
RtpTransceivers
at TPAC 2015

What’s been added

A 1:1 mapping between an RtpTransceiver, m-line, RtpSender, and RtpReceiver

● PeerConnection.addTransceiver(“video”,

 {send: bool, receive: bool})

● PeerConnection.addTransceiver(track)

● PeerConnection.ontrack has a .transceiver

● PeerConnection.getTransceivers()

● RtpTransceiver.mid, .sender, .receiver, .stopped
○ .sender and .receiver are never null/undefined, even if {send: false}.

● RtpTransceiver.stop()
○ Turns the m-line into “port 0”

What’s been removed or changed
● offerToRecieveAudio and offerToReceiveVideo are gone

○ Replaced with PeerConnection.addTransceiver(kind, {send: false, receive: true})

● addTrack may activate an RtpSender rather than adding one
○ And add one otherwise

● removeTrack deactivates an RtpSender rather than removing one
○ Transceiver are never removed (except perhaps because of rollback… TBD)

Warmup Example
var track = null;

var sender = pc.addTransceiver(“video”).sender;

var reallyAnswered = false;

getUserMedia(...).then(stream => {

 track = stream.getVideoTracks()[0];

 if (reallyAnswered) {

 sender.replaceTrack(track);

 }

});

pc.createOffer().then(pc.setLocalDescription).then(signalOffer).then(answer => {

 pc.setRemoteDescription(answer);

 // At this point, ICE, DTLS, and RTP are all warming up.

});

onReallyAnswered = function() {

 reallyAnswered = true;

 if (track) {

 sender.replaceTrack(track);

 }

};

Media before signalling example
var audio = pc.addTransceiver(“audio”);

var video = pc.addTransceiver(“video”);

videoTag.srcObject = new MediaStream([audio.track, video.track]);

// We are ready to receive media even before an answer comes back

pc.createOffer().then(pc.setLocalDescription);

Remaining Questions to answer in the API

● When do we reuse an RtpSender?
○ Proposed rule (in the spec already): Only “reuse” an RtpSender that has never been used before.

○ More details in later slides

● Should we add an API to activate an RtpSender?
○ More details on later slides

● How do we handle rollback?
○

Question 1: When does addTrack reuse a sender?

This question comes up because we want the following situation to “just work”:

Offerer:

pc.addTrack(...);

pc.createOffer(...);

Answerer:

pc.setRemoteDescription(offer);

pc.addTrack(...); // Attach track to sender created by setRemoteDescription

pc.createAnswer(...);

One sendrecv m-line. No re-offer needed.

Option A: Reuse sender if created by setRemoteDescription

Pros:

● Satisfies the common scenario explained on the previous slide.

Cons:

● Calling addTrack twice would re-use the same transceiver twice, so we need to check

if the track is “active” or not.

Option B: Reuse sender if it’s currently “inactive”
Pros:

● Satisfies the common scenario

Cons:

● If you call addTrack, then removeTrack, then addTrack, the remote
RtpReceiver will be reused, which means the remote track should be also,
which isn’t what’s intended by the sender.

● In some situations, it will cause an m-line to be reused too much, such as pc.
addTransceiver(kind, {receive: true, send: false});

pc.addTrack(track);

(Normally you’d expect this to mean the offerer can receive 2)

Option C: Reuse sender if it has NEVER been active
Pros:

● Satisfies the common scenario
● Avoids pitfalls of the previous two methods.

Cons:

● Rule is a little bit more complex.

Recommended! And already in the spec.

Question 2: API for activating a sender?

This is relevant to the “early warmup” scenario.

offerer:
pc.addTransceiver(kind);

pc.createOffer();

answerer:

pc.setLocalDescription(offer);

// A seperate m-line requires a re-offer!

var sender = pc.addTransceiver(“video”);

// Can’t call pc.addTrack because we don’t have a track yet.

getUserMedia(...).then(function(stream) {

 sender.replaceTrack(stream.getVideoTracks()[0]);

});

Option A: Add RtpSender.activate()
pc.ontrack = function(e) {

 e.transceiver.sender.activate();

 getUserMedia(...).then(function(stream) {

 e.transceiver.sender.replaceTrack(track);

 });

}

Pros:

● Gives flexible control to the app.

Cons:

● May require renegotiation (when nothing else on RtpSender does)

● We wanted to keep SDP-isms in RtpTransceiver, not RtpSender.

Option B: Add RtpTransceiver.activateSender()
pc.ontrack = function(e) {

 e.transceiver.activateSender();

 getUserMedia(...).then(function(stream) {

 e.transceiver.sender.replaceTrack(track);

 });

}

Pros:

● Gives flexible control to the app.

● Doesn’t mess up RtpSender with SDP-isms and renegotiation

Cons:

● Is kind of ugly and makes us want to add activateReceiver, deactivateSender, ...

Option C: Allow replaceTrack to activate a sender
pc.ontrack = function(e) {

 e.transceiver.sender.replaceTrack(null);

 getUserMedia(...).then(function(stream) {

 e.transceiver.sender.replaceTrack(track);

 });

}

Pros:

● No new API surface
● Doesn’t mess up RtpSender with SDP-isms and renegotiation

Cons:

● Really kind of ugly and implicit

Question 3: Rollback transceiver created by setRemoteDescription

pc.setRemoteDescription(offer); // Transceiver created

pc.addTrack(track); // Track attached to sender

videoTag.srcObject = new Stream([pc.getReceivers()[0].track)]);

Now what happens to that transceiver if we do a rollback?

Is it in pc.getTransceivers()?

Option A: Never remove transceivers in a rollback
Pros:

● Simple.
● No problems with use of transceiver before rollback.

Cons:

● This means that a rollback, even in the simplest cases, doesn’t restore to a
pre-setRemoteDescription state.

● Transceivers might pile up with lots of rollbacks.

Option B: Always remove transceivers in a rollback
Pros:

● Simple.
● Transceivers won’t pile up.

Cons:

● Any operations that affected the transceiver (such as addTrack, in the
previous example) will be thrown away.

Option C: Only remove if unmodified since setRemoteDescription

Pros:

● Addresses both the common use cases and the corner cases.

Cons:

● More complex.

Option D: Don’t support rollback of remote offer
Pros:

● Really simple: Avoids the problem altogether.

Cons:

● Apps can no longer rollback remote offers.

But… what’s the use case of rolling back a remote offer anyway?

