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ABSTRACT
A significant fraction of data in cloud storage is rarely accessed,
referred to as cold data. Accurately identifying and efficiently man-
aging cold data on cost-effective storages is one of the major chal-
lenges for cloud providers, which balances between reducing the
cost and improving the system performance. To this end, we pro-
pose SA-LSM to use (S)urvival (A)nalysis for Log-Structure Merge
Tree (LSM-tree) key-value (KV) stores. Conventionally, the data
layout of LSM-tree is determined jointly by the write and the com-
paction operations. However, this process by default does not fully
utilize the access information of data records, leading to a subopti-
mal data layout that negatively impacts the system performance.
SA-LSM utilizes the survival analysis, a statistical learning algo-
rithm commonly used in biostatistics, to optimize the data layout.

When put into perspective of LSM-tree with proper adoptions,
SA-LSM can accurately predict cold data using the historical se-
mantic information and access traces. As a concrete realization, we
implement our proposal in X-Engine, a commercial-strength open-
source LSM-tree storage engine. To make the deployment more
flexible, we also design a non-intrusive architecture that offloads
CPU-intensive work, e.g., model training and inference, to an exter-
nal service. Extensive experiments on real-world workloads show
that it can decrease the tail latency by up to 78.9% compared to the
state-of-the-art techniques. The generality of this approach and the
significant performance improvement show great potentials in a
variety of related applications.
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1 INTRODUCTION
The amount of data keeps growing at an unprecedented rate [5].
Driven by the trend to host data services on cloud platforms, re-
ducing the storage cost on cloud databases has become one of
the primary challenges for cloud vendors. This challenge is more
pronounced for OLTP databases that are more sensitive to laten-
cies since they often serve mission-critical tasks such as online
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e-commerce, instant messaging and real-time gaming. Figure 1 re-
ports the prices of three typical Elastic Container Service (ECS)
configurations at Alibaba Cloud. As can been seen, depending on
the storage types, the lower-latency media can even account for
the lion’s share of the total cost, especially in presence of the ever
growing data volume.
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Figure 1: Cost to host a database instance for 1 year using dif-
ferent storage media on Alibaba Cloud ECS ecs.hfg6.8xlarge
instance with 2 TiB storage [1]; Enhanced SSD (ESSD) storage
cost can be more than 2× the cost of CPU and memory

To reduce the storage cost, LSM-tree has become an increasingly
popular architecture. It introduces multiple layers for heteroge-
neous storages [8, 46, 59], where upper layers are mapped to fast
storages, e.g., Solid State Drive (SSD), and lower layers to slow
storages, e.g., Hard Disk Drive (HDD). One key component therein
is the compaction strategy that determines how to dynamically
allocate and move data records across different layers.

Conventionally, the data layout of LSM-tree is determined jointly
by the write and the compaction operations, where a background
compaction operation periodically merges the data records onto
the persistent storage to ameliorate the read/write and space ampli-
fications [42]. However, this process by default does not fully utilize
the access information of data records, leading to a suboptimal data
layout that negatively impacts the system performance. This effect
is even more pronounced as different LSM layers are mapped to
heterogeneous storages. To this end, we design SA-LSM to enhance
the compaction strategy, based on survival analysis [32], a statisti-
cal learning algorithm commonly used in biostatistics, to optimize
the data layout in this process.

We compare the performance using the default compaction strat-
egy and SA-LSM, by replaying a 3-day representative workload
of Alibaba e-commerce business. The heterogeneous storages are
configured with layers 𝐿0 and 𝐿1 residing on ESSD and layer 𝐿2
on HDD. To compare with the performance limit, we build an
ideal baseline using the homogeneous fast ESSD storages for all
three layers. As shown in Figure 2, the heterogeneous storage is
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Figure 2: Compaction strategy severely impacts the system
performance of LSM-tree; the default strategy drastically de-
teriorates the performance while SA-LSM significantly nar-
rows the gap between the heterogeneous storages and the
ideal baseline using only homogeneous fast storages; hetero-
geneous storages are cost efficient but only effective if cold
and hot data can be well separated

dramatically slower than the homogeneous one under the default
compaction strategy. Specifically, the average latency of the former
is 130% higher than that of the latter, with the 99-th percentile
latency being even 7 times longer. Notably, after applying SA-LSM,
the system performance with heterogeneous storage is almost close
to the best achievable limit using homogeneous storages, as it can
better restructure the data layout.
Motivation. To reduce operational cost, it is important to optimize
the data layout on different LSM-tree layers. A typical three-tier
storage hierarchy uses SSD/DRAM to build a low-latency tier, SATA
HDD as a high-density capacity tier, and tape libraries as a low-cost
archival tier [50]. To improve the system performance, accurately
identifying cold data is critical in optimizing the compaction strat-
egy. However, most existing solutions are relatively simple on a
coarse granularity without fully utilizing the information from the
collected traces, which limit the system performance. For example,
Cassandra [35] relies on a round-robin strategy and RocksDB [19]
uses a random strategy. Interestingly, traditional cache eviction poli-
cies, e.g., LRU, have been employed for compactions by Mutant [59]
and PrismDB [46]. Although other strategies with various heuris-
tics could be applied [30, 41], we argue that a rigorous analytic
framework that fully utilizes the historical semantic information
and access traces can further improve the system performance in a
more robust manner.

But why survival analysis? Firstly, for many data intensive ap-
plications, caching systems are presented with a challenge that the
popularities and statistics of the data items are time-varying, with
a significant fraction becoming cold over time and thus very rarely
accessed. Also, new data are dynamically generated, often with
time-to-live constraints. In these cases, even though the observed
training data seem abundant, in fact a small data challenge arises
in a big data setting. Specifically, only the most recent, and thus
relatively scarce, data access information is used to train the model,
which requires to be updated periodically. Secondly, due to the
dynamic and heterogeneous access patterns of different data tables,
we find that maintaining a dedicated and simple survival model
for each table is better than a single and complex model shared
by all tables. The details are presented in Subsection 4.2.2. Since a
model is only for one table, the training data are split among the
models, which are further reduced. Lastly, the time series of the

observations naturally incur right censoring [32], which means
future events are known to be beyond an observation window but
are unknown by how much. Survival analysis can properly address
this challenge; see Figure 14 for the fractions of the censored data
in real workloads. In Section 4.2.3, we conduct ablation studies
by varying the observation window sizes to change the fraction
of censored data, which demonstrate the superior performance of
SA-LSM for time-varying, dynamic, and heterogeneous caching
applications.
Metrics. To measure the quality of cold data identification and
evaluate the system performance for different algorithms, we in-
troduce the cold data false identification rate (cold_fir) based on
LSM-tree storage characteristics and also adopt the commonly used
c-index [32] in the survival analysis literature. The former (cold_fir))
computes the fraction of the misclassified cold data with respect to
the total amount of data to be migrated to a cold storage tier, which
is formally defined in equation (6). The latter (c-index) is used to
evaluate the quality of a survival model, which is formally defined
in equation (5).
Challenges. To identify cold data and optimize their layout in an
LSM-tree storage present four challenges.
Granularity to separate cold and hot data:Most existing solutions [8,
35, 59] separate cold and hot data using an SSTable as a unit, which
cannot distinguish individual data records in the same SSTable.
Figure 3 demonstrates that the data access frequencies within the
same SSTable change over time at a record granularity. Therefore,
simply compacting the whole data on an SSTable can incur unex-
pected accesses to the cold tiers since some hot data records may
be scattered therein.
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Figure 3: Popularities (access frequencies) for individual data
records (defined by the number of accesses per day) for two
real-world workloads (order and logistics); each row repre-
sents a record evolving over time with a color depicting the
access frequencies on a logarithm scale; the heat map dis-
closes a dynamic and complex access pattern in an SSTable

Censored data due to an observation window: The key to identify cold
data is to infer the next access time based on the past access events.
There is an important concept borrowed from survival analysis
on censored time-to-event data, since the data accesses may not
exist within the observation window. Without properly handling
these censored events, inaccuracy and bias could be incurred in
the prediction. In this regard, survival analysis is a convenient tool
to address this issue. To cast the cold data prediction as a survival
model is not necessarily a straightforward task. We carefully de-
sign the feature vector from the recurrent access traces, define the
events to avoid unnecessary noise, provide the associated labels
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for the censored data, and construct the training data by random
sampling to avoid bias. Note that we train a dedicated model for
each individual workload, i.e., the requests for the same data table,
on a refined granularity.
Non-intrusive compaction service deployment: Unlike traditional
eviction policies, e.g., LRU, LFU and LIRS, that are light-weight,
a compaction strategy based on computation intensive learning
algorithms could consume large CPU/memory resources and incur
contentions. To this end, we design and implement a non-intrusive
method to offload the model training and inference work to an ex-
ternal service. This external service also brings more opportunities
and flexibility, e.g., testing other advanced learning algorithms and
jointly utilizing the traces from multiple similar workloads.
Targeting workloads: For modern applications, e.g., e-commerce,
instant messaging and user generated content (UGC) [53], the pop-
ularities of the data records often keep decreasing over time. We call
these workloads archival write and point read intensive (AWPI), as
an extension to WPI workload [16]. The characteristics of AWPI
workloads make LSM-tree on heterogeneous storage an ideal can-
didate to archive cold data. To this end, we implement an detection
algorithm on the external service, which can adaptively enable
SA-LSM to proactively conduct compactions depending on whether
the workload is AWPI or not.
Summary of contributions:

• We revisit the current design of LSM-tree for heterogeneous
storages and conceptually characterize the systems in terms
of data granularity and compaction algorithms.

• We design SA-LSM, based on survival analysis, to identify
the cold data as a time-to-event prediction problem with
censored data. This data-driven approach demonstrates
great potentials compared to traditional strategies.

• We implement a lightweight communication protocol be-
tween the SA-LSM external service and the database kernel.
This decoupled architecture mitigates the resource con-
tentions caused by the learning algorithms.

We implement SA-LSM for X-Engine [28], a commercial-strength
open-source LSM-tree storage. Extensive experiments on real-world
workloads show that it can decrease the tail latency by ranging
from 31.5% to 78.9%, compared to the state-of-the-art solutions.
The generality of this approach and the significantly improved
performance show great potentials in related applications.

The rest of this paper is organized as follows. Section 2 discusses
the design considerations of LSM-tree on heterogeneous storages
and explains why survival analysis is suitable in this scenario. Sec-
tion 3 introduces SA-LSM, including the cold data prediction algo-
rithm and the system design for the proactive compaction. We use
several representative workloads to benchmark our design. The
experiments along with the corresponding analysis are covered in
Section 4. The related work is presented in Section 5, followed by a
conclusion in Section 6.

2 MARRIAGE BETWEEN LSM-TREE AND
SURVIVAL ANALYSIS

In this section, we first describe the characteristics and challenges
to manage cold data on LSM-tree based storages. Then, we discuss
how to cast the cold data prediction problem as a survival model.

2.1 Revisit the current LSM-tree Design
2.1.1 LSM-tree Preliminaries. LSM-tree was designed as an index
data structure for high write throughput and low storage cost [42].
Many modern databases use LSM-tree as the backend storage en-
gine [21, 28], including Dynamo [17] at Amazon, Cassandra [35] at
Apache, LevelDB [21] at Google, RocksDB [19] at Facebook and
X-Engine [28] at Alibaba. LSM-tree batches the updates to the
persistent storage as sorted and compact runs (e.g., SSTable in
RocksDB [19]). It organizes these runs onto layers of exponentially
increasing capacities, with hot data on the lower layers.

The typical LSM-tree architecture is illustrated in Figure 4. Data
is first written to memory, stored in MemTables, often using in-
memory skip lists [44]. Once aMemTable becomes full, it is frozen as
immutable, waiting to be flushed as a Sorted String Table (SSTable).
An SSTable is a file on disk that contains sorted variable-sized key-
value entries that are partitioned into a sequence of data blocks.
SST files are stored on multiple levels, namely 𝐿0, 𝐿1 · · · , typically
with exponentially increasing capacities. Once a level reaches a pre-
configured threshold for the total data size, a compaction operation
is triggered. During compaction, SST files are merged according to
keys in the next level.

Mutable
Memtable

Immutable
Memtable

Immutable
Memtable

L0

L1

L2

compaction

SSTable

memory

disk

Figure 4: LSM-tree architecture

2.1.2 Challenges for heterogeneous storages. Heterogeneous stor-
ages are used to reduce cost, for which however system performance
metrics, i.e., the database latencies, are inevitable to be traded off.
Conceptually there exists a Pareto frontier when balancing between
the above two conflicting objectives. This Pareto frontier character-
izes an ideal scenario where an oracle can predictively pin the data
that are going to be accessed in the fast storage and only migrate
the data that will be barely accessed in the future to the slow stor-
age. Thus there is always a gap between the Pareto frontier and the
performance of realistic systems. In practice, to better capture the
trace characteristic and identify cold data at a refined granularity,
the adopted algorithms usually become more complex. Figure 5
conceptually compares SA-LSM with other commonly used solu-
tions, with the Pareto frontier as the limiting boundary. Note that
this figure is supported by extensive experiments in Section 4, as
RocksDB [8], Mutant [59] and PrismaDB [46] are based on random,
exponential smoothing and LRU algorithms, respectively.

Identifying cold data can help reduce read amplification, a com-
mon problem for LSM-tree storages, which is defined as a read
request accessing multiple layers. To bound the read amplification,
some studies have introduced auxiliary data structures to eliminate
unnecessary disk accesses, e.g., SST fence pointers and bloom fil-
ters [19, 21]. In addition, caching schemes efficient to improve LSM-
tree read performance, e.g., block cache and row cache [19, 35, 56].
There also exist works that provide a read-aware LSM-tree, which
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Table 1: Design choices for LSM-tree on heterogeneous storage

Granularity Separation algorithm Promotion Demotion Trigger time Integration with DB kernel
RocksDB [19] SSTable Random No Yes Compaction Coupled
Mutant [59] SSTable Exponential smoothing Yes Yes Compaction Coupled
PrismDB [46] Record LRU Yes Yes Compaction Coupled
SA-LSM Record Survival analysis No Yes Active trigger Decoupled

Promotion is the process of moving data from lower layers to higher layers; demotion represents the opposite direction.
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Figure 5: Compare SA-LSM and other algorithms for LSM-
tree with heterogeneous storages
considers read patterns when reshaping the LSM-tree [46, 59]. From
this perspective , SA-LSM can contribute by better optimizing the
data layout, which is mainly determined by the write operations
and the compaction.

The LSM-tree is very efficient for write operations due to the
deferred batch updates on persistent storages. By default, a com-
paction is triggered when the data size of a level reaches a prede-
fined threshold. However, the layered persistent storages naturally
increases the read path if the target data resides in the bottom
layers. In this case, mapping the bottom layers to slow storages
deteriorates the system performance. To select the right data to be
migrated onto the slow storage, Mutant [59] assigns SSTables to
heterogeneous storage based on the SSTable temperature, which is
defined as the access frequencies with exponential smoothing in
the past epoch divided by the SSTable size. Thus, Mutant does not
distinguish cold and hot data within an SSTable and the selected
data keys within an SSTable are only dependent on writes. To this
end, PrismDB [46] observes that an SSTable contains data records
of different popularities. To refine the prediction granularity on the
data records, it uses a lightweight mechanism based on the LRU
algorithm and introduces pinned compaction to allocate the records
onto different levels. We summarize the techniques used in these
systems in Table 1.

2.2 Using Survival Analysis to Archive Data
Survival analysis is commonly used in clinical studies, where the
time-to-event prediction is usually on the occurrence of a naturally
observed end point of interest, such as relapse or death, for individ-
ual participants, e.g., patents. In contrast, cold data prediction is on
recurrent events, based on a sequence of access points. Recall that
a unique feature of survival analysis is the censored events since
some data accesses do not occur within the observation window.

To cast the cold data prediction problem as a survival model
requires to address the above points. Then, we predict the earliest

access event in the future for an individual data record. All of the
data records are ranked according to their predicted access events,
where the top ranked ones are considered to be hot data. As a result,
the cold data can be compressed or migrated to the cold tiers.

In the following, we first define the AWPI workload. By automati-
cally detecting the presence of such workload, SA-LSM is adaptively
enabled, as detailed in Section 3.2. Then, we re-examine the com-
paction strategies from the perspective of technological advances.
Last, we describe the algorithm details of SA-LSM, including design-
ing the feature vector, defining the event and labels, generating the
training data set and utilizing the time-to-event prediction to rank
the popularities of the data records.

2.2.1 AWPI Workload. We identify a typical class of workload,
named archivalwrite and point read intensive (AWPI). It is specially
suitable for LSM-tree based heterogeneous storages, with three
main characteristics.

Firstly, it has been shown that thewrite and point read operations
represent a significant fraction of the workload and the proportion
of write operations in modern applications keeps increasing [48].
In addition, only 20% of data is actively accessed while the rest 80%
remains cold. The cold data has a 60% cumulative annual growth
rate, identified as the fastest growing storage segment [11, 39, 50].
Due to the orders of magnitude performance difference between
DRAM and persistent layers, enterprise databases serving OLTP
workloads often use flash-based SSDs to narrow that gap.

Secondly, the popularities of the data records tend to decrease
over time. This is quite common in OLTP applications such as e-
commerce and instant messaging, where the popularity of an order
or a message decreases over time. We track 50K data records and
investigate their popularities over time. Figure 6 plots the normal-
ized access frequencies of a typical archival workload within 90
days. The access counts are aggregated on each day and normal-
ized by the number of accesses on the first day when the records
are created. The overall popularity decays over time, which even
decreases to less than 1% after 50 days and remains at a low level
afterwards. Hence, it is reasonable to migrate the cold data to a
cheaper storage. In order to further investigate the data records
studied in Figure 6, we measure the lifetime of a data record, which
is the interval between the creation time and the last access time
point of each data record in 90 days. We plot the lifetime distri-
bution in Figure 7. As can be seen, the distribution is long-tailed.
Thus, simply using a fixed time threshold is difficult to separate the
cold and hot data. Interestingly, the records with a 1-day lifetime
constitute the largest portion of the workload.

Thirdly, a large portion of the requests are covered queries, which
can be served using an index without examining the data records.
Correspondingly, the compaction strategy needs a carefully design
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Figure 6: The number of data accesses over time normalized
by that number on the first day when records are created
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Figure 7: The distribution of lifetime for logistics workload

for these complexities, e.g., to properly define the event for the
survival analysis to avoid noise, as shown in Definition 2.1.

2.2.2 Re-examine compaction strategies. Due to the technological
advance of modern storages, data records with decaying long-tailed
access frequencies need a careful treatment to avoid unnecessarily
touching the slow mediums when accessing wrongly classified cold
data. Interestingly, the traditional eviction policies employed in
caching mechanism, e.g., LRU [45, 51], have also been widely used
for LSM-tree compactions. These algorithms are based on simple
data structures and thus are efficient for fast processing. However,
it has relatively limited precision in identifying cold data espe-
cially with decaying long-tailed popularities. Applying traditional
algorithms in this case could lead to a sub-optimal performance.
Note that LSM-tree compactions are not very frequent. Thus, rel-
atively heavier computations for more advanced algorithms are
often allowed.

From a historical perspective, cache eviction policies such as
LRU may also not be the best option for a compaction strategy. In
1987, Jim Gray et al. [26] established the five-minute rule “Pages
referenced every five minutes should be memory resident”. They
arrived at this value by computing the break-even interval at which
the cost of holding a page in memory matches the cost of per-
forming I/O to fetch the page from HDD. The five-minute rule
would still work if the critical technological aspects, e.g., capacity,
latency and bandwidth, advance with the same pace. However, new
technologies [25] such as flash memory [24] require to recompute
the break-even interval for modern storage hierarchy [9]. For the
latest technology, the break-even interval for SSD and HDD even
increases to one day, which indicates that all performance critical
data will soon, if not already, reside only on DRAM and SSD, with

HDD being relegated to a high-density storage for cold data. This
also motivates us to design SA-LSM, which utilizes more complex
and effective algorithms.

2.2.3 Cast Cold Data Identification as a Survival Analysis problem.
SA-LSM formulates the cold data identification as a ranking problem
using the predicted access events. For a survival model, we need to
define the censored data, which have some unique features for this
problem due to the recurrent data access points.

As shown in Figure 8, we introduce the concept of observation
window [𝑇𝑠 ,𝑇𝑒 ], in which most of the data records should have
sufficient observations for training the model. Note that the obser-
vation window should be long enough, otherwise the prediction
accuracy could be compromised. However, due to the decaying
effect described earlier for the workload, the window length should
not be too long as well, since the obsolete data access information
would not help and only increase the training time and the over-
head of storing the data. Regarding how to optimize the length of
the observation window, we simply set it as a hyper-parameter, and
use the commonly adopted cross validation approach to select a
good window length.
Pivot selection: In order to successfully train a survival model
through supervised learning, we need to define the training data by
extracting the features and providing the corresponding labels. Note
that the label for survival analysis consists of two parts, namely the
event time and the indicator that shows whether an event occurs
or not.

To this end, we split the observation window into two phases
using a random pivot, as shown in Figure 8. The first phase is
to extract features for the data records and the second phase is
to form labels for the training data. For example, Figure 8 shows
two different pivots, 𝑃𝑖 and 𝑃 𝑗 selected for data record 𝑖 and 𝑗 ,
respectively. Each of the pivot time splits the observation window
𝑇 into two phases. For data record 𝑖 , the phase [𝑇𝑠 , 𝑃𝑖 ] before the
chosen pivot time 𝑃𝑖 is the feature generation phase. It forms the
features for data record 𝑖 using the observations therein. The phase
after the pivot time in [𝑃𝑖 ,𝑇𝑒 ] is the labeling phase.

Observation window T

access pivot timeinsertion

Ts

T1T0 T2 T3 T4 Pi T5 T6 T7

Te

Feature Generation Phase Labeling Phase

interval

(a) A sample generated from record 𝑖

Observation window TTs

T1T0 T2 T3 T4 Pj T5 T6

Te

Feature Generation Phase Labeling Phase

(b) A sample generated from record 𝑗

Figure 8: Random pivots split the observation window into
two phases for each of the data records

To properly select the random pivot requires a careful treatment
for a sequence of access time points. Due to the inspection paradox
for a renewal process [13], if we simply select random time points,
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then those larger intervals will be selected with a higher probability,
which causes a bias for estimating an event time.

Mathematically speaking, the inspection paradox states that for
a random time point 𝑃 , the interval containing 𝑃 is stochastically
larger than the length of a randomly selected interval 𝑉 . In this
case, the interval𝑉 (𝑟 ) between the pivot 𝑃 and its next access point
follows a residual distribution, which satisfies

P[𝑉 (𝑟 ) ≤ 𝑡] =
∫ 𝑡

0 P[𝑉 > 𝑥]𝑑𝑥
E[𝑉 ] , 𝑡 ≥ 0.

To avoid the sampling bias caused by the inspection paradox, we
randomly select 𝑛 pivot time points for each data record according
to a two-step sampling scheme, as shown in Algorithm 1. Since
the first step randomly selects an index that is independent of the
interval length, we can remove the sampling bias for a renewal
process.

Algorithm 1: Two-step sampling for pivot selection to
avoid bias
Input: A sequence of access time points {𝑇1,𝑇2, · · · ,𝑇𝑘 }

within the observation window for data record 𝑖 .
Output: 𝑛 randomly selected pivots.

1 for 𝑖 ← 0 to 𝑛 do
2 𝜉 ← select an index uniformly at random from

[1, 2, · · · , 𝑘] without replacement
3 𝑃𝑖 ← sample a time point uniformly at random on

[𝑇𝜉−1,𝑇𝜉 ]
4 end
5 return 𝑃1, 𝑃2, · · · , 𝑃𝑛

Label generation: One straightforward way to define an event
is to use the first data access after the pivot time in the labeling
phase. However, it has been reported that occasionally some rare
accesses can introduce noise [52, 57] to wrongly promote a cold
data record to become hot. To address this difficulty, we instead
define an event to be an access with its associated interval, which
is the time between this access and its previous access, being less
than a specified threshold.

Definition 2.1 (𝜏-event). A 𝜏-event of a data record 𝑖 is the first
access at time 𝑇𝜈 after the pivot time 𝑃 such that the interval 𝑇𝜈 −
𝑇𝜈−1 between this access and its immediate previous one is less
than 𝜏 . The corresponding event time 𝑒𝑖 is defined to be 𝑇𝜈 − 𝑃 .

To better understand an event, we use an example in Figure 8
(a) for illustration. The interval for 𝑇5 is defined to be 𝑇5 − 𝑇4. If
𝑇5 −𝑇4 > 𝜏 , then we skip the access time𝑇5 and keep searching the
next coming point 𝑇6. Suppose its interval 𝑇6 −𝑇5 < 𝜏 , then 𝑇6 is
considered to be an event. The corresponding event time is equal
to 𝑇6 − 𝑃𝑖 in this case. Based on the definition of 𝜏-event, we can
define censored data. For example in Figure 8 (b), the event occurs
at 𝑇6 if assuming 𝑇5 − 𝑇4 > 𝜏,𝑇6 − 𝑇5 < 𝜏 and 𝑃 𝑗 being the pivot
time. This event is censored since it is outside the labeling phase
[𝑃 𝑗 ,𝑇𝑒 ]. In contrast, the event for data record 𝑖 occurs before 𝑇𝑒 ,
which is not censored.

Now, we can formally define the label (𝑦𝑖 , 𝛿𝑖 ) for an event of an
data record 𝑖 . Here 𝛿𝑖 is a binary event indicator, 𝑖 .𝑒 ., 𝛿𝑖 = 1 for an

uncensored event and 𝛿𝑖 = 0 for a censored event; and 𝑦𝑖 is the
label time equal to the minimum of the event time and the interval
length of the labeling phase, i.e.,

𝑦𝑖 =

{
𝑒𝑖 if 𝛿𝑖 = 1
𝑇𝑒 − 𝑃𝑖 if 𝛿𝑖 = 0

(1)

In Figure 8, the label is (𝑇6 − 𝑃𝑖 , 1) for pivot time 𝑃𝑖 in (a) and
(𝑇𝑒 − 𝑃 𝑗 , 0) for pivot time 𝑃 𝑗 in (b).

Note that for each pivot time, we can generate one sample for
a data record. Therefore, one data record can produce multiple
samples based on a sequence of access times together with the
corresponding pivots. Extensive experiments with real workloads
show that setting 𝜏 to be one day is a good configuration for the
tested AWPI workload.
Feature Selection: Carefully designed features are critical for a
survival model. In the feature generation phase, the last access
interval has been used by traditional cache eviction policies, e.g.,
LRU, to evict a data record as a part of the compaction strategy.
Therefore, this access interval is chosen as part of the feature. In
addition, we can incorporate more information due to the flexibility
of the model allowing heavy computations.

We identify two set of important features, which are concate-
nated to form a feature vector 𝑋𝑖 for data record 𝑖 .

• Access features: In addition to the aforementioned last ac-
cess interval, which is precisely defined to be the interval
between the pivot and the previous access, we further keep
looking backward to consecutively select another 𝜉 (e.g., 7)
number of access intervals. Then, we add the time differ-
ence between the insertion time and pivot time, where the
insertion time could be either before or after 𝑇𝑠 . We also
use the time difference between the last update time and
the pivot time and the time difference between the insertion
time and the last update time.

• Semantic features:We alsomeasure the total numbers ofUP-
DATE and SELECT operations per day over the last 20 days
as well as the individual numbers on each of the columns,
padding zeros if the feature generation phase is less than
20 days. This hyperparameter 20 is based on the discussion
in Section 2.2.2 and cross validation.

2.2.4 Survival Model. The objective is to predict the time-to-event
for data record 𝑖 after training the survival model based on the
training data (𝑋𝑖 , 𝑦𝑖 , 𝛿𝑖 ), 𝑖 = 1, 2, · · · . In general, a survival function
for an event time 𝑇 is given as follows:

𝑆 (𝑡) = 𝑃𝑟 (𝑇 ≥ 𝑡) . (2)

Another commonly used function is the hazard functionℎ(𝑡), which
is defined as follows:

ℎ(𝑡) = lim
Δ𝑡→0

𝑃𝑟 (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡)
Δ𝑡

= lim
Δ𝑡→0

𝐹 (𝑡 + Δ𝑡) − 𝐹 (𝑡)
Δ𝑡 · 𝑆 (𝑡) =

𝑓 (𝑡)
𝑆 (𝑡) ,

(3)

where 𝐹 (𝑡) = 1− 𝑆 (𝑡) is the cumulative death distribution function.
The cumulative hazard function (CHF) can be obtained as follows:

𝐻 (𝑡) =
∫ 𝑡

0
ℎ(𝑢)𝑑𝑢. (4)
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To measure the quality of a survival model on a data set, c-
index (i.e., concordance index) is one of the most commonly used
performance measures. It is defined as follows:

𝑐 =
1
𝑀

∑︁
𝑖:𝛿𝑖=1

∑︁
𝑗 :𝑦𝑖<𝑦 𝑗

𝐼
[
𝑆 (𝑦 𝑗 |𝑋 𝑗 ) > 𝑆 (𝑦𝑖 |𝑋𝑖 )

]
, (5)

where 𝑖, 𝑗 ∈ {1, ..., 𝑁 } and 𝐼 [·] being an indicator function. Here𝑀
denotes the total number of formed pairs and 𝑆 (·) is the estimated
survival probabilities.

As different survival models have been extensively compared
in empirical studies [14, 18, 33, 40], we compare two of the most
popular survival models: the Random Survival Forest model [29]
(RSF) and the Cox model [20]. Extensive comparisons between Cox
model and RSF have been conducted [14, 18, 33, 40]. We also com-
pare them for the cold data prediction. The detailed experimental
results can be found in Section 4. Due to the robust performance of
the Random Survival Forest model, it is used as the default one for
SA-LSM. For the completeness of the presentation, we describe RSF
in Algorithm 2 based on a standard reference [29].

Algorithm 2: RSF for Cold Data Identification [29]
1 Generate the training data by following the procedure in

Section 2.2.3 on 𝑛 pivots for each data record.
2 Draw 𝐵 bootstrap samples. Note that each bootstrap sample

excludes on average 37% of the data [29], called out-of-bag
(OOB) data.

3 Grow a survival tree for each bootstrap sample. At each
node of the tree, randomly select 𝑝 feature variables. The
node is split using these variables to maximize a survival
difference between its child nodes.

4 Grow the tree to full size such that a terminal node should
not have less than 𝑑0 > 0 events.

5 Calculate a CHF (equation (4)) for each tree; average to
obtain the ensemble CHF.

6 Using OOB data, calculate prediction error for the ensemble
CHF.

3 SA-LSM IN PRACTICE
SA-LSM is computationally more demanding than the traditional
compaction strategies. In order to mitigate resource contentions,
we design a proactive method that relies on an external service
to schedule the compactions in Section 3.1. Then, we discuss the
system support and deployment considerations in Section 3.2.

3.1 Proactive v.s. Passive Compactions
After the model is trained, we can utilize it to predict the records’
next event times. These predicted times can be used to rank the
data records, so as to optimize the data layout through proactively
conducting compactions for the LSM-tree. This should be distin-
guished with the default major compaction [42] that is routinely
conducted to maintain an LSM-tree. For example, such compactions
between 𝐿1 and 𝐿2 are passively triggered when the data size of 𝐿1
exceeds a specified threshold. Therefore, we term such a default
operation as a passive compaction. In contrast, SA-LSM is based on
machine learning to proactively schedule a compaction, which thus
is called a proactive compaction.

L0

L1

L2

proactive compaction

cold tier

Elastic hot storage

Figure 9: Proactive compaction adjusts the size of the LSM-
tree 𝐿1 layer tailored to individual workloads

Algorithm 3 describes the detailed procedure. The hyperparam-
eter 𝛼 is called the time-to-event threshold. By controlling this
hyperparameter, only when the predicted event time is less than
this threshold should the corresponding data record remain on 𝐿1.
Otherwise, it will be added to the list of candidates to be moved to
𝐿2. Notably, the total size of the data residing on 𝐿1 now becomes
dynamic, depending on each workload’s characteristics. This fea-
ture is suitable for elastic cloud storage that can autoscale. It enables
self-tuning and workload-aware capabilities for an elastic LSM-tree
storage. Figure 9 shows an architecture based on the elastic cloud
storage. Therein the hot layer can adaptively autoscale its capacity
to improve the cost-efficiency for various workloads.

Algorithm 3: Proactive compaction
Input:Model𝑀 , the 𝑝 dimensional feature vectors

𝑋𝑖 ∈ R𝑝 , 𝑖 = 1, 2, · · · , 𝑛 for the 𝑛 samples,
time-to-event threshold 𝛼 .

1 Initialize S.
2 for 𝑖 ← 0 to 𝑛 do
3 𝑝𝑟𝑒𝑑 = 𝑀.𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑋𝑖 )
4 if 𝑝𝑟𝑒𝑑 > 𝛼 then
5 S.append(i)
6 end
7 end
8 External agent notify database to perform compaction
9 foreach 𝑘𝑒𝑦 ∈ 𝐿1 do
10 if 𝑘𝑒𝑦 ∈ S then
11 Append to SSTable
12 end
13 end
14 Compact data records in SSTable to 𝐿2

How to optimally schedule the proactive compactions is beyond
the scope of this paper, since a number of different objectives can
be taken into considerations. For example, we can use a total cost
budget for the storage or judge the service of quality based on
collected performance metrics on different layers. In our practice,
we choose to schedule the proactive compactions at the time periods
when the transaction rate of the hosting database is low. This can
avoid resource contentions caused by compactions.

3.2 System Support and Deployment
After separating cold and hot data using SA-LSM, the system still
needs to manage the cold data on the layered storage.

3.2.1 Implementation of the standalone external compaction service.
To make the deployment more flexible, we design a non-intrusive
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architecture that offloads the CPU-intensive work, e.g., model train-
ing and inference, to an external service. Figure 10 shows the system
implementation of SA-LSM and the workflow of a proactive com-
paction, with the key steps, from step 1 to step 4, being highlighted
therein. We explain the details as follows.
Step 1: To automate the proactive compaction for a database table,
we utilize a data definition language (DDL) in MySQL. Note that
each table has a dedicated trained survival model. To this end, a
compaction_strategy column is added in the information_schema
table, which indicates whether the proactive compaction is enabled
or not for an individual table. To be specific, adding the keyword
proactive_compaction enables this functionality when creating
the table, as is shown in the following example:

01 | CREATE TABLE tab le_name ( column_name
column_type ) p r o a c t i v e _ compac t i on ;

Adjusting the compaction mode on an existing table is also sup-
ported, which modifies the compaction_strategy column. Note that
this mechanism allows an adaptive implementation, which can
dynamically disable proactive compactions when the workload is
heavy and enable it when light. This adaptive approach can increase
the robustness of the system. Specifically, we keep monitoring the
QPS and the I/O utilization on the cold tier. If the key performance
metrics exceed some pre-configured thresholds, the external service
automatically disables the proactive compactions and falls back to
the default passive compaction strategy.

01 | ALTER TABLE tab le_name compac t i on_ s t r a t e gy =
p r o a c t i v e ;

Step 2: The external service checks the information_schema table to
determine the compaction strategy for each individual table. Once
a proactive compaction is requested, the external service fetches
the log data of the involved tables from the Query store. Each table
trains a dedicated survival model as the access patterns could vary
significantly shown by the Kaplan-Meier curves in Section 4.2.1.
Step 3: As described in Section 2.2.1, the proactive compaction is
suitable for 𝐴𝑊𝑃𝐼 workload. Therefore, we provide a mechanism
to detect whether the target workload is an 𝐴𝑊𝑃𝐼 workload or
not before training the survival model. Specifically, we analyze
the workload trace in an observation window by calculating the
percentage of the point writes and reads of all the requests. Only
when this number is more than a pre-configured threshold (e.g.,
90%) should we conduct the proactive compactions.
Step 4: The external service identifies the keys for the cold data
by Algorithm 3. Then, it transfers the results to the database. The
external service notifies the database to perform the compaction
by running the following command:

01 | SET GLOBAL xeng ine_compac t_c f = $ s u b t a b l e _ i d +
( $ t a s k _ t yp e << 32 ) ;

The above command is the same as the one for the default pas-
sive compaction of RocksDB [8]. When it is sent to the kernel, a
compaction task is created and put into a queue, waiting the back-
ground compaction thread to execute. When the compaction task

is schedule in the kernel, the compaction thread loads the identi-
fied keys of the cold data into memory. Then, after traversing the
records on 𝐿1, it archives the matched data to the cold tier. After
the proactive compaction is finished, the cold keys are released.

3.2.2 Discussions on the external service. Integrating a complex
machine learning algorithm into the database kernel could result
in large computation overhead and memory footprint. An external
service could reduce the resource contention. More importantly,
it also brings the opportunities to utilize more advanced analytic
algorithms to further improve the accuracy of identifying cold
data by using multiple data sources. For example, one can use
different workloads from multiple database instances, and also take
into considerations other complex factors like holidays and market
events.
Computation overhead: Since we rely on relatively complex learn-
ing algorithms, the model training process could consume far more
CPU resource than directly applying traditional methods. In our
experiments, to train the survival model for different workloads
typically takes about one hour using 8 CPU threads. This is quite
an overhead compared with the normal passive compaction tasks,
which usually takeminutes to finish. Note that even the passive com-
pactions have been reported to impact system performance [28, 60].

Regarding the memory footprint, a typical size of a data record
ranges from tens of bytes to hundreds of bytes. This length is
comparable to thememory to store the feature. Therefore, themodel
training stage also consumes large memory resource. For example,
in our experiments, the model for each workload is about several
megabytes. Considering a database instance may have hundreds
of tables, the overhead incurred by training the survival models
could throttle the normal operations of the database if not using
the external service.
Future research for external service: An external service can
serve multiple database instances, which brings together multiple
data sources for possibly making better decisions. In addition, more
advanced algorithms, e.g., meta learning [54] and transfer learn-
ing [55], can be adopted to improve the prediction accuracy, shorten
the training time and reduce the required samples. For example,
one can use pre-trained base models from multiple similar database
instances to accelerate the training process.

4 EVALUATION AND ANALYSIS
In this section, we demonstrate the superior performance of SA-
LSM using extensive experiments on real workloads. We also con-
duct detailed analysis on the system performance.

4.1 Experimental setup
Testbed:We evaluate SA-LSM on a server featuring Intel Xeon Plat-
inum 8163 2.5 GHz 20-core CPUs with two-way hyper-threading
and a 88 GB Samsung DDR4-2666 main memory, running Linux
5.10.23. The machine is equipped with an elastic hot storage (En-
hanced SSD) and a RAID 0 consisting of 8 HDDs as the cold tier.
Workloads and Datasets: We collect six workloads from real-
world applications to evaluate the system performance. Each work-
load is generated by collecting the trace data for two months. They
have the following two characteristics:
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Figure 10: The system implementation of SA-LSM and corresponding protocols between the external agent and the database
kernel; SA-LSM is able to identify and archive cold data at record granularity and does not suffer from the contention with the
database kernel via offload the algorithm as a standalone service

(1) The majority of the SQL templates are point queries and
point updates.

(2) The popularities, i.e., access frequencies, of data records
keep decreasing over time since being inserted into the data-
base. Therefore, they are the representative AWPI work-
loads defined in Section 2.2.1.

The details of the statistics of the workloads and corresponding
datasets are summarized in Table 2. Note that we set the pivot
number to be 10 in Algorithm 2, which means that each record can
generate 10 samples. We randomly split the records and form the
training set (80%) and test set (20%).

Table 2: Summary of workloads and corresponding datasets.

#traces #records r/w ratio #samples censored %
AUCTION 95 million 754 k 3.7 4,081 k 55.2%
DISPUTE 68 million 192 k 42.5 963 k 71.6%
FUNDS 41 million 6,295 k 1.9 32,780 k 91.8%
LOGISTICS 173 million 2,826 k 16.8 18,732 k 67.8%
ORDER 117 million 4,505 k 3.6 28,570 k 81.9%
PAY 124 million 1,736 k 13.8 10,017 k 45.0%

We implement all of the above algorithms in the external agent
and replay real-world workloads on X-Engine via CloudBench [2].
CloudBench is a tool to replay the workloads at a specified rate
that also preserves the order of transactions. For the experimental
results, we report QPS, the 99-th latency, CPU utilization and IO
utilization on the cold tier.
Baseline and Metrics: We compare SA-LSM not only with the
traditional algorithms, e.g., least recently used (LRU) [7], largest
frequently used (LFU) [6], LRU-k [41] and LIRS [30], but also with
machine learning based methods, e.g., gradient boosted decision
tree (GBDT) [12].

• LRU. Migrate the least recently access data first.
• LFU. Migrate the data with the least access frequencies.
• LIRS. The Low Inter-reference Recency Set algorithm is

an alternative to LRU with an improved performance. It
is based on the reuse distance, a locality metric for dy-
namically ranking accessed data, to identify cold data for
compaction.

• LRU-k. The LRU-k algorithm is an variant of LRU which
keeps track of the time interval between the last 𝐾th access
and the last one. In practice 𝑘 is usually set to 2. Recall our

definition of an event in Definition 2.1 that also requires
two close consecutive accesses.

• GBDT. Gradient Boosting Decision Tree [12], a commonly
used machine learning algorithm, is used to separate cold
and hot data. The features we use are identical to the ones
introduced in Section 2.2.3 for SA-LSM.

• SA-LSM . We choose Random Survival Forest (RSF), a sur-
vival analysis algorithm based on random forest, to infer
which data would not be accessed within a specified time
window. To fairly compare with GBDT, we use the identical
feature vector to train the model.

Essentially we selectively migrate a certain fraction of cold data
to the slow storages using a classification algorithm. Therefore, to
quantify the quality of the algorithm, we use the confusion ma-
trix [3] to evaluate the system performance and cost. The confusion
matrix is a summary of classification results. According to the con-
sistency of the predicted results and ground truth, we divide the
samples into four categories. 1) true positive (TP) for correctly pre-
dicted cold data; 2) false positive (FP) for incorrectly predicted cold
data; 3) true negative (TN) for correctly predicted not-cold data; 4)
false negative (FN) for incorrectly predicted non-cold data.

In addition to the c-index defined in equation (5) to evaluate
the quality of a survival model, we introduce the cold data false
identification rate based on the above-mentioned FP and TP metrics

𝑐𝑜𝑙𝑑_𝑓 𝑖𝑟 =
𝐹𝑃

𝐹𝑃 +𝑇𝑃 (6)

to measure the precision of identifying the cold data. A good com-
paction strategy should maintain a low 𝑐𝑜𝑙𝑑_𝑓 𝑖𝑟 to reduce the
amount of hot data to be migrated to a cold storage tier.

4.2 Experimental evaluations
To understand why SA-LSM can achieve a superior performance, we
conduct the following experimental studies. First, we use Kaplan-
Meier analysis to show that the data records from different work-
loads have distinct life spans. This is the key reason why an in-
dividualized treatment of the workload can improve the accuracy
of separating cold and hot data. Then, we conduct detailed analy-
sis on the algorithmic aspects and system performance metrics. It
demonstrates that SA-LSM can have great potentials in the related
applications beyond the studies shown in this paper.
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Figure 11: KM curves of the six workloads differ significantly,
implying that each individual workload should have a dedi-
cated survival model to capture its unique characteristics
4.2.1 Visualization of Kaplan-Meier curves. TheKaplan-Meier (KM)
estimator [22] is a non-parametric statistic used to estimate the
survival function from the lifetime data. In this section, we study
the Kaplan-Meier (KM) curve for each workload. The estimator of
the survival function 𝑆 (𝑡) is given by:

𝑆 (𝑡) =
∏
𝑡𝑖<𝑡

𝑛𝑖 − 𝑑𝑖
𝑛𝑖

. (7)

In the above equation, 𝑡𝑖 is the access time, 𝑑𝑖 is the number of data
accesses that have occurred before time 𝑡𝑖 , and 𝑛𝑖 is the number
of data records that have survived up to time 𝑡𝑖 . A survived data
record refers to one that either has not yet been accessed or is not
censored.

For identifying cold data, KM curves can be used to approximate
the distribution of the next access time interval. Figure 11 shows
the six workloads’ KM curves, respectively. The survival probabil-
ity starts at 1 on the first day, since no accesses have happened
yet. As time goes by, data accesses occur on a fraction of the data
records and the survival probability keeps decreasing. Each of the
curves eventually reaches at a certain survival probability, which
represents the fraction of the censored data. For example, the funds
workload has over 90% of censored samples that are not observed
within the observing window. While for pay workload, the fraction
of the censored data drops to about 40%.

As we can see, the decreasing rates of these curves vary signifi-
cantly across different workloads. This is the critical reason why
we treat each individual workload separately to capture its unique
characteristics. Specifically, we train a dedicated survival model for
each workload, as described in Section 3.2. Note that for system
implementation, each table represents a different workload.

4.2.2 Algorithmic performance analysis. To compare the perfor-
mance of different algorithms, we report the c-index values, de-
fined in equation (5), for GBDT, ANN, Cox [20], DeepSurv [31],
CoxTime [34], CoxCC [34] and RSF [29] on six datasets in Table
3. A c-index value equal to 1 refers to the model making a per-
fect prediction while a c-index value less than 0.5 means the pre-
diction is worse than random guessing. The experimental results
are presented in table 3 for the six real-world workloads. We test
five survival models, including RSF, Cox, DeepSurv, CoxTime and
CoxCC, where the last three ones are based on deep learning. To
demonstrate the superior performance of survival models in this
case, we additionally compare with two machine learning models
including GBDT and Artificial Neural Network (ANN, also called

Multi-Layer Perceptron), which are not based on survival analysis.
For deep learning based methods, the neural network consists of
2 hidden layers each containing 32 cells. The network is trained
via Adam optimizer with a batch size of 256 and a learning rate
of 0.1. Early stopping is performed to find the best training epoch.
GBDT outperforms ANN in all six workloads. Considering the deep
learning based methods are suitable for a big data setting, we also
train a shared model (ANN (shared)) for all workloads. However,
the shared model performs worse on the six workloads due to the
different access patterns of the workloads. The c-index of RSF is
improved by ranging from 8.9% to 30.3% compared with GBDT. It
clearly demonstrates the advantages of using survival analysis to
predict cold data.

RSF gives the best results in all of the workloads except pay
workload for this purpose. Note that Cox model is better than
GBDT for most of the workloads except 𝑎𝑢𝑐𝑡𝑖𝑜𝑛 workload, which
clearly shows the power of survival model for censored data. RSF
has advantages as it is data driven and has no model assumptions,
while Cox assumes that a covariate is multiplicative to the hazard
rate. For DeepSurv model, the linear relationship in the Cox model
is replaced with a neural network. CoxCC model extends Cox with
a time-dependent hazard ratio, learned by a neural network. CoxCC
is a proportional version of the CoxTime model (the hazard ratio
is time-invariant), and only CoxTime model outperforms RSF on
pay workload. Due to RSF’s robust performance, we adopt it as our
survival model in the following evaluation.
Table 3: Comparison of c-index between GBDT and survival
analysis based methods

Workload auction dispute funds logistics order pay
ANN 0.701 0.695 0.732 0.715 0.701 0.681

ANN (shared) 0.627 0.659 0.725 0.702 0.681 0.651
GBDT 0.750 0.751 0.758 0.747 0.752 0.722
Cox 0.673 0.789 0.918 0.805 0.819 0.747

DeepSurv 0.717 0.809 0.985 0.825 0.843 0.782
CoxTime 0.761 0.824 0.976 0.794 0.887 0.865
CoxCC 0.728 0.810 0.983 0.825 0.838 0.794
RSF

(v.s. GBDT)
0.817
(+8.9%)

0.864
(+15.0%)

0.988
(+30.3%)

0.872
(+16.7%)

0.909
(+20.9%)

0.842
(+16.6%)

For each workload, we use the trained survival model to predict
the 𝜏-event within the next coming 30 days. For fair comparisons,
the baseline methods are configured to archive the same number
of data records according to their own policy with SA-LSM.
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Figure 12: Compare 𝑐𝑜𝑙𝑑_𝑓 𝑖𝑟 for different compaction strate-
gies on six workloads

Figure 12 summarizes the comparisons on the 𝑐𝑜𝑙𝑑_𝑓 𝑖𝑟 metric
for the logistics and order workloads. Notably, SA-LSM can effec-
tively decrease the 𝑐𝑜𝑙𝑑_𝑓 𝑖𝑟 metric by ranging from 31.0% to 48.9%
compared with the best baseline.
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4.2.3 Impacts of the observation window size and the censored data.
To justify using a survival model for cold data prediction, we investi-
gate how the labeling window size (recall that observation window
is split into feature generation phase and labeling phase in Section
2.2.3) and the fraction of the censored data impact the algorithm
performance. Figure 13 plots the c-index under different window
sizes. We use 20 days’ records to form the training set and vary the
labeling window from 10 days to 65 days. We observe that larger
labeling window sizes indeed reduce the fractions of the censored
data, which drop from 41.2% to 33.4% for logistics workload and
from 62.9% to 56.0% for order workload. Remarkably, RSF still out-
performs the GBDT model. Thus, increasing the labeling window
sizes is inefficient for AWPI workload, since the 𝜏-event has a high
probability to be still absent in a long observation window.

Figure 14 demonstrates the impacts of the censored data and the
number of training samples on the algorithm performance. For RSF,
we use random sampling to generate the same number of training
samples as the GBDT. The metrics of both methods increase as
more samples are used. However, RSF can outperform GBDT even
when only utilizing 10% of the latter’s training samples through
properly handling the censored data.
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Figure 13: Impacts of the observation window sizes

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
sample num (million)

0.6

0.8

C
-i

nd
ex

GBDT RSF

(a) Logistics workload

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
sample num (million)

0.6

0.8

C
-i

nd
ex

GBDT RSF

(b) Order workload

Figure 14: Impacts of the fractions of the censored data

4.2.4 System performance analysis. We test SA-LSM on the open
source X-Engine [28] by using heterogeneous storages on a 3-layer
LSM-tree. Specifically, 𝐿0 and 𝐿1 layers are configured as the hot
tier and 𝐿2 as the cold tier, respectively.

Table 4: Micro-benchmark on the heterogeneous storages
Layer Medium IOPS Latency (us) price($/TB/month)
𝐿0, 𝐿1 ESSD 4380 228 574
𝐿2 HDD 197 5050 21

Micro-benchmark on different storage mediums: First, we test
a micro-benchmark (random 4K read QD1 benchmark) on the I/O
performance of the hot and cold tier using fio [4]. Table 4 summaries
the performance metrics of the storage mediums on different LSM
layers. The IOPS of the hot tier is 22.2 times larger than that of the
cold tier. The average latency of HDD is 22.1 times slower than

that of ESSD. Thus, there exists a large performance gap between
the two storage mediums. Hence, the data compacted to the cold
tier need to be carefully selected to avoid unnecessarily accessing
HDD. Also, the cost per unit of ESSD is 27.3 times more expensive
than HDD. By migrating data to the cold tier, the Total Cost of
Ownership can be significantly reduced.
Micro-benchmark for proactive compactions: The transaction
throughput and CPU utilizations for proactive compaction are pre-
sented in Table 5. Compared with the passive compaction in LSM-
tree (defined in Section 3.2.1), proactive compactions exhibit a sim-
ilar throughput but with a higher CPU utilization, due to the ad-
ditional comparsions between the keys in 𝐿1 and the cold keys
provided by the external service. Since compactions are not fre-
quently conducted, the performance penalty is tolerable without
causing too much overhead to the database kernel.
Table 5: Comparison of Proactive and Passive Compactions

Compaction task Throughtput (MB/s) CPU utilization
proactive compaction 89.2 53.3%
passive compaction 91.7 35.5%

Macro-benchmark: For each workload, we preload 20 days’ traces
of the data records in the test set to the system and manually
flush the memtable. Then, we compact all of the data on 𝐿0 to 𝐿1
so that all the data resides on 𝐿1 before we conduct compactions
between 𝐿1 and 𝐿2. The block cache is set to 30% of the total data
size. Then we compare the different compaction strategies. After
the compaction is finished, we use ClouDBench to replay the next
three days’ traces to benchmark the system performance. 1 We
use 128 clients to replay the trace and warm up the system for
60s before collecting the metrics. We report the metrics of passive
compaction and proactive compaction using different algorithms.
Since the performances of GBDT is the best baseline, we ignore
other algorithms in this comparison.

Figure 15 and 16 plot the throughput and the tail (99th percentile)
latency. The passive compaction has the worst performance since
it does not fully utilize the information from data access traces of
different workloads. Compared with GBDT, SA-LSM reduces the
tail latencies by 31.5% for logistics workload and 78.9% for order
workload, respectively. The average latencis are reduced by 5.8%
for logistics workload and 67.7% for order workload, respectively.
The reductions of the average latencies are not as significant as the
tail latencies due to the existence of the block cache and the hot
tier. For order workload, the throughput improvement is substantial
for SA-LSM compared with the best baseline. The reason is that
the I/O utilization of order reaches the bottleneck of HDD, which
results in a higher tail latency in Figure 17. In this case SA-LSM
can greatly reduce I/O and increase the CPU utilization (Figure
18), yielding a more substantial performance improvement. This
can be quantitatively seen by comparing order and logistics for
the fractions of the cold data migrated (51.7% v.s. 28.1%) and the
cold_fir metrics improvement (48.9% v.s. 43.7%). SA-LSM increases
the system performance by reducing the number of data accesses
on the cold tier. The average I/O utilization is reduced by 57.5% for
logistics workload and 15.5% for order workload.
1ClouDBench has a parameter called rate_factor, which is a coefficient multiplied to
the interval lengths when replaying the trace. To control the replay speed, all our
experiments are configured with rate_factor= 2 × 10−3 to speed up the process.
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Figure 15: System metrics for logistics workload; The per-
formance improvement on logistics workload is less than
order workload because less data is identified as cold data
and migrated to the cold tier.

0 200 400
Time (s)

0

5000

10000

T
hr

ou
gh

pu
t

(T
xn

/s
)

Passive compaction

Proactive compaction (GBDT)

Proactive compaction (SA-LSM)

(a) Throughput

0 200 400
Time (s)

0

1000

2000

L
at

en
cy

(m
s)

Passive compaction

Proactive compaction (GBDT)

Proactive compaction (SA-LSM)

(b) Tail latency

Figure 16: System metrics for order workload; the significant
drops of TPS on intervals [130, 200] and [325, 380] are due to
the realized high TPS outside these two intervals leaving no
enough requests to be performed therein
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Figure 17: Cold tier (HDD) I/O utilization for logistics work-
load and order workload; I/O utilization of order workload
becomes the bottleneck of the system and SA-LSM improves
the tail latency significantly in this case
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Figure 18: CPU utilization for logistics workload and order
workload; The CPU resources under the two compared meth-
ods for order workload are not fully utilized due to their
lower TPS throughput

5 RELATEDWORK
LSM-tree on Heterogeneous Storages: In order to reduce the
total storage cost, several prior works optimize the data layout of
LSM-tree based databases on heterogeneous storages. For example,
RocksDB [8], Cassandra [35] and Mutant [59] organize SSTables by

levels and store cold data on the slower and cheaper storages. How-
ever, their adopted cold data identification strategies are relatively
simple on a coarse granularity without fully utilizing the informa-
tion from the collected traces, which limit the system performance.
To the best of our knowledge, SA-LSM is the first to estimate the
popularities on a refined granularity for each of the data records
using survival analysis.
Cold Data Identification and Survival Analysis: Recent work
on the compaction design mainly focuses on compaction trigger-
ing [23, 47] and compaction strategies [15, 16] in order to optimize
read and write amplifications. However, the data access patterns
also play an important role in determining the cost of accessing
data, especially on heterogeneous storages. The current designs
of LSM-tree on heterogeneous storages either neglect the diverse
patterns of the data accesses, e.g., RocksDB [8], Cassandra [35], or
employs a low-complexity algorithm like LRU to track the data pop-
ularities, e.g., PrismDB [46] and Mutant [59]. To mitigate the cache
invalidation problem in LSM-tree, Leaper [58] integrates decision
tree models to predict the hot keys and to prefetch data to the block
cache after each flush and compaction operation. Apart from LSM-
based storage engines, some work has been done on leveraging
the machine learning techniques to solve the cold data identifica-
tion problem. Octopus [27] and LRB [49] apply gradient boosting
decision trees to promote or demote files across the storage tiers
in distributed file systems and to guide CDN cache, respectively.
Deep learning based methods are also exploited to solve the cache
replacement problem [38].

Given the universal existence of the observation window for the
recurrent data accesses, always a fraction of the access events are
not yet observed. Without properly handling these censored data,
some useful information may be lost or cause bias to the prediction.
Survival analysis, a statistical learning algorithm commonly used
in biostatistics, provides various mechanisms to better process the
censored data. Apart from biostatistics, it has also been widely used
in other application scenarios, such as crowdfunding [37], click-
through rate [10] and cloud databases survivability prediction [43].
Due to the generality and effectiveness of this approach, it has great
potential in a variety of related applications [29, 31, 36].

6 CONCLUSION
In this paper, we propose to utilize survival analysis, a statistical
learning algorithm commonly used in biostatistics, to effectively
compact cold data for LSM-tree based KV stores. This approach
fully utilizes the access information of data records, and can bet-
ter organize the data layout for the heterogeneous storages. To
effectively apply survival analysis on cold data prediction, we re-
solve the difficulty in extracting features, defining censored events,
and forming training data with labels from the observed data ac-
cesses. To simplify the deployment, we design an external service
in conjunction with a lightweight protocol to offload the heavy
training and inference operations from the database kernel. We
implement our proposal for X-Engine on heterogeneous storage
and conduct extensive experiments on typical real-world workloads
to demonstrate the superior performance of the new method. The
tail latency of the system is decreased by ranging from 31.5% to
78.9%, compared with the state-of-the-art solutions.
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