
ARTIFACT
EVALUATED

PASSED

Unicorefuzz:
On the Viability of Emulation for Kernelspace Fuzzing

Dominik Maier
TU Berlin

Benedikt Radtke
TU Berlin

Bastian Harren
TU Berlin

Abstract
Fuzzing uncovers an ever-growing number of critical vul-

nerabilities. Despite the simple concept — execute the target
until it crashes — setting up fuzz tests can pose complex chal-
lenges. This is especially true for code that cannot run as part
of a userland process on desktop operating systems — for
example device drivers and kernel components. In this paper,
we explore the use of CPU emulation to fuzz arbitrary parsers
in kernelspace with coverage-based feedback. We propose
and open-source Unicorefuzz and explain merits and pitfalls
of emulation-based fuzzing approaches. The viability of the
approach is evaluated against artificial Linux kernel modules,
the Open vSwitch network virtualization component as well
as bugs originally uncovered by syzkaller. Emulator-based
fuzzing of kernel code is not very complex to set up and can
even be used to fuzz operating systems and devices for which
no source code is available.

1 Introduction

Fuzz testing is a powerful way to uncover a variety of
bugs in an automated fashion. Companies start building
up fuzzing pipelines like OSS-Fuzz, proposed by Sere-
bryany [36]. Fuzzing user space software has been done for
several decades [18], however fuzzing operating systems and
kernels poses a more difficult task [34]. If arbitrary kernel
components in an emulator could be fuzzed directly, secu-
rity researchers would be able to scrutinize any part of any
kernel and thus gain a significant edge in the everlasting bat-
tle against security vulnerabilities. A few years ago, fuzzing
kernel code, for example Wi-Fi drivers, required complex
setups. They had to resemble real-world scenarios, like ded-
icated rogue access points [6] that are hard to integrate into
feedback-based fuzzing methodologies. Fuzzing kernelspace
code is hard since any state change affects the whole sys-
tem, the code is tucked away from userland and recovering
from crashes is hardly possible without an additional layer
of abstraction. The current state of the art of kernel fuzzing,

syzkaller, solves this problem by fuzzing kernel inside Virtual
Machines, triggering code from the VM-internal userland via
syscalls and passing feedback back to the userland [17]. This,
however, means syscalls for all tests need to exist or need to
be written. It also makes security testing of binary-only kernel
modules, as well as odd operating systems, hard to impossi-
ble. In this paper, we take a different approach to the problem
domain. We propose Unicorefuzz, a novel way to fuzz parsers
in the kernelspace, based on AFL-Unicorn, a CPU emulator-
based fuzzer. The Unicorn emulator supports a vast range of
processor architectures [31], which makes fuzzing of arbitrary
kernel code, even for embedded architectures, viable. In this
paper, we show that fuzzing arbitrary kernelspace functions
is possible and viable.

1.1 Basic terminology

First, we define basic terms we will use throughout this paper.

Fuzzer A fuzzer successively generates inputs to the fuzz
target while observing its behavior. It collects inputs that
trigger behavior of interest for further analysis.

Target The fuzz target is the item being tested using a fuzzer.
Depending on the methodology used this can be any-
thing ranging from an interpreted script to a hardware
device. The main requirements are that it accepts input
and exhibits some resulting observable behavior.

Coverage A contiguous block of steps or instructions that
are executed unconditionally is known as a basic block,
while branches are conditional transfers between basic
blocks. Depending on the inputs, different paths (i.e.
chains of basic blocks) may be triggered. The amount of
branches taken in a target affects the coverage — with
more being a higher number. Normalized, coverage indi-
cates the percentage of all possible branches taken in a
single execution.

1.2 Feedback Fuzzing
Feedback fuzzing instruments the fuzz target in such a way
that it receives immediate feedback about the effects of an
input. According to this feedback, the fuzzer will change
test cases in future iterations. Coverage guided fuzzing is
the most famous example. It uses code coverage or, closely
related, the number of distinct basic blocks transitions trig-
gered, as a feedback for the fuzzer’s genetic algorithm [26].
The fuzzer prefers test cases yielding higher coverage and
different code paths. The goal is the maximization of code
coverage in the target. Employing code coverage as a fitness
function for a genetic algorithm then allows the fuzzer to iter-
atively build a model of the program’s input grammar, which
in turn improves the inputs given to the tested application.
The idea to use instrumentation to learn test inputs through
genetic algorithms was already proposed in 1995 by Stah-
mer [39]. In 2006, Jared DeMott took this approach again and
proposed an evolving fuzzer [11,12]. Simultaneously Drwery
and Ormandy proposed and patented a similar method [15,16].
The prominent fuzzers today, AFL and libFuzzer, both favour
inputs that cause code paths previously not observed to be
executed [27, 43]. Even with coverage guided fuzzing, using
a valid input file is still recommended and expected to yield a
higher code coverage early on [37, 43].

1.3 Contribution
With Unicorefuzz, we propose a novel approach to kernel
fuzzing. We discuss the possibilities to fuzz any parser
through partial emulation. The approach yields good results
in artificial test cases and successfully reproduced bugs previ-
ously found by syzkaller. As a case study, it fuzzed a parser
in the kernel code of Open vSwitch. The current setup was
used to fuzz statically linked kernel modules as well loadable
kernel objects on Linux. The implementations created during
this research will be open sourced.

2 Related Work

Fuzzing kernel components is not as widespread as fuzzing
user space programs, but some notable projects have suc-
cessfully fuzzed kernel subsystems, drivers and APIs. We
will not go into greater detail on publications that fuzz de-
vice drivers, such as Periscope by Song et al. [38] who focus
on the hardware-OS-boundary. Instead, we discuss notable
general-purpose kernel fuzzers in the following.

2.1 Trinity
While fuzzing syscalls with purely random values is simple
to set up and can find some bugs, most of the tests fail imme-
diately because of completely incorrect parameters: EINVAL
(invalid argument). To reduce the percentage of wasted tests,

the kernel fuzzer Trinity uses rules to execute syscalls with
better-than-random input. Users need to supply annotation
files for every syscall, so-called madvise files, including the
number of arguments and argument kinds. The creator of
Trinity found more than 150 bugs inside system call code,
networking stack, virtual memory management and device
drivers [24] in 2012.

2.2 DIFUZE
Corina et al. propose DIFUZE, an interface aware fuzzer
for kernel drivers. [9]. In contrast to Trinity, DIFUZE does
not need descriptions of interfaces, rather, they are inferred
when building the kernel from source. DIFUZE does not offer
Instrumentation options.

2.3 syzkaller
Just like Trinity, syzkaller relies on templates to reduce
the percentage of wasted tests, but uses coverage based
feedback-fuzzing to increase the code coverage of fuzz
tests [17, 42]. The coverage data is tracked on a per-task
basis and extracted from the target via a special debugfs en-
try in /sys/kernel/debug/kcov that outputs the current
instrumentation information [42]. This kernel patch has been
merged into the mainline Linux kernel by now [23]. During
the first few months alone, syzkaller found more than 150
bugs in the then recent Linux kernel.

2.4 In-Kernel AFL
Nossum and Casasnovas have ported AFL to kernel space
to fuzz test filesystem implementations. Like syzkaller, their
unnamed tool uses coverage data supported by GCC. They
expose a shared memory region to be accessible from the user
space in /dev/afl and mmap it into AFL’s memory. This
way the section exists only once in physical memory. AFL
can access it in the same way as it does when testing user
space binaries. Since the overhead of virtualization with KVM
VMs was high, they switched to User-Mode Linux which
yielded a speedup of 60x. Bugs were quickly discovered in
the implementations of many file system drivers [33].

2.5 TriforceAFL
TriforceAFL fuzzes virtual machines by extending AFL’s
QEMU mode. The host runs AFL and QEMU, the guest
runs a so-called driver, a userland program that runs the target.
AFL sends its generated input to the driver and QEMU sends
an edge trace back to AFL [21]. The driver communicates
with the TriforceAFL setup through a dedicated hypercall in
QEMU. The fork system call only moves the calling thread’s
state into the new process and may leave threading objects
like locks in an undefined state. Since QEMU uses 3 threads

Serve	State
(Regs,	Memory)

Probe	Wrapper

Avatar2

Request	Memory

External	Target
Virtual	Machine
(GDBStub) Filesystem

Cache

AFL

Harness

Unicorn	Engine

Figure 1: Architecture of Unicorefuzz

for full system emulation, TriforceAFL explicitly saves and
restores the required VM state. TriforceAFL has found mul-
tiple bugs in Linux and OpenBSD, the most severe ones on
Linux were named CVE-2016-4998 (out-of-bounds read of
kernel memory which may lead to information disclosure and
heap corruption) and CVE-2016-4997 (decrement of arbitrary
kernel integers if they are positive) [21].

2.6 kAFL
The fuzzer kAFL leverages Intel’s Processor Trace to re-
cover hardware assisted code coverage. It supports OS-
independent, coverage-guided kernel fuzzing and has found
several bugs in Linux, macOS and Windows drivers. To
provide a communication channel between the VM and
kAFL, modified versions of QEMU (QEMU-PT) and KVM
(KVM-PT) provide new hypercalls. After the VM has started,
the agent transmits the address of the panic handler (or
BugCheck on Windows) to QEMU-PT, which replaces the
code at that address with a HC_SUBMIT_PANEL hyper-
call. If the target panics, QEMU-PT is thus notified immedi-
ately. Afterwards the agent fetches the actual user mode agent
(HC_GET_PROGRAM) and starts it, transmits the value of
the CR3 register (HC_SUBMIT_CR3) and declares where it
expects its input (HC_SUBMIT_BUFFER). Now the main
loop is ready to run. The PT data is decoded and converted
to AFL’s bitmaps and fed into kAFL to evaluate a test’s
taken branches. On every benchmarked platform, kAFL de-
livers more than 20 times the executions per second of Tri-
forceAFL [34].

3 Unicorefuzz

This section discusses the building blocks for Unicorefuzz as
well as the implementation itself.

Emulator Based Instrumentation For feedback fuzzing
of kernel code, Unicorefuzz builds on top of AFL-Unicorn,
which, in turn, uses a patched version of Unicorn, a fork
of QEMU. As discussed in 1.2, modern fuzzers use feed-
back, usually code coverage or basic blocks reached, for
test-case generation. Since advanced emulators, for exam-
ple QEMU, translate a program dynamically, basic block by

basic block [3], instrumentation can be added to the emulator
or the translated code with ease. By instrumenting targets this
way, they can be tested through feedback-fuzzing without the
need to compile them from source.

Unicorn is a CPU emulator which dynamically translates
CPU instructions from any supported binary instruction set
into the host instruction set. In particular, given a binary for a
CPU platform, QEMU, or Unicorn, for that matter, works by
performing the following steps during runtime:

1. Translate a basic code block from the target platform’s
instruction set to the host platform’s instruction set.

2. Cache the translated blocks.

3. Store a mapping from source program counter to target
program counter in an address lookup table.

4. Execute the translated block.

5. Repeat for next discovered block.

The translation blocks are similar to basic block by design [3].
Leveraging this correspondence between translation blocks
and basic blocks and because execution is handed back to the
emulator after each run, it is possible to implement an instru-
mentation similar to the compile time instrumentation, using
the program counter as feedback on each new basic block.
AFL, a common feedback-based fuzzer, offers this instrumen-
tation with QEMU mode. AFL QEMU-mode emulates fuzz
targets in a patched version of QEMU that reports executed
branches back to AFL. To increase speed, a forkserver resets
the state to a fully loaded initial state between fuzz runs. After
a new basic block is translated, the fork child’s parent will
also translate it and cache te result to ensure the costly transla-
tion won’t be necessary again after the next fork. The control
returns to QEMU after each block, which is extended with
calls to afl_maybe_log, a function that passes the coverage
map back to AFL via shared memory.

3.1 AFL-Unicorn
The AFL-Unicorn mode makes use of Unicorn Engine, a
lightweight CPU-emulator originally forked from the afore-
mentioned QEMU [31]. In AFL-QEMU, the emulator extends
every basic block to send instrumentation information to AFL
and starts AFL’s forkserver after the emulator has been set
up. For speed, basic blocks are cached in the parent parent
process in Unicorn’s AFL forkserver. AFL itself merely has
to start the harness and generate inputs. The inner workings
of the Unicorefuzz forkserver, are depicted in fig. 3.3. The
figure can be read as a timeline, from left to right. Initially,
AFL spawns the Unicorefuzz harness, which loads the initial
kernel memory (in the middle). The kernel part of the harness
then forks child processes, each of which run until their exit
is reached. If the child kernel (bottom) dynamically requires

new memory regions or translates a new basic block, it will
report back to the parent. Blocks are reported back through a
pipe and then translated by the parent, so that they will already
be translated for the next run, memory is stored to disk. This
enables AFL-Unicorn to fuzz any binary-only machine code
of all supported frontend processor architectures on every
backend processor architecture [41].

3.2 avatar2

As another piece of Unicorefuzz, avatar2 is an orchestration
framework, abstracting over a range of debugger and binary
analysis targets [30]. As discussed below, Unicorefuzz makes
heavy use of avatar2 to dump process memory and registers
of the fuzz target. The orchestration framework can attach to
binary analysis frameworks, smart devices, any GDB session,
as well as PANDA and QEMU VMs.

3.3 Unicorefuzz
In the following, we discuss Unicorefuzz, a framework able
to fuzz most targets through emulation.

3.3.1 Preparation

Since AFL-Unicorn is capable of fuzz testing arbitrary bi-
naries, it is also able to fuzz kernel components. While it
interaction with hardware or emulated devices is not part of
Unicorn, it can emulate almost any code. Since modelling
periphery would not be an easy task in Unicorn, we focus
on the emulation of parsers. These parsers usually work on
buffers of untrusted input and don’t require responses from
periphery devices. In the preparation step, Unicorefuzz needs
to copy over all registers, insert the input generated by AFL
and run the emulation. For this, Unicorefuzz makes use of the
avatar2 framework to interact with a gdb stub. The user has
to specify a breakpoint, as well as a memory region for AFL
input in the harness. Although real devices could be fuzzed
using Unicorefuzz, we used virtual machines with breakpoints
at the target function. The user has to specify the fuzz target
address in the wrapper, start it and make the virtual machine
execute the desired function. Once the breakpoint fires, it
freezes the VM, dumps all required registers and waits for
dynamic mapping memory requests.

3.3.2 Dynamic Mapping

While dumping the entire memory of a target and mapping
it in the harness to fuzz a function would be possible, it
would defeat the purpose and cause unnecessary memory
overhead. By keeping the target VM alive (in a halted state)
and creating a communication channel to the fuzzer, Unicore-
fuzz’s probe wrapper will load new memory pages on demand,
see 1. Whenever Unicorn accesses unmapped memory, it calls
the UC_HOOK_MEM_UNMAPPED handler, which sends

a memory info request to the probe wrapper component of
Unicorefuzz. The request is either processed successfully (if
the requested memory is valid) and mapped in the emulator,
or rejected, in which case Unicorefuzz forces a crash. If it
succeeds, the corresponding memory region is also cached to
disk. Otherwise an invalid memory access was found and the
process is killed with SIGSEGV — the crash will be reported
to AFL.

3.3.3 Fuzz-Test Execution

Due to the caching mechanisms, no interaction with the VM
is needed anymore — the mappings are pre-fork at this point.
The harness of Unicorefuzz creates a Unicorn Engine object,
maps all required and previously requested memory regions
and sets the registers’ values accordingly. The input has to
be passed to Unicorn by calling mem_write() or reg_write () .
After the user specified the addresses for fuzz input, the AFL
forkserver is started by running the emulation for one in-
struction. When the emulation references unmapped memory
again, the harness checks whether the memory region was
requested in previous runs. If the probe wrapper’s output di-
rectory already contains the dumped memory or a rejection,
it can continue or abort immediately. Otherwise it creates an
empty file in the wrapper’s input directory (where the file-
name denotes the requested address) and polls the wrapper’s
output directory for the memory region dump, or the rejection.
If a file in the input folder exists, it tries to read the requested
memory from the virtual machine and dumps it to the out-
put folder if the memory was successfully read, or creates a
rejection file otherwise.

4 Evaluation

To evaluate viability of emulator based kernel fuzzing, the
concept was tested against both synthetic and real-world tar-
gets.

4.1 broken.ko
For performance analysis and tooling tests, we created a vari-
ety of intentionally broken kernel modules, where Unicorefuzz
is able to find bugs almost immediately. Take as example the
following module:

Listing 1: Crashing Kernel Module
s t a t i c s s i z e _ t
w r i t e _ c a l l b a c k (s t r u c t f i l e * f i l e , c o n s t char _ _ u s e r * buf ,

s i z e _ t l en , l o f f _ t * o f f s e t) {
i f (buf [0] == ’A’) {

i n t a = 2 ;
a −= 2 ;
i f (5 / a > 0) {

p r i n t k (KERN_INFO " t h i s w i l l n e v e r happen ! \ n ") ;
}

}
re turn l e n ;

}

 Unicorefuzz

time

AFL

spawns

 Kernel
launches

Kernel

forks

bp -> exit

feeds
input

feeds
input

reports
feedback

reports
feedback,
exitcode,
blocks,
memory
regions

caches
new
blocks

Kernel

bp -> exit

feeds
input

reports
feedback

reports
feedback,
exitcode,
blocks,
memory
regions

caches
new
blocks

Kernel

bp -> exit

feeds
input

...
loop
until
abort

...reads
seeds

fork
server

Forkserver init Execution 1 Execution 2 Execution n

paused at
breakpoint

forks forks

collects&
mutates

blocks&
memory

blocks&
memory

feeds
input

feeds
input

collects&
mutates

Figure 2: Simplified overview of AFL-Unicorn forkserver with Unicorefuzz additions.

The kernel module in listing 1 crashes when it receives a
certain input over its procfs entry. Its procfs write_callback
divides by zero if (and only if) the first byte of the input is
0x41 (’A’): Setting up a testcase is trivial, however still needs
manual work:

1. Determine the address and return address of
write_callback , add it to the Unicorefuzz harness.

2. Determine the input buffer address and add it to the
Unicorefuzz probe wrapper

3. Fuzz

Even though the AFL component was started with an almost
empty input directory, it was able to find a crashing input
immediately with no false positives and no hangs. The com-
piler had replaced the division by zero with an invalid opcode,
but Unicorefuzz catches invalid instructions and appropriately
reports them as crashes. This and other test cases prove the
viability as kernel fuzzer. Note that the procfs entry was just
an example, the concept also works for other functions in the
kernel.

4.2 Open vSwitch

Bugs in software that has to parse networking input are of-
ten security issues with dangerous impact. Since previous
work has discovered bugs in Open vSwitch’s user space com-
ponents [40], their kernelspace counterpart, which is in the
Linux source tree, poses an interesting target.

4.2.1 sk_buff

The function key_extract extracts a so-called flow key from
an ethernet frame. It takes a pointer to an sk_buff containing
the packet and a pointer to an sw_flow_key to which the flow
key is written to. The probe wrapper was adapted to break on
key_extract . Passing the correct parameters to key_extract
needs manual analysis work. An sk_buff has multiple fields
that could be exposed to the fuzzer. Figure 3 depicts a basic
overview of the relevant parts in an sk_buff. Other variables
other than the data buffer might be hard to fuzz, since the data
structure is preprocessed by Linux. Fuzzing variables that
pose as pointer would definitely yield many false-positives,
even more so on internal APIs. This is why we decided on
fuzzing the data part as we expected this to lead to the most
promising results. Nevertheless, fuzzing metadata is an inter-
esting subject, but it will be close to impossible to differentiate

struct sk_buff {
…
unsigned int len,

data_len;

…

Sk_buff_data_t tail;
Sk_buff_data_t end;
unsigned char *head,

*data;

…
}

Head Room

Tail Room

sk_buf.h

Packet Data

Figure 3: Layout of sk_buf and its data

true bugs from false positives. In the end, we only fuzzed the
data packet data.

4.2.2 Results

After more than 6500 cycles, AFL found 62 new edges and the
input got copied to the correct address. There were no crashes
or hangs found in key_extract . Possibilities are that even if
we had corrupted logics in the out parameter (sw_flow_key),
bugs would not occur until later in the code. Choosing a larger
scope, starting further up in the stacktrace and running larger
chunks of code, a few functions up the stacktrace, will be
tested in the future.

4.3 Rediscovering Syzbot Bugs

The team behind syzkaller [17] offer syzbot, an open dash-
board listing hundreds of bugs found with syzkaller. As part
of this evaluation, we chose a reproducible syzkaller bug in:

i n t i p _ d o _ f r a g m e n t (s t r u c t n e t * ne t , s t r u c t sock * sk , s t r u c t s k _ b u f f * skb ,
i n t (* o u t p u t) (s t r u c t n e t * , s t r u c t sock * , s t r u c t s k _ b u f f *))

The function appeared perfect, since it triggers an actual
BUG() deeper in the function and is calls using sk_buf, a
the same internal socket data structure we already fuzzed for
Open vSwitch. After setting up the correct kernel function,
the breakpoint at the function entry and executing the repro-
duction script, Unicorefuzz uncovers the bug through fuzzing.
While successful this time, we don’t deem the results valuable.
In this scenario, the achievement of syzkaller was getting the
kernel to a state where this function would crash, something
Unicorefuzz does not address, since state is being reset after
each function call.

Listing 2: A "ported" kernel module
i n c l u d e < s t d l i b . h>
i n c l u d e < s t d i o . h>

s t a t i c s i z e _ t
w r i t e _ c a l l b a c k (void * f i l e , char * buf ,

s i z e _ t l en , void * o f f s e t) {
i f (buf [0] == ’A’) {

i n t a = 2 ;
a −= 2 ;
i f (5 / a > 0) {

p r i n t f (" nop \ n ") ;
}

}
}

void
main () {

char i n p u t [1 0 2 4] ;
f g e t s (i n p u t , s i z e o f (i n p u t) , s t d i n) ;
w r i t e _ c a l l b a c k (0 , i n p u t , 0 , 0) ;

}

Figure 4: Around 200 Execs/Sec when emulating a larger
kernel function on Intel Core i5-5257U (2.7 GHz)

4.4 Speed

To evaluate the performance impact of Unicorefuzz, we com-
pared it’s performance against AFL’s QEMU mode. Since
QEMU mode can only fuzz user space binaries, the tested
function from the kernel module in section 4.1 was ported
into a user space binary. Because of the low complexity of the
function with minimal dependencies, porting was trivial. The
entire source code is depicted in listing 2. The tests were run
on a ThinkPad T520 (Intel Core i7-2670QM @2.20GHz), the
results are shown in figure 4.4. The Unicorn based fuzzing
setup yields 47% the amount of execs/per second, when com-
pared with the user space binary in QEMU mode, which —
in turn — has performance overhead over a natively compiled
AFL, see figure 4.

Framework Execs/Sec
Unicorefuzz 459
AFL QEMU Mode 939
AFL 4860

Figure 5: Speed comparison of AFL, AFL in QEMU mode
and Unicorefuzz

5 Discussion

In the following, we will discuss design decisions as well as
practical roadblocks we encountered while building Unicore-
fuzz.

5.1 Seeds

Collecting valid input for a program poses a simple and ef-
fective method for initial input generation. The valid use of
a tool, or function call in the case of Unicorefuzz, contains
domain specific knowledge about the tool in question. Larger
test cases take longer to execute since more data has to be
processed. Many similar seeds covering the same code flow
lead to runs that take additional time without ever triggering
new and interesting corner cases. Empty input or single bytes
hardly ever trigger code paths in fuzz targets. Instead, some
sort of initial input or a way to generate it is usually applied
when fuzzing a target. For Unicorefuzz users can collect data
of the parameters when breakpoints are triggered. However,
mindlessly following this methodology might not be success-
ful, since, depending on the parameter, internal data structures
might have changed between calls. On top seeds must not
destroy current data structures and parameters.

5.2 Sanitization

Muench et al. classify the results of memory corruptions
found through fuzzing in different categories, of which ob-
servable crashes and hangs are easy to track. Late crashes
and malfunctioning may be hard to spot while the class of no
effect is impossible to track down with no added observation
channels like address sanitization. Sanitization methods check
if certain assumptions hold true at any given time and report
fails or even shut down the target in such a case. Many vulner-
abilities in binary application written in C/C++ are memory
corruption bugs, which are triggered, for example, by an out
of bounds read or an out of bounds write. However, not every
input that triggers a memory corruption bug translates to nec-
essarily crashing input immediately. The memory corruption
itself and the subsequent use of the corrupted memory, which
triggers the program crash, may often be far apart. Thus, even
when a crashing input is given, it may be hard to actually
detect the underlying memory bug. We evaluated Unicorefuzz
against Kernels built with Kernel Address Sanitizer (KASAN).
Address Sanitizers use compile time instrumentation in
order to detect, for instance, out-of-bounds memory access
and use-after-free bugs [35]. KASAN makes use of a shadow
memory to assess whether a particular byte of the kernel mem-
ory is safe to access. Address sanitization introduces relatively
low performance costs due to the way it maps memory to the
shadowed memory [35]. Since the Linux kernel on x64 makes
use of obscure functionality, KASAN broke Unicorn in the be-
ginning and thus our test cases had to be patched. Thanks

the fixes, however, we are able to make full use of KASAN,
should a kernel and module be built with it.

5.3 Replayability

Even though valid input leads to a valid crash, depending
on the preconditions, the input may not immediately be re-
playable. In the case of Unicorefuzz, however, all crashes
are 100% replayable. Unicorefuzz, as opposed to syzkaller,
is stateless. Stateless fuzzing calls the target over and over
again, from the same test state. In this case, it is the complex
state, but the same properly initialized state for every execu-
tion. The input state is persisted to disk, all input is persisted
through the usual AFL folder structure. Since Unicorn does
not have external input sources in this scenario, replaying one
input will always yield the same crash.

5.4 Constraining Inputs

Fuzzing a function that is located inside of a module and
expects the input to be according to a certain structure, can
be challenging. An example of such a function could be a
parser that expects an sk_buf, as discussed in 4.2.1. Since
this function is embedded inside the kernel, there are other
layers above checking the input before the function is called.
If the function is then triggered directly by the fuzzer, an
unconstrained input can lead to crashes that can never occur
as the state is already constrained inside the calling functions.
Thus, false positives are likely. When constraining the input
more than necessary, the fuzzer misses bugs. It’s a non-trivial
problem that still requires manual labor. However, definitions
which fields of common structures should and should not be
open to the fuzzer may be shared.

5.5 The Curious Case of GS_BASE

The segment registers are not used in their original — x86 —
context in x86_64 bytecode, but the GS register instead has a
GS_BASE register that is used to access CPU-specific mem-
ory. The same is true for FS_BASE Among others, internal
bookkeeping, stack canaries and the kernel address sanitizer
(KAZAN) use this register, so support for it has to be ensured.
The FS_BASE and GS_BASE are mapped to model-specific
registers (C000_0100h and C000_0101h) [1]. Model-specific
registers (MSRs) were originally experimental CPU registers
that were not guaranteed to be built into successor models,
however GS and FS base are commonly used. Still, Unicorn
Engine, at the time of writing, does not offer an API to interact
with these registers directly. Instead, for Unicorefuzz we have
to map some unmapped space and write the base registers
using shellcode for the wrmsr instruction.

Features Trinity TriforceAFL In-Kernel AFL syzkaller kAFL Userland Port Unicorefuzz
Fuzz Anywhere - - - - - + +
Peripherals ++ + - + + - -
Binary-Only - + - - + - +
Multi Arch + + ? + - + +
Speed ++ - - + + ++ -
Instrumentation - AFL-QEMU KCOV KCOV Intel PT Any AFL-Unicorn

Figure 6: Kernel fuzzing methods comparison

5.6 Initial Emulated Operation

AFL-Unicorn starts the forkserver after executing the first
instruction, then loads the input [41]. If the first instruction
interacts with a part of the input, the results of that instruction
are not based on the appropriate modified input from AFL,
but on the original input from the target. Since the segment
register workaround described in 5.5 has to execute shellcode
and therefore, first instructions, it mitigates this problem on
X86_64 by coincidence.

5.7 Scheduling

AFL-Unicorn emulates only one processor core, so, while em-
ulating the scheduler on a single core works, fuzzing functions
that need an active secondary core to complete will not work.
Furthermore, if a function needs access to a lock-protected
resource whose lock is busy at the moment the target’s break-
point fires, it cannot return since no other core will ever release
the lock.

5.8 Race Conditions

A single processor emulator setup with a tight harness will
not find race conditions because there is no other load on
the system. There are no other CPUs which could introduce
races for locks or concurrent data structures and when fuzzing
an individual, synchronous kernel function, no user space
programs will interfere. While this greatly reduces the odds
of discovery of race condition-related bugs, it makes crashes
perfectly reproducible.

5.9 Comparison Against Other Fuzzers

Evaluating fuzzer performance is hard (see section 6.1). How-
ever, we can compare certain features. As outlined in figure 6,
the non-emulated fuzzers don’t incur the emulators’ perfor-
mance impact, but lack the ability to target binaries where
the source code is not available, with the exemption of kAFL
which only works on recent Intel processors. Despite the use-
fulness of the execution speed being boosted by proper instru-
mentation, it has to be acknowledged that the raw throughput
of non-emulating fuzzers may lead to faster results, if their

user space agents can quickly trigger the desired target func-
tion. If the target is not easily triggered by a user space agent,
the targeted approach of Unicorefuzz is superior, as one halted
virtual machine is enough to conduct an arbitrary number of
possibly distributed fuzz tests.

6 Future Work

While we presented novel research along the field of fuzzing
during the course of this paper, there is plenty of room for
improvements.

6.1 Unified Evaluation Criteria

For years, researchers have been searching for a way to prop-
erly evaluate fuzzer performance against each other, with
limited success. In 2009, Clarke already stated that “it is im-
possible to accurately measure the effectiveness of fuzzing,
since the only practical metric, code coverage, only measures
one ‘dimension’ of fuzzing: the amount of (reachable) code
executed; it does not measure the range of input values fed to
the target at each code region. We have also seen that target
monitoring is often less than ideal” [8].

Dolan-Gavitt et al. propose LAVA-M, a test set for binary
analysis that can be used for performance evaluations [14],
however artificial benchmarks may lead to overfitting. Mu et
al. show that reproducibility of real-world security vulnerabil-
ities, however, is complex, nevertheless their efforts could be
used to partly evaluate os level fuzzers like syzkaller [29]. No-
tably, Trent Bunson postulates how to spot good Fuzzing [5].
Klees et al. perform a scientific evaluation of different fuzzers
with a larger number of runs [25]. We demand a similar test
suite for kernel bugs.

6.2 Embedded Fuzzing

Since every embedded processor has some debugging port
which can export memory pages and register values, adapting
the setup to embedded operating systems fuzzing is viable. A
single target is enough to answer dynamic memory mapping
requests, so distributing the fuzzing to multiple local or remote
machines is also straightforward.

6.3 Static Rewriting
Instead of adding instrumentation at compile time, or dynam-
ically at runtime, it can also be added using static analysis.
The obvious benefit is an increased throughput as opposed
to emulated instrumentation. Projects that modify (userland-
)binaries to add them, report code coverage and fuzz them
exist [32].

6.4 Emulation Performance Increases
Fuzzing speed depends on various factors. Recent advance-
ments focus on speed of path finding, but also on sheer execu-
tion speed of the instrumentation through lightweight hard-
ware features [34,44]. Current research has shown that AFL’s
QEMU mode’s performance can be improved by re-enabling
QEMU’s block chaining, which merges code blocks if one
ends with a direct jump. It is disabled because it interferes
with AFL’s instrumentation: merged blocks don’t jump back
into the emulator after every single contained block, so it effec-
tively disables tracing direct jumps. The author injects the in-
strumentation code into the translated code and thus can safely
enable block chaining. Combined with proper caching, this
yields a speedup of 3-4 times the mainline QEMU mode [4].
This patch could be ported to AFL-Unicorn and could sig-
nificantly reduce the performance gap to compiler-assisted
instrumentation. For this to work, however, further patches
to Unicorn itself are needed: block chaining was removed
from Unicorn, presumably to decrease code complexity and
simplify hooking. Given enough time and energy, it might
even be possible to port vectorized emulation, as proposed by
Falk, to AFL Unicorn [19].

6.5 Triaging
Fuzzing outputs a large amount of potential bugs. Depending
on the setup, they may be false-positives (especially when
underconstraining parameters), or all represent the same bug.
Fuzz testing yields numerous crashes, even for a single ap-
plication [28]. The amount of crashes may be too high to
manually audit [7]. To keep pressure from the manual ana-
lyst, a fuzz setup usually triages the target in some way. The
amounts of data are, therefore, unstructured:

1. Fuzzing a function may lead to multiple crashing inputs,
which can be attributed to the same bug.

2. Not every crash points to a bug that poses a security
threat. But often both security researchers as well as
developers want to focus on bugs that expose security
vulnerabilities. The fuzzing pipeline needs to assess the
severeness of a crash [28].

3. We also want to find the underlying bug that caused a
crash. This step has been done in a manual fashion so
far, although there are attempts to automate it: DeMott et

al. identify which part of the source code is responsible
for the bug. Using the assumption that lines of code
responsible for a bug are mainly exercised by crashing
inputs, they calculate a suspiciousness score for each
line of code [13].

Deduplication and analysis of crashes can be done by ex-
amining the similarity of the program’s stack trace at the
time of crashing. Methods that do so have already been em-
ployed successfully [10]. Similarly, heuristics exist to classify
crashes according to the exploitability of the bug that caused
the crash [20]. The heuristics work by executing the program
with the crashing input and then inspecting the crashing state.
For example, a NULL-pointer dereference bug can cause a
crash, but is hard to exploit or not at all exploitable on mod-
ern operating systems. However, if the EIP register can be
controlled with user defined input, the bug is extremely criti-
cal [37]. Huang et al. and Thanassis et al. both propose to au-
tomatically generated exploits from crashes. If a crash can be
marked exploitable fully automated, the bug is critical [2, 22].
For other bugs, assessing a crash properly is not trivial.

7 Conclusion

After evaluating the current state of the art, we provide an
implementation of a novel fuzzer, emulating kernel code. We
show that fuzzing kernel functions with an emulator is possi-
ble, viable and relatively easy to set up, even if the target func-
tion is not exposed to the user space. With this method, any
parsing functions can be fuzzed with coverage-guided feed-
back, as long as they do not interact with hardware. Though
the use of an emulator with support for memory access hooks
has an obvious impact on execution speed. Still, the through-
put is at roughly 46% of AFL’s QEMU usermode — and thus
acceptable.

The innate advantage of being able to start a fuzz-test at
any point in the kernel code, even on binary blobs and across
architectures is, to the best of our knowledge, unmatched by
other approaches to kernel fuzzing. We do see drawbacks in
the manual overhead needed to chose valid regions for param-
eter structs or arrays, however we hope to improve upon this
point. Kernel fuzzing has already found a significant amount
of bugs when only looking from afar — the syscall API —
but tests could never fuzz internal functions directly. Unicorn
is able to emulate a number of processor architectures, whose
kernels can be easily fuzzed with the described technique,
if it is possible to write a probe wrapper for that platform.
Unicorefuzz is able to execute everything where no multi-
processor coordination is required. We will open source the
implementation of Unicorefuzz and hope to improve on the
concept further.

Acknowledgments

The authors wish to thank Vincent Ulitzsch, Fabian Freyer
and Marius Muench for valuable input.

References

[1] AMD: AMD64 Architecture Programmer’s Manual Vol-
ume 2: System Programming. Advanced Micro Devices

[2] Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J.,
Woo, M., Brumley, D.: Automatic exploit genera-
tion. Commun. ACM 57(2), 74–84 (Feb 2014).
https://doi.org/10.1145/2560217.2560219

[3] Bellard, F.: Qemu, a fast and portable dynamic translator.
In: USENIX Annual Technical Conference, FREENIX
Track. vol. 41, p. 46 (2005)

[4] Biondo, A.: Improving afl’s qemu mode per-
formance. 0x41414141 in ?? () (Sep 2018),
https://abiondo.me/2018/09/21/improving-
afl-qemu-mode

[5] Brunson, T.: How to Spot Good Fuzzing Research
(Oct 2018), https://blog.trailofbits.com/2018/
10/05/how-to-spot-good-fuzzing-research,
[Online; accessed 11. Nov. 2018]

[6] Butti, L., Tinnes, J.: Discovering and exploiting 802.11
wireless driver vulnerabilities. Journal in Computer Vi-
rology 4(1), 25–37 (2008)

[7] Chen, Y., Groce, A., Zhang, C., Wong, W.K., Fern, X.,
Eide, E., Regehr, J.: Taming compiler fuzzers. In: ACM
SIGPLAN Notices. vol. 48, pp. 197–208. ACM (2013)

[8] Clarke, T.: Fuzzing for software vulnerability discovery.
Department of Mathematic, Royal Holloway, University
of London, Tech. Rep. RHUL-MA-2009-4 (2009)

[9] Corina, J., Machiry, A., Salls, C., Shoshitaishvili, Y.,
Hao, S., Kruegel, C., Vigna, G.: DIFUZE: interface
aware fuzzing for kernel drivers. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. pp. 2123–2138.
ACM (2017). https://doi.org/10.1145/3133956.3134069

[10] Dang, Y., Wu, R., Zhang, H., Zhang, D., Nobel, P.:
Rebucket: A method for clustering duplicate crash
reports based on call stack similarity. In: 2012
34th International Conference on Software En-
gineering (ICSE). pp. 1084–1093 (Jun 2012).
https://doi.org/10.1109/ICSE.2012.6227111

[11] DeMott, J.: The evolving art of fuzzing. DEF CON 14
(2006)

[12] DeMott, J., Enbody, R., Punch, W.F.: Revolutionizing
the field of grey-box attack surface testing with evolu-
tionary fuzzing. BlackHat and Defcon (2007)

[13] DeMott, J.D., Enbody, R.J., Punch, W.F.: Towards an
automatic exploit pipeline. In: Internet Technology and
Secured Transactions (ICITST), 2011 International Con-
ference for. pp. 323–329. IEEE (2011)

[14] Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mam-
bretti, A., Robertson, W., Ulrich, F., Whelan, R.: LAVA:
Large-scale automated vulnerability addition. In: 2016
IEEE Symposium on Security and Privacy (SP). pp. 110–
121 (May 2016). https://doi.org/10.1109/SP.2016.15

[15] Drewry, W., Ormandy, T.: Flayer: Exposing application
internals. WOOT 7, 1–9 (2007)

[16] Drewry, W.A., Ormandy, T.: Software testing using taint
analysis and execution path alteration (Feb 2013), uS
Patent 8,381,192

[17] Drysdale, D.: Coverage-guided kernel fuzzing with
syzkaller (2016), https://lwn.net/Articles/
677764/

[18] Duran, J.W., Ntafos, S.: A report on random testing.
In: Proceedings of the 5th international conference on
Software engineering. pp. 179–183. IEEE Press (1981)

[19] Falk, B.: Vectorized Emulation: Hardware accelerated
taint tracking at 2 trillion instructions per second (Oct
2018), https://gamozolabs.github.io/fuzzing/
2018/10/14/vectorized_emulation.html, [Online;
accessed 11. Nov. 2018]

[20] Foote, J.: Exploitable (2018), https://github.com/
jfoote/exploitable, [Online; accessed 2018-09-09]

[21] Hertz, J., Newsham, T.: Project triforce,
https://raw.githubusercontent.com/
nccgroup/TriforceAFL/master/slides/
ToorCon16_TriforceAFL.pdf

[22] Huang, S.K., Huang, M.H., Huang, P.Y., Lai, C.W., Lu,
H.L., Leong, W.M.: Crax: Software crash analysis for au-
tomatic exploit generation by modeling attacks as sym-
bolic continuations. In: 2012 IEEE Sixth International
Conference on Software Security and Reliability. pp. 78–
87 (Jun 2012). https://doi.org/10.1109/SERE.2012.20

[23] Kernel.org: kcov: code coverage for fuzzing,
https://www.kernel.org/doc/html/v4.17/dev-
tools/kcov.html

[24] Kerrisk, M.: Lca: The trinity fuzz tester (2013), https:
//lwn.net/Articles/536173/

https://abiondo.me/2018/09/21/improving-afl-qemu-mode
https://abiondo.me/2018/09/21/improving-afl-qemu-mode
https://blog.trailofbits.com/2018/10/05/how-to-spot-good-fuzzing-research
https://blog.trailofbits.com/2018/10/05/how-to-spot-good-fuzzing-research
https://lwn.net/Articles/677764/
https://lwn.net/Articles/677764/
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://github.com/jfoote/exploitable
https://github.com/jfoote/exploitable
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://www.kernel.org/doc/html/v4.17/dev-tools/kcov.html
https://www.kernel.org/doc/html/v4.17/dev-tools/kcov.html
https://lwn.net/Articles/536173/
https://lwn.net/Articles/536173/

[25] Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.:
Evaluating fuzz testing. CoRR abs/1808.09700 (2018),
http://arxiv.org/abs/1808.09700

[26] Lemieux, C., Sen, K.: Fairfuzz: Targeting rare branches
to rapidly increase greybox fuzz testing coverage.
CoRR abs/1709.07101 (2017), http://arxiv.org/
abs/1709.07101

[27] LLVM Project: libFuzzer – a library for coverage-guided
fuzz testing. (Sep 2018), https://llvm.org/docs/
LibFuzzer.html, [Online; accessed 15. Sep. 2018]

[28] Miller, C.: Crash analysis with bitblaze. Blackhat (2010)

[29] Mu, D., Cuevas, A., Yang, L., Hu, H., Xing, X., Mao,
B., Wang, G.: Understanding the reproducibility of
crowd-reported security vulnerabilities. In: Enck, W.,
Felt, A.P. (eds.) 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, Au-
gust 15-17, 2018. pp. 919–936. USENIX Associa-
tion (2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/mu

[30] Muench, M., Francillon, A., Balzarotti, D.: Avatar²:
A multi-target orchestration platform. In: BAR 2018,
Workshop on Binary Analysis Research, colocated with
NDSS Symposium, 18 February 2018, San Diego, USA.
San Diego, UNITED STATES (Feb 2018), http://
www.eurecom.fr/publication/5437

[31] Ngyuen, A.Q., Dang, H.V.: Unicorn: Next genera-
tion cpu emulator framework, http://www.unicorn-
engine.org/BHUSA2015-unicorn.pdf

[32] Nikolich, A.: Afl fuzzing blackbox binaries (2015),
https://groups.google.com/forum/#!topic/afl-
users/HlSQdbOTlpg

[33] Nossum, V., Casasnovas, Q.: Filesystem
fuzzing with american fuzzy lop (2016),
https://events.static.linuxfound.org/sites/
events/files/slides/AFL%20filesystem%
20fuzzing,%20Vault%202016_0.pdf

[34] Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S.,
Holz, T.: kafl: Hardware-assisted feedback fuzzing for
OS kernels. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 167–182. USENIX Associa-
tion, Vancouver, BC (2017)

[35] Serebryany, K., Bruening, D., Potapenko, A., Vyukov,
D.: Addresssanitizer: A fast address sanity checker. In:
USENIX Annual Technical Conference. pp. 309–318
(2012)

[36] Serebryany, K.: Oss-fuzz-google’s continuous fuzzing
service for open source software. In: USENIX Security
Symposium (2017)

[37] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N.,
Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser,
C., Kruegel, C., Vigna, G.: SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis. In: IEEE
Symposium on Security and Privacy (2016)

[38] Song, D., Hetzelt, F., Das, D., Spensky, C., Na, Y.,
Volckaert, S., Vigna, G., Kruegel, C., Seifert, J., Franz,
M.: Periscope: An effective probing and fuzzing
framework for the hardware-os boundary. In: 26th
Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019. The Internet Society
(2019), https://www.ndss-symposium.org/ndss-
paper/periscope-an-effective-probing-and-
fuzzing-framework-for-the-hardware-os-
boundary/

[39] Sthamer, H.H.: The automatic generation of software
test data using genetic algorithms. Ph.D. thesis, Univer-
sity of Glamorgan (1995)

[40] Thimmaraju, K.: Ve-2018-1000155: Denial of service,
improper authentication and authorization, and covert
channel in the openflow 1.0+ handshake (2018),
https://www.openwall.com/lists/oss-security/
2018/05/09/4

[41] Voss, N.: afl-unicorn: Fuzzing arbitrary binary
code (October 2017), https://hackernoon.com/
afl-unicorn-fuzzing-arbitrary-binary-code-
563ca28936bf

[42] Vyukov, D.: Add fuzzing coverage support (2015),
https://gcc.gnu.org/viewcvs/gcc?view=
revision&revision=231296

[43] Zalewski, M.: Technical "whitepaper" for AFL-fuzz
(2016)

[44] Zhang, G., Zhou, X., Luo, Y., Wu, X., Min, E.:
Ptfuzz: Guided fuzzing with processor trace
feedback. IEEE Access 6, 37302–37313 (2018).
https://doi.org/10.1109/ACCESS.2018.2851237

http://arxiv.org/abs/1808.09700
http://arxiv.org/abs/1709.07101
http://arxiv.org/abs/1709.07101
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
http://www.eurecom.fr/publication/5437
http://www.eurecom.fr/publication/5437
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
https://groups.google.com/forum/#!topic/afl-users/HlSQdbOTlpg
https://groups.google.com/forum/#!topic/afl-users/HlSQdbOTlpg
https://events.static.linuxfound.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.openwall.com/lists/oss-security/2018/05/09/4
https://www.openwall.com/lists/oss-security/2018/05/09/4
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=231296
https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=231296

	Introduction
	Basic terminology
	Feedback Fuzzing
	Contribution

	Related Work
	Trinity
	DIFUZE
	syzkaller
	In-Kernel AFL
	TriforceAFL
	kAFL

	Unicorefuzz
	AFL-Unicorn
	avatar2
	Unicorefuzz
	Preparation
	Dynamic Mapping
	Fuzz-Test Execution

	Evaluation
	broken.ko
	Open vSwitch
	|sk_buff|
	Results

	Rediscovering Syzbot Bugs
	Speed

	Discussion
	Seeds
	Sanitization
	Replayability
	Constraining Inputs
	The Curious Case of GS_BASE
	Initial Emulated Operation
	Scheduling
	Race Conditions
	Comparison Against Other Fuzzers

	Future Work
	Unified Evaluation Criteria
	Embedded Fuzzing
	Static Rewriting
	Emulation Performance Increases
	Triaging

	Conclusion

