) = &
k® (k" arg N p) = (k ® " arg N p)
k@ (K fun V) = (k ® £’ fun V)

The necessary changes to the computational domains are summarized in Defi-
nition 3.2, part I. Environments are divided into an environment part and a store
part. The new environments map variables to locations; stores assign locations to

semantic values, or, in more traditional language, a location in the store contains a
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value.2 The set of locations Locs is an arbitrary, infinite set. In order to deal with
F-applications and o-capabilities, we extend the domain of closures with o-closures
and p-closures. A o-closure is simply a o-capability combined with an environment;

a p-closure is a p-tagged p-continuation structure.

A CESK-state is either of the form (M, p, 8, k), where p covers all free variables
in M and 6 is defined for all locations that occur in p or in the environments that
occur in the p-continuation k; or a state is of the form (}, 0,6, ), where £ is a
ret-continuation and @ defines the contents of all locations in x. An initial state
is of the form (M, 9, 0, (stop)); (}, 0,9, ((stop) ret V)) isa prototypical terminal
state.

The CESK-transition function is displayed in Definition 3.2, part II. The first
seven clauses are adaptations of the CEK-transition function rules. Merging the
environment and the store component yields the CEK-transition function. We also
assume that the §-function still returns pure, closed values. This is a minor re-
striction, but we have never experienced any need for a relaxation. (CESKT) and
(CESKS8) describe the evaluation of an F-application and the application of a con-
tinuation to a value; (CESK9) and (CESK10) define the effect of an assignment

application.

The evaluation of an F-application directly corresponds to the informal descrip-
tion of F at the outset of the first section. The F-argument is applied to v, which
stands for the current continuation. The current continuation is transferred out of
the register into a p-closure and this gives the program total control over its use. In
particular the decision about when to use the continuation is left to the program.
The operation call/cc in Scheme does not offer this option: it always copies the

continuation into a program accessible structure. From the program’s perspective

2 The decision to keep every semantic value in the store is arbitrary: see Chapter 5.
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Definition 3.2: The CESK-machine, part II: the transition function

The CESK-transition function maps states to states:

CE

States [ESK States,

according to the following cases:

CESK

(a,p,0,k) — (},0,6,(xret {(a,0))) (0)

(2, p,0,5) T2 (1,0,6, (xret 9(p(2)))) (1)

(Aa.M, p, 8, 5) T8 (1,0,6, (xret (A\z.M, p))) (2)

(MN, p, 8, &) 25 (M, p, 6, (x arg N p)) (3)

(1,0,6, (x arg N p)ret V)) = (N, p, 6, (x fun V)) (4)
(1,0,8, ((k fun (Az.M, p)) ret V)) GESE (M, plz := n],0[n := V], k)

where n & Dom(6) (5)

(,0,6,((x fun (f,0)) ret (a,0))) GCE2 (1,0,0, (s ret (8(f,a),0))) (6)

CESK

<':FM7 p, b, K) +— (M, ply == n]’e[n = (P, k)], (StOp))
where n & Dom(8), v € FV(M)  (7)

(£,0,6, (= fun (p, ko)) ret V)) =5 (4,0,6,(x ® roret V) (8)
(o2.M, p, 0, K) Cﬂ{" (1,0,0, (kret (oz.M, p))) (9)
(1,0,6, ((x fun (o.M, p)) ret V)) 2 (M, p,6[p(x) := V], ). (10)

this is equivalent to saying that a call/cc-continuation is immediately invoked.

The application of a continuation in a Aze-program results in the concatena-
tion of the applied continuation to the current one. This causes the machine to
evaluate the applied continuation as if it were a function. If the applied continu-
ation does not affect its continuation during the evaluation, the result is returned
to the point of application. In this respect again, CESK-continuations differ from

Scheme-continuations. When a program invokes a continuation in Scheme, the
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interpreter first discards its current continuation and then installs the invoked con-
tinuation in the continuation register. Put differently, Scheme-continuation objects
have an abortive effect on the continuation of their application point. We present

an implementation of call/cc in terms of F in the next section.

In order to clarify the abstract explanation of F and its comparison with call/cc,

we trace the evaluation of 17 (F(Ak.k(k0))):
(1T (F(Mk.k(k0))), 0,0, (stop))
CESEY (F(Ak-k(K0))), 8,0, ((stop) fun 1%))

GCEEF (O\kk(RO) )y, {7 — 1}, {1 — (p, ((stop) fun 17))}, (stop)).

At this point the continuation is captured although it is not yet under direct control
of the F-argument. If we replaced F by call/cc, this intermediate state would still

contain the old continuation:

(AEK(RO))y, {7 — 1}, {1 — (p, ((stop) fun 1*))}, ((stop) fun 1*)).

With the next few steps the example program reaches a continuation application:

((Ak.k(k0))7, {7y = 1}, {1 — (p, ((stop) fun 17))}, (stop))

; g’+
ESET (k(K0), po, 6o, (stop))
ot
k0, po, b, ((stop) fun (p, ((stop) fun 1))
-+
GESK (1,0, 6,

((((stop) fun (p, ((stop) fun 17))) fun (p, ((stop) fun 17))) ret 0))

GESL (1,0, 60, (((stop) fun (p, ((stop) fun 1*))) fun 1%) ret 0)),

where
pO:{7H17kH2}

6o = {1 — {p, ((stop) fun 1%)),2 — (p, ((stop) fun 1)}
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The actual invocation of the continuation does not discard the current continuation.

With call/cc, on the other hand, this intermediate state would have been:

(1,0, 60, (((stop) fun 1) ret 0)).

For functional continuations, as in the CESK-machine, the evaluation appends the

two continuations:

CGESET (4 0.6, (((stop) fun (p, ((stop) fun 17))) ret 1))

(4,0, 60, (((stop) fun 1) ret 1)

CEEF (1,0, 60, ((stop) et 2)).

The result is 2. This can also be deduced informally. The continuation of the
F-application in the program is an application of the function 1. A twofold ap-

plication of this continuation to 0 returns 2.

The effect of an assignment application depends on three different factors. First,
occurrences of variables are disambiguated via the environment, but the store con-
tains the associated current value. Second, the store component of a CESK-evalua-
tion is always present. The only operations on the store are extensions and updates.
Unlike the environment, it never shrinks nor is it removed from its register. The
transition rules (CESK5) and (CESKT) are responsible for store extensions. They
allocate a new location for every semantic value that becomes accessible to the pro-
gram. Allocating a new location means picking a location that is not in the (finite)
domain of the store. For the moment, we assume that this choice is fized for a
given set of locations. Third, the rules (CESK9) and (CESK10) jointly affect the
location-value association in the store according to an intuitive understanding of as-
signment. (CESK9) produces a o-closure for the definition of a o-capability, which
contains the current environment. Thus the transition rule (CESK10) changes the

value of the variable that was lexically visible at definition time. Because of the
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constant presence of the store, every subsequent occurrence of this variable refers

to the new value.

Let us consider the evaluation of (Az.(ocz.z)(Ay.))0:
{(Dz.(oz.2)(A\y.2))0,0,0,(stop))
GESK™ ((g.2)(\y.), {z v 1}, {1 — O}, (stop)).
At this point, the assignment application is about to be evaluated. After evaluating
the value part, the machine alters the appropriate store location, namely 1, and

continues with the o-body z:
; {+
CEE (2, {o = 11, {1 = (wea, {z = 1D}, (stop))

GESET(4,0,{1 — (\y.z, {z = 11}, ((stop) ret (A\y.z, {z — 1H})).
The final value is a closure. The environment of the closure maps « to a location that
contains the same closure: in higher-order languages with assignment statements it
is possible to construct circular values. Because of this problem, the definition of
an evaluation function for the CESK-machine is less intuitive than the one for the
CEK-machine.

A program evaluation on the CESK-machine begins in (M, ®,0, (stop)) and
terminates in (}, 0,6, ((stop) ret V)) for a store § and a closure V. Naturally,
we would like to map V to a syntactic value, but the possibility of continuation
structures or circular location references in V rules out straightforward solutions.
We therefore parameterize the evaluation function for the CESK-machine over an

unload function in order to permit a later re-definition:

-+
evalcps i Unload = Unload(V, 8) if (M,®,0, (stop)) GESE (},0,6, ((stop) ret V)).

Unless stated otherwise, we assume that Unload maps V and 6 to the pair (V, 6).

The evalCESK,UnIoad'funCtion defines the extensional semantics of Idealized

Scheme, the transition function the intensional one. Since Idealized Scheme is an



67
extension of the A-calculus and since furthermore, the two additional facilities are
included in order to express events and their ordering, the extensional semantics is
sequential. The sequentiality of the CESK-machine is also obvious. However, we
shall demonstrate in subsequent chapters that this is not inherent in the language,

but due to the granularity of event representations.

For manual program evaluations and comparisons, the CESK-transition func-
tion is just as unsuited as its CEK-counterpart. Indeed, the situation is even worse.
Because of the manifestation of side-effects in stores, we must compare the store
components of intermediate machine states for a comparison of program pieces.
However, these stores may contain garbage, i.e., locations that are disconnected
from the rest of the computation; and the stores may only be isomorphic to each

other. We demonstrate both phenomena with two small examples.

The first sample program is (Az.M)0 where ¢ & FV(M). Intuitively, this
should be equivalent to just M in any store, but this is not true as can be seen from

the following calculation:

((Az.M)0, p, 6, &) GESKY (M, p[z := n],0[n = 0], &).

The location n in the store is a typical garbage element. It cannot be reached from
M, nor from the rest of the store. These elements clearly prohibit a straightforward
comparison of stores. For the problem of relocated values, consider the expressions
(Azy.M)01 and (Ayz.M)10. Our intuition says that the two must be equivalent, but

the respective evaluations on the CESK-machine only produce isomorphic states:

((Azy.M)01,p, 0, &) CﬂﬁL (M, p[z := m][y := n],8[m := 0][n := 1], k)

and

((Ayz.M)10, p, 8, k) CEﬂ(Jr (M, ply := m][z := n], 6lm := 1][n := 0], k).
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Although these problems are stringent, equivalence proofs are possible. The
central idea is to eliminate garbage from the stores and to compare the resulting
stores with isomorphisms. This, however, is hardly practical because the elimination
of garbage is generally complicated. An alternative to this technique 1s developed
in the following chapter. It relies on the observation that all store cells needed by
a computation are associated with the program text, and that all useless garbage

cells must provably be disconnected from the program text.

3.3. Programming with Ar,

Next we give a brief introduction to programming and meta-programming with the
language. Without a reasoning system, the examples are necessarily informal and
rely on an operational understanding of the CESK-machine. We will resume most
of the examples in Chapter 6 after developing a calculus for Idealized Scheme. Like
in Chapter 2, we will then prove the correctness and properties of the programs

that we present below.

Before the actual introduction, we briefly compare F and ¢ with their most
closely related counterparts in existing programming languages. This should help
clarifying their semantics. Also, some of the examples below may be easier to

understand in terms of these equivalence specifications.

As mentioned in the preceding section, F-applications are closely related to the
call/cc-function in Scheme. There are two essential differences. First, when call /cc
is applied to a function, it provides this function access to the current continuation,
but it also leaves the continuation in its register. This effect can be achieved by an
F-application if the F-argument immediately invokes the continuation. Second and
more important, call/cc applies its argument to a continuation object, which, when
applied in turn, discards the current continuation; an F-application, on the other

hand, simply provides its argument with a function that upon invocation performs
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the same action as the current continuation. Hence, a simulation of call/cc must
pass a function to the call/cc argument which throws away its current continuation,
or, in terms of F-applications, the object must grab the continuation without using

it. Putting all this together produces the following equivalence:
call/cc = AMf.F(Ak.k(f(Qv.F(Ad.kv)))).

Landin’s J-operator [39] and Reynolds’s escape-construct [50] are also closely re-
lated language facilities. Both are syntactic variations on call/cc [14] and hence,
we omit a more detailed treatment. None of these facilities can implement an F-
application as a syntactic extension because of the abortive effect of their respective

continuation objects.

The assignment abstraction is more conventional. In traditional expression-
oriented languages, statements usually come together with a block statement like
begin (stmt) result (exp). This is a block that first performs the statement-part
and then evaluates the expression-part to return a result. Together with ordinary

assignment, this block can express an assignment abstraction as a function:
ox.M = (\v.(begin z := v result M)) where v is a fresh variable.
The inverse relationship is expressed by
begin z := N result M = (cz.M)N.

As motivated above, the choice of o-capabilities over assignment statements is for
syntactic and technical reasons only.

With the introduction of imperative program facilities, it makes sense to con-
sider traditional Algol-style constructs like compound statements, while-loops, etc.

For example, a sequencing expression

(begin Ezp, ... Ezp,)
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that returns the value of the last expression after having evaluated Ezp; through

Ezp,_, from left to right is equivalent to
m, Ezpy ... Ezp,.

This is a purely functional expression, but it only makes sense in the presence of
side-effects because the values of the first n — 1 expressions are thrown away. A

similar argument holds for a while-loop. It is implemented by
d
(while Cond do Esp) Z Y,(Awb.(if b (begin Ezp (w Cond)) 1) Cond.

This transliteration is also functional, yet again, its use relies on the presence of

side-effects.

Beyond the class of imperative statements whose transliteration is functional,
there are also constructs that have functional appearances but are indeed inherently
imperative. This is especially true for control constructs that are simple uses of F-
applications. For example, a halt-function is realized by grabbing and throwing

away the current continuation:

Il

halt = Az.F(M\d.x).

Since grabbing and throwing away a continuation is a recurring program pattern,

we introduce a general syntactic abstraction®
(throw LV).

Such a throw-expression invokes the function L on the value V after eliminating

the current continuation, t.e.,

dj
(throw LV) Ef F(Ad.LV).

3 Thisis only superficially related to Common Lisp’s throw-facility [60].
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It resembles a parameter-passing goto-facility. With throw, the implementation
of halt becomes:

df
halt = Az.(throw lz).
In other words, halt acts like a goto to the initial continuation or, equivalently, the
final label.

A function-exit-facility is an equally simple use of . It occurs in an abstraction
(function = Body),

which is like an ordinary function except that its function body may contain exit-
expressions of the form

(exit Ezp).

The effect of an exit-expression is an immediate return to the function caller with
the value of Ezp. When cast into continuation terminology, this description leads to
the obvious implementation of function- and exit-expressions: an exit-expression

resumes the continuation of the function-application:

. df
(function z Body) =

Az.F(Ae.eBody),
d,
(exit Ezp) ‘:Jf‘ (throw e Ezp).

We assume that exit’s € is bound by the € in the function-expansion.

The If-function from the introductory chapter offers a concrete example for

the use of an exit-facility:
¥y = function t ((rec (s t) =
(if (empty?¢)0
(if (zero?(info t)) (exit 0)

(+(info t)(+(s(lson £))(s(rson £)))))))
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The inner application of the recursive function s to the tree t is an example of
a generalized loop. Hence, from this definition it should be clear how to build
any kind of loop constructs with exit-facilities. Although all of these programming
constructs look functional, the reader should be aware that the presence of F makes

them imperative.

Assignment capabilities are also imperative in nature, but they give rise to a
different class of programs. In conjunction with higher-order functions it is easy
to program reference cells with o-capabilities. The four operations on a cell are:
mk-cell, which creates a new cell with a given content; deref, which looks up the
current contents of a cell; set-cell!, which changes the contents of a cell to a new
value and returns this value upon completion; and, eq?, which compares the identity

of two cell-objects.

An implementation of the first three functions is:

mk-cell = Az.Adm.mz(oz.2),
deref = Ac.c(Azs.z),

set-celll = Ac.c(Azs.s).

Upon application to a value, the function mk-cell returns a functional encoding of
a pair. The first component of the pair is the current cell-value, the second one a
o-capability for the first component. Accordingly, the functions deref and set-cell!
take a cell and apply it to the appropriate selector-function. In particular, the
definition of set-celll clarifies why we call a oz.-term “a capability for assigning z a
new value.” When set-cell! is applied to a cell, it returns the o-capability for the

variable z, which upon some later application changes the contents of the cell.

The function eq? is generally a “built-in”-predicate and relies on the address

space of the underlying machine. But this need not be the case: side-effects offer
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an alternative solution [42:66].4 Two cells are identical objects if and only if an

alteration of the contents of one affects the other:

1=

Aeres.(let ((z1 (derefcr))(zo (deref c2)))
(begin
(set-celll c1 1) (set-celll ¢y 2)
(let (e (= (derefcr)2))
(begin
(set-celll c1 1) (set-celll o z2)

e))));

where = is the usual equality predicate on natural numbers.

The inverse simulation of assignments with cells is more difficult. If assignable
variables are simply bound to cells, then every occurrence of a variable must be
dereferenced. This, however, requires a parsing and re-structuring of the entire
(lexical) variable scope. Because of this relationship, we have chosen to adopt a

simple assignment abstraction as our basis for the programming language.

The implementation strategy for single-value cells generalizes to full Lisp-cons
cells. The functions set-car! and set-cdr! are represented by o-capabilities and permit
the assignment of a new value to the selected field of a cons-cell. These operations

differ from set-cell! in that they return the new cell upon completion. This self-

4 This solution is indicated in Steele and Sussman’s treatise on interpreters and modularity [65:32].
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referential effect is accomplished with recursion:

%

NIL = [True, False],

<

cons

Mwl.Y,(Ac.[False, [v, 1, (ov.c), (ol.c)l4)),

1%

d
/\l.(l)gﬂf, set-car! Ef )\l.(l)gﬂ'g,

df

car

s

cdr = AL()z74, set-cdr! = AL(1)g7y,

s

null? = AL(Dh.

The implementation of cells and cons-cells indicates how arbitrary data objects
with internal state may be built in Idealized Scheme. Furthermore, it is well-known
that a programmer can create circular lists with such cons-cells. These structures
may serve an interesting purpose and their existence underlies our concern about

store-comparisons as raised in the previous section.

The existence of circular or self-referential structures also offers an implemen-
tation technique for recursive functions. The essence of a recursive function is—as
discussed in Section 2.5—the self-reference of the function body (via a name). One
way to achieve this effect is by self-application as in the Y,-combinator. Assign-
ments offer another possibility. Suppose the defining function is evaluated in a block
where the function name is bound to a dummy value. If we immediately assign the
resulting function to the function name, the references to the function name in the

function body are the required self-references. The imperative implementation of

the rec-form thus becomes:

=

(rec! (f z) = Bodys,) = (let (f I)(begin f := Az.Bodys, result f))

or, without additional syntax,

1=

(rec! (f ) = Bodyy,) (A f(af.f)(Az.Bodyg.))l.
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Alternatively, a different, imperative fixpoint combinator can be defined. It also
takes a defining functional and returns the defined recursive function. With the new

rec-form, we can define this combinator as

Vi L A f(rec! (g 2) = (fg2)) = Af.(Ag.(09.9)Ax.fga))l.

When applied to a functional, Y; constructs a pseudo-fixpoint of the function f
with the imperative version of rec, calls it g, and passes g to the defining functional
f. On an ordinary sequential machine, building and using recursive functions is
faster with Y1 than with Y,, because variable lookups and assignments are cheaper
than function calls. Since the application of f to its fixpoint produces the required
recursive function, the Yi-combinator should behave like Y, i.e., for an operational

equivalence ~, Y1 should satisfy
YiFz >~ F(Y\F)z.

We shall demonstrate in Chapter 6 that the calculus for Idealized Scheme can indeed

prove this equation.

A noticeable difference between the Yi-example and the cell-example is the use
of assignable variables. For cells and objects in general, the variable binds together a
set of functions that share the state of the variable. That is, the assignable variable
is hidden in the common lexical scope of some functions. The value associated with
the variable determines the state of the functions,” and a change of the value that
belongs to the variable signals a state transition. This is particularly convenient
for modeling mathematical state variables or real-world objects. We therefore call

these variables state variables.

5 This makes them “non-mathematical” functions.



76

The Yi-combinator uses assignments in a different way. For the single assign-
ment in the A-body, the assignable variable mimics a certain relationship for some
expression, but this relationship is only established after the assignment takes place.
Once the assignment has happened, the value association of the variable is fixed.
This use of assignable variables and assignment reflects a lack of facilities for ex-
pressing certain syntactic relationships. Since there are an indefinite number of
such relationships, it is better to accept the basic language and to require a facility
for extending language syntax. We refer to this type of variable and assignment as

single-assignment variableS

Up to this point, all example programs have taken advantage of either assign-
ments or F-applications but not of both. There are also many examples where
assignable variables play an important role in conjunction with continuation-access-
ing operations. Prominent representatives are implementations of backtracking as
in logic programming [27], of co-routines [29], and of intelligent backtracking [22].
They all share a common pattern, namely, the need of a variable that contains the
current and possibly changing control-state of the respective object, e.g., a clause

or a co-routine.

Unfortunately, while being practical and elegant at the same time, these exam-
ples are still too big for a demonstration of this technique to a novice. To avoid
size problems, we discuss the implementation of two simple constructs, which have
short, continuation-based implementations. The first example is a looping facility
that has both a straightforward functional equivalent and an imperative realiza-
tion. Given both in the same formalism, it is possible to compare programming

styles, efficiency, and correctness proofs. The second example is derived from the

6 Although this name is consistent with the literature, it is inaccurate considering such examples as import-
by-need [16] where fwo assignments are needed for establishing the correct relationship.
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generator concept in the programming language Icon [24]. The two examples reflect
the above discussion on assignable variables. Whereas the looping facility needs a
single-assignment variable, the generator abstraction requires a true state variable

in order to model the changing control-state of the generator object.
The chosen looping example is the iterate-until-loop for the iteration of a
function over a value until a certain condition holds of the current value. The

syntax of this loop is

(iterate F' over V until P).

F is a pure function and V a value such that F'V is defined for all: > 0. P is a
pure predicate that is defined on F'V for all ¢ > 0. Given this, the result of the

construct should be
F™v where m = min{i > 0 | P(F'V) = True}.

A recursive implementation of the iterate-until-loop is only a minor variation
on the implementation of iterate-times and we state it without further explana-
tion:

(iterate F over V until P) Z (rec (I v) (if (Pv) v I(Fv))V.

This implementation has an important characteristic: the application of the loop-
function [ is a tail-call. This means, that with respect to this construct, there is
nothing left to do after the application is evaluated. A good compiler translates

this into a fast label-goto-statement a la
.x:=V; L:if (Pz) then skip else begin z := Fz; goto L end;...,

where ¢ is the result register.
The goto-translation provides the basic idea for an implementation with contin-
uations. Semantically, labeling a statement is equivalent to accessing and remem-

bering the current continuation; a goto to a label is an invocation of the respective
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continuation with a simultaneous elimination of the current continuation. Our

transliteration of this into Az, 1s

dj
(iterate! F over V until P) Ef (let (1 1)
(let (z F(ollV))

(if (Pz) z (throw [(F'z)))))-

The label [ is a variable that contains the continuation representing the label. The
continuation rebinds z to a new value, initially V, then tests this value on the
property P, and finally, depending on the outcome of the test, returns the value z
as the result or invokes itself on Fiz. During the i-th invocation of the continuation,
¢ is bound to F'V, and hence, this implementation should return the correct value.

This argument will be the basis of our correctness proof in Chapter 6.

Generators are less common than looping facilities in traditional programming
languages, but they become increasingly popular in special purpose high-level lan-
guages. One example is Icon [24], which provides the possibility of generating con-
sccutively the elements of a list or the components of a vector. Take, for example,
the vector vec = [1,2,3]. If we let G stand for a generator of vec, then three calls
to G return 1, 2, and 3. More generally, if (generator n vec) returns a generator G

for a vector vec of length n, then for all vectors [V, ..., V;] the facility must satisfy
[Vi,..., Valn ~ (let (G (generator n [Vi,...,Va]n)) [(G1), ..., (G)]n)-

The sequence of applications (Gl) indicates that G’s result is independent of its

dummy argument.

The independence of the generator from its argument makes it obvious that 1t is
not an ordinary (mathematical) function. Still, there are many different and feasible

implementation strategies for generators in an imperative higher-order language.
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Since we are interested in the general technique, we present a continuation-based

solution that is easily adapted to similar constructs.

The idea behind our solution is simple. From the perspective of the internal
control flow, a generator is not called like a function, but is resumed at the place
where it had been at the end of the last resumption. It follows that a generator
return not only provides a value to the caller, but that it also remembers the current

control context of the generator. If we assume the existence of a syntactic form
(tocaller V),

which accomplishes a generator return with value V, the core of the generator code

is rather simple:
(begin (tocaller (7 vec)). .. (tocaller (7, vec))).

It is a sequence of n returns, each picking the correct vector component.

For the rest of the program, the generator must behave like a resume function:
Ad.(resume ),

where resume is the dual syntactic form to tocaller. Also, if we assume an ap-
propriate initialization, the code for creating a generator can return this resume
function as the 0-th result. Given that the begin-expression already accomplishes
the appropriate sequencing for the tocaller-expressions, we can insert this 0-th call

at the beginning:

begin (tocaller \d.(resume |))(tocaller (7] vec)) ... (tocaller (7] vec))).
1 1

The implementation problem is now reduced to the realization of two syntactic

forms: resume and tocaller. Both must remember a control-state, and hence,
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must be associated with two state variables: ¢ for the control-state of the caller, g for
the control-state of the generator. Assuming the existence of the two state variables,
the two forms are almost obvious: each grabs the current control context, assigns
it to its control-state variable, and finally resumes the thread of control associated
with the other control-state variable. In Idealized Scheme this is expressed as
df
(tocaller V) = F(og.cV)
af
(resume V) = F(oc.gV).

Because of our previous assumption that tocaller can be used at definition time,
the generator must accordingly set up the control-state variable ¢. The generator’s
control-state variable is uninteresting at definition time and is initialized by the
resume-construct. Putting things together, we obtain the code for a generator
abstraction:

df
(generator n vec) = F(Ac.(let (g 1)
(begin
(tocaller Ad.(resume |))
(tocaller (7] vec)) ... (tocaller (7 vec))))),
where ¢ and ¢ are bound variables for the tocaller and resume abbreviation.

It is again relatively easy to convince oneself that at the i-th resume-switch
to a generator, the control variable g continues with the i-th step in the begin-
sequence. Since the i-th step is a tocaller-switch with the i-th component of the

vector, the correctness of this implementation is almost obvious.

The preceding correctness arguments for the imperative implementation of the
iterate-until-loop and the generator-abstraction sound convincing. Yet, they
are not formal, testable proofs, and proofs are what we are really asking for. This
demand for formal proofs of imperative higher-order programs makes the motivation

for a calculus more concrete. Its development is the topic of the next two chapters.



4. From the CESK-Machine to a Program Rewriting System

The CESK-machine uses environments, stores, and continuation codes in addition
to terms for the evaluation of programs. A reasoning system for Idealized Scheme
programs, on the other hand, should relate programs directly to each other. Hence,
our first goal should be to construct a program-oriented rewriting semantics that is
extensionally equivalent to an appropriately instantiated CESK-evaluation function.
It should then be possible to extend this rewriting semantics into an equational

theory.

The construction of a rewriting semantics and the method underlying the con-
struction is the result of this chapter. The central idea behind the construction is
to eliminate one machine component at a time. The first two steps are devoted to
environments and continuation codes. With some modifications to the transition
function, they can be removed easily. Although the complete elimination of stores
is impossible, a merging of the term and the store component solves the “garbage”-
and “isomorphism”-problems from the preceding chapter in a rather natural man-

ner.

4.1. Eliminating the Environment

The environment of a CESK-machine state maps free variables in the control string
to their meaning. The meaning of an identifier is a location, which in turn associates

81
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the identifier to a (current) value. Environments play a similar role in the evaluation
of logical formulae. However, in logic it is well-known that environments are actually
unnecessary for determining the value of a term or formula. The process of quasi-
substitution! works equally well. When quasi-substitution is used, the meaning
function replaces free identifiers by their meanings and evaluates this semantically
enriched term instead of remembering the associations in a separate environment

argument.

An adaptation of this idea to the CESK-machine means that transition steps
which extend the environment must place locations in the control string. This
naturally requires some changes in the computational domains. All control string-
environment pairs are merged into control strings that contain locations. The con-
trol string domain is appropriately extended to the language ArorLocs- The sub-
stitution function is also adapted to work on the new control language. Since the
machine states are now triples of control strings, stores, and continuations, the re-
sulting machine is called CSK-machine. Its computational domains are formalized

in Definition 4.1, part I; its transition and evaluation function are defined in part I

The comparison of the CESK- and the CSK-machine is based on translations
that map states and state components from the old domains to the new ones. The
principal translation takes control string-environment pairs to Arsrocs-terms by

replacing all free variables with their meaning:
R(M, p)) = M[z1 := p(z1)]...[zn := p(xn)] where FV(M) = {z1,...,zn},
R($,0)) = §
the second clause is added for technical reasons.

Furthermore, since control string-environment pairs also occur in continuation

L The term quasi-substitution was coined by Michael Dunn; the concept of value-containing syntactic
entities, so-called U-formulae, was invented by Raymond Smullyan [58].
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Definition 4.1: The CSK-machine, part I: the computational domains

Computational Domains:

s € States = Controls X Stores X Conts (machine states)

¢ € Controls= Arsrocs + § (control strings)

6 € Stores = Locs —e— Closures (stores)

V€ Closures= Values + p X p-Conts (closures)

k € Conts = ret-Conts+ p-Conts (continuation codes)

p-continuations and ret-continuations are

p-Conts =stop + p-Conts X fun X Closures + p-Conts X arg X AFoLocs
ret-Conts = p-Conts X ret X Closures,

and AFsLocs is the following variation of Ars:

M:u=al|z|n|(QaM)| (MN)|(FM) | (cX.M),

where n € Locs. X ranges over both Vars and Locs.
Values contains constants, variables, abstractions, and capabilities.

Auxiliary Functions:

- ® -:p-Conts X p-Conts — p-Conts
Kk ® (stop) = &
k® (v arg N) = (k ® «’ arg N)
k® (K fun V) = (k @ &' fun V)

[+ := ) AFsrLocs X Vars X Locs — AFsLocs
alr :=n] = a,

zle:=n]=n, ylz:=n]=y (zFvy),

n[z := n] = n,
(\y.M)[z := n] = (Ay.M[z := n]),
(LM)[z := n] = (L[x := n]M[z := n]),
(FM)[z :=n] = (FM[z := n]),
(0 X.M)[z :=n] = (¢ X[z := n].M[z := n]).
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Definition 4.1: The CSK-machine, part II: the transition function

The CSK-transition function maps states to states:

States oSk States,

according to the following cases:

(a,0, k) 25 (1,6, (kret a))

(n,8, k) 2ELY (},0, (s ret 8(n)))

(O M, 8, k) 25 (1,0, (kret Ae.M))

(MN, 8, k) Fﬁ’» (M, 8, (x arg N))
(1,6, ((karg N)ret V) ES—R> (N, 8, (x fun V))
(1,8, ((x fun Az.M) ret V))y &5 (M[z := n), 8[n == V], k)

where n & Dom(6)
CSK

(1,6, ((x fun f)ret a)) — (1,0, (kret 6(f,a)))
(FM,6, k) EEL (Mn, 8[n := (p, k)], (stop))

where n &€ Dom(6)
(1,6, ((x fun {p, ko)) ret V)) EELY (1,9, (k ® koret V))
(on.M, 6, k) SELY (1,9, (kret on.M))

(1,8, ((x fun on. M) ret V)) ©25 (M, 8[n == V], k)

The eval-function is

evalgsk Unload(M) =Unload(V, 0) iff

(M, 0, (stop)) 57 (1,6, ((stop) ret V).

—
~—

Q™)
~—

(3)
(4)

(5)

(7)
(8)
(9)
(10)
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codes and stores, we need auxiliary translations between CESK-continuations and

CSK-continuations:

Ri((stop)) = (stop),
Ri((x arg Np)) = (Re(x) arg R((N, p))),
Re((k fun V)) = (Re(x) fun R(V)),

Re((k ret V)) = (Re(k) ret R(V));

and between CESK-stores and CSK-stores:

Rs(6) = {{n,R(8(n)) }

And finally, in order to take care of p-closures in the store, we must add the clause

R((p, %)) = (P, Re(x))

to the definition of R.

Together, these definitions yield a map from CESK-states to CSK-states that
preserve initial, final, and stuck states. With these, we can express in what sense

the CESK-machine is equivalent to the CSK-machine:

Lemma 4.2 (CSK-simulation). For any program M € Az,

evalC,'JE«LS’K,UnIoadR(JM) = evalgsk () (M),
where UnloadR(V,8) = (R(V'), Rs(8)) and (:,-) is the pairing function.

Proof. The proof is an induction on the number of transition steps in an evaluation.
The basic claim is that the i-th state in a CESK-evaluation maps to the i-th state
in the corresponding CSK-evaluation via the translations R, Ri, and Rs. This is
true for initial states where R({M,0)) = M. For the induction step, consider the

CESK-transition step:

CESK
<Cl, Pl 97 "‘:1> — <62, P2, 9, K?}.
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By case analysis, it is easy to show that

(RUet, 1)), Rs(8), Re(k1)) 25 (R({c2, p2)), Rs(6), Re(x2))

and thus, the claimed relationship is an invariant of transition steps. The result

follows from the property that R preserves final and stuck states. O

Before leaving this section, we simplify the transition function in order to shorten

the following machine definitions. All transition rules that evaluate syntactic values,

i.e., (CSKO0), (CSK2), and (CSK9), are now of the same form
(V, 6, k) ECLY (1,9, (kret V)). (CSK. Values)

Consequently, we can replace the three separate rules in the definition of the tran-

sition function with this new rule.

4.2. Eliminating the Continuation Code

The expected next step should be an incorporation of continuation codes into the
control string components. However, the notion of CSK-continuation codes 1s too
machine-oriented for a direct transition. The first transformation is therefore a
replacement of continuation codes by a more familiar, term-related concept. Then

the elimination of machine continuations follows quite naturally.

4.2.1. Contexts as Continuations

An inspection of the sample CESK-evaluations in Chapter 3 reveals that the contin-
uation code is a control string memory. Those pieces of the control string that are
of no interest to the current computation phase are shifted to the continuation stack
until a need arises for reconsidering them. From the perspective of the program as
a whole, the machine searches through applications until it finds a value in the left

part of an application. This is also true for F -applications which are immediately
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replaced by proper applications. When the machine discovers a value, it remembers
this on the continuation stack and concentrates its search on the argument position
of the respective application. Once an application with two values—a redez’—has
been found, a transition step replaces the redex by a new term. If the new term is a
value, the machine inspects the continuation for further instructions and eventually
continues the search. Otherwise, if the new term is an application, the cycle repeats

immediately.

Definition 4.3: The CSC-machine, part I: the computational domains

Computational Domains:

Ve Closures= Values + p X AppSConts (closures)
x € Conts = ret-Conts+ AppSConts  (continuation codes)

where AppSConts is the set of applicative standard contexts:
Cl J==[1lVCl]]Cl M

with M ranging over AxgLocs, V over closures,
and ret-continuations are

ret-Conts = AppSConts X ret X Closures.

All other CSK-domains become CSC-domains without further changes.

While searching through the term for the next redex, the machine partitions
the term into a contert and a current search area. Eventually, this search area will

be narrowed down to a redex. In the mean time, the context of this redex is shifted

2 We do not refer to the entire machine state as redex, but to parts of the program component. This should
not cause any confusion and is in accordance with the calculus terminology.
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to the continuation component, and hence, term contexts may as well represent
continuation codes. Not surprisingly, the concept of an applicative standard context
captures the dynamic character of the search phase in the correct way. The context
hole corresponds to the current search area. Initially, the entire term is the search
area and the empty context [ ] can serve as the respective continuation. If a value
V is in the left part of an application VN, the search moves to the right, .e.,
the current context C| ] becomes C[V[ ]]. Finally, if an application MN with an
application M in the left position is encountered, the search space is narrowed down

to the left part: C[[ ]N] represents the new continuation where C [ ]is the old one.

The informal explanation of the correspondence between p-continuations and
applicative standard contexts demonstrates that an inside-out definition of contexts

is more appropriate for the use of applicative standard contexts as continuations:
cl 1==[11cCll M| Cvl L

but, of course, an inductive argument immediately proves this modification equiv-
alent to the original definition. We shall use whichever definition is preferable.

The definition of applicative standard context requires two extensions. First,
since the control string language of the CSK-machine consists of expressions 1n
AFoLocs, all terms in a context must be in this term set. Second, values to the left
of the path from the context-root to the context-hole may be p-closures because the
machine evaluates syntactic entities to closures by putting them into the continua-
tion. The formal definition of applicative contexts, the new value and continuation
domains, and the transition function are displayed in Definition 4.3.

Roughly speaking, the CSC-machine is like the CSK-machine except for the
replacement of p-continuations by contexts. A formalization of the correspondence
is almost straightforward and is primarily based on a translation from continuation

codes to applicative standard contexts:
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Definition 4.3: The CSC-machine, part II: the transition function

The CSC-transition function maps states to states:
States °5g States,

according to the following cases:

v,8,C[ )5 (1,6,(C[ |ret V)) (0,2,9)

(n,6,CL 1) ¥55 (1,6,(C[ Iret 8(n))) (1)
(MN,6,C[ 1) &5 (M, 6,0 IN]) (3)

(1,6, (C[[ N]ret V) &5 (N,6,C[V] ]) (4)

(1, 6, (ClOe.M)[ JJret V) &5 (Mz := n),8[n := V],C[ 1)

where n & Dom(0) (5)
(1,6, (CIf[ Jret a)) 25 (4,6,(C[ ]ret 6(f,a))) (6)
(FM,6,C] )y 25 (Mn, 60 = (p,C[ D[ )
where n & Dom(0) (7)
(1,6, (CUp, Col DI Nret V) £35 (4,6, (C[Co[ NJret V)) (8)
(1,0, (Cl(on.M)[ Jret V)) 25 (M, 6[n := V],C[ D). (10)
The eval-function is
evalgge Unload (M) = Unload(V, 0) iff (1,0, 1) &557 ¢1,0,([ Jret V).

S((stop)) = |
S((karg N)) = C[[ |N] where S(k) = C[ ].

S((x fun V)) = C[S«(V)[ ]I

The auxiliary translation S, is needed to replace p-continuation codes by contexts
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within p-closures:
Sc({p, k) = (p,S(k)), and S((V) =V if V € Values.

In stores, p-closures must be transformed by a pointwise application of S.:

Ss(8) = {(n,Sc(6(n)))}-
The correctness lemma is of the familiar form:
Lemma 4.4 (CSC-simulation). For any program M € Are,
evalyps Unloads(M) = evaleso .y (M),

where UnloadS(V, 8) = (S(V'), S5(8)).

Proof. The proof follows the same pattern as the one for Lemma 4.2, with the

difference that we must show:
CSK
<Cla 917 ”31) e <027 R 52)

implies

(c1,55(61), S(k1)) ©25 (e, Ss(62), S(k2)).

This part is a case-by-case comparison of (CSKi) with (CSC1). O

4.2.2. Merging Control Strings with Contezts

The key idea for merging context-continuations and control strings into a single
component is simple. If we ignore the CSC-store for a moment, contexts and control
strings are always paired in each clause of the transition function. More precisely,
on the left-hand and right-hand sides of all CSC-transition rules there are only two

classes of states:

<M’ '7C[ ]) and <ia 'v(C[ ]ret V)>




91
It is therefore quite natural to fold the two components together by filling the

context holes with the respective terms, i.e., the two prototypical states become

(C[M],+) and (C[V],").

A naive transformation of the CSC-transition function according to this idea
only produces a transition relation because the left-hand sides of (CSC. Values),
(CSC3), and (CSC4) become identical to the right-hand sides. The reason is that
these rules are context search rules. Whereas a continuation-free transition function
assumes an @ priori partitioning of a control string into a redex and an applicative
standard context, the CSC-function is explicitly searching for the next redex. This
latter strategy is closer to an actual machine implementation, but inappropriate
for human consumption. Hence, this kind of rule is rendered superfluous during a
transformation of a machine into a program-oriented rewriting system. Eliminating
them from the naively constructed transition system yields the desired continuation-

free machine.

The new CS-machine and its transition function are formalized in Definition 4.5.
Since the set of semantic values includes p-closures, the merging of the control string
and continuation components of CSC-states requires the inclusion of p-closures in
the (syntactic) value set of the control string language. With this modification, the

store is simplified to a finite map from locations to syntactic values.
The simulation translation is a formal expression of the informal key observation.

It maps control strings and continuation contexts to terms in the new control string

language:

T($, (C[ Jret V)) = C[V],

T(M,C[ ])=C[M].

The correctness of this transformation is expressed in
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Definition 4.5: The CS-machine

Computational Domains:

SE States = AxosLocsp X Stores (machine states)
6€ Stores= Locs —o—~ Values, (stores)

where ArsLocs p 18

M:u=ala|n| M) (MN)|(FM) | (ex.M) | {p,Cl ],

and Values, includes constants, variables, abstractions, capabilities, and p-

closures.

The CS-transition function maps states to states:
States LR States,

according to the following cases where applicative standard contexts are defined

over AFsLocs p-

(Cln). 0) = s (Cl6(n), 0) (1)
(Cl(Az.M)V], 9) (C[M[:v :=n]],0[n :=V]) where n € Dom(8) (5)
(C[fal, 8) > (C[4(f, a)), 6) (6)
(CIFM],0) 25 (Mn,8n = (p,C[ )])  where n & Dom(8) (7)
(Cl(p, Col DV, 8) > (C[CO[V]] 6) )
(Cl(on.M)V], 8) =25 (C[M], 8]n == V) (10)

~~

The ewval-function is

evalpg Unload(M) = Unload(V, 6) iff (M, @) (V 6).
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Lemma 4.6 (CS-simulation). For any program M € Aro,
evalgso .y (M) = evalcs (..y(M).

Proof. The proof idea is again the same as in the previous simulation lemmas.
However, this time the lengths of the two evaluations differ by the number of search
steps in the CSC-transition sequence. For the search rules, it is now the case that

the CSC-machine performs a transition step:
(c1, 61, k1) 225 (e, 62, Ra),
while the CS-machine rests in the state
(T(c1,k1),601) = (T(ee, K2), 02).
For the remaining transitions, we show that
{c1, 61, K1) RIS (ca, 62, K2)

implies

(T(er, k1), 01) 2 (T(ea, K2), B2).

Otherwise, the proof remains the same. O

At first glance, the simplicity of the CS-semantics versus the CESK-semantics is
the result of an elimination of machine continuations in exchange for an extension of
the control string language. However, a further simplification shows that this is not
true. In the current version of the CS-system, an F-application grabs the current
context and packages it up into a p-closure; a continuation application places the
argument back into the respective context hole. Yet, a context can be perceived as

a term that is a function of its hole, and indeed, a p-closure of the form (p,C[ )
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behaves in the same way as the term Az.C[z]. When applied to a value within some
other applicative context, the value is labeled, placed into the hole of C [ ], and is
then immediately delabeled. Hence, the transition rules (CS7) and (CS8) can be

replaced by
(C[FM],8) —> (Mn,b[n := (Az.C[z])])- (CS'7)

The introduction of this rule not only reduces the number of rules, but it also
eliminates the need for p-closures in the control string language. This shows that

Az, suffices for a syntactic treatment of programming language control.

A translation Tp from AFsroesp t0 AFoLocs 18 simple. T, parses a term until it
encounters a p-closure. Then the p-closure is replaced by the respective abstraction

and the translation continues:

T,({p, C[ 1)) = Az.Tp(Clz]).

We omit a further formalization of this rather straightforward change in the CS-

transition function and state the correctness lemma for the modified CS-machine,

called CS’-machine:

Lemma 4.7 (CS’-simulation). For any program M € Ars,

walCS,UnloadTp(M) = eUalCS’,(~,-)(*M)»

where UnloadT,(V,8) = (T,(V), Ts(6)) and Ts is the pointwise application of Tp

to a store.

The proof of this lemma is also omitted. It essentially formalizes the above, informal
argument on the equivalence of p-closures and terms.

After the elimination of environments and continuations we are left with a

machine that is solely based on control strings and stores. This is close to the desired
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rewriting semantics, but the realization of side-effects still relies on the existence
of cells in the underlying implementation machine. In the following section we
demonstrate that assignment can be interpreted in the syntactic world, and that this

interpretation is indeed an abstraction from the cell-concept of state in programs.

4.3. Replacing the Store by Sharing Relations

The role of the store is characterized by the three transition rules (CS1), (CS5),
and (CSlO),3 which use, extend, and modify the store. The crucial rule is (CS5). It
replaces all bound variables of a A-abstraction by a new, distinct location and thus
gradually builds up the store. All future references to a bound variable are resolved
via the always-present store: a request for the current value of a variable causes a
store lookup; an instruction to change the current value results in a modified store.
Hence, a deeper understanding of the store requires a closer look at the nature of

bound variables.

At this point we must recall the a-congruence convention about bound variables
in terms. According to this convention, the name of a bound variable is irrelevant
(up to uniqueness). Abstractions like Az.z and Ay.y are considered equal. This
actually means that the programming language is the quotient of A over =4. From
this perspective, a A-abstraction is an expression together with a relation that de-
termines which parts of the expression are equivalent. The relationship is displayed

by occurrences of the bound variable.

A unification of our ideas on the role of the CS-store and the nature of bound
variables directly leads to an abstracted view of the store. The intention behind the
replacement of bound variables by unique locations in the bodies of M-abstractions is

to retain the static a-equivalence for the rest of the computation, i.e., as a dynamic

3 The extension of the store in (CS'7) is an artifact of our choice of putting continuations in the store
instead of the environment.
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sharing relation for term positions,? even after the Az.-part has disappeared. From
this argument it follows that an integration of the store into the control string
language necessitates a way of expressing this dynamic relationship syntactically.
The most natural solution is a labeling scheme. Instead of placing a location
into the program text and the value in the store, the value could be labeled in
a unique way and placed into the text as a labeled value.® With respect to the

transition relation, we would like to replace
(ClOx. MWV, 0) S5 (C[M[z :=1]),6[l:=V])  where ! & Dom(6)
by a rule like
C[(Az.M)V] —> C[M[z := V'] where [ is not used in the rest of the program.

V! is the labeled version of the value V. With the labeling technique it is indeed

possible to re-interpret lookups and assignments as term manipulations.

The emulation of a variable lookup apparently strips off the label from the
labeled value since the value is already sitting in the right position. The effect of
an assignment relies on the introduction of a new substitution operation. In the

extended term language, a o-application looks like
(cU'. MV

when it is about to be evaluated. The assignable variable has been replaced by a

labeled value; all other related variable positions carry the same label. When it

4 The idea of modeling the store as a sharing relation was already known to Landin [38], but his sharing
relations defined equivalent machine positions, not relationships of term positions.

5  Labeled terms have also been used for the investigation of the regular A-calculus [5:353]. Although our
problem is unrelated to these investigations we have adopted the notation in order to avoid the introduction of
an entirely new concept.
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is time to perform the above c-application, all these occurrences of an [-labeled
value must be replaced by I-labeled values V. To implement this, we introduce the
labeled-value substitution M[e' := V']. The result of M[e' := V'] is a term that
is like M except that all I-labeled subterms are replaced by V!, With this new

operation, the assignment transition is definable as
Cl(oU' . M)V] —> CIM][e! == V'].

Unfortunately, the new semantics for assignments and lookups has a minor
flaw: thus far, it cannot deal with circular or self-referential assignments. When
the label ! appears not only in C[M] but also in V, the equivalence-positions in
V are not affected by the labeled-value substitution. As an illustration, let us
recall our prototypical example for self-referential assignments from Section 3.2.
The program (Az.(oz.z)(Ay.z))0 yields a circular closure on the CESK-machine. A

term evaluation according to the above rules proceeds as follows:
(Az.(oz.z)(Ay.2))0 —> (001.01)(/\y.01) — (Ay.0hh

The last term should represent this circular structure and in some sense it does: an
interpretation of the label 1 requires that the position occupied by 0! is in the same
sharing equivalence class as the entire expression ()\y.()1 )!. However, a lookup that
simply strips off the label produces a non-circular object, namely, (/\y.Ol). For a

correct implementation this problem needs a solution.

There are two obvious ways out of our dilemma. First, we could blame the
assignment statement and require that a self-referential assignment builds a truly
circular or infinite term. Although this approach has been successfully employed
in other circumstances [56], we believe that 1t unnecessarily complicates a symbolic

rewriting semantics. Second, we can try to find a more intelligent lookup transition
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that is knowledgeable about circularities. In other words, the assignment transition
only updates the equivalence classes within the program and leaves the equivalence
positions within the new value alone. The complementary lookup transition is then

something like a by-need continuation of the latest assignment transition:
CV'] — C[V[e := V]|

This version of the lookup transition simultaneously strips off a label and updates
all equivalence positions within the value. For the above example, this leads to the
correct final value of (Ay.(Ay.0N)).

The intuitive reason for the correctness of the new transition rules is the follow-
ing invariant: every outermost occurrence of a label is associated with the correct
current value. When the label is taken off, some inner occurrences may become
outermost, but they are immediately updated with the correct value. Assignments
place a label on the value, and hence, all self-referential labels within the value are

not outermost.

Given the informal descriptions and correctness arguments, we proceed to define
the final machine in this chapter. The machine is a control string rewriting system.
Its only state components are expressions in the language Arew, which is a proper
extension of Ary. There are two new categories of terms: labeled values and o-
capabilities with labeled values in the variable position. Whereas the latter kind is
included in the set of values, labeled values are not. Labeled values approximately
correspond to store cells, but they are more abstract. Unlike cells, labels may be
tagged at different values. For example, KULS! is a legitimate expression in Arey
with the unique value I. No such expression represents a legal state in the evaluation
of Ar,-programs, but its existence illustrates the difference between labels and cells:
labels only denote an equivalence class for assignments, cells are one out of many

possible implementation techniques for evaluations of Ars-programs.
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Definition 4.8: The C-rewriting system, part I: the language

The term language Apey:
Mu=MN|FM |V |V Vi=alz| eM|oX.M

where [ ranges over Labels, X over Vars and Labeled Values.
Labs, the set of labels, is an arbitrary, infinite set, e.g., Locs.
Auxiliary Operations:

Lab: Areww — P(Labs)

Lab(MN) = Lab(M)U Lab(N) Lab(a) = Lab(z) = 0
Lab(FM) = Lab(M) Lab(Az.M) = Lab(M)
Lab(V') = Lab(V) U {1} Lab(0X.M) = Lab(X) U Lab(M)
o[+ := +]: Apew X Vars X Values U Labeled Values — Arew
(substitution)

gz ==Ll =L, yle:=L) =yify # =z,

U™z := L] = Ulz := L™,

(Ay.M)[z := L] = Ay.M[z := L],

(MN)[z := L] = (M[z := L]N[z := LJ),
(FM)[z := L} = (FM[z := L}),

(cx.M)[z = vVl = (V! . M[z := V'),
(cy.M)lz := L} = (cy.M[z := L]) if z # v,
(cU™.M)[z := L] = (¢U[z := L. M[z := L)).

o i= )i Aew X Labs X Values — Avew

(labeled-value substitution)

ool =Vl =z, Ule =V =V, Ume = V] =Ule = V" if l #m,
(Az.M)[e' := V'] = Ae.M[o := V),

(MN)[o' := V'] = (M[e' := V'|N[o := V']),

(FM)[o = V'] = (FM[e' := V),

(o X.M)[o = V] = (cX[o := V'].M[e' := V']).
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The C-transition function is conventional and uses the partitioning of control
strings into contexts and redexes that is known from the CS-machine. The details

of the formal machine description may be found in Definition 4.8, parts I and II

Definition 4.8: The C-rewriting system, part II: the transition function

The transition function maps programs to programs:

C
Arew ¥ Arew

according to the following cases:

cvl] v Vel = V] (1)
ClOe.MWV] s C[M[z := V']]  where | € Lab(C[MV)) ()
Clfa) == C[8(f, a)] (6)
CIFM] v M(Az.Clz])  where | € Lab(C[M]) (7)
Cl(oU MWV] S C[M[e = V'] (10)

The eval-function is

evaly Unload(M) = Unload(V) iff M+ V.

Before we can prove the correctness of the C-rewriting system, we must explore
the extension of the a-congruence relation to the new term language. In Chapter 2,
we defined a-equivalence in an informal manner. Formally, a-equivalence can be

characterized® as a compatible equivalence relation that is generated by

Ae. M =4 \y.M[z := y] ify & FV(M).

6 See Barendregt’s exposition on this topic for a fuller treatment [5:Appendix].
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An extension of this relation to labeled values should be based on a simple com-
patibility rule that compares the value parts of labeled values. However, this is
insufficient because the very same label can occur within these values. Such a
self-referential occurrence indicates that the value part of the respective position
is equivalent to the entire value, but for the comparison of binding relations, 1t
is only important that the inner label occurrences mark the same value. Hence,
stripping-off [ and replacing inner occurrences with |—or any other arbitrary value—

guarantees a well-founded and correct definition:

vi=, U it Ve =1 =, Ule =1

An example of this extended a-equivalence relation is

(Ay.y0") =, (Az.z1').

It simultaneously shows the irrelevance of variable names and inner label occur-
rences. The soundness of the extended a-equivalence is captured in the following

proposition, which says that evaluating equivalent terms produces equivalent values:

Proposition 4.9. Let C[ | be an arbitrary context. If M =a N, evalc(C[M]) =
U, and evalc(C[N]) =V, then U =, V.

Proof. The proof is an induction on the transition sequence and reflects the above

informal argument. O

In order to be useful, a translation from the CS-system to the C-system must
produce a term in the appropriate a-equivalence class. It is therefore natural to
incorporate the idea of neglecting self-referential cell occurrences during the transla-

tion. Thus, the translation U from CS-control string/store pairs to C-control strings
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changes the contents of a cell to | once the cell is dereferenced:
U(z,8) = =z,
U@, 8) = U, e[ = 1Y,
U(Az.M,6) = Az.U(M,0),
U(MN,8) = U(M,0)U(N, ),
U(FM,6) =FU(M,6E)
U(eX.M,8) = ocU(X,0).U(M,8)
U is the required unload function for the statement of the correctness lemma:

Lemma 4.10 (C-simulation). For all programs M € Ar.,

evalgg y(M) = evalc(M).

Proof. The proof plan for this last machine-simulation lemma is again the same

as in the four preceding ones. The central claim is that a transition step
CcS
(c1, 01) = (c2, 62)
on the CS-machine implies a transition step of the form
c
U(et, 61) — U(cz, 02)

in the rewriting system. However, unlike in previous simulation proofs, we must
also address the issue of choosing new locations and labels. In the previous proofs,

we could rely on the convention that
[ such that | € D

uniquely determined the new element, and that this choice algorithm could never
interfere with the simulation because the respective stores always had the same

domain.
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In the present simulation of the CS-machine via the C-rewriting system, the
domain of a CS-store in {c, #) and the set of labels in U(c, §) are not necessarily the
same. The C-machine only maintains labels that are reachable from the program
and automatically eliminates all others by (vacuous) substitutions. It follows that

we can add the clause
Lab(U(ci, 6;)) € Dom(6;) for 2 = 1,2

to the induction invariant. A verification of this condition is straightforward. The
condition implies that the simulation of the transition rules (CS5) and (CS'7) can
use the new location as a label on the respective values. In other words, given
that the choice algorithm for new labels accounts for previously used labels, the

simulation of the CS-machine by the C-rewriting system is perfect. O

The construction of the C-rewriting system and its correctness lemma point out
a crucial difference between program control and program state. Whereas for the
former A, suffices for formulating a symbolic rewriting system, the latter requires
an extension. The store (in a denotational or operational semantics) establishes
a relation among subterm occurrences in a program that is not expressible with
the syntactic constructions of Ax,. Nevertheless, as the above proof indicates, the
syntactic-symbolic model of the store has two crucial advantages over a semantic
model.

First, all locations that are decidably connected with the rest of the computa-
tion are located in the program text, i.e., they are in the set Lab(-). Due to the
replacement of environments and stores with substitutions, there is no accumulation
of garbage in C-terms as there is in CESK-stores. For example, (Az. M)V where z

is not free in M behaves equivalently to M in all computational contexts C[ ]:

ClOe. MWV] v C[M[z == V'] Za C[M].
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Similarly, if all occurrences of ! are in labeled values V¥, an assignment (o VF.M)U
erases all occurrences of | provided that U does not contain I The equivalent
construction to Lab(+) in denotational frameworks is based on the notion of a pro-
gram cover [25]. It allows the same kind of equality arguments, but the required
mathematical machinery is complicated and not intended for use by programmers.

Second, with the elimination of garbage, the comparison of states in evaluation
sequences can be reduced to finding an isomorphism between label sets of programs.
The basis of the isomorphism-argument is an extension of a-equivalence. The cen-
tral idea behind the extension is that the identity of a label should be irrelevant for
a program just like the identity of a variable name is irrelevant for a A-body. In
short, we should identify programs that are equal modulo some renaming of labels.

Formally, we express this as label-equality:

Definition 4.11. Two programs M and N are label-equal, M =i, N, if there
exists a bijection ¢ between the label sets Lab(M) and Lab(N ):

¢: Lab(M) — Lab(N')

such that ¢(M) =4 N.
The extension of ¢ on the entire term 1is:
H(MN) = ¢(M)¢(N) ¢(a) = a, ¢(z) =«
(FM)=F¢(M) d(Az. M) = Az.¢(M)
s(V') = gV g(oX.M) = 04(X).4(M)
Warning, part I. Label-equivalence resembles an ordinary term relation, but 1t
is a program relation. Put differently, label-equivalence only applies to terms that
are used as programs. It makes no sense to embed related terms in contexts. For

example, it is true that the result of

(Azm.mz(oz.x))0



105

as a program is label-equal to
Am.m0'(0".0"),

but that does not imply that the first expression evaluates to the second one in
arbitrary contexts: sharing relations always concern the program as a whole and
cannot be considered in isolation. We therefore recommend imagining a unique

marker at the root of every program.” End

The soundness statement for label-equivalence is an adapted version of Proposi-

tion 4.9:

Proposition 4.12. If M =is N, evalc(M) = U, and evalc(N) =V, U =i V.

Proof. The core of the proof is an induction on the number of transition steps
in the evaluation. It depends on the following two claims about substitution and

labeled-value substitution:

(1) MV =i NU implies M[z := V] =tap N[z := U], and

(2) MV =i NU implies M[o := V'] =ia N[o' := U'].

These claims express that sharing relationships commute with substitutions if the
relationships hold for the program. O

The relevance of label-equivalence to the comparison problem is captured in:
Corollary 4.13. Suppose the C-transition function can pick new labels randomly.
Furthermore, suppose that M =q N, evalg(M) = U, evalo(N) =V, andU Zo V.

Then there is also a value V' such that evalc(N) = Viand U =4 V' =1 V.

Proof. Clearly, the random choice of labels for C-transitions instead of a deter-

ministic choice does not invalidate Proposition 4.12. Hence, U =i V. But then

7 Yet another way to see this problem is to say that programs implicitly delimit the scope of labels. Hence,
the introduction of an explicit first-class marker for program-terms would resolve this dilemma, but it is not
clear what such a marker would mean on an intuitive level.
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there is an isomorphism between the label sets of U and V, and we can use this
isomorphism to rearrange the allocation of labels in the C-transition sequence from

N to V. This rearrangement yields the desired transition sequence from N to V.

a

Informally, even if we relax the constraint on the label-choice algorithm, we can
always reconstruct appropriate evaluation sequences that simulate the CS-machine
correctly. As a consequence, we do relax the constraint on the condition I € Lab(M)
and admit any fresh element outside of the label set. Furthermore, we adapt the

two conventions concerning bound variables to labels:
e Label-equal programs are identified [label-equivalence convention;

e Different label-names always denote different sharing relationships [label hygiene

convention).

From a practical point of view, this is a solution to the program/store-comparison

problem. Recall the appropriate example from Section 3.2:
(Azy.M)01 and (Ayz.M)10.

In the rewriting system, the two terms yield the same result for all evaluation

contexts:

Cl(Azy.M)01) = C[M e = 04][y = 1]
=lab C[M[:E = Om][y = 1”]] =lab

Cl(zy.M)01] —o C[M [y := 1"][z := 0™]],
and can thus be considered interchangeable as desired. In semantic store models

this kind of reasoning is more difficult because of the mutual interference of garbage

and isomorphic re-allocations.

The result of the three sections in this chapter is summarized in a theorem that

connects the CESK-machine with the C-rewriting system:
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Theorem 4.14 (C-Simulation). For all programs M € Ao,

6valCESK,Unload(JM) = evalc (M),

where Unload(V;, 8) = U(S(Tp(R(V))), Ss(Ts(Rs(V))):

The C-Simulation Theorem says that, provided Unload is used as an interface,
an outside observer cannot perceive any differences between the CESK-evaluation
function and the C-evaluation function. The CESK-Unload function is natural since

it coincides with the CEK-Unload function (see Chapter 2) on A-values.

The differences between the semantic frameworks are important, too. On one
hand, the control string language Arey is only a minor extension of the original pro-
gramming language; on the other, the C-transition function solely relies on terms
in Ayew, has fewer rules than the CESK-machine, automatically eliminates use-
less garbage, and solves the program/store-comparison problem. We believe that
reasoning about Idealized Scheme programs in the C-system is a more viable alter-

native.

Based on this assessment, we shall use the C-rewriting system instead of the
CESK-machine in all future discussions. Theorem 4.14 guarantees that all results
carry over to the original CESK-semantics. In the next chapter the C-rewriting
system serves as a starting point for the design of reductions for an extended A,-
caleulus. Together with the reductions, the rewriting semantics will then constitute

a reasoning system for Idealized Scheme.



5. The \,-CS-Calculus

A closer look at the program rewriting system for Idealized Scheme should remind
the reader of the alternative characterization of the \.-standard reduction function
in Proposition 2.8. According to this proposition, the standard reduction evaluation
first partitions a program into an evaluation context and a f,- or é-redex. Then, an
appropriate contraction replaces the redex by a new term, and finally, the standard
evaluation resumes the cycle. The C-rewriting system works in the same way,
except that the context-redex partitioning plays a different role. All but one of
the transition rules crucially depend on the uniqueness of the partitioning, and
furthermore, two of the rules not only alter the redex but the entire program. We

characterize this property of transitions as context-sensitivity.

We begin the first section of this chapter with a study of the nature of context-
sensitivity. Based on this, we design a set of term relations that achieve the same
effects. While most are notions of reduction, some relations are special, context-
sensitive computation relations. This set of term relations forms the basis of the
A\p-CS-calculus. The second section of this chapter is devoted to the problems
of consistency and standardization. The last section contains the correspondence
theorems, which connect the machine semantics with the calculus and vice versa.
The main result of the last section is an equational theory for reasoning about
imperative higher-order programs.
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5.1. Reductions and Computations

The transition rules of the C-rewriting system fall into three different classes: con-
text-insensitive rules, those that leave the context intact, and those that rewrite
the context or displace it. The first category comprises just (C6), the second (C1)
and (C5), the third (C7) and (C10). The division implies two reasons for context-

sensitivity.

First, partitioning programs into C-redexes and evaluation contexts uniquely
determines when a transition is to occur. This is obviously the case for the delabeling
rule. Assignments and delabeling steps must happen in an exact order such that the
extensional sequentiality constraints of the CESK-machine are satisfied. A freely

applicable reduction of the form
Vi — Ve := V]
would interfere with this ordering. Similarly, a modified 3-reduction a la
(A2.M)V — Mz := V']

would establish sharing relations at the wrong time. Since this is a rather subtle

point, we demonstrate the problem with an example. Consider the expression

M L(F D KD O-(oy.(eya)))0).

When evaluated on the CESK-machine, it yields K. If we use the above pseudo-

relation to simplify the argument, we first obtain

(M D(f KDz (00" (Au0'u))z),

and this expression in turn produces Azu.Klu.
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Second, the transition rules for F- and o-applications not only need to be
timed correctly, they also must manipulate the entire context in order to achieve
the appropriate effect. F-applications remove and give their argument control over

the current context; o-applications replace a number of subterms in the context.

Considering these observations, there is no hope of finding an equivalent set of
context-insensitive reduction relations: by their very nature, imperative effects must
happen in a certain order. However, the second kind of context-sensitivity suggests
a partial solution. It indicates that if imperative transitions were only discharged at
the root of a term, there would be no extent problem: all effects would be concerned
with proper subterms of the redex. A restriction of imperative transitions to the

root has the additional advantage that it naturally coordinates the timing of effects.

Following this line of reasoning, we design two sets of term relations: reductions
and computations. The former have the same status as ordinary notions of reduc-
tion, and their task is to bubble a C-redex to the root of an evaluation context. Once
the redex has reached the root, a computation relation performs the proper imper-
ative effect. In order to keep this system consistent, computation relations must
have a sub-privileged status. Unlike notions of reduction, they cannot be applied
to subterms. We indicate this difference by using > instead of — for denoting

computations.

An evaluation in the new system resembles a race. All imperative redexes in
a term simultaneously start bubbling up towards the root of a term. Whichever
redex gets there first, performs an imperative effect. Sequentiality is preserved
and coordinated by a proper scheduling of arrivals. This certainly differs from a
traditional calculus, but as we shall demonstrate in the sequel, it is an acceptable

generalization of the notion of a calculus.

One disadvantage of our plan is that it is not conservative with respect to the A.-
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calculus. Because of the timing constraints, even A-redexes must apparently move
to the root before being contracted. Fortunately, we can recover the fB,-relation
with a simple observation. Thus far, we have followed the implicit convention that
all variables are the same kind of objects, but this is only partially true. Whereas
variables in general manifest an a-equivalence, it is only the assignable kind that
necessitates a dynamic continuation of this relationship. Non-assignable variables
do not require a labeling step. Accordingly, our solution is to divide the set of
variables into two disjoint subsets, one for each category. We call these subsets
Vary for non-assignable and Vares for assignable variables.

Given this division of the variable set, we split the transition rule for the appli-
cation of A-abstractions into two sub-rules, each of them accounting for a variable
category:

Cl(a.M)V] v C[M[z == V]], « € Van, (C5a)

and

Cl(Az.M)V] i C[M[z := V'], « € Vars, lis fresh. (C5b)

The first is clearly context-insensitive and represents f.. Consequently, 3, and é

remain the basic notions of reduction for the functional subset of Idealized Scheme.

The second sub-rule, (C5b), is equivalent to the original one. Hence, we must
design reduction and computation relations to simulate it. The computation relation
is only used at the root of a term, i.e., in the empty context. In short, it has the

same form as the transition rule without C[ |:
(Az.M)V b M[z := V'], = € Vars, lis fresh. (Bs)

The non-deterministic choice of the new label I is possible because we identify label-

equivalent programs, and this rule explicitly applies to programs only.
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Otherwise, if the C-redex for (C5b) appears nested in an evaluation context, it
must bubble up to the root. Since the computation relation takes care of the empty
context, the inductive definition of evaluation contexts requires consideration of two
more cases: the embedding of a C-redex to the left of an arbitrary term N and to
the right of a value U. In the first case, the C-transition rule says that the modified
A\-body and the term N form a new application. Thus, the way to move the C-redex

up is to include N in the A-body:
Cl[(Az.M)V)N] — C[(Az.MN)V], = € Vars.

This new rule is clearly independent of C| ] and therefore we adopt the context-free

variant as another notion of reduction:
(Az.M)V)N — (Az.MN)V, = € Vars. (BL)
Based on the symmetry of the two cases, we suggest for the second one:
(U(Az.M)V)) — (Az.UM)V, z € Var,. (Br)

Like the B-rule itself, these reductions rely on the hygiene convention and assume

that the set of free variables in N and U, respectively, does not contain .

The simulation of assignment with reduction and computation relations is now

straightforward. The computation relation is
(U .MV > M[e' := V'; (o1)

an embedded o-application can work its way to the root of a term with rules similar

to those for a A-application:

U((cX.M)V) — (e X.(UM))V (or)

(6 X.M)V)N — (¢ X.(MN))V (o)
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Unfortunately, the bubbling-up technique cannot be applied as easily to the
delabeling rule for labeled values. Unlike a A- or a o-capability, a labeled value does
not contain a subterm that can be used to gradually incorporate the term context.

A possible solution is introduce a delabel application of the form
(D MV

where D is an improper symbol, V! the labeled value, and M is an arbitrary term
which is to consume the value of V.

Assuming that all labeled values occur within D-applications, we can design an
appropriate set of reductions and computations. A D-application at the root of a
term simply delabels the labeled value—according to the C-transition rules-——and

applies M to the resulting value:
(D MV'Ys M(V[e' :=V]). (Dr)

It (DM V1) is to the left of some expression N, the D-application must some-
how incorporate the argument N into the consumer expression in order to move
closer to the top. In a modified C-rewriting system, the entire application would
first delabel V!, then apply M to the resulting value, and finally, the result of this
application would absorb N. Abstracting from the value of V', this informal de-
scription is captured in the A-abstraction Av.MvN, and hence, the two reductions

for D-applications are:

(D MX)N — (D (Ae.MzN)X), (Dr)

U(D MX) — (D (A\e.U(Mz))X). (Dr)

Now that we have explored our solution for the bubbling-up of delabeling re-

dexes, we must clarify how to get all labeled values into D-applications. Two
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Definition 5.1: The calculus language Acs

Syntactic Domains:

a € Const (constants)

€ Vars (variables), Vars = Vary U Vare
zy € Vany (non-assignable variables)
s € Var,  (assignable variables)

V€ Values (values)
l € Labels (labels)
M,Ne A (A-terms)

Abstract Syntax:

M:=alxy| (Ae.M)| (MN) | (FM) |
(02 M) | (cVI.M) | (D Mz,) | (D MV').

Constants, non-assignable variables, abstractions, and capabilities are referred
to as values.

X is subsequently used for assignable variables and labeled values.
Programs are closed terms possibly including labeled values.

Acs-contexts are defined by two clauses:

cl Ja=[ 1| | QzCl 1| (Cl M) | (MC[ )| (FC[ ]) |
(V[ "M | (eX.C[ ) | (D MV] )| (D C[ ]X)
VI Ju=[ 1| QaCl D) | (oV] 1.M) | (¢X.C[ ])

The separation of contexts and value-contexts is necessary to avoid category
conflicts in the value positions of o-capabilities and D-applications.

® injects Ar,- and Aye-terms into Agg:

O(xy) = 22, ¥(25) =D lzo, ®(V') =D 13V,
B(a) = a, ®(Az.M) = Az.®(M), ®(MN) = 3(M) B(N),
B(FM) = FO(M), B(ox.M) = 0d(z).3(M), ®(0V'.M) = o®(V) .B(M).
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possibilities are feasible: the f,-computation could actually substitute assignable
variables with D-applications, or the language could be defined such that assignable
variables only occur within D-applications. The former alternative has the advan-
tage that the calculus-language directly subsumes the programming language, but
it also has the disadvantage of unnecessarily enlarging the language. Furthermore,
since assignable variables represent labeled values, they cannot be included in the
set of values. Therefore, we choose the second solution because it syntactically
highlights this fact. Definition 5.1 contains the new language, the definition of

Acs-contexts, and a map that injects Ars (and Arew).

Finally, we deal with F-applications. The respective C-transition constructs
a function from the context of the F-application, labels it, and then applies the
F-argument to this labeled value. The labeling is due to the design of the CESK-
machine, which contains all values in the store. Since this is unnecessary, we require

the F-reduction and computation relations to satisfy a modified rule:

C[FM] — M(Az.C[z]). (C7)

Accordingly, the computation relation must apply the F-argument to the initial

continuation represented by the empty context:

FMv M(Az.z). (Fr)

For reductions, (C7) implies that they must simultaneously bubble up an F-redex
and encode the term context on their way up. Again, we simply investigate the
two inductive cases of a context definition. Consider the expression (FM)N and
suppose it is embedded in a context C[ ]. Clearly, the function Af.fN is a correct
encoding of the immediate context of the F-application. The rest of the context,

i.e., C[ ], can be encoded by another F-application. Putting these two parts of the
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continuation together is straightforward: fN represents the immediate continuation
of the F-application, « the one that follows this application, and hence, x(fN') is the

entire continuation. In short, these ideas suggest the following notions of reductions:

(FM)N —F (e M(Af.(FN))), (F1)

UFM) —FAeM(Av.(Uv))). (Fr)

The definition of reduction and computation relations for F ends the design
phase of the \,-CS-calculus. The notions of reduction and computation relations
are collected in Definition 5.2. The next steps in our development are determined
by the calculus-construction procedure outlined in Section 2.3. According to this
procedure, we first collect all notions of reduction in a single term relation cs.
Based on this reduction, a compatible closure is formed, yielding the one-step re-
duction — ;. The compatible closure must account for five different syntactic
constructions and two value-ness constraints on subterms in o-capabilities and D-
applications. These considerations are built into the definition of A¢g-contexts,
and, for simplicity’s sake, we exploit this in the formal specification of the calculus.
Finally, we define the reduction and congruence relation of the one-step reduction

relation: see Definition 5.3.

Thus far, our calculus is a simple, conventional extension of the traditional .-
calculus. However, since our goal is a calculus for Idealized Scheme, we must go
beyond conventional constructions and somehow include the computation relations
in order to emulate imperative effects. To avoid any interference of computations
with the compatibility construction, we have chosen to define a computation as the
union of the reduction —»¢s and the five computation relations. The motivation
behind this step is that one computation step can simulate one C-transition step:

the reduction can bubble up a redex to the root and a computation relation can
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Definition 5.2: Reductions and Computations

The notions of reduction are

fa— Vif§(f,a)=V,V €A (6)

(Az. M)V — Mz := V] (Be)
U((Azo . M)V) — (Aze.(UM)V (Br)
(Azo.MYV)N — (Aze.(MN)V (Br)
U(FM) — Fre.M(Av.x(Uv)) (Fr)
(FM)N — FAs.M(Af.6(fN)) (FL)
U((cX.M)V) — (e X.(UM))V (or)
(e X.M)V)N — (6 X.(MN))V (o1)
U(D MX) — (D (A.U(Mv)X) (Dr)
(D MX)N — (D (Av.MvN)X) (Dr)

where 2o € Vare, U,V € Values, and X ranges over Var, and labeled values.

Non-indexed variables are from Var).

The computation relations are

(FM)v> M(Az.x) (Fr)
(Aze M)V > M[zg := V'] where 1 is fresh (Bs)
(cU .MV > M[o' := V] (or)

(D MV s M(V[e' := V']) (Dr)

with the above provisions. We refer to the left-hand sides of computations as
(computational) redexes.

Substitution and labeled-value substitution are adapted mutatis mutandis to the
new syntax:

(D MX)ly:=V]=(D My :=V]X[y:=V])
(D MX)[e' := V'] = (D M[e' := V'|X[o' := V)
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perform the imperative action. On top of this computation, we define computational
equality as the smallest equivalence relation that encloses the computation. These

relations are also summarized in Definition 5.3.

Definition 5.3: The A,-CS-calculus

The basic notion of reduction is
cs=BUSUFLUFrUPBLUPrUoL Uog U D UDg.

The one-step cs-reduction —¢s is the compatible closure of cs:

M~— N
if there are P, @, and an arbitrary context C[ | such that
(P,Q) € cs, M = C[P], and N = C[Q].

The cs-reduction is denoted by —.s and is the reflexive, transitive closure of
— 5. We denote the smallest equivalence relation generated by —— s with =;
and call it cs-equality.

The cs-computation >.s is defined by:
DCS:fTU/BJUUTUIDTU_)')cs.

The relation =, is the smallest equivalence relation generated by p.s. We refer to

it as computational equality.

The result of our calculus design is an untraditional two-level system: on the
lower level, it is a conventional congruence, on the upper one, a simple equivalence
relation. When we talk about the \,-CS-calculus, we refer to the relation Z s
We write M 2.5 N or A\,-CS® FM = N for derivations on this level. Although
weaker, the congruence relation =5 is traditional and interesting in its own right.

We consider it as a sub-calculus and use the notation A\,-CS M = N.
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5.2. Consistency and Standardization
Given the definition of a calculus, the question arises how this calculus compares
with others. For our work there are two problems of immediate concern, namely,
consistency and standardization. However, before we turn to these, we take a brief
look at the nature of variables in our system. In an ordinary logic or calculus,
variables do not play an active role in proofs; they are simply placeholders for
values and nothing else. Although Acs contains the more sophisticated category of

assignable variables, we can still prove a comparable substitution property:
Theorem 5.4. Let ) € Var\,, z, € Var,, and let | be a label such that | &
Lab(MV)U Lab(NV):

(i) \x-CS® =MV = NV implies A\.-CS® FM[zy := V] = N[zy := V];

(i) \e-CS® WMV = NV implies \.-CS® =Mz, := V'] = N[z, := V'];
(iii) A\,-CS =M = N implies \,-CS FM|[x) := V] = N[z) := V];
(iv) Ay-CS M = N implies A\,-CS FM [z, := V] = Nz, := V'].

Remark. The antecedents in statements (i) and (ii) are equivalent to the condition
that the label set for V is disjoint from the symmetric difference of the label sets of

M and N, i.e., the labels that a proof of M = N introduces in M and N cannot

interfere with the labels in V. End

Proof. The claims follow from an induction on the structure of the proof and
Proposition 4.12. The induction relies on a generalized version of the substitution

lemmas:
Mz := X][y := Y[z := X]] = My := Y[z := X] ify & FV(X);
and on a commutation lemma for substitution and labeled-value substitution:

Mz = X][o :=Ulz := X]'| = M[e' :=U'][z := X]  if | & Lab(X). O
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We shall use the theorem in the following section on the correctness of the calculus.

It is stated here because of its logical nature.

As mentioned in Chapter 2, the consistency of traditional calculi is implied
by a Church-Rosser theorem. This theorem shows the confluence of two reduction
paths that proceed in two different directions from the same term. For our two-level
calculus, however, this is insufficient. We must prove in addition that a computation
step cannot interfere with the Church-Rosser property of the reduction system, i.e.,
that it cannot cause a divergence of derivation paths in the upper-level equivalence

relation.
From these preliminary remarks it follows that our generalized Church-Rosser
Theorem must be of the form
Theorem 5.5 (Consistency).
(i) The notion of reduction cs is Church-Rosser.

(ii) The cs-computation satisfies the diamond property.

The proof of the first part is a modification of the Martin-Lo6f proof for the original
Church-Rosser Theorem; the second part is a simple case analysis and relies on the

first part. Details can be found in the subsection.

The theorem implies the important

Corollary 5.6. If M =., N then there exists an L such that M v* L and N % L.

This corollary guarantees that the calculus cannot prove every arbitrary equation
because there are distinct normal forms, and that a program reduces to a value if

and only if it has a value.
The second basic question about calculi is whether there are standardized deriva-
tion sequences. Standardized derivation sequences constitute the basis for a semi-

decision procedure for equalities and are thus crucial for finding values and normal-
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forms of programs. We again proceed in two steps. First, we must show that
there are standard reduction sequences in the reduction sub-calculus. Second, we
must extend the notion of standard reduction sequences to standard computation

sequences and prove their adequacy.

The actual definition of standard reduction sequences follows Plotkin’s strategy
for the corresponding work on the A,-calculus. In order to facilitate the presentation
in Section 5.3, we use the technique of Proposition 2.8 to define the concept of a

standard reduction and a standard computation function:

Definition 5.7.

(i) The standard reduction function maps M to N, Mv+—g.s N, if there are P,
Q, and an evaluation context C| | such that (P,Q) € cs, M = C[P], and
N = C[Q).

(ii) The standard computation function is an extension of the standard reduction

function with computation relations:
*L’scs = b—r5cs UFT U B Uor U Dr.

By adding in the computation after extending the notion of reduction cs to a stan-
dard reduction function, we ensure that root-level computation steps cannot cause

inconsistencies.

The step from standard reduction and computation functions to standard deriva-
tion sequences—CS-SRS-s and CS-5CS-s—is a straightforward generalization of the
respective step in the A,-calculus: see Definition 5.8. Care is taken to permit com-
putations only at the root of a term. The Standardization Theorem is stated for

the calculus and the sub-calculus:
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Definition 5.8: Standard reduction and computation sequences

Standard reduction sequences, abbreviated CS-SRS-s, are defined by:
1. all constants and non-assignable variables are CS-SRS-s;

2. if Mi,..., My, Ni,...,Np, and V4,...,V; are CS-SRS-s, then

Az My, ..., A& M,

MNi,...,MuNy,. .., MyNy,

FM,... ,FMpy,

cx.My,...,cx. M, and UW.MI, e ,anI.Ml, ... ,JVJ-I.J\/Im

D Miz,...,D Mpz and D MiV{,..., D MuV{,...,D MnV]

are CS-SRS-s;
3. if M'_-)SCS Ml and Ml’. .. ,Mm, then M, M17 ... ’Mm is a CS’SRS-

All standard reduction sequences are also standard computation sequences, CS-
scs-s, and if M ——ss Mj and My, ..., My is a CS-scs, then M, M, ..., M is
a CS5-scs.

Theorem 5.9 (Standardization).

(i) M——*,. N if and only if there is a CS-sRS L1,...,L, with M = Ly and
n=N;
(i) M l—D—>:cs N if and only if there is a CS-scs Li,...,L, with M = L; and

L,=N.

The proof of the theorem is presented in the subsection.

With the Consistency and Standardization Theorems in place, we are on firm
ground. Consistency gives us the security that equations in the calculus make sense,
Standardization provides an effective procedure for finding values of programs. We
are now ready to investigate the correspondence between the A.-CS-calculus and

Idealized Scheme.
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5.2.1. Proofs for the Consistency and Standardization Theorems

The proofs of the Consistency and Standardization Theorems follow the same pat-
tern. For both theorems, the validity of the statement about the sub-calculus implies
the claim about the entire \,-CS-calculus. Furthermore, traditional techniques are
sufficient in both cases for proving the statements on the sub-calculus. The presen-
tation closely follows Barendregt’s [5:59-63] and Plotkin’s [47:136-142] expositions.
In many cases we simply state the necessary lemmas and show some prototypical

proof steps. It should be no problem to fill in the remaining gaps.
We first treat the Consistency Theorem:
Theorem 5.5 (Consistency).
(i) The notion of reduction cs is Church-Rosser.
(ii) The cs-computation satisfies the diamond property.
Proof. Let us assume the correctness of point (i). Then we need to show that

whenever M s Li for 1 = 1,2 and L1 Z 145 L2, there exists a term N such that

L; bes N. We proceed by a case analysis on M b¢s Li:
1. M = (FP)v P(Az.z) = L.
The only possibility for a truly distinct reduction is M —¢s(F P;) = Lo where
P—»,.sPy. This immediately implies that
(FR) b P(Az.x).
Since we also have
P(z.2)—»Py(Az.2),
we can take N = Py(\z.x).
2. M = (Azo.P)V b Plz, := V'] = Ly where [is fresh.

First, we must consider the case

M = (Aze.P)V b Plzg := V™|
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where m # [. At this point, we can exploit the knowledge that computations

can only be applied to an entire program. Hence, it follows that the label sets
of

Pz := V™ and P[z, := V']
are isomorphic, i.e.,

L1 =iap Lo.

Since we identify label-equal programs, this case degenerates to

Ly =10 Lo =i N.

Next, we must analyze two subcases because M contains two subterms:

a) Ly = (Aze.P2)V because P—»sP.
But then

(Azo.P)V b Pylz, = V']

and the Substitution Theorem (5.4) induces
Plz, := VI]——»CSPQ[CL'O— = VI].

The label [ can hereby be reused because a reduction cannot introduce new
labels and therefore [ is still available for the computation step. Hence,
N = Py, := V']

b) Ly = (Azs.P)Vz because V—csVa.
This second alternative requires a variant of the Substitution Theorem,

namely, that
Plag i= U'l—es Plzg 1= V] if U—¢s V.

Given this, the rest is the same as in subcase a).
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3. M = (oW'.P)VobPle:=V]=1L.
There are again two relevant cases: a reduction of M either transforms P or V.
The claim follows from calculations like the preceding ones provided that we
can prove the following two properties of labeled-value substitution:
Plo' = U']—>»csPlo := V'] if U—sV,

Plo' i= V! |—»e: Qo := V'] if P—»,Q.

4. M= (D MV)> M(V[e :=V']) = L.

For this case we need the property
Ule' := U'l—»es Vo' := V] if U—es V.

Otherwise, it does not add any new problems.

5 M—».sL.
There are two subcases possible: the second step can be a computation or
a reduction. In the former case, we have a situation that is symmetric to a
previous one; in the latter, M —¢;L3, and the consequence holds because of

the assumed Church-Rosser property for cs.

In order to complete the proof, we must still show the following four properties

of substitution and labeled-value substitution:
Plzs 1= U'|—»¢s Pl := v
Plo := U']—»,Plo' := V']
Pl := V|—»eQe' := V]
Ule' := Ul]—»esV]e' := V']
if P—¢sQ and U—.sV. The first two claims follow from straightforward induc-

tions on the structure of P. The third uses a structural induction on the reduction

from P to @ and is based on the commutativity of substitution and labeled-value



126
substitution (see Theorem 5.4). Finally, the proof of the fourth claim is a simple

combination of the second and third statement. O

With the preceding proof we have reduced the consistency problem of the A,-
CS-calculus to the consistency problem of the sub-calculus, :.e., the Church-Rosser
property of cs. The proof of this is an application of Martin-Lof’s method for show-
ing the corresponding result for 3. The first step is to define a version of the parallel
reduction relation —p» for c¢s. For the proof of the Standardization Theorem we
also define a notion of the size of a parallel reduction: see Definition 5.10. It follows

from this definition that a value can only parallel reduce to another value. The

relationship between —».s and — is shown by the following lemma:

Lemma 5.11. ¢s C — s C—> C —»s.

Next we show that unlike the cs-reductions, the parallel reduction relation trans-
forms the expression M|z := N|] into M'[z := N'] in one step if M and N parallel
reduce to M’ and N’ in one step, respectively. That is, two ,-contractums reduce
to each other if the subterms do. Furthermore, following Plotkin [47], we simul-
taneously prove a statement that is needed for the proof of the Standardization

Theorem, namely, that this new reduction is shorter than the one from (Az.M)N

to M'[z := N

Lemma 5.12. Suppose M —» M', N —» N’ , and N is a value. Then the

following holds:
Mz := N] —» M'[z := N'] and spf{p:=N|——sM'[z:=N"] < S(Az.M)N M '[z:=N"]-

Proof. The proof is a structural induction on the reduction M —» M’. For
each possible group in Definition 5.10 of parallel reduction steps, we explain the

major proof steps with a typical example. In order to shorten the calculations for
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Definition 5.10: The parallel reduction

The parallel reduction over Acs is denoted by —» and is defined as follows,
where SM ——»N OF just s is the function which measures the size of the derivation
M —>» N and n(z, M) is the number of free occurrences of x in M:

1. M —» M, s=0

2.1t M — M,, N — N’, U —» U,’ VvV —_ V” and W —» w!
then

Az M)V —» M’z :=V'], s = sy—sm + n(z, M")sy —unr 41
(FM)N —» F(A&.M'(Af.6(fN"))), s = sm—sttr + SN—snr + 1
V(FM) —» FOs.M (Av.k(V'v))), s = SM oM’ + SV + 1

(Azg .M)V)N —» ()\a:a.M'N')V', 8 = SM——»M' + SNosN' + SV v’ + 1
U(()\:CG-.M)V) — ()\:EO-.U'M,)V', 8 = SM—sM' + SU—=U' + SV V" +1
((cxz. M)V)N —» (a:c.M'N')V', 8 = SM—wM’ + SNwN' + SV w7 + 1
U((ox.M)V) —p» (02U MWV, s = spr——mtr + sU—w07 + 5V v + 1

(eW' MYV)N —» (oW .M'N"V’,
8 = SW—sW’' + SM—sM’ + SNsN + SVt + 1
U((eW! . MYV) —» (eW'U' MV,
8 = SW—nW’ + SM—quM’ + SUU" + SV’ + 1
(D M2z)N —» (D (Ae.M'zN")z), s = spg—wrtr + sn—wnr + 1
V(D Mz) —» (D Az V' (M'2))x), s = sM——wptr + sv—v7 + 1
(D MWHN —» (D (Az.M'zN"YW'),
8 = SWsW' + SM—mM' + SN—mN' + 1
V(D MW —» (D Qz.V/(M'2))W"),

8 = SWosW' + SM—omM' + SV + 1
3. if M —>» M',N —» N’ and V —» V' then

Ae.M —» e M (FM) —» (FM'),
(oz.M) —» (cz.M'), (D Mz) —» (D M'z),
where s = SM M’
(VI M) —» (cV'. M), (D MV') —» (D M'V"),
where s = sy w7 + SM M’

MN —» M'N', s = SM——wM’ + SN——»N'
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the second claim, we introduce two abbreviations:
SL = SM[z:=N}4+M'[z:=N"];
SR = S(Az.M)N 4+M'[z:=N"}-

Furthermore, we use the fact that
SR = Sp b’ + 1z, M )sy —uns + 1
and that therefore, the second claim is equivalent to
s, < sM—wnr + 1z, ]\/I,)SNI—»N’-

1. M —» M = M’'. The result follows from an induction on the structure of M.

2. A typical case from the second group in Definition 5.10 is:
M = V(FP) —» F(x.P'(Owk(V'v))) =M,

based on V. —p» V' and P —» P'.
The first claim follows from:
Mz := N] = (V(FP))[z := N]
= V[z := N])(FP[z := N))
—» F(A&. Pz = N'|(Qv.c(V'[z := N']v)))
by inductive hypothesis for
Pz := N] —» P'[z := N'] and
V[z := N] —» V'[z := N']
= F(A&. P (Qv.k(V'v)))[z := N'|

=M'[z := N'].
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The second claim is verified by:

SL = SY[x=N]—V'[z:=N"] T SP[x:=N]D"[z:=N"]
< sy—wyr + n(z, V') sN st + $P——srr + n(z, P sy N
by inductive hypothesis for
8P[a:=N]—sD'[z:=N"] and
SV [z:= N0V "[z:=N"]
— [SV_I_,,,VI + .SPT.»P'] + [n(z, P’) + n(zx, V')]SNT_,,N,
< SM—wM’ t+ n(z, ]\4’)31\’—1—»1\” +1

= SR.

3. For the third group we pick the case
M=PQ —» PQ =M,

where P —» P and Q —» Q'.

But then by inductive hypothesis it follows that
Plz := N] —» P'[z:= N']and Q[z := N] —» Q'[z := N'J,

and

oK) S 3Per + (2 P Yoo
$Q[z:=N]7=Q'[x:=N"] S SQ Q' + n(:c, QI)SNT-»N’-

From this we immediately get
Mlz := N] = P[z := N]Q[z := N]
—» P'[z := N'|Q'[x := N']

=M'[z :== N']
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and
SL = SP[x:=N]—P"[z:=N"] + SQe:=N]7—Q'[z:=N"]
< $p—wpr + 1(2, P)SN a4 5Qnqr + 122, Q)N —an
< [SP_F""P' + SQT""’Q'] + [n(‘ra P’) + Tl(:l!, Q,)]‘SNT»NI + 1
= SM =M’ + ’I’L(.’E, AJ’)SN-I—*N' = SR. O
For our purposes, Lemma 5.12 requires a simple extension showing that the two
contractums of F- and D-redexes also reduce to each other in one —» -step if the

respective subterms do. As before, we add secondary claims for the proof of the

Standardization Theorem:

Lemma 5.12 (part II). Suppose M —» M', N —» N',V —p» V', and

W —» W'. Then the following statements hold:
(i) FOrMOFR(FN)) —r FOrMAfR(FN'))

SFOARMOSK(fN))THFORM A A(fNT)) < S(FM)N—FAs.M'(Af.R(FN)))

(i) FOrMAv.k(Vv))) —» F(Ae.M'(Mv.k(V'v)))

SFARM(Av.k(Ve)))7=F (A M'(Av.x(V'))) < SV(FM)r—F(Ax.M'(Av.c(V'e)))

(iii) (D (A\z.MaN)z) —>» (D (Aa.M'zN")z)

$(D (Ax.MzN)z)4(D (Az.M'zN'")z) < $D Mz)N——D (Az.M'zN")x)

(iv) (D (A2.V(Mz))z) —» (D (Az.V'(M'z))x)

S(D (Az.V(Mz))x)+D (M. V'(M'z))x) < SV(D Mz)——(D (Az.V'(M'z))x)

(v) (P Qw.MwN)YW' —p» (D (Aw.M'wN)W'")

S(D (Aw.MuN)YW)—(DP (Aw.M'wN)WH) < $(D MW)N—+(D Aw.MwN )W)

(vi) (D Qw.V(Mw)W') —p» (D (M. V' (M'w))W")
(D . V(Mw)WH—=(D Aw.V' (M)W < SV(D MWD (Aw.V/(Mw))W")

Proof. We show (i) with two straightforward calculations:
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N —» N’ hence A.(k(fN)) — M.(s(fN')),
M —» M’ hence M(Af.(k(fN))) —» M'(Af(x(fN'))),
and Ax.(M(Af.(k(fN)))) — As.(M'(Af.(=(fN'))));
and therefore F(Ax. M(Af.c(fN))) —» F(Ae.M'(Af.6(fN'))).
Similarly,

SFAkMALR(FN))) »F M (A K(INT)) =SM—»M’ + SN =N’
<SM—»M' + SN—N' + 1
=S(FM)N—F(Ae.M'(Af.k(fN")))

The proofs for the other statements follow the same pattern. [
Remark. Similar statements also hold for Ar-, Ag-, o, and og-contractums, but
are omitted because of their simplicity. End

Everything is now in place to state and prove the diamond lemma for the parallel

reduction:

Lemma 5.13. The relation — satisfies the diamond property, i.e., if M —»

L; then there exists an N such that L; —p» N for: =1,2.

1

Proof. The proof is an induction on the structure of the reduction M — L1.
Again, we discuss three prototypical cases:
1. M —» M = Ly. Pick N = Ls.
2. M =U((cz.P)V) —» (cz.U1 )V = L.
Since U is a value, there are only two possible subcases for the reduction from
M to La:
a) Ly = Uy((0x.Py)Va) because U —» Uz, P —p» P, and V. —p» 15
An invocation of the inductive hypothesis yields terms Us, V3, and P such
that U; —» Us, V; —» V3, and P, —» P; for ¢ = 1,2. The claim

then follows from setting N = (ox.U3 P3)V3.
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b) Ly = (cz.Ua P2)V3 because U —» U, P —» B, and V —» V.
As in the preceding case, the term N = (ox.U3 P3)V3 constitutes the missing
piece and can be derived with the help of the inductive hypothesis.
Other cases in this group make also use of Lemma 5.12.
3. M = (D Pz) —» (D Piz) = Ly because P —» Pp.
But then the only alternative for Lo is (D Pyz) where P — P,. Again, by
inductive hypothesis there must be a P such that P, —» P3 fori = 1,2 and
consequently N = (D P3zx). O

From this lemma, the Church-Rosser property of cs follows:

Corollary 5.14. The notion of reduction cs is Church-Rosser.

Proof. Since — s is the transitive closure of cs, it is also the transitive closure
of — . As a result, the reduction —»¢s inherits the diamond property from the
parallel reduction relation. O

With the Church-Rosser theorem in place, we can tackle the Standardization

Theorem:

Theorem 5.9 (Standardization).

(i) M——?* N if and only if there is a CS-SRS Li,...,L, with M = L; and

SCs

L, = N;
(i) M +=,,, N if and only if there is a CS-scs Li,...,Ln with M = L and
L,=N

Proof. For both parts, the direction from right to left is trivial. The other direc-

tions need some elaboration:
(i) For the standardization property of the sub-calculus, we follow Plotkin’s plan for
the corresponding theorem about the A, -calculus. First, the sequence of ——;-

steps is replaced by a sequence of steps using the parallel reduction —p» . This
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follows from Lemma 5.11. Then we iteratively transform the parallel reduction

sequence into a CS-SRS. The basis for this step is developed in Lemma 5.16.

Assuming that the proof of part (i) can be completed, we can prove (i1) with
an induction on the number of computation steps in the sequence from M to N.
If there are no computation steps, we can use (1) for forming a CS-SRS from M
to N. Otherwise, there is at least one computation step and we must have the
following situation:

*
Li—>¢sLin > Lint1 D.s L,.

Again by (i), we can form a CS-sRS Ki,..., K for the reduction Li—.sLm
where Ky = L and K; = L,,. Since L, is a computational redex, there
is a maximal prefix of this CS-SRS whose terms are related via the standard
reduction function, i.e., for some j, 1 < j < [ there is a computational redex
K of the same kind as Lp such that

Li—*

*
scs I{j'——'—))(:sLm > Lm+1 DCS Ln

and it is not the case that Kj—sc Ijy1. At this point, we can employ the
proof of the Consistency Theorem, part (ii) and interchange the computation

step with the reduction sequence:

e *
Ll'_.——):CS I&] B> P—_»'CSLm—l—l DCS Ln’

for some term P. But this can be recast as

+
Lll—b—)

P* L,

SCs 2]

and, because there is one less computation step in the sequence from P to Ln, an

application of the inductive hypothesis produces a CS-scs for this second half
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of the reduction. Together with the first half, this yields the desired CS-scs

from Mto N. O

For completeness sake, we include a precise formulation of the prefix-property

for CS-SRS-s:

Lemma 5.15. If N, ..., Ni is a CS-SRS where Ni is a computational redex, then
there exists a j, 1 < j < k such that for all 1,1 < i < j, Nj—scs Ni+1, and for

all i, j <1 < k, Nj—¢sNi;1 and it is not the case that Ni—>scs Nit1.

Proof. By case analysis on N} and induction on k.0
We can now turn to the completion of part (1) of the Standardization Theorem.
What we must prove is that sequences of parallel reductions can be transformed

into standard reduction sequences:

Lemma 5.16. If M —> Ni and Ni,...,N;j is a CS-SRS then there exists a

CS-sms Ly,...,L, with M = Ly and L, = Nj.

Proof. The proof is a lexicographic induction on j, on the size of the proof M —»
Ni, and on the structure of M. We proceed by case analysis on the last step in

M —» Nj and treat three prototypical examples.

1. For the second possible group of parallel reductions we treat the case:
M = (D PVHQ —» (D (Ae.PizQ)V{) = M

where P —» P, Q —» Q1,andV —» V1. But then, M can immediately
be standard reduced to (D (Az.PzQ)V'). Furthermore, from Lemma 5.12 we
know that

(P Mz PzQ)V') —» (P (A.PieQ)V})
by a derivation that is shorter than the one for M —p Ni. Therefore, by
inductive hypothesis, we can find a CS-SRS from (D (Az.Pra@1)V]) to N; from

which we build the required CS-SRS from M to Nj.
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2. The first half of the third group in Definition 5.10 is represented by
M = (0z.P) —» (o02.P) = Ny,

where P —» P;. This implies that all N; = (oz.P;). Thus, it is natural to
consider the sequence

P—» P,P,..., P

Since P is a proper subterm of M, the inductive hypothesis applies and there
is a CS-SRS from P to P;. Building a o-capability from every element in this

sequence with oz. ... yields the required reduction sequence.

3. The third example is taken from the second half of the third group:
M = PQ —» PIQ1 = Ny,

where P —» P and Q —» Q1. In this case, we must distinguish the two

alternatives of forming the sequence Np,... N;:

a) Ni,..., Njisthe result of merging two sequences Pi,..., Pr and Q1,..., Qi
Definition 5.8 (2). As in the preceding case, the inductive hypothesis im-
mediately produces two CS-SRS-s P, ..., P and @, ..., Q and merging the
two sequences results in a CS-SRS from M to N.

b) Ni,...,Nj is the extension of a sequence Np, ..., N;j where Ni—scs Noy:

Definition 5.8 (3). Now, suppose we can show that
M —> Nl —scs NQ

commutes into

+ -
Mw+—], K— N

for some K. Then the result immediately follows from an application of the

inductive hypothesis. O
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The last lemma in this subsection shows that parallel reduction steps and stan-

dard reduction steps indeed commute as required by the preceding lemma:
Lemma 5.17. If

M - Li—5¢5 N

then there exists an Lo such that

M —7 Ly —p» N.

SCs

Proof. An extension of Plotkin’s proof of his Lemma 8 [47:140] goes through
with almost no change. It is a lexicographic induction on the size of the reduction
M — Ly and the size of M and is divided according to the last parallel reduction

step. The last case deserves some explanation.

Assume that M = PQ —» PiQ1 = Lj because P —» P, Q —>» Q1
and Li——gs.s N. We proceed by case analysis on the standard reduction step and

consider a typical subcase:
L = (fP{)QI'_‘"scs :F(/\":P{(/\f’{(le))) = N.
But, given that P —» F P/, we claim that there is an R such that

P—* (FR) —» FP.

8CS

With this, we can derive
PQ—%, (FRYQ—ses FOARRAf.6(fQ)) —p FOARPI(Af-A(fQ1)));

and hence, Ly = F(A&.R(Af.6(fQ)))-

The preceding analysis shows that the claim of the lemma reduces to the fol-

lowing two statements:
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(i) if M —» N where M is an application and N is a A-abstraction or a com-

putational redex, then there is a A-abstraction or computational redex L such

that M—* _L

scs > N
(ii) if an application M parallel reduces to a constant e or a variable z, then M
standard reduces to a and z, respectively.

Both statements can be verified with a straightforward induction on the size of the

parallel reduction. O

5.3. Correspondence

As discussed in Chapter 2, the correctness proof of a calculus requires answers to

two questions:

1. Do the machine and the calculus compute the same answer for a program?
and

2. Does equality in the calculus imply operational equality on the machine?
Since we have generalized the concept of a calculus, we cannot expect that the
respective theorems hold without modification. Our task in this section is to re-

formulate the relationships and to reassess the impact of the modifications on the

reasoning system.

For the functional subset of Idealized Scheme, the CEK-evaluation function and
the standard reduction function produce the same value for a given program. To
prove the equivalent result for the A,-CS-calculus, we must show that the stan-
dard computation function satisfies the C-transition rules. The proof statement is
familiar from the simulation lemmas in the preceding chapter:

+

if M+ N then ®(M) ——, . B(N).

This obviously holds for 8,- and §-contractions. Furthermore, the design of the

reduction and computation relations for A-, o-, and D-applications is so closely
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oriented at the respective C-rules that a proof of the above correspondence is prac-
tically built into the definition. Only the relations for F-applications cause some

problems.

An F-application in the C-system applies its argument to Az.C[z] where C[ ]is
the context of the application. In the calculus, however, the continuation function is
gradually constructed from the context pieces. If FM is embedded in C[[ ]N] and
K represents C[ ], M is eventually applied to Af.K(fN), which is equivalent to
Af.K([ ]N) filled with f. Similarly, an F-application that sits to the left of a value
V in some context C[ ] represents the continuation as the function Av.JK(Vv). In
short, an F-application in the calculus applies its argument to a functional encoding
of the context that is formed according to the following algorithm:

[FP]. = Ae.x,
[CI(FP)M]], = M[C[FPI(fM),
[CIV(FP)]. = Av.[C[FP]].(Vv).
Given this characterization, we can formally state how the calculus computes im-

perative actions:

Proposition 5.18. Let C| ] be an evaluation context over Acs. Then the follow-

ing relationships hold:

Cl(D MV o, CM(VIS' = V),
Cl(Aze.M)V] '_L):_cs C[M][z := V]|, where l is fresh,
+

CFM)) —,, M[C[FP]],

SCs

+
Scs

CloU' MWV] ., C[M][e = V1],

Proof. The claims follow from an induction on the structure of evaluation contexts.

O

The major consequence of this proposition is that a naive version of the simu-

lation theorem fails. Whereas in the \,-CS-calculus continuations are constructed
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to simulate the behavior of contexts, continuations in the rewriting system are con-
texts. Thus, when a continuation is to be captured after another one is invoked,
the transition in the machine and the one via the standard computation function
diverge: the rewriting system simply captures the current context, the standard
computation sequence encodes the term that simulates the former continuation for

a second time.

Let us illustrate the nature of the problem with an example. Suppose the

continuation Af.D[fV] is invoked on the value U in the context C[ ]:!
c
C[(MNf.D[fV)U] — C[D[UV]].

Furthermore, assume that the application UV evaluates to E[F M] after some f3,-
steps. Then the C-transition reaches the term M(Af.C[D[E[f]]]). According to
Proposition 5.18, the corresponding reduction sequence in the A,-CS-calculus begins

with:
CID(FMVILU] = CIMIDIFMIL(fV)U] —o, CDIFPILU V).
The next few §,-steps are correctly simulated by the standard computation function:
CIIDIFPL(U V)] =, C[DIFPII.E[FM]).

Now, this last term also constructs a continuation—just like C[D[E[F M]]]—except

that the continuation encodes the term [D[F P]]. instead of the context D[ :
CIDIFPEIFM]| —e; MICUDIFP]EIFM]]..

But clearly, [C[D[E[F P]]]]. is not equal to [C[[D[F P]].E[FM]]]. and therefore

the two evaluation procedures proceed in different directions.

L por simplicity, we assume that none of the involved terms contains assignable variables and that the
terms exist in both languages.
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The best we can hope for is that the standard computation simulation of the
C-transition function preserves a fixed relation between contexts-as-continuations
and terms-as-continuations. From the above proposition and the example one may
suspect that a continuation like Af.C[D[f]] is related to the terms [C[D[F PJ}],
and [[C[F P]],D|F P]].. However, the situation in our example could recur many
times. Instead of having two contexts composing a new one, we would have several
of them: some representing former continuations, others newly generated evaluation
contexts. A formal definition of the relationship must account for all possible finite
decompositions of a given context into smaller contexts and for recursive instances
of the above example. This leads to the formalization of the relation &2, in Def-
inition 5.19, which connects continuation representations in Ayew to continuation

representations in Acg.

Definition 5.19: The correspondence of continuations in Are, and Acg

The relation /¢, compares continuations in Arey to those in Acs:
Az.Clz] =2, [CII5CE[. .. K, _ChIFP].. ]]].

for all finite sequences C1[ |,...,Ch[ | of evaluation contexts such that
—n > 1,

— C[ | =Ci[Ca[... Cul ]...])

— andfor all : > 1, Coi—1[ ] & Chi_4[ ] and Az.Coilz] =) Ky;.

for arbitrary terms, we add

Ty Rp TN, Ar.P R \z.P', PQ =, P'Q', FP =, FP,
ox.P =) oz.P’, oVi.p ~p O’V,I.P’, s Rp D lzs, V! ~p, D IV'I,
if P, P, Q) Q', and V =, V/;

and finally, we extend the relation to contexts by setting [ ] ~p [ |-
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After formalizing the correspondence of continuation representations, we can
finally state a simulation theorem that correctly connects the C-evaluation function

with the standard computation function:

Theorem 5.20 (Simulation). For all programs M € Axe,

evale (M) =V iff ®(M) "‘E"ch U for some U such that V =, U.

The proof of this theorem is rather technical and may be found in the subsection.
Since the &y -relation relates a constant only to itself, the theorem immediately

implies

Corollary 5.21. For all programs M € Ar, and a € BConst,

evalc(M) = a iff O(M) vL»:CS a.

A consequence of the corollary is the correctness of the mathematical program
interpretation. Recall that for a given arity n, the machine and the calculus each
assign a function to a program M: M3, and I};, respectively. Their definitions

are:

My = {{a1,...,an, c) | evale(Mai ...an) = c}
IIILII = {<a17' . -,an,C) | )\L"CS > F‘Mcu oL Qp = c},
where the g;’s and ¢ stand for basic constants. The following corollary shows that

the two functional interpretations always agree:

Corollary 5.22. Foralln > 0, I3 = Mg(M).

Proof. The two function definitions are only concerned with basic, observable
constants. Therefore, the corollary is a simple consequence of Corollary 5.21, which
says that the two systems—rewriting system and calculus—produce the same basic

constants. O



' 142

Another, more important implication of the Simulation Theorem and the asso-
ciated corollary is that continuations in the C-transition system and a &p-related
function in Acg are behaviorally equivalent. No matter which one occurs in a pro-
gram, the program loops forever, gets stuck, or terminates; if the result is a basic
constant, this constant is uniquely determined. Because of this behavioral equiv-
alence, the definition of an operational equivalence relation for Idealized Scheme
is independent of the particular evaluation mechanism. In order to express this
relationship, we first restate the definition of operational equivalence in a generic

form:

Definition 5.23. M, N € L are operationally equivalent, M =~ N, if for any
arbitrary context C[ ] over L such that C[M] and C[N] are closed, the evaluation
is undefined for both, or it is defined for both and if one of the programs yields a

basic constant, then the value of the other is the same basic constant.

The two instantiations of this definition that are of interest to us are ~¢ ey and
~ccs. The first is based on Arey and evalg, the second on Ags and the standard
computation function. Since both subsume Idealized Scheme, we automatically
have an operational equivalence for it. We must only show that the two definitions

are equivalent:
Proposition 5.24. M ~¢ . N iff (M) ~ccs D(N).

Proof. From the Simulation Theorem and its corollary we know that—provided
termination—a program M and its injected counterpart ®(M) produce ~p-related
values. Since /2, relates a basic constant to itself, the result is immediate. O
Proposition 5.24 is particularly important for the second half of our investiga-
tions into the correctness of the A,-CS-calculus. The general objective of this phase
is to establish a link between the calculi and the operational equivalence relation.

However, unlike for functional languages, the calculus and the evaluation function
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are defined over two different languages. Without the above proposition, this could
cause some technical difficulties, but the proposition implies that comparisons can
be based on ~¢ cs. Any equation that is provable for A¢g-programs also holds for
the source programs in Arey (or Ax, if they do not contain labels). Because of this,
we henceforth use ~, omitting the qualification.

The most important property of an operational equivalence relation is that it is
a fully substitutional theory. In other words, it satisfies Leibnitz’s Law that equals

can be substituted for equals:
M ~¢ N = C[M] ~¢ C[N].

For reasoning about programs, this is desirable: to be reusable, verifications and
transformations of program pieces should be independent of the context. Since this
latter condition holds for the reduction-based sub-calculus, we can expect that cs-
equality implies operational equality. Because of the computation relations, how-
ever, the context-insensitivity condition rules out that operational equality sub-

sumes computational equality. Our first result is thus of mixed nature:

Theorem 5.25.

(i) f \,-CS+M = N, then M ~¢ N. The converse is false.

(ii) Ae-CS® FM = N does not imply M ~¢ N, nor vice versa.

Proof. The proof of (i) and the right-to-left direction of (ii) are adaptations and

generalizations of Plokin’s corresponding theorem [47]: see the discussion following

Theorem 2.14. For the left-to-right direction of (ii), consider proof steps like
(FAd.0) =5 0

in M Z.s N. They are specifically restricted to the root of a term and thus cannot
be built into a congruence relation. The term (FAd.0) is clearly different from 0 in

all contexts except the empty one. O
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According to this theorem, equational reasoning in the calculus is admissible
as long as the equations do not include computations. But these relations are pre-
cisely the basis for the simulation of imperative effects and an equational theory
for these effects is our central goal. Consequently, we must try to exploit computa-
tional equality and computations in a different way so that we can establish valid

conclusions about operational equalities.

As pointed out, the major discrepancy between computational and operational
equality is the context-sensitivity of the former: computation steps are only appli-
cable in the empty context. On the other hand, computation steps are required
because reductions alone can only perform the first part of a C-transition step.
Together, the two classes of term relations form a program relation which proves

equations of the form:

C[M] = K.

In these equations, the context-sensitivity is represented by the evaluation context
C[ ]. This context appears in a possibly altered form in K. Hence, it is natural
to wonder whether a universal quantification over this evaluation context implies a

context-insensitive equivalence for M and N, i.e., whether
C[M] Zcs C[N]

implies
M ~c N.

Unfortunately, the answer is no.

Although the suggested condition is quite strong, it is not sufficient. Let us
first illustrate some of its benefits. The condition clearly rules out arbitrary o-

contractions. If C[ ] contains a label I, a redex of the form (cU'.M)V clearly
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interferes with the context. In the derivation
Cl(oU' MV Zes CIM][o' := V7],

the replacement algorithm on [ affects all occurrences of I-labeled values in C[ .
Similarly, but in a more subtle manner, the condition forbids arbitrary B,-type

contractions of the form

(A\z. M)V = M[z := V'].

The reason is again that some C[ ] may already contain the label [ in which case

is not fresh.

Warning, part II. These arguments should recall that programs, but not terms

are considered modulo =i. End

The failure of the current proposal is caused by admitting unrestricted D-
redexes. Delabeling transitions never depend on the particular context, but on
the evaluation-ness of the context. Arbitrary D-contractions may interfere with
pending assignments. The crucial part of this observation is that bad timing of a
‘D-contraction collides with the specific value parts of labeled \values. This problem
can be avoided, if we prohibit a theorem of the above form to depend on labeled

values. We call such a theorem safe and formalize the concept in

Definition 5.26. A theorem \,-CS"” =M = N is safe if for an arbitrary evaluation

context C| ] and some arbitrary values Vi,...,Vy
Ae-CS® FC[M][o" := V"], .. [o" := V"] = C[N][e" := Wi"] ... [e" := Vil

where Lab(M) U Lab(N) = {li,...,ln }.

The adequacy of the safety condition is encapsulated in the central theorem of

our work:
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Theorem 5.27 (Safety). If \,-CS® WM = N is safe, then M ~c N.

Proof. Let D[ | be an arbitrary context and assume that D[M] evaluates to a

basic constant a:

Ae-CS® FD[M] ., a.

Scs

If M plays an active role in this derivation, a closed and possibly side-effected

version M’ must occur in an evaluation context C[ |:

A-CS ¥ FD[M] ' CIM'] =, a.

SCs

Without loss of generality, we can say that M' = M[z := Ul[y := vm[ef = W)
where z and y are the free variables of M, and [ is the affected label that occurs in

M. From the principal assumption that there is a safe derivation for
A-CS® M = N,

it follows that

A-CS® FC[M'] = C[N']
where N’ = N[z := U][y := V™][o' := W']. The Safety Condition guarantees that
control- and side-effects cannot interfere with the proof. The Substitution Theorem
provides for orthogonality of variable substitution: its antecedent is satisfied because

U and V were a part of the program all along.

Given this, we can replace the above derivation by
A-CS® FD[M] = C[N'] = C[M'] =, a.

This can be done for every occurrence of M in an evaluation context in the rest of the

standard computation sequence and therefore the entire derivation is independent
of M:
AU“CS i« |_D[N] = a.
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By the Consistency, the Standardization Theorem, and the corollary to the Simu-

lation Theorem, it follows that

A-CS® FDIN] —oe . a

8

as desired. O

Theorem 5.27 provides the basis for a useful equational theory about imperative

effects. To this end, we define the set of safe theorems
Thit!® = {M = N | A,-CS” FM = N and M = N is safe}
and form its compatible closure
The*fe = {C[M] = C[N] | M = N € Thi*/* and C[ | is arbitrary}.

This theory can now be added to the reduction calculus and we obtain a quasi-

calculus of safe-theorems. Theoremhood in this extended calculus is denoted by
Ae-CS U T = M = N;
we also use the abbreviations

M =¢ssafe N and \-CS**F M = N

This level of the calculus comprises all lower levels, i.e., v- and cs-equality, as
well as imperative derivations whose effect is invisible to an outside observer. This
and other facts about the extended calculus are gathered in a corollary to the above

theorem:

Corollary 5.28.

(i) Ao b M = N implies \,-CS =M = N implies M\ -CS*F M = N;
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(ii) A\y-CS*¥¢ =M = N implies M ~¢ N;
(iii) ~¢ is the largest, consistent extension of =cs safe and =cs that respects equality

on basic constants, and that satisfies
— M ~¢ N implies C[M] ~¢ C[N],
— M ~¢ N implies C[M] has a value iff C[N] has a value for all (closing)

program contexts C[ .

This last corollary is a good starting point for a summary of our development.
Altogether we have defined 5 new calculus-related comparison relations. On the
static side, there are the extended a-congruence relation: =, on terms and the
label-equivalence: =i, on programs. On the dynamic side, we have the reduction-
based cs-equality: =.s on terms, computational cs-equality: Z.s on programs, and
the quasi-calculus of safe cs-equality, all of which are conservative extensions of the

A, -calculus.

The mutual relationship of the term relations is simple: a-congruence, V-
equality, cs-equality, and safe cs-equality form an ascending chain of equivalence
relations. Similarly, a-equivalence, =jqp-equivalence, and computational cs-equality
form a chain of program comparisons. However, whereas the former imply opera-
tional equivalence on the CESK-machine, the latter do not. The purpose of program
relations is to compare labeled programs and to determine the values of programs.
It is therefore natural to call the system of term relations the reasoning part of the

calculus and the system of computation relations the evaluation part.

The disappointing part of our work is that, unlike in the pure framework, the
evaluation part of the calculus is not equal to the reasoning part and vice versa. That
is, we need two different systems for manipulating imperative programs, depending
on whether we want to evaluate programs or compare expressions. This is the

major difference between functional and state-of-the-art imperative programming
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languages. Although this is disappointing, we shall show in the next chapter that
it is possible to live with the available tools: reasoning about imperative programs
can proceed in almost the same algebraic manner that we are used to from the

functional world.

5.8.1. Proof for the Simulation Theorem

Due to the mismatch between continuation representations in the C-rewriting sys-
tem and the \,-CS-calculus, the proof of the Simulation Theorem requires two parts.
The first part shows that the standard computation function correctly simulates sin-
gle C-transitions steps on related terms as long as the program does not invoke a
continuation. This part directly follows from Proposition 5.18. In the second part,
we prove that the calculus also handles the invocation of continuations in the right
way. More precisely, when the C-rewriting system evaluates a continuation invoca-
tion, then sooner or later the standard computation function transforms a related
continuation invocation into a related term. Together the two parts suffice to prove

that related programs have related results.

The following first lemma is a partial simulation result for the non-continuation
related sub-calculus. Since the result is later applied in situations where the respec-
tive evaluation contexts are not related, we do not include any assumptions about
the evaluation contexts. If we do know that the evaluation contexts are related as
continuation representations, we can also show that the grabbing of continuations

yields related terms:

Lemma 5.29. Let C[ ] and C'[ ] be arbitrary evaluation contexts over Arew and
Acs, respectively. Then, for M =, M' and V =2, V', the following relationships
hold:
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(i) if C[(D MV ¥ CIMV (o' := V'] then

(D MV 2l MV e =V

(ii) if C[(Ae.M)V] v C[M][z := V]| then

>+

C'(Aa. MWV =y C'[M'[e = V']];

(iii) if C[(\zo.M)V] v C[M[z := V'] then

>+

C'[(Oze MWV ! O M [z = V"]);

S

(iv) if C[(eU' . M)V] v C[M][e! := V'] then

[

C'l(oU" MWV oy, O [ o= V7

and, furthermore, since M &, M' and V =2, V', we also have
Mz := V] ~p M'[z := V],
Mz = V'] = M|z := V’I],

Mo = V]~ M'[e = V"),

(v) Finally, if C[(FM)] SR M(\z.C[z]) and Az.Clz] =, [C'[FP]]., then

C'(FM)) o, M[C'[FPI,

and M(\z.C[z]) =, M'[C'[F P]]..

Proof. Parts (i) through (v) are consequences of Proposition 5.18. For the state-
ments about substitution and labeled-value substitution we observe that occurrences

of free variables and labels are orthogonal to the relation /2,. O
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The most important consequence of the lemma is that we can henceforth ignore
the issue of side-effects. The standard computation function simulates side-effects
and delabeling steps correctly, and we consider it therefore unnecessary to overbur-
den the rest of the proofs with respective clauses. Strictly speaking, the subsequent
statements are wrong in the sense that they do not subsume the possibility of side-
effects, but it is clear that they can easily be fixed with the preceding lemma. We
exemplify the abbreviated statements with the following summary of the first four

parts of the lemma:

Corollary 5.30. Let C[ ] and C'[ | be arbitrary evaluation contexts and let M,
M’ be related terms, i.e., M &2, M'. Then, a rewriting sequence from M to a term

N in some evaluation context D[ ]:
c +
C[M])— C[D[N]]

without use of the transition rule (C7) or invocation of a continuation implies that

there are N' and D'[ | such that

> +

C'[M') >, C'[D'[N']],

N ~, N and D| | =, D'[ ]

Next we must consider the invocation of continuations. From the discussion in
the main body of this section and Definition 5.19, it immediately follows that the
standard computation function does not simulate every C-rewriting step of such
an invocation on a step-by-step basis. On the other hand, we know that there are
only three possibilities for the outcome of such a rewriting sequence within a given
context: it may terminate with a value, it may yield a (first) F-application, or it
may diverge. The following lemma treats the first two of these cases. The proof

requires a measure of the relationships of the involved continuations: we call the
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degree of the relationship K ~p K’ simple if
K = \2.Clz] =, [C[FP]]. = K';
the relationship
K = \2.C1[Cyf. .. Culz].. )] =p [CIESCY. .. K. _,CL[FP].. )]l = K
is of higher degree than all of the relationships Az.Chilz] R2p Iy;. With this defini-

tion, we can perform inductions on the relationships between continuations:

Lemma 5.31. Let C[ | and C’[ ] be arbitrary evaluation contexts and let K,
K', V, and V' be related continuations and values, respectively, 1.e., I &, I,
V &2p V'. Then,

(i) a rewriting sequence from KV to a value W within the context C[ [:

clxv]) =" o)

without use of the (C7) transition rule (grabbing of a continuation) implies
that there is a value W' such that

O'K'V') Rl W

and W =, W';
(ii) a rewriting sequence from some M to V:

o ST v

without use of the transition rule (C7) implies that for every related M’,

i.e., M =2, M’ there is a value V' such that

C'IM sl v
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and V =2, V';
(iii) a rewriting sequence from KV to a first F-application FM within the
context C[ |:

C +
CIEV] S C[DIFM]]

for some term M and context D[ | implies that there are M' and D'[ ]

such that
+

C'IK'V'| V.., C'[D'[FM,

and M =2, M' and Az.D|z] =, [D'[F P]],.
Proof. The proof of the first part is a simplified version of the proof of the following

third part. In order to avoid repetitions, we omit it. The second claim is a simple

consequence of the first part.

The proof of claim (iii) is a lexicographic induction on the number of rewriting

steps and the degree of K &2, K’. Thus, suppose the relationship is simple, that 1s,
K = \z.E[z] and K’ = [E'[FP]]..

Since E[ ] = [ ] is impossible—otherwise the invocation KV would immediately

return the value V—we must consider two cases:

a) E] ] = F[U[ ]] for some context F[ ] and value U. Then E'[ 1= FUT ]

and the two evaluation sequences proceed as follows:
CIKV] v CIF[UV])

and

C'[K'V'] V=ges C'[[F[FPY(U'V)].

Depending on the outcome of the evaluation of UV, there are three possible

subcases:
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al) the evaluation of UV yields a value W without grabbing a continuation:
C +
C[FUV]] — C[F[W]).

According to part (ii), the standard computation function produces a related

value W':
CIFFPLUV o, CIFIFPIW.
Now, we can interpret the term F[W] as a continuation invocation:
Cl(\a.Fla))W] = CIF[W]],

and, furthermore, we know that this continuation invocation rewrites to
the assumed F-application in fewer steps than the original continuation
invocation K V. Hence, an application of the inductive hypothesis yields the

desired result:

[

C'[[F[FPW'] —,, C'[D'|FM]]

a2) the application UV directly results in an F-application without invoking a
continuation:

CIFIUV]] " CF[Dy[FM]]).

Corollary 5.30 implies that the standard reduction sequence leads to a re-

lated F-application:

CIF'IFPILUV] e,

C'[[F'[FPl].D{[FM')]
where Di[ ] & Di[ 1. It follows that the contexts

D[ ]=F[Di[ ]




and

D' | =[FIFPIDi |

satisfy the required relationship.

a3) UV rewrites to a (first) continuation invocation K1V that in turn leads to

an F-application:
ClFV) S LI E T =S CIFICH D) [F M.

Once again, we apply Corollary 5.30 and accordingly claim that

C'([F [FPI.U'V)] =, ClIFFPILCIE V]

where C1[ ] = Ci[ ], K1 =, K{, and VI =, V/. Since the rewriting
sequence

ClFCE W] - CIFICHD:[FM]]]

is at least one step shorter than the original one, we can invoke the inductive

hypothesis and get
C'IIF'[FP)LCLEV) ., C(LF[FPILCIID{IF M)
The induction hypothesis also yields that
Az.Di[z] =p [D'[FP]].
and therefore

Az F[C1[D1[a]]] = [[F'[F PIL.C[D1[F Pl

as required.
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b) E[ ]| = F|[ ]M] for some context F[ ] and expression M. This case is treated
like a).

The preceding arguments mostly carry over to the case when the relationship

between K and K’ is more complex, i.e.,

K = Az.Elz] =, [E||[K}EY. .. Kl _E[FP]..]J]l. =K'

for some finite decomposition Ei[ ],...,En[ ] of E[ ]. The only interesting dif-
ference is the case Ei[ | = [ ]. Then, the two transition sequences develop as
follows:

CIKV] v ClEL|. .. Ena[V]. . )]

and

>

C'K'V') —oses C'[[Ef]... EL[FP]. (K, _ V')
At this point, we can again apply our trick and consider E,_1[V] as the result of
applying the continuation A\z.En_1[z] to V:

CIELL .. (At Bac1[z])V) .. ] ¥ ClEL[. .. Enca[V].. ).

If this continuation invocation yields a value W without grabbing a continuation,

we have

+
CIKV] v ClE]. .. Eaca[W].. ]
with at least one step, and, by part (i),

+

C'[K'V') sy C'ELL .- By o[F P ] W]

such that W a2, W’. Applying the same trick a second time, we see that

ClOw.Brl. .. Enosla] .. W] s C[DIFM])
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Even though this rewriting sequence may have the same number of steps as the

original invocation, the relationship
Ae.Ey[...En_gz]...] =p [E{l... E|_,[FP]..]L

is clearly of lesser degree than K =2, K’. Given this, we can apply the inductive

hypothesis and get the desired conclusion.

If the continuation invocation (Az.En—1[z])V directly leads to an F-application:

CLEL .. (02.Bnr[a)V). . ]| 5" ClEL]. .. En—alDy[FM]).. ]},

then we can apply the inductive hypothesis: even though we may not have reduced
the number of rewriting steps as compared to the original rewriting sequence, the

relationship Az.En—1[z] ~p K’ _; is of lesser degree than K =z, K'. Hence,

p +

C'[[EL - By ol FP). (K V)] =y C'IELL - By o[ FP). D [FM]]

such that A\z.Dj[z] =, [D][F P]]., and, therefore,
D[ ] = El[. .. En_Q[Dl[ ]] .. ]

and
D' 1=[E[.. B, ,[FP].. ]l.Di[ |

are appropriately related.

The remaining subcases where E[ ] is non-empty are essentially treated like
the subcases a) and b) of the first half of the proof. Since there are no other cases,

this completes the proof. O

We are now ready to prove the main lemma of this subsection:
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Lemma 5.32. M &, M’ and M rewrites to V:
*
MV

if and only if the standard computation function maps M’ to a value V'

> *
M —

8CS

V’
and V =2 V.

Proof. With the help of the preceding lemmas, we can now prove that rewriting
sequences and related standard computation sequences proceed in a synchronized

manner. Given Lemma 5.29 and Corollary 5.30, we must only consider the case

M ST CIKV] and M s, C'[K'VY),

S

where C[ | =, C'[ ], K =p K', and V =, V'. If KV yields a value U, then, by

Lemma 5.31 (i), K’V' produces a related value U’ and
C[U] =, C'[U'].

Otherwise, if KV rewrites into an F-application, then, by Lemma 5.31 (iii), KV’
computes to an F-application such that the two terms build related continuations:

C >

CIEV] s P(Ae.Dlz]) and C'[K'V'] ol P'[D'[FM]),

such that

P(\z.D[z]) =, P'[D'[FM]]..
Finally, if KV starts an infinite loop within C[ ], then K'V’ will also diverge.
Although the standard computation function may build a different evaluation con-
text,? the reduction starting in K’'V” will sooner or later produce related redexes.

This is an indirect consequence of Lemma 5.31.

2 The respective evaluation redexes are always related when interpreted as continuations, but may not be
related as contexts.



159
It follows from this analysis by an inductive argument that the termination
of the rewriting process implies the termination of the standard computation pro-
cedure, that two related sequences end in related values, and that, furthermore,
non-termination of a rewriting process implies non-termination for all related stan-

dard computations. O

The Simulation Theorem follows directly from this lemma:

Theorem 5.20 (Simulation). For all programs M € Aro,

evalog(M) =V iff ®(M) l_»_}:“ U for some U such that V &2, U.

Proof. Since ®(M) is related to M, i.e., M =2, ®(M), the antecedent of the

preceding lemma is satisfied and the conclusion is immediate. O



6. Reasoning with the A,-CS-Calculus

In the two preceding chapters we have developed an equational theory for imperative
higher-order languages. Now we must demonstrate that reasoning with the A,-CS-
calculus is a viable endeavor. The key to this experiment is an interpretation of the

theorems and propositions in the preceding chapter. Four factors play a major role.

First, our goal is to demonstrate the use of the calculus in conjunction with
correctness proofs. Since correctness proofs concern program pieces and their oper-
ational equivalences to other program pieces, it is natural to work with the theory
of safe cs-equality. This means that our proofs will generally be a mixture of
reduction-based proofs and safe derivations in the computational cs-equality. In
many circumstances, we will use the terminology “M is operationally indistinguish-
able from N7 after proving that M is safely equivalent to N. This should not be
confused with the statement “M evaluates to N”: because of the division of the cal-
culus into two levels, the latter no longer implies the former unlike in the functional

world.

Second, the A,-CS-calculus subsumes the A,-calculus. Hence, we can carry over
all conventions, theorems, and proof techniques from the functional calculus. For
example, we can prove the equivalence of two total functions by recursion induc-
tion; we can treat an expression M as if it were a value when it is operationally
indistinguishable (=5) from a value; or, we can call a function F' pure when FV is

160
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operationally indistinguishable from a value U for every argument V-—even if the
function is not a A-expression. However, the subsumption does not mean that every
statement in ~cgx is true for ~¢. Whereas the first relation compares results of
terminating computations, the second relation compares results and effects. It is

therefore important that statements about functions are verified in the calculus.

Third, since the calculus is an equational extension of the C-rewriting system
(Theorem 5.20), we can freely mix reductions and C-transition rules in equivalence
proofs. Rewriting rules are of particular importance when we employ Theorem 5.27
for the construction of correctness proofs. We shall use this in many of the following

examples.

The fourth and final point is not a conclusion from the theorems but is a state-
ment about them. As pointed out at various places, the programming language and
the calculus have two independent fragments: the control and the assignment part.
Appropriate reformulations of the theorems hold for both subsystems. Indeed, the
two were developed separately [15, 18, 20] and only merged into a single system af-
terwards [17]. This natural fragmentation is welcome because it allows us to study

the two classes of programs in isolation.

The first two sections of this chapter are dedicated to the control and the as-
signment fragment. Each section has two parts. The first is a discussion of the
specific properties and principles of the respective system, the second a collection
of examples. The third section contains two examples that make use of the full

language and calculus.

6.1. Reasoning with Control
The control fragment of the \,-CS-calculus is rather simple. The language is that
of the classical A-calculus, enriched with F-applications. This means in particular

that the programming language and the reasoning language are the same. The
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axioms of the system are the §-, the §,-relation, and the three F-rules. For the

reader’s convenience, we have collected these notions in Definition 6.1.

Definition 6.1: The control fragment of A.-CS

Term language Ar:
M:u=alz|XM|MN|FM

Reductions and Computations:

fa — é6(f,a) (6)

(Az. M)V — M[z := V] provided V is a value (By)
(FM)N — F(Ak.M(Am.k(mN))) (Fr)

V(FM) — F(Ak.N(An.k(Vn))) provided V is a value (Fr)

(FM)v> M(Xz.x) (Fr)

Meta-rule:
C[FM] — M(Az.Clz])

for every evaluation context C[ ].

The absence of labeled values greatly facilitates reasoning in this fragment.
Without labels, safety considerations about derivations become superfluous. We

capture this in a corollary to Theorem 5.27:

Corollary 6.2. Let M and N be in Ax. Then M ~¢ N if \,-CS® FC[M] = C[N]

for all evaluation contexts C[ ] over Ax.

Equipped with these general observations, we continue the F -related program-
ming examples from Section 3.3. throw-expressions play a central role in many of
these examples. Intuitively, (throw L V) eliminates the current continuation and

continues with the evaluation of L V. From the preceding chapters we know that a
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continuation of a program piece is its evaluation context. Hence, we can formalize

the behavior of throw-expressions by analyzing their actions in these contexts:

Proposition 6.3. Suppose F is a value and M an arbitrary expression.
(i) \,-CS*¥¢ +F(throw LV) = (throw LV);

(ii) A-CS*¥¢ -(throw LV)M = (throw LV).

Proof. The proofs are trivial, e.g.,

X\o-CS FF(throw LV) = F(F(Ad.LV)) by definition
— (FAe.(A.LV)(Av.k(Fo))

= (FXk.LV) = (throw LV). a

Next we apply this first proposition to the correctness proof of ¥§ which is our
prototypical example of a function with exceptional flow of control. According to
its specification, the function is to sum up the numbers in a binary tree unless the
tree contains 0, in which case the function must produce 0. Assuming the existence
of a predicate occur0? that tests the presence of a 0, the behavior of £j on a tree

T can be specified by

(S5T) ~¢ (if (occur0?T) 0 (X*T')).

The implementation of T relies on the exit-facility, which in turn is based on

throw. It is therefore natural that a correctness proof for 37 uses Proposition 6.3:

Proposition 6.4. For all binary number-trees T, 3§ satisfies:

Ay -CS* (ST = (if (occur0?T) 0 (2*7)).
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Proof. Let us recall &j in a slightly de-sugared form:
Yo = M. F(ree((rec (s t) =
(if (empty?t)0
(if (zero?(info t)) (throw €0)
(+(info t)(+(s(Ison t))(s(rson t)))))))
t)) .
Since this function obviously manipulates its entire calling context, we use Corol-

lary 6.2 for the proof.

Let C[ ] be an arbitrary evaluation context. Then an application of 3j to a

tree T in C[ ] proceeds as follows:
Ap-CS " FC[Z3T] = CIFAe.e(ST)] = (Ae.Clz])(Sele == (\z.C[z])] T),

where
Se = (rec (st) =

(if (empty?¢) 0
(if (zero?(infot)) (throw €0)

(+(info t)(+(s(Ison t))(s(rson t))))))).

Now we must show that S, behaves correctly. Given that (occur0?T) is either True

or False, we can split the claim into two sub-claims:
(1) A-CS* |-(occur0? T') = False implies Ap-CS*¥¢ H(S.T) = (=*T)
(i) A-CS*¥¢ (occur0? T) = True implies Ap-CS** (S, T) = (throw €0)
Assuming that both hold, the rest of the proposition follows easily:
Ao-CS * F(Az.C[z])(Z*T) = C[E*T] = CIif False 0 (X*T)],
Ae-CS * +(Az.C[z])(throw (Az.C[z]) 0) = C[0] = C[if True 0 (£*T)].
The first derivation uses the convention that expressions with an operationally in-

distinguishable value are treated as if they were a value.
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For the proof of part (i) observe that (occur0? T') = False implies
(zero?(infot)) = False

for all subtrees t of T. Hence,
Ao-CS*¥e (if (zero?(infot)) (throw €0) (+(infot)(+(s(Isont))(s(rson )

= (+(info t)(s(Ison t))(s(rsont))))

for all recursive stages in the evaluation of S¢. By induction, the consequence of (i)

holds for the entire tree T.

The proof of part (ii) is also an induction on the structure of T but with the
hypothesis:
(Set) = (throw €0)

for all subtrees ¢ containing 0. First suppose 0 occurs at the root of ¢. Then the
claim is immediate. Otherwise, 0 must be in one of the two subtrees. If the left

subtree contains 0, the inductive hypothesis yields:
Ao-CS*F (Sct) = (+(infot)(+(throw e0)(Se(rson t))).

But by Proposition 6.3 throw eliminates this kind of context—{(info t) represents a
value—and therefore (ii) follows. If the left tree does not contain 0, then (S¢(lson?))

is equivalent to (g (Isont)) by (i). From this, we finally get

Ap-CS* (S.t) = (+(infot)(+(E*(Ison t))(throw €0))) = (throw €0). a

Beyond its immediate result, the preceding proof offers a strategy for similar
exit-programs. We call this strategy exit-induction. It applics to all programs that
are regularly recursive, except for some finite number n of exception conditions. The

strategy requires n+ 1 routine inductions on the primary information-structure: one
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for the regular case, one for each exception. This is quite natural and corresponds

to the folk wisdom that calls for a similar testing strategy.

For a further illustration of exit-induction, consider the function II, which re-

turns the product of a list of numbers:

d
mZ

A.(rec (p1) = (if (null?1) 1 (*(carl)(p(cdr))))) L.

Although the function is correct, it is inefficient. Given that 0 collapses the product,
IT must satisfy

A\o-CS*¥¢ H(TIL) = (if (occur0? L) 0 (IIL)).

But this looks almost like the specification of Tf. A straightforward inversion of

the principle of exit-induction leads to the specification of the function Ily by

Ap-CS*¥ -(TIp L) = (if (occur0? L) 0 (IIL)).
and an implementation as

d
I Ef (function L ((rec (pl) =

(if (null?]) 1

(if (zero?(carl)) (exit 0)

(#(car1)(p(cdr 1)))))) L))-

In exchange for at most n extra tests, the function avoids all multiplications if the

list contains 0. The correctness of Il is captured in

Proposition 6.5. For all lists of numbers L,

Ay -CS*e (I L) = (if (occur0?L) 0 (TIL)) = (TIL).

From the perspective of program development, this second example is more rele-

vant. Instead of writing down a program and independently verifying its correctness,
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we have used the exit-induction principle for the construction of the program. As

usual, the proof is then a mere exercise.

Besides the use of F-applications for loop- and function-exits, there are few
other examples that use control information and solely rely on functions. In par-
ticular, continuations that are passed out of their original context—first-class con-
tinuations—are mostly useful in conjunction with state variables. We resume this

topic in the last section after investigating the use of side-effects in the next.

6.2. Reasoning with State

As pointed out at the end of Chapter 4, the assignment fragment as depicted in
Definition 6.6 is more complicated than the control fragment. The major difference
between the two systems is that the addition of assignment to a functional language
is insufficient for reasoning about programs in the extended language: another
necessary addition is a linguistic facility for expressing sharing relations, e.g., labels.
However, the presence of labels makes proofs of operational equalities more difficult.
To be useful, the resulting theorem must respect the full safe-ness condition as
formulated in Definition 5.26. Although this formal definition is easy to understand
and well-suited for the proof of Theorem 5.27, it is impractical for real work in the
calculus. It is therefore our first priority to develop more insight into the nature of

safe theorems.

A safe theorem is the result of some derivation in the top-level of the A,-CS-cal-
culus and a safe-ness check for the resulting theorem. The check consists of verifying
a set of derived equations as theorems. The easiest way to perform this second step 1s
to see whether modifications of the original derivation prove the modified equations.
From the converse perspective, we could say that if a derivation automatically
verifies derived equations, then its resulting theorem is safe. Accordingly, we call

such derivations safe.
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Definition 6.6: The assignment fragment of A,-CS

Term language Asp:
M:u=al|ay | \e.M | MN | 02,.M | D Mg, | oV.M | DMV,

Reductions and Computations:

fa — Vifé(f,a) =V,V € A (8)
Az M)V — Mz := V] (B)
U((Aze . M)V) — (Ao (UM))V (Br)
(Aze.M)V)N —> (Azo.(MN)V (BL)
(Aze.M)V b Mz, := V'] where [ is fresh (85)
U((cX.M)V) — (6 X.(UM))V (or)
(6 X.M)V)N — (6 X.(MN))V (or)
(U M)V > Mo := V'] (o)
U(DMX) — (D (Mo.U(Mv))X) (Dr)
(DMX)N — (D (Av.MvN)X) (Dr)
(D MV > MV[e' = V'] (Dr)

Meta-rules:
Cl(\ee. M)V] — ClM[zq = V']]

Cl(cU . M)V] — C[M][o' := V']
P M V'] — C[MV[e = V']]

for every evaluation context C[ ].

A derivation is obviously safe if it transforms an Idealized Scheme expression
into another one: since such expressions do not contain any labels, they can neither
affect nor be affected by their context. This means that derivations can safely
establish sharing relationships if they are guaranteed to disappear in the theorem-
terms and that they can freely assign to and delabel such derivation-local sharing

relations. Although this sheds some light on safe derivations and is highly useful as
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we will see later, it is not always possible to rely on theorems in Idealized Scheme.
Many of the intermediate steps in such proofs involve statements about terms that
contain labels, and it is therefore necessary to look more closely at what can happen

to a non-local label and its associated value during a derivation.

Due to the Consistency Theorem and its corollary, we can fortunately restrict

our attention to derivations of the form
Muv* L *aN.

According to this corollary, an equation M = N must have such a derivation.
Furthermore, because of the transitivity of safe cs-equality, we can always restrict
our attention to such fragments in a given derivation: if each piece is safe, the

composition is safe as well.

Next, we must analyze the effect of creating, assigning to, or delabeling labeled
values in such deriva.tions. Thus, suppose a sharing relation is created during a
derivation and persists in only one of the terms in the resulting theorem. As men-
tioned in the discussions preceding the design of the S;-relation (Section 5.1) and
the definition of safe-ness (Definition 5.26), such a derivation cannot be safe because
it may establish a sharing relation too early. Put differently, a sharing relation of a
safe theorem may not originate within the derivation: an arbitrary replacement of
the labeled value will always interfere with the B,-step. Thus, if a sharing relation
is created during one half of a derivation, there must be a symmetric 3;-expansion

step in the other half.

Assignments (on non-local labels) corrupt the safe-ness of a derivation in a
cruder way. If assignments are discharged arbitrarily, they can only affect the

currently visible labels:

(oFaIsel.(‘D | Falsel))True = (DI Truel).
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The resulting theorems depend on their specific context and are inéorrect in others,
e.g., replacing
(aFaIsel.(’D | False'))True
with

(D | True')

in an expression like

(Az.(D | Fa|se1))((aFa|seI.(’D | False'))True)

would lead to the contradiction
True = False.

It follows that assignments—just like B5-steps—must come in do-undo pairs. That
is, an assignment in one derivation half is undone by re-assigning the old value, or
if there are assignments with a lasting effect in one half, there must be at least one

un-assignment in the other half to undo the effect. For example,
(V! (cVIMNUW = M[o := U'][e" := W] = (cV . M)W

is a perfectly safe derivation: the final assignment to ! will be performed by either

term independently of the context.

Finally, delabeling steps need a more subtle analysis. Again, a single delabeling

step is unsafe, but consider the following situation:
Ko(D IV = Ko(V[e' := V']) = 0.

No matter what the value V is, this equivalence holds in any context because the
value simply disappears. On the other hand, if the value is actively used in some

subsequent derivation step as in

if (D1 True') True False) = (if True True False) = True,
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the derivation becomes unsafe: in a context where True is first changed to False' this
equality cannot hold. A delabeling step like this can only be safe if it is preceded

by an assignment in the same derivation:
(oa'.(if (D] True') True False))True = (if True True False) = (oxl.True)True :

the value part of the labeled value is then known, no matter what the use-context
will assign to 1t.

At this point, a clarification of the terminology “use of a value” is necessary. In
the course of an derivation, two things can happen to a value: it may or it may not
be a direct part of a redex (in the sense of a C-redex). That is, a value may either
occur in the function or in the argument position of an application; or, it is only a
proper sub-part of a redex. In the first case, we say that the value s used because
the value may impact the derivation. Furthermore, we distinguish the notion of
actively used when a value actually does have an impact on the derivation. For a
constant this means that it must be used in a §-transition; for abstractions actively
used means that they are in function position during a 8,- or Bs-step. Other uses

of values are called passive.
Based on the preceding arguments, we can now precisely characterize safe deriva-

tions:

Proposition 6.7. A derivation
Mbo* L*aN.
is safe iff it satisfies the following conditions on labeled values in M and N:

1. none of the labels in M and N originates from a (3,-step in the derivation;

9. if there are assignments to a label | in one half of the derivation such that the
value of a labeled value part is changed, there must be at least one assignment

to this label in the other half;
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3. if a labeled value is delabeled and actively used thereafter, the delabeling step

must be preceded by an assignment;

4. if a labeled value V' is delabeled, occurs in L, but is only used passively, then
there must be a delabeling step in the other half that yields this V]e' := V]

in L.

Proof. The direction from left to right is trivial. If suffices to show that the
negation of any point leads to unsafe theorems. This can be done with the coun-

terexamples from above.

For the opposite direction, we assume that the four conditions hold and show

that modified versions of the derivation also prove all theorems of the form:
C[M][e" == Vil].. . [o" := Vu"'] = C[N][e" := Vi"].. . [8" := Vi)

for an arbitrary evaluation context C[ ] and arbitrary values V; ... V},. First, since
C[ ] is an evaluation context, reductions carry over directly, computation steps
must be pre- and post-fixed with an appropriate series of reductions. Second, by
assumption 2 every assignment step with an impact on C[L] is undone by the other
half of the derivation. It follows from these two arguments that the derivation can

be embedded in C[ | without problem.

Third, we must trace all values V; through the derivation and show that the

replacement cannot interfere with the derivation steps. Three cases are possible:

a) V'is part of a fs-expansion so that the label disappears. However, this is ruled
out by assumption 1 which says that none of the labels in M and N originates

from such steps.

b) V! is delabeled and actively used thereafter. This contradicts assumption 3,
which requires that an assignment precedes such a delabeling step. But given

the assignment, the replacement of the original value with V is irrelevant.
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¢) V! is delabeled, but not actively used. If L does not contain Ve := V'], the
replacement is again irrelevant; otherwise, by assumption 4, there is a (n inverse)
Dr-step in the other half of the derivation that reconstructs the labeled value

V! and thus satisfies the replacement of the [-labeled value in the second term.
Since there are no other cases, this concludes the proof. O

Subsequently, we will rely on this proposition whenever we use computational
equality for the derivation of safe theorems. As a direct consequence, the proposition
yields a first meta-rule on stating safe theorems. The proposition requires that all
transitions with globally visible effects come in do-undo pairs. Thus, a derivation
of the form

C[M] Z¢s D[V] =cs C[M]
is automatically safe: the left part performs the effects, the right one undoes them.
Of course, this is a useless derivation. What we would really like to see is an equiv-
alence between non-identical terms. Yet, the idea behind this case is important.

Suppose we can prove

-CS ® FC[z] = Dix]

for some evaluation contexts C[ | and D[ ]. Is it then possible to replace z by
an arbitrary term M since M is guaranteed to affect both sides of the equation
during its evaluation? The answer is positive provided M evaluates to some value

regardless of pending assignments:

Proposition 6.8. Let M be an expression, V a value; let Lab(M) = {li,..., .}

and let {ki,...,kn} C Lab(M). If for some evaluation contexts C1[ | and Ca[ |
Ae-CS* HC[z] = Calx] (1)
and if for all values Vi, ..., Vyn and for some values Uy, ..., Uy

Ae-CS® b Mo := 1] ... [oh := V] =
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Viel == K1].. . [of 1= Vi ln] (e = TR L [eb = UL (2)

fori: = 1,2 then
Ap-CS*Ye FC1[M] = Co[M].

Proof. The proof is simply a matter of checking the safe-ness of the consequence
according to Definition 5.26:
A-CS ® F D[C1[M]][e" := Vi"]...[8" := V']

= D[CV]|[" := V"] . .. [ := Vi ][8F = U1F1] .. (@8 == U] by (2)

— D[Co[V]|[@" = Wi"]. .. [ = VinIm][@Fr = TR [@F = UL

by substitution and (1)
— D[Co[M]][o" := Vi"]... [ := V"] by (2). O
Together with the Substitution Theorem, this proposition provides the foun-

dation for stating operational equivalences with implicitly universally quantified
(non-assignable) variables. Since these equations hold for all values, we are free to
replace all variables by labeled values—they automatically satisfy the antecedent—

or by arbitrary ezpressions with values if the variable occurs on both sides in an

evaluation context. A useful example is:
A, -CSsefe Frler...axn = 2 for 1 <1< n.

This equation means that for all (labeled) values V1,. .., V, the selection function
7l picks the i-th value, and, by the second argument, that this i-th expression can

be any expression if it has a value, z.e.,
A-CS* e brlay . M. an = M; for1 < i< n.

The importance of this particular statement is that begin-expressions are ab-

breviations for m-applications, and that side-effects in expressions can easily be
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characterized as effect sequences in begin-blocks. It follows, for example, that if

an expression M in a begin-block is operationally equivalent to a value, then
A, -CGsfe F(begin MM, ... M,) = (begin M, ... M,).

Convention. In the rest of this chapter we use assignable variables and labeled
values as abbreviations for delabeling applications of the form: (D | ). The moti-
vation behind this is that equivalence proofs never use D-reductions, but delabeling

C-transitions instead. End

After this theoretical, in-depth consideration of safe-ness, let us now apply the
fresh insight to the first assignment-programming example from Section 3.3: the
implementation of cells with higher-order functions and assignment abstractions.

Recall that the three major operations on cells are:

d
mk-cell é Ao Am.mze(02s 2o ),

d]
deref é Ac.c(Azs.x) = Ae.emy,

4 — 2
set-celll = Ac.c(Azs.s) = Ac.cmj.

The result of a call to mk-cell is a functional value with a new sharing relation:
Ae-CS ® Fmk-cellz = Am.maz! (o2’ .2").

The value is not operationally indistinguishable from the application because of the
newly introduced label I. Put differently, the calculus respects that every call to
mk-cell creates a new, distinct cell-object. To avoid some notational overhead, we

use the abbreviation

(mk-cell ).

It denotes a cell-object, indicating the sharing relationship [ as a superscript to the
entire expression and the current contents as z. When necessary, we expand the

abbreviation to the above abstraction.
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The effect of a set-celll-operation can be characterized by an operational equiv-

alence:
Ap-CS*¥e (set-celll (mk-cell ) y) = (ng[(aarl..rl))y = (oz'.2')y.
In the same manner, we can specify the result of a deref-operation on a cell:

Ap-CS*%fe t-(deref (mk-cell 2)}) = (nia! (02 2")) = 2.

The disadvantage of these equations is that they are of a rather low-level nature.
By connecting specific operations on a cell with facilities in the underlying language,
they uncover too much about how cells are structured. More abstract equations in
the style of algebraic specifications are preferable. In the functional fragment—see
Section 2.5—such equations specify operations by showing their mutual interaction

without relying on the coding. For example, the effect of car is related to cons by

(car(consz y)) = z.

A transliteration of this algebraic style and the particular example to the cell-

world means finding an operational equivalent of
(deref(mk-cell z)).
With the above characterization of deref and mk-cell, this is rather simple:
A.-CS * (deref(mk-cell z)) = (deref(mk-cell o)) =2 ==z

The last step is valid because [ is introduced by the derivation and cannot be part

of z. However, the essence of a cell is that it can change its contents with set-cell!,

and that deref can fetch this new value. In other words, we should be able to show
Ae-CS*% | (begin (set-celll (mk-cell z)' y) (deref (mk-cell «)'))

= (begin (set-cell! (mk-cell z) y) ).
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Because set-cell! does not return the cell, the begin is necessary in order to express

the appropriate sequencing of actions.! The proof is a simple calculation:

Ao-CS*¥¢ -(begin (set-celll (mk-cell z)! y) (deref (mk-cell z)') (1)
= m2((oa' .2 )y)a! (2)

= (oa! mla'zl)y (3)

= (oa! .2 )y = (set-celll (mk-cell z) y) (4)

= (o2’ y)y (5)

= (o2 .m2aly)y (6)

= n2((ox' .2 )y)y (7)

— (begin (set-celll (mk-cell z)! ) y). (8)

All steps in this proof, except (4) to (5), are simple reductions or safe statements
about the selection function 77'; the transition from (4) to (5) is discussed below
in Proposition 6.10. The fourth step also yields a slightly simplified version of the

operational equivalence.

Continuing with the transliteration of the algebraic strategy, we ask what the
effect of an immediate assignment to a cell is. At first glance, the question is about
the term

(set-cell! (mk-cell z) y),

but given this, another possibility comes to mind:

(set-cell! (mk-cell z) y).

An appropriate theorem for cons-cells could be written more elegantly as

(car (set-car! z y)) = y.
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This second term expresses the possibility that the cell survives the effect because

it already exists in several places. This is, for example, the case in the expression

(let (c (mk-cell z)) (begin (set-cell! ¢ y) c)),

which we treat as prototypical.

Of the two possible cases, the first is the less interesting one. A simple calcula-

tion proves that the two operations cancel each other

Ae-CS ® (set-celll (mk-cell z) y) = (set-cell! (mk-cell z)\ y)
= (cr:v".a:l)y
= .
The second case requires a more sophisticated derivation:
Ap-CS ® F (let (c (mk-cell 2)) (begin (set-cell! ¢ y) ¢))
— (begin (set-celll (mk-cell z)/ y) (mk-cell 2)")
= (n2((oa'.2")y)(mk-cell 2)')
= ((oz' w22’ (mk-cell 2) )y
= ((oz! .(mk-cell 2)))y
= (mk-cell y)'

= (mk-cell y).

(1)
(2)

The proof step from line (4) to (5) depends on the uniqueness of [ with respect to

the context; the By-steps in (1) and (6) are the necessary inverses of each other so

that [ does not survive the derivation.

Finally, we can ask what the interaction of two set-celll-operations is. Again,

there are two possible cases: the operations may affect the same cell or different

cells. A typical expression of the first kind is

(begin (set-cell! ¢ z) (set-celll ¢ y)).
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Intuitively, the second operation must cancel the first, i.e., the first is invisible to

an outside observer. This is verified by
Ae-CS*¥ 1 (begin (set-cell! (mk-cell u)' ) (set-cell! (mk-cell u) y))
= m}((oul ) (ol )
= (ou'.72d ((oul u)y))a
= (ou' (oul uYy)z
= (ou'.ul)y
= (set-cell! (mk—cellu)l Y).

The second case is treated similarly. We consider the expression
(begin (set-cell! ¢ z) (set-cell! d y)),

where ¢ and d are distinct cells, and prove its equivalence to
(begin (set-cell! d y) (set-cell! ¢ z) y).

With the following equality about the connection between deref- and set-cell!-opera-
tions:

(set-cell! (mk-cell z) y) = (begin (set-cell! (mk-cell 2 y) y)

and the fact that nested begin-expressions can be linearized, the required calcula-

tion becomes

Ao-CS*¥¢ | (begin (set-cell! (mk-cell w) z) (set-celll (mk-cell o) )
= (begin (set-cell! (mk-cell w) ) (set-cell! (mk-cell o) y) y)
= wd((oul ) ) (oot F )y

= (aul.wgul((avk o )y

= O'UI. ka.7r3ulvky y)x
3
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— (ovF (oul mduloky)e)y
= (oof (ou! mauly)2)y
= (v .72 ((ou . u)z)y)y
= (oo m3of ((oul u)z)y)y
= 73 ((ov* WM y)((ou'u)a)y

= (begin (set-celll (mk-cell v)f ) (set-cell! (mk-cell u) ) y).

For the convenience of the reader, we have collected all of the above statements

about the three major cell operations in

Proposition 6.9. Let ¢ range over cells. Then

(i) A-CS*V¢ t(deref(mk-cell 2)) = z;

(ii) \,-CS*Ye b(set-celll (mk-cell z) y) = y;

(iii) A,-CS*¥¢ F(let (¢ (mk-cell z)) (begin (set-cell! ¢ y) ¢)) = (mk-cell y);
(iv) \.-CS*¥¢ (begin (set-celll ¢ z) (derefc)) = (begin (set-cell! ¢ z) z);
(v) A-CS* (begin (set-cell! ¢ z) (set-cell! ¢ y)) = (set-cell! ¢ y);

(vi) Let d be a cell that is distinct from c:

Ae-CS* % H(begin (set-cell! ¢ z) (set-cell! d y))
= (begin (set-celll d y) (set-cell! ¢ ) y).

The proofs of the above statements share several characteristics. First, they all
rely on a partial expansion of syntactic abstractions into Acs-expressions. This is
bearable for small examples, but for larger ones we must develop strategies that
correspond to the right level of syntactic abstraction. Second, once the syntactic
abstractions are eliminated, the proofs are mostly manipulations in the reduction
system. This makes them automatically safe. Finally, the central parts of the

proof are some universal statements about o-capabilities similar to the one on the

selection functions 7'. We have also collected these statements:
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Proposition 6.10.
(i) \,-CS*¥e Houl.((ou!.M)z))y = (oul . M)z;
(i) \,-CS*F F(ou!.((ovF.M)z))y = (ov*.((ou! . M)y))z;

(iii) Ap-CS*¥ (oul u)z = (oul.2)z.

Proof.

() A-CS ® - (ou! ((ou! . M)z))y
= (ou'. M)z[e' := ]
=M[o := ¢/][o := ']
= M[o = z[o' = y/]] = M[o' =] (%)
= (ou' .M)z;
(ii)  A-CSP® F (ou.((ovF . M)z))y
= (ovF . M)z[e := ]
=Mo" := f)[o* :=afe’ := ¢]]
=, M[o" := F][o := y[of := 2F]] (¥)
= (ov* (o' . M)y))z;

(iii)  A-CS® F(ou' )z

=u'[o := &)
—ol[o = al] = z[o' :=2l][¢' := &) =a 20l :=4] (%)
= (oul.z)z.

The three steps marked with (*) should recall that a-congruence ignores nner

occurrences of labels. Also, by writing

z[o’ = ']
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we indicate that z could be a value with occurrences of the label . This is possible

because [ is not created during the derivation and desirable because z may represent
self-referential values. O

As a further illustration of the above principle, we prove a property of the
eq?-operation on cells

d]
eq? Z{

Aerca.(let ((z1 (derefer))(zo (derefeg)))

(begin

(set-celll ¢y 1) (set-cell! ca 2)
(let (e (; (deref c1) 2))

(begin

(set-cell ¢y 21) (set-cell! co x9)

€))))-

The operation compares the identity of cells as cells as opposed to contents. Hence,
eq? is characterized by:

Proposition 6.11. Let ¢ and d be distinct cells. Then,

Ap-CS*Y¢ \-(eq? cc) = True and Ao -CS*¥¢ (eq? cd) = False.

Note. A consequence of this statement is

Ae-CS*¢ -(eq? (mk-cell 2) (mk-cell z)) = False.

Proof. We prove the first half of the statement, the second half being similar. By

a minor generalization of Proposition 6.9, we can reduce the problem:
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Ao-CS*e H(eq? cc) = (let (z (derefc))
(begin
(set-celll ¢ 2)
(let (e (= (derefc)2))
(begin
(set-celll c x)

e))))-

The rest is a simple calculation:

Ae-CS ¥ t(let (z (deref (mk-cell z)')) (1)
(begin
(set-cell! (mk-cell z)' 2)
(let (e (£ (deref (mk-cell 2)') 2))
(begin
(set-cell! (mk-cell z)' )
e))))
= (begin (2)
(set-celll (mk-cell z)! 2)
(let (e (= (deref (mk-cell z)') 2))
(begin
(set-cell! (mk-cell z)! )
e)))
— (let (e (= (deref (mk-cell 2)')2)) (3)

(begin
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(set-celll (mk-cell 2)' z)

= (begin (4)
(set-celll (mk-cell 2)! z)
True)[o' := 2]

= True[o' := 2o := z[o' := 2] (5)

=, True (6)

The derivation is a degenerated instance of the safe derivations described by
Proposition 6.7. A term is simply reduced to a value. The safe-ness of the as-
signment steps is guaranteed because the second one undoes the effect of the first,
the safe-ness of the delabeling step is based on the embedding between the two

assignments. [

The lesson of this proof is simple. Proofs should rely as much as possible
on abstract specifications a la Proposition 6.9, but we cannot expect that these
specifications are always sufficient. If they are not, we must be ready to use a less
abstract way of reasoning and to generalize the low-level proofs to new high-level
characterizations. We return to this problem in the last chapter when we discuss
related and future research.

Up to this point, none of the discussed specifications concerned higher-order
functions. Although the underlying computations rely on function-valued functions
for modeling state variables, the abstract equations are independent of their exis-

tence. This is different for the Yi-combinator, which we discuss next.
The combinator
Y1 = Af.(Ag.(0g.9)(Az. fgx))l

‘s an alternative means for creating recursive functions. The claim is that, given
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a defining functional F for some recursively specified function, Y1F' returns the
fixpoint of F and hence the appropriate meaning of the definition. With all the

practice in correctness proofs about state variables, this claim is easy to prove:

Proposition 6.12. Let F be a value. Then,

Ae-CS*Y¢ FY\Fz = F(Y1F)z.

Proof. We calculate:

Ae-CS ® FY1Fz = (Ao (09090 )(A2.Fgoz))lz (1)
= (ol .Yz Fl'z)z (2)
=(\e.Fl'z) e (3)
= (\z.F(x.Flz) e (4)
=F(z.Flz)e (5)
= F((el YAz Fl'z))z (6)
= F((Mgo-(990-9)(Az.Fgox)) )z (7)
= F(Y1F)z. (8)

The strategy of the calculation is simple. Steps (1) through (5) unfold the term
Y; Fz until there is the term of the structure FMx. Since F[ ]z forms an evaluation
context, the rest is equally simple: steps (6) through (8) invert the first four steps,

thus undoing the effects that make the first half of the derivation unsafe. [

The proposition finally verifies some old folklore among compiler builders. As
mentioned in Section 3.3, Yi builds faster recursive functions than the functional
fixpoint combinator Y, on ordinary machines. Therefore, compilers build recursive
functions with truly self-referential closures instead of self-application as in Y,. For

this reason, even implementations of functional languages provide recursion as a
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built-in syntactic facility so that it can be realized with this imperative strategy
(36, 43, 71]. Since the two levels are separate, correctness arguments are generally
informal. The advantage of Idealized Scheme is that the two aspects can be treated
in the same language and reasoning system, and that the reasoning system is capable
of proving the fixpoint-property of Yi.

A problem with our proposition is that it does not prove the uniqueness of the
fixpoint. Since in general there are many fixpoints of functions, it is not clear which
solution is produced by a fixpoint combinator. For the functional fragment it is
possible to prove that Y, produces the unique, minimal fixpoint with respect to an

approximation ordering [70]. Again, for Y1 this is an open question.

6.3. Reasoning with Control-State

The two fragments of the \,-CS-calculus almost cover the entire programming lan-
guage Idealized Scheme. Programs requiring the expressiveness of the entire lan-
guage are those that must store control contexts in variables. In Section 3.3, we
discussed two such cases: iterate-until and generator. The first construct uses
a single-assignment variable, the second a true control-state variable. Both are

characterized by operational equivalences; we prove the correctness of these.
The purpose of the iterate-until-loop is defined by the following equation:
(iterate F over V until P) o¢ F™V
where m = min{i > 0 | P(F'V) = True},
for all pure functions F, predicates P, and values V. That is, the loop computes
the values V, (FV), (F(FV)),... and returns the first that satisfies P. The original

specification also requires that F be defined on all values V, (FV), (F(FV)),... An

immediate consequence is that

P(F'V) =, False ~ for0<i<m,
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where m is as above.

A functional implementation of iterate-until relies on recursion:

daf

(iterate F over V until P) = (rec (I v) (if (Pv) v I(Fv)))V

= Y.(\v.(if (Pv) v {(Fv)))V.
The correctness proof for this version is a simple induction:

Proposition 6.13. Let F, V, P, and m be as specified above. Then

Ao -CS* |-(iterate F over V until P) = F™V.

Proof. We first prove the following invariant:

\,-CSsfe F(iterate F' over V until P)

= (if (PV) V (iterate F over V until P)).
This part uses the fixpoint property of Yy:

A\o-CS* (iterate F over V until P)
= (rec (I v) (if (Pv) v I(Fv)))V
= Y, (Al.(if (Pv) v I(Fv)))V
= (if (PV) V (Yo(Mo.(if (Pv) v I(F©)))(FV)))
— (if (PV) V (rec (I v)(if (Pv) v I(Fv)))(FV))

= (if (PV) V (iterate F over (FV) until P)).

The rest is an induction on m. Clearly, if m is 0, the invariant shows that
iterate-until yields V. Otherwise, m is greater than 0. But then (PV') is False,
and (iterate F over (FV') until P) yields Fm—Y(FV) by the inductive hypothesis.

|
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Our imperative version of iterate-until is an Idealized Scheme version of a
good compiler’s output. We refer to it as iterate!-loop:
(iterate! F over V until P) g (let (I, 1)
(let (z F(ols.1sV))

(if (Pz) z (throw I; (Fx))))).
For the correctness proof we can actually follow the strategy of Proposition 6.13.

The important part is to re-prove the invariant:
(iterate! F over V until P) = (if (PV) V (iterate! F' over V until P)).
In order to show this, we use the upper level of the A;-CS-calculus:

A\-CS * FC|[(iterate! F over V until P)]
= C[(let (I 1)
(let (z F(oly.lsV))
(if (Pz) z (throw I, (Fz)))))]
= C[(let (z F(ol.I'V))
(if (Pz) = (throw I' (Fz))))]
= C[(if (PV) V

(throw (Az.C[if (Pz) « (throw I (Fz))]) (FV)))]

At this point, we must use the assumption that (PV') either holds or doesn’t.

In the second case, the result is obvious; in the first, we need a few more steps:
A-CS ® ... = C[(throw (\z.C[if (Pz) z (throw I' (Fz))})! (FV))]
= C[(if (P(FV)) (FV)
(throw (Az.C[if (Pz) z (throw I' (Fa))])' (F(FV))))]

= C[(iterate! F over (FV) until P))
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Together, the two cases imply the above invariant. An appropriate proposition

follows:

Proposition 6.14. Let F, V, P, and m be as specified above. Then

A, -CS*¥¢ |-(iterate! F over V until P) = F"V.

The iterate!-example shares the folklore-property with the Yi-example. The
recursive version is a special case of a tail-recursive function, and good compilers
should eliminate tail-recursion in favor of goto-s and register assignments, s.e., they
should generate the imperative version of iterate!. Once again, we have verified (a

particular instance of) a well-known optimization technique.

The generator example is more complicated than the imperative iterate-until-
loop. It is an inherently imperative construct and cannot as easily benefit from
proof techniques for some functional counterpart. The equational specification of

(generator n vec) is given in Section 3.3 as
[Vi,...,Valn ~c (let (G (generator n [Vi,...,Voln)) [(G]), ..., (GDn).

An expanded implementation of the generator-form is
(generator n vec) = F(Acs.(let (go 1)
(begin
(F(0go.co M.(F(oco.go 1))))

(F(oge.co (7] vee))) ... (F(ogs.co (m, vee)))))).

A first attempt at a proof of the above statement results in the following situa-

tion. For every evaluation context C[ |, we must show that the vector

(Gl,..., Gl
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yields the above vector if G stands for the generator. Performing the calculation in
a naive way, we realize that every position of the vector function becomes the hole
of an evaluation context—from left to right, that is—and that in the end we really
obtain the desired vector. However, this method is too low-level, and it is indeed

possible to deduce a more abstract characterization.

A generalization of the generator specification directly leads to the envisioned
abstract generator theorem. Instead of considering the entire vector, we assume
that we only look at some evaluation context D[ ] with possibly free G-s in the

body of the let-expression:
(let (G (generator n [V1,...,Va]a)) D[(G)]).

The very same method now yields a more interesting result. Let us first introduce
the abbreviation

(generator n [Vi,...,Vala )k’l

for the value
)\d.}'(ack.(()\:c.begin .’F(ng.cle) e .’F(agl.ckVn))Il)),
which for some arbitrary ¢ and g and some fresh labels [ and k, is the result of
(generator n [Vi,..., Valn).
It is hereby important that ¢ stands for an arbitrary value, 2.e.,
Ap-CS*e - F(oct. M) = F(od' . M).

This follows from
A-CS® FC[F(ac* . M) = (o . M)(Az.C[z]))
= M[e* := \z.C[z]"] =

= ((od" M)(\z.C[z])) = C[F(od".M)].
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Under these provisions, we can derive the following:

A-CS * FC[(let (G (gemerator n [Vi, ..., Vala)) DI(GD])]
— C[D[GN)[G := (generator n [W,..., Valn)"]]
— C[D[(M.F (o (\z.begin F(og Vi) ... Flog V) D]
[G := (generator n [Vi, ..., Vala)*']]
—  ((oct.(\z.begin F(og'.dV1) ... F(og V)N
(Az.C[D[z]])[G := (generator n [Vi, ..., Vala)"])
— (begin
F(og.(\z.C[D[z][G := (gemerator n [Vi,..., Vala) "W). ..
F(od .(A\2.C[Dz][G := (generator n [Vi,. .., Vala)"])Vh))
—  ((0g".(\z.C[D[z][G := (generator n [Vi, ..., Valn)"' 1)} V1)
(Az.begin F(ag .W) ... F(og .&V,)))
— C[D[V]IG := (generator n [Vi,..., Vala)M]]
o := \z.begin F(og' . Va) ... F(og . Vi)
— C[DVI][G := M.F(oc* (\z.begin F(og' . Va)... Flog . Vo) 1)]]

= C[D[W][G := (generator n — 1 [V&,..., Vn]n_1)k’1]]

This last step is justified by the above observation that ¢ in the abbreviation for
the generator-value is arbitrary. As before, the transition has again led to a term

from which we can extract a variant of the starting term by undoing one of the

previous steps:

... = C[(let (G (generator n — 1 [Va, ..., Va]a—1)) D[Vi])].

Clearly, the derivation is safe:
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Proposition 6.15. Let C[ ] be an evaluation context. Then
(i) forn > 1 and G possibly free in C[ |,
A\o-CS*¢ (let (G (generator n [Vi,...,Vula)) C(G))])
= (let (G (generator n — 1 [Va,..., Vala—1)) C[W1])

(ii) for n > 1 and G not free in C[ ],

A\,-CS* t(let (G (generator n [Vi,...,Vyla)) CI(G))]) = C[Vi].

Proof Note. Part (ii) is a consequence of the proof of part (i). O
This proposition is a rather general statement about generators and can scrve

as a specification. One of its consequences is the original genecrator-equation:

Corollary 6.16.

Ap-CS*e [V, ..., Vala = (let (G (generator n [Vi,..., Vuln)) [(G]), ..., (GD)]n).

Proof. The proof is a simple calculation in the safe level of the \,-CS-calculus:
Ao-CS*e (let (G (generator n [Vi,...,Vala)) [(G)), ..., (GD)n)

= (let (G (generator n — 1 [Vo,..., Valn—1)) [V1,(G), ..., (GN)]n)

= (let (G (generator 1 [V;]1)) [V1,. .., Va—1,(GD]n)
=W,..., Val. O

This last example precisely illustrates what we mean by “[generalizing] low-level
proofs to new high-level characterizations.” A calculation in the A.-CS-calculus
would have been a perfectly valid proof for the corollary, but such a proof contains
recurring patterns. By extracting these patterns and unifying them into a general
form, we were able to prove an abstract generator theorem. The theorem itself is

probably more useful in other correctness proofs than the original specification.
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At the end of this small feasibility study, it is appropriate to crystallize the
major points. First, we have treated two different categories of examples and two
different kinds of proofs. The first we call horizontal and it comprises the ¥j-
example, the cell-example, and the generator example. For these examples, we
prove properties of and equivalence between programs, which could have been writ-
ten by an ordinary programmer. The point of this kind of proof is to show that
a program satisfies certain requirements, or that some more expressively written
or more efficient program is equivalent to some obviously correct, but in-efficient
or less expressive program. The second category is appropriately referred to as
vertical. Such a vertical proof compares two unequal programs: one is written by
a programmer, the other is generated by a compiler (or meta-programmer). The
Yi-combinator and the iterate!-loop are typical cases. Whereas the first category is
the well-known kind of correctness proof that is found in the functional world, the
second one is made possible by the introduction of imperative facilities. To some
extent, these proofs capture the meaning of compilation, and we speculate that this

is a fruitful field for future research.

Second, a comparison of the proof and programming styles for the functional and
imperative world points to an interesting trade-off. In the introductory chapter we
argued that functional programs for modeling control and state transitions contain
repetitive patterns and are less modular than their imperative counterparts. The
inverse apparently holds for correctness proofs. A proof about functional programs
can formalize most conditions about its use-context as simple constraints on its
free variables. In many cases a correctness proof for an imperative program must
account for its use-context in the form of a universal quantification over evaluation
contexts. However, we hope that the preceding examples have shown that this is not

as stringent as it appears. Furthermore, a functional reformulation of imperative
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programs also imposes an additional burden on the verification. It is not only
necessary to validate the correctness of the functionality, the proof must also show
that the representations of control and state information are treated and modified
appropriately in the rest of the program. Finally, given the choice of bad programs

with good proofs versus good programs with bad proofs, we opt for the latter.

Third and last, our set of examples is small and possibly non-representative.
Nevertheless, we believe that these examples are specialized instances of common
programming patterns, and that the theorems and proof techniques are general
enough to be carried over to related problems. This point requires an extensive
treatment of programming examples and certainly remains a topic for future re-

search.



7. Summary and Perspective

After developing a syntactic theory of control and state in imperative higher-order
programming languages, and after demonstrating the theory’s usefulness, we have
reached a first milestone in our project. It is time to look back, to compare, to

integrate, and to project. The following sections are devoted to these tasks.

7.1. Results and Limitations

The goal of our work was to extend the A.-calculus to a calculus for an imperative
higher-order programming language. Beyond higher-order functions, the envisioned
system was to include first-class access to a functional abstraction of the current
continuation and unrestricted, lexical assignment. This would ensure that we could

syntactically express a broad variety of syntactic forms.

To understand the connection between programming languages and calculi, we
studied the A\ -calculus and its relationship to AE/IswiM. We then defined an
imperative extension of AE/ISWIM, Idealized Scheme, with the two required im-
perative abstractions: F-applications for the manipulation of program control and
o-capabilities for the manipulation of program state. The programming style was
illustrated with a set of meta-programs that embedded some commonly available

195
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facilities. Based on this preliminary work, we developed a program rewriting seman-
tics for this class of languages, extended it to an equational calculus, and worked

out a set of example theorems in this theory.

The program rewriting semantics for imperative languages is an important step
towards understanding the class of imperative languages on a purely symbolic level.
With this semantics, a programmer can check the effect and result of an imperative
program by simple, algebra-like program manipulations. A program is rewritten
into another program until a value is reached. This semantics thus replaces other

models that require auxiliary means for the explanation of imperative effects.

The calculus for Idealized Scheme is an equational extension of the rewriting
system. It is a two-level system of reductions and computations. The reductions
are freely applicable term relations, the computations are program relations. This
division represents the context-sensitivity of imperative constructs. The calculus
subsumes the rewriting equations (Proposition 5.18), and it determines a set of
safe derivations that imply operational equivalences of programs (Theorem 5.27).
The advantage of the calculus over the rewriting system is that equivalence proofs
can generally rely on simple and safe reductions, but that rewriting rules are also

available when needed.

The example proofs in the preceding chapter illustrate that the mixture of
reductions and rewriting rules works well. The proofs reveal that there are some
recurring principles and proof techniques. Most of these are generalizations of well-
known counterparts in the functional world. A typical example of such a principle
is exit-induction, which in its simplest form is recursion induction. The technique
of undoing imperative, un-safe effects by inverting proof steps plays an important
role in proofs of properties of assignment-based programs. Even though the set of

examples is a good starting point, this area requires more investigation.
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The major limitation of our approach is its concentration on computational
abstractions of sequential imperative programming languages. We have neither ad-
dressed the issue of strong typing, which is a part of many available programming
languages, nor the set of fundamental abstractions of less traditional languages.
Although the typing of variables is only remotely related to computations, it is an
important part of correctness proofs: getting the types correct often eliminates the
majority of problems. Our set of fundamental abstractions covers the standard vari-
ety but neglects such concepts as quotation and un-quotation, explicit parallelism,
or real-time constraints. In order to understand interpretation and compilation,
operating systems, and real-time control within a single computational framework,

these abstractions must be incorporated in future research.

7.2. Related Work

The rewriting semantics and A,-CS-calculus constitute one possible symbolic-equa-
tional reasoning system for imperative abstractions in an extended functional lan-
guage. A different solution was worked out in two related dissertations at Stanford
University. These are Talcott’s thesis on continuations in higher-order functional
languages [70] and Mason’s thesis on the semantics of destructive first-order Lisp
[41, 42]. Both formulate reasoning systems within the framework of operational
equivalences—appropriately restricted versions of ~¢— but each has a slightly
different emphasis. Whereas Mason is concerned with an equational theory for
reasoning about operational equivalences, Talcott primarily focuses on the inten-
sional semantics of programs and its relationship to extensional semantics. Neither

works out a purely symbolic semantics or a syntactic calculus in the sense of the

Ay-CS-calculus.

Mason’s theory is closely related to the assignment fragment of A.-CS. His

programming language is first-order Lisp, but for the purpose of a comparison, this
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is only an infringement of expressiveness. The idea behind the theory is relatively

straightforward.

In principle, operational equivalence—referred to as strong isomorphism—is an
operationally defined calculus. That is, while the relation satisfies the substitutional

inference rule:

e1 =~ eg = Cle1] =~ Cleal,

it lacks an axiomatic basis. Consequently, Mason develops a set of self-evident op-
erational equivalences, which he calls axioms. The method for developing this set
is simple. Each of the equations captures the mutual interaction of two syntactic
forms. For example, the axioms for side-effects on cons-cells are appropriate modi-
fications of our cell-theorems in Proposition 6.9. The correctness of these axioms is
almost always obvious, but can also be derived from the formal definition of strong

isomorphism.

In subsequent chapters Mason explores the practicality of his axioms. He de-
velops notation and terminology for reasoning about lists, and with a “plethora
of examples,” he illustrates that the approach is well-suited for correctness proofs
of list-processing programs. The examples range from a simple eq?-program to a
structure editor for Lisp and deserve the attribute realistic. Mason also develops
some principles and proof techniques of general applicability for object-oriented
programming.

The major deficiency of this approach is its ad hoc-ness. The approach attempts
to give a finite, axiomatic definition of the safe theory that is induced by the Ap-CS-
calculus. The problem is that there is no sufficient finite axiom set for this relation.
When a correctness proof fails because of some yet-to-be-discovered axiom, the
programmer has to go back to the store machine in order to find more information.

In particular, in a world where a programmer can extend the syntactic facilities of his
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language, e.g., with macros, such a failure is likely to occur, and a syntactic calculus

should be provided so that new axiom-like characterizations may be established.

Mason’s work can be considered complementary to our own. Whereas we are
interested in the fundamental nature of programming languages and their symbolic
semantics, Mason attempts to study practical programming with and correctness
proofs in a given and fixed programming language. The importance of his work
with respect to our own is that he develops and explores a practical method for
correctness proofs. Together, this method and the A.-CS-calculus have a great
potential. The \,-CS-calculus provides the means to prove axioms in Mason’s sense
about new objects and syntactic forms for specialized application areas. These
axioms can then be used like algebraic specifications in the correctness proofs of
programs that employ the new entities. If the axioms turn out to be inadequate,

the programmer can backtrack to the calculus.

The approach of Talcott towards reasoning with continuations is more machine-
oriented. She does not search for axiom-like equations over control objects, but uses
a modified CEK-machine for performing program manipulations. By working out a
number of examples, she also develops and illustrates notation and terminology for
reasoning about special applications of control contexts. Recently, Talcott [69] has
experimented with an integration of the A,-CS-control fragment into her system.
This approach resembles our suggested integration of Mason’s method with the

assignment fragment, and it looks rather promising.

A more important aspect of Talcott’s system is the treatment of intensional
properties of computations. Such properties are considered an integral part of pro-
grams and programming. There are mathematical and computational intensional
properties. The former are captured with additional equalities and inequalities that

programs satisfy under the assumption of instantaneous computation; the latter



200

account for the consumption of time and other resources.

The analysis of mathematical properties of programs is important for semantic
considerations. A classical example is the minimality of fixpoints produced by Y.
Under an approximation ordering &, that compares the set-theoretic containment

of expressions interpreted as functions, this is formulated as

forall f, Ff = f =Y. F 5, f,

where F is a functional. Talcott gencralizes this setting and introduces a hierarchy
of equivalence and approximation relations that express various other properties of

functions and computations.

Computational resources are always scarce and it is therefore necessary to an-
alyze their usage. However, the analysis of algorithms is generally not a part of
correctness proofs. The two are integrated in Talcott’s systems by means of de-
rived programs. Derived programs transform intensional properties into extensional
ones and measure such aspects as the number of function applications, the num-
ber of primitives in use, etc. For example, the program (3§ ) and its counterpart
(if (occur0?t) 0 (E* t)) can be compared with respect to the number of tree nodes
visited by each. Talcott shows that for a broad variety of properties there is a
transformation for mapping a program to its derived program. The derived pro-
grams that compute these properties are structurally related to the original ones

and generally re-interpret some of the primitive symbols.

The \,-CS-calculus makes no attempt at an intensional theory of programs.
Yet, if the calculus is to be used for program specifications and transformations,
such a theory must become a part of the system. We return to this topic in the

next section where we discuss possible avenues of future research.
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7.3. Future Research

The answering of mathematical questions almost always leads to new questions.
This is also true for our research. We have only begun to explore the syntactic
theory of fundamental programming abstractions, yet, there is already a host of
practical implications and further theoretical questions. In the following subsec-
tions, we present some of the most obvious and interesting problems and discuss
possible solutions. The first four subsections are theoretical and address such 1s-
sues as an extended set of fundamental abstractions, the treatment of syntactic
abstractions, a systematic analysis of proof principles, and the incorporation of in-
tensional properties. The next three subscctions contain discussions of practical
proposals, namely, an exploitation of the rewriting semantics for a visual display
of program evaluation, two new implementation strategies, and the extension of
Idealized Scheme with a new fundamental abstraction. The last subsection is a list
of less developed ideas, among others the typing of the A,-CS-calculus. We hope
that this analysis somewhat clarifies the limitations of our approach and how to

overcome them.

7.8.1. Fundamental Abstractions

The design of programming languages is concerned with abstractions of recurring
patterns. The expressiveness of programming languages is proportional to the set of
facilities that it can express as syntactic abstractions. In this sense, Idealized Scheme
is highly expressive because it subsumes almost all of the traditional programming
languages, however, it is not the penultimate language. It lacks some important
fundamental abstractions such as the call-by-name parameter-passing technique,
facilities for quotation and un-quotation, and an abstraction for trial computations,

just to name a few.

In his original work on the correspondence of programming languages and cal-
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culi, Plotkin [47] shows that a call-by-name based language requires a calculus about
values with the original B-rule. More precisely, the interesting results of calculations

are values—as opposed to normal forms—but the basic axiom is the J-relation:

(Az.M)N = M[z := N] (8)

for all M and N, where N is not necessarily a value.

Plotkin also investigates the relationship between call-by-value and call-by-
name. There are two main techniques for simulating call-by-name with call-by-
value. The first relies on freezing and thawing argument expressions, i.e., the in-
troduction and application of dummy abstractions to prevent untimely evaluations.
The second is based on a transformation that employs a continuation-passing strat-
cgy. The realization of both techniques requires more than just syntactic abstrac-
tion. The same holds for the inverse direction. Hence, call-by-name is a fundamental
abstraction with regard to Idealized Scheme and should be integrated to broaden
the semantic basis. It is relatively easy to see that a S-rewriting rule for a Apame-
abstraction can fit into the rewriting system, but the open question is whether and

how the 3-relation meshes with the A.-CS-calculus.

The Lisp-quotation form poses an entirely different problem. An expression
(quote ezp) yields a value that represents the (abstract) syntactic counterpart of
ezp. The introduction of quote requires a constant set rich enough to model the
syntactic variable domain and the improper symbols. The expression domain can

be represented with lists and vectors, e.g.,

(quote (Az.y)) = (cons (quote A)[(quote z), (quote y)]).

It is immediately clear that quote maps all expressions to normal forms. Since

normal forms are effectively comparable, expressibility of quote implies a solution
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to the program comparison problem, and hence, quote cannot be an ordinary
combinator [46:32]. On the other hand, the introduction of quote as a new form

creates referentially opaque term positions [48], i.e., we can no longer conclude
(quote z) = (quote y)

from
T =y.
Reasoning in a system with quote becomes inherently context-sensitive.

From the quote-facility it is only a short step to the more general field of reifica-
tion and reflection [57). In simple terms, reification and reflection is about quotation
and un-quotation; more technically, reification and reflection refers to the capability
of a program to inspect and alter its current computational state. Thus far, these
capabilities have been studied in the framework of denotational semantics. In this
context, reification and reflection means that programs can at any time access and
change (part of) the program text, the environment, and the continuation [57, 75).!
Even though quote and its generalized relatives are incompatible with the calculus,
it is nevertheless an interesting question how known reification and reflection capa-
bilities can be expressed in the rewriting system, or what reification and reflection
means with regard to a rewriting semantics. A comparison of these capabilities in

various frameworks could lead to a more general theory of this phenomena.

Our final example of a different fundamental abstraction is trial computation.
A trial computation is a variant of McCarthy’s amb-construct [45]. It refers to the
idea that a computation is performed for a limited period instead of an indefinite

amount of time. If the computation returns a value after the allotted time, the

1 Programming with variable-value bindings as first-class objects is an interesting experiment by itself and
leads to quite different language paradigms [9, 23].
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trial is successful and the value is its result; otherwise, the trial is unsuccessful and
returns a suspended computation. A trial is useful in circumstances where there
are alternative ways to make progress on a computation, but it is unknown whether
the various sub-computations terminate. Practical examples of this kind include
operating systems for time-shared computation and search situations in artificial
intelligence programs. Omnce again, we would like to have a rewriting scmantics
and a calculus description, which could provide new insights into the nature of
these computational primitives. Whereas the first part is obviously feasible, the
second part constitutes a true problem. With a trial facility added, expressions
not only determine a value, but the time it takes to compute the value. Hence, a
calculus for trial computations must include a facility to reason about both aspects

of expressions.

7.8.2. Syntactic Abstractions

Dual to the concept of fundamental abstraction is that of syntactic abstraction.
Syntactic abstractions are those linguistic facilities that can be explained as abbre-
viations of fundamental expression patterns. They hide details of these patterns
and thus facilitate the writing and reading of programs. This, however, is contrary
to the way we treat syntactic abstractions during correctness proofs. Our informal
rule is to expand these abbreviations as far as possible. What we would really like
to have is a system where proofs are on the same level as programs. In other words,
there should be a method that seamlessly incorporates syntactic abbreviations for

Idealized Scheme into its syntactic theory.

One promising approach seems to be the following two-step procedure. First,
every syntactic abbreviation is analyzed as to how its sub-expressions are evalu-
ated. Since the expansion determines a unique sequencing for the evaluation of

sub-expressions, this defines when a hole at a sub-expression position in the abbre-
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viation can become the hole of an evaluation context. Second, once it is known
in which order a syntactic abstraction evaluates its pieces, we can try to estab-
lish general theorems about the various cases with respect to the possible set of

C-redexes.

Let us illustrate these two steps with the simple example of begin-expressions.

A begin-expression was defined with the following equation:
. df
begin My ... M, = (Az1 ... xn.2n)Mi1 ... Mp.

The rewriting semantics determines that sub-expression M; becomes the fill term
of an evaluation context after M) through M;_; are reduced to values. This can be

stated on the level of a begin-expression as:
begin Vi... Vi1 [ | Miy1... M, forl1 <1< n

are evaluation contexts. For the second step we must now analyze how a given

redex in this new class of contexts behaves. Consider the case of a o-redex, i.e.,
begin Vi ... Vi1 ((aml.J\/_f)y) M1 ... M,.

A brief look at the expansion shows that this is equivalent to
(o2’ begin Vi...Vict M M1 ... My)y.

With these new equivalences, the proof of statement (iv) in Proposition 6.9 becomes
more perspicuous:

begin (set-cell! (mk-cell :c)l y) (deref (mk-cell 2))
= (0z' begin 'y
= (02’2 )y = (o2’ y)y
= (Uscl.begin :cly)y

= begin (set-cell! (mk-cell )Y y) y.
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More examples, where we have made implicit use of this method, can be found

towards the end of the preceding chapter.

For many of the syntactic abstractions and the particular abbreviation technique
that we have employed, it seems that these two steps can be mechanized. This would
mean that a programmer can explore the axiom-like characterization of his syntactic
extensions to a language with the help of a program. Such automatically generated

theorems and rewriting rules would be of invaluable help in larger correctness proofs.

A different issue about syntactic abstractions concerns the target language.
Until now, we have used Idealized Scheme for this purpose. Another possibility is
Acs. The difference between the two is that, in addition to all Idealized Scheme
programs, Acs can express all values and intermediate program stages. Because
of this, there are syntactic abstractions that can be formulated with Acg, but not

with Idealized Scheme.

In order to illustrate the difference, we consider an abstraction called once. For
every occurrence of (once ezp) in a program, the respective expansion must ensure
that ezp is only evaluated once during the evaluation of the program. At other
times, (once ezp) is to return the first value of exp. At first glance, the solution

has something to do with an expression that memorizes its result:

(let (fr Ad.ezp) (let (v (fo 1)) (0 fe.v)(Ad.v))).

However, imagine that (once ezp) is embedded in a program like

(Az.zz)(Ad.(once ezxp))l.

If we (-reduce this expression after an expansion of once into the above expression,
exp is replicated and evaluated twice. The trick is that the expansion of a once-

expression must keep track of the sharing relation between instances of the original
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occurrence of exp. A partially evaluated version of the above expression achieves

the proper effect:

(let (v (Ad.ezp)' 1)) (c(Ad.ezp) w)(Ad.v))).

The sharing relation I, which cannot be expressed in Idealized Scheme, is precisely

what is needed to track the distribution of ezp.

Unfortunately, the extension of the semantic target language interferes with
the orthogonality of Idealized Scheme-based abstractions to reduction relations.
Acs-based syntactic abstractions can only be expanded at the beginning of an
evaluation. We nevertheless believe that this extension is an interesting issue for

further research.

7.8.8. Proof Principles, Proof Techniques, and Program Development

The preceding chapter on reasoning with the \,-CS-calculus and the comparison
of our work with that of Mason have made it clear that we must acquire more
experience on working with \,-CS. There are three main concerns: proof principles,

proof techniques, and their impact on program development.

A correctness proof for program pieces requires two major insights: what the
theorem should be and how the proof should proceed. Guidelines for answering
these questions are proof principles. Two of these we have identified above, u.e.,
exit-induction and object-axioms about mutual effects. However, we believe that
there are many more interesting principles. For example, the generalized generator-
theorem (Proposition 6.15) indicates that there is a connection between objects and
immediate evaluations within a given scope. We are hopeful that this connection
can be abstracted into a general principle for higher-order objects. With respect to
control effects and first-class control contexts, we must experiment with F, explore

its usefulness in different situations, and derive some related proof principles.
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The call for more proof techniques is related to the one for proof principles.
Once it is decided what to prove and how to prove it, some general term manip-
ulation techniques become important. One example of this is the expansion of
abbreviations—which we decided to avoid; another is the inversion of proof steps
as described in Proposition 6.7. Predictions on this field are difficult, but in any

case, such techniques should explicitly be observed and collected.

Finally, as we have mentioned above in conjunction with exit-induction, the
application of proof principles to program design is highly important. Few pro-
grams are actually worth proving correct, but if programs are built under guidance
of some proof principle, the likelihood that they are correct improves. A good ex-
ample of this is data recursion. If a recursive program considers all possible cases
of the inductive data structure definition, it has a good chance of being correct.
Furthermore, if every recursive function invocations works on proper sub-pieces of
a data structure, we can expect that the function terminates. As we have seen
in Section 6.1, this also works for exit-induction. Other exception-like situations

should be inspected for further principles.

A similar case can be built for the implementation of abstract data types versus
abstract data objects. The theory of abstract data types has gotten to a point
where such systems can automatically derive efficient implementations of types:
see the development of the language SETL [55]. This should also be possible for
abstract data objects like cells. It would be interesting to find out to what extent
an equational specification determines an implementation, and whether there is an

algorithm for completing and/or enhancing such specifications.

7.8.4. Calculi for Intensions

The most important application of program calculi is the domain of compilation

or, more generally, of program transformation. Program transformations rely on



209
observational equivalences between expressions and implementation-dependent in-
equivalences. The \,-CS-calculus is a good basis for establishing equivalences, but
it lacks capabilities for deriving inequalities. Talcott’s work indicates how these

aspects could be combined into a single system.

There are two sides to the problem: mathematical and computational proper-
ties. Talcott has shown that the latter can be integrated into extensional relation-
ships via derived programs. This strategy should also work for the calculus. How-
ever, since many of the derived properties depend on attributes of the underlying
evaluation mechanism, the approach must be elaborated and possibly parameter-
ized over evaluation systems. This also suggests that a set of calculi for different
intensions, i.e., theories of inequalities with respect to a given intension, may be a

possible alternative.

Mathematical intensions in Talcott’s system are expressed with approximation
orderings that are based on a CEK-like machine. The maximal approximation

relation EL is a symmetric half of ~cpk:

~opr=K, N =, -

In order to determine operational approximation, Talcott establishes some axiom-
like theorems. This is similar to Mason’s approach for reasoning with strong iso-
morphism. Given this parallel situation, we wonder whether there is a syntactic
counterpart to operational approximation that corresponds to a calculus. In other

words, we are looking for a syntactic relation &, such that
MC, N=>ME, N

Provided such calculi exist, it should be possible, for example, to prove syntactically

the minimality of Y,- and Yi-fixpoints.
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7.8.5. Feedback Information for Language Design

Originally, the control fragment of the A, -CS-calculus was designed around Scheme’s
control operation call-with-current-continuation, abbreviated call/cc. As explained
in Section 3.2, call/cc applies its argument to the continuation of the entire appli-
cation. The difference between the continuation and the functional abstraction of
the continuation is that the former eliminates the continuation of its invocation.
Furthermore, call/cc does not give its argument total control over the continuation
since the continuation of the call/cc-application remains the default continuation
for the evaluation of the call/cc-argument. This leads to rather baroque reductions
and computations. Two different sets of relations are required. The first captures

the behavior of an abort-application (AM ):

(AM) > M,
V(AM) — (AM),

(AMIN — (AM);

the second group resembles the F-relations and explains how call/cc provides its

argument with an abstraction of its control context:

(call/cc M) > M(Az.Azx),
V(call/cc M) — (call/cc Ak.V(M(Am.A(k(Vm)))),

(call/cc M)N — (call/cc Ak.(M(Am. A(k(mN)))N)).
The A-applications on the right-hand sides are necessary to ensure that all contin-
uation objects immediately eliminate their control contexts upon application.

The second group of reductions contains some regular patterns. The most out-

standing is the replication of the call/cc-context, i.e., the term N. If we omit the
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occurrence that is outside of the continuation, we obtain simpler reductions:
(C M)p> M(Az.Az),
V(C M) — (C Ak.(M(Am.A(k(Vm)))),
(€ M)N — (C Me.(M(Am.A(k(mN)))),

and we can still implement call/cc as a syntactic abstraction:
(call/cc M) = C(Ak.kE(ME)).
Unlike call/cc, C can express A-applications:
(AM) = C(Ad.M) where d & FV(M).
The inverse relationship is:

(€ M) = (call/cc (\k.AME))).

Although the introduction of C is an essential improvement for the axiom sys-
tem, the new reductions and the computation still share a common pattern: the
occurrence of the form (A...) = C(Ad....). It is easy to see that an omission
of these additional C-applications leads to the F-relations in their current form.
Given F’s higher degree of expressiveness and the simplicity of the axioms, F is an
improvement for a semantic meta-language like Scheme.

What we have just experienced is an instance of well-known law: a design pro-
cess provides feedback information on the design object. In our case, the design of
a calculus for control contexts has revealed that call/cc is not the most expressive
fundamental control abstraction. Idealized Scheme is the product of a first itera-
tion of the calculus design process. Since F replaces call/cc, we feel justified calling
the result Scheme. There is, however, another problem that plagues all three con-
trol calculi and whose solution necessitates the introduction of a new, fundamental

control construct.
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The problem that we refer to is the division of the calculi into two levels. A
possible and obvious fix is to introduce a top-level marker # such that the root of
a program is uniquely identified. Then, the control computation relation becomes

a true reduction:
(#(FM)) — (# (M(rz.2))).

Unfortunately, this solution eliminates the division by pushing it into the language
syntax. However, the new syntactic category of #-applications can be merged into
the set of expressions with a relatively simple move. Instead of allowing only one #-
application at the root of a term, we introduce the #-application as a new first-class

construct and interpret it as a fundamental programming abstraction.

The new grammar for the control calculus is a minor extension of the original:

M= x| Ae.M | MN | FM | #M.

Programs are identified as the set of closed #-applications. Since programs should
reduce to values, we need an additional reduction relation. Once the #-argument

is reduced to a value, the entire application can return this value:

(#V) — V  if Vis a value.

If we now assume that an interactive CEK-machine automatically supplies the #-

part to a program, a dialogue with the machine looks like
# M
Vi
# M

Va
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In other words, for the control fragment # corresponds to the prompt of an inter-
active machine. Our construction thus interprets the prompt as a program control
delimiter and allows a programmer to define a limited control domain whenever it
is appropriate.

The true challenge behind the use of the feedback information is the seamless
incorporation into the original language semantics and the associated program-
ming paradigms. For #-applications this does not seem difficult. Given that a
#-application marks the extent to which a program can manipulate its control con-
text, it is implementable with a stack marker and a knowledgeable stack copy func-
tion. A #-application also has some obvious applications in search-and-backtrack
situations, where a part of the control context determines the next result. Further-
more, since #-applications delimit the scope of control operations, they are also
well-suited for situations when a program must constrain dynamic control. For
example, a program that works on files is generally responsible for opening and
closing the file. In a world without #-applications this is hard to enforce because
control jumps may get around the close operation [28]. With a #-application, the

respective code becomes straightforward:

(begin (open file)(# M)(close file)),

where M is code for the manipulation of file. We believe that this work and similar
investigations for the assignment calculus will yield additional insights into the

design of programming languages.

7.8.6. New Implementation Strategies for Imperative Languages

An equational semantics not only provides information on the structure of program-
ming languages, but also on their implementation. One of the first to realize this for

the compilation of AE/ISWIM was Burge [7]. He used Curry’s [12, 13] A-abstraction
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algorithm for mapping A-expressions into combinator expressions to capture the
essence of compilation. The translation eliminates bound variables, the predom-
inant non-machine related notion. An evaluation in combinatory logic simulates
parts of constant folding and extraction. The rest of a compilation process is the
optimization phase, which can also be interpreted as an exploitation of combinatory

equivalences.

For a long time, an application of the same technique to the compilation process
of imperative languages has been considered impossible, the major obstacle being
the lack of an appropriate equational calculus. Instead, people have tried to exploit
various kinds of denotational semantics for the specification of code generation (3,
53, 73]. This, however, has the disadvantage that the strategy for writing deno-
tational semantics predetermines many parameters of a translation and evaluation
scheme. A direct translation from A.-CS to a suitable extension of combinatory
logic would avoid this predetermination. It would concentrate on the essence of
compilation and would leave the other parameters open. In particular, the choice

of machine architecture and appropriate optimization techniques would still be un-

decided.

One of the open choices is the one of evaluating programs in a sequential or
parallel manner. The reduction and computation system defines an evaluation func-
tion for Idealized Scheme that is extensionally equivalent to the CESK-evaluation
function, but is intensionally a parallel system. This can best be seen from the

reformulation of the standard evaluation function in Definition 7.1.

This function definition reveals that practically all applications, that is, the prin-
cipal evaluation vehicles, can evaluate their sub-expressions in parallel. The syn-
chronization of control- and side-effects happens naturally through the bubbling-up

movement of the redexes. The only exception occurs when an F-application be-
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Definition 7.1: The Fval-function

Let U and V range over values; S over semi-values, that is, -, D-, o-, and \-
applications (whose variables are in Vars); M, N, P, and @ over arbitrary terms;
and X over labeled values. Then the Eval-function is defined as:

Eval(N[z := V")) if seval(M) = (Az.N)V
Eval(N(Az.z)) if seval(M) = (FN)

Eval(M) = { Eval(N[e" :=V"])  if seval(M) = (cU".N)V
Eval(NV[e" := V"]) if seval(M) = (DNV")
seval(M) otherwise.

where seval is defined in four inductive clauses:
seval(V) =V and seval(S) = S;
and, if seval(M) = U and sevel(N) =V, then

seval(Plz :=V]) iU = Iz.P, x € Van

seval(MN) = { vuv otherwise;

and, if seval(M) = U and seval(N) = S then

(\e.UP)V if § = (\z.P)V
| FXe.P(A.k(Uv)) f S=FP
seval(MN) = ¢ oy ypyy if S = (cX.P)V

D (\WwU(Pv)X) if S =DPX;

and, finally, if seval(M) = S, then

(\z.PN)V it $ = (\e.P)V
| FaePOfR(N)) i S =FP
seva(MN) =1 (o x PNy i 5 = (6 X.P)V
D (MAv.PuN)X if S=DPX.

comes the function part of an application. This indicates that the program may

never want to evaluate the argument part of an application, and that an early eval-
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uation of this argument may be a waste of computational resources. The situation
corresponds to parallel evaluations in a call-by-name world. It constitutes the only

case of speculative parallelism in such a system.

Another possibility for parallel evaluations is based on Corollary 5.22. According
to this corollary we can use any evaluation strategy for a program if we are only
interested in observable values. One conceivable strategy is to evaluate all existing
reduction and computation redexes simultaneously. Naturally, this is a rather nalve
and speculative scheme, but it may prove successful if the bubble movements can
be contained as much as possible. Then, the implementation relies on advances in
the field of so-called functional architectures. If such architectures ever realize their
promised potential, it will be almost straightforward to extend the approach to the

implementation of imperative higher-order languages.

7.8.7. Dynamic stepping

The rewriting semantics gives rise to another practical application of our work. It
provides the theoretical underpinning for a dynamic stepper or debugger. Cur-
rently, such tools work on the static program text, leaving it to the programmer to
imagine the dynamic process. With the rewriting semantics, this can be changed.
The displayed program text can represent the entire machine state. A division be-
tween current redex and current context immediately clarifies the control aspects
of a program, variable contents can be hidden until needed, sharing relationships
displayed when required. There is no need to know the structure of the underlying
machine, the organization of the run-time stack, the allocation scheme for registers,

or similar things.

Since the underlying language is powerful enough to express traditional pro-
gramming constructs, such a tool is language independent and can be tailored to-

wards particular applications. In order to preserve the syntactic level of expressive-
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ness, an addition of syntactic abstractions requires an extension of the rewriting
rules. This is related to the problem addressed above in Subsection 7.3.2, and we

hope that the discussed solution can be integrated into a dynamic stepper.

We perceive two major application areas for a dynamic stepper. On one hand,
it constitutes a promising learning tool for understanding and experimenting with
programs. It is operational enough to communicate the appropriate notions, but it
is also machine-independent enough to teach abstract principles. On the other hand,
a dynamic stepper may be the right debugging tool for professional programmers.
In any case, the dynamic stepper is another example where our theoretical work

may yield a practical result.

7.8.8. Miscellaneous

Beyond these problems, there is a series of interesting questions that we want to
mention without further discussion. The first is an expansion on the topics of syn-
tactic abstractions and modeling semantics. The traditional A-calculus has become
the standard target language for denotational semantics. We suggest investigat-
ing the use of A,-CS-calculus for this role and expect that this may offer some

advantages.

This consideration immediately raises concerns about a (direct) mathematical
model for the A,-CS-calculus. It is not clear to us what it really means to have such
a model, but given the insight models have provided for the classical A-calculus, it
is certainly an interesting problem.

A related matter is the construction of a typed A,-CS-calculus. The typed
\-calculus was introduced and studied in order to circumvent the problems of self-
application. A typed Ap-CS-calculus would avoid self-references and perhaps would

shed some light on the problem of types and type inference for imperative programs.

Finally, there is the question of other reasoning systems for imperative program-
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ming languages. Those too, define a language semantics and provide a framework
for inspecting and verifying programs. Noticeably the work on Floyd-Hoare logics
has received a great deal of attention. The relationship to this work is not clear,

but merits consideration.

7.4. Concluding Remarks

We have reached the end of our endeavor. Our contribution to the study of pro-
gramming languages should be perceived as an attempt to reconcile two diverging
currents in the programming language community. The syntactic theory of control
and state in imperative higher-order programming languages combines the best of
both worlds: capabilities for expressing control and state transitions and a symbolic
semantics for direct program manipulations. The beneficiary is the programmer who
can succinctly express his thoughts about problem solutions and still reason on the
level of program equivalences. The contribution does not answer all open questions,
indeed it opens a series of new ones. But, we sincerely hope that this is only the
end of a first step, and we expect that a further exploration of the Ap-CS-calculus

will yield more fruitful insights into the nature of computation.
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