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Abstract

Kernel Address Sanitizer (KASAN), an invaluable tool for
finding use-after-free and out-of-bounds bugs in the Linux
kernel, needs the kernel source for compile-time instrumenta-
tion. To apply KASAN to closed-source systems, we should
develop a binary-only KASAN, which is challenging. A tech-
nique that uses binary rewriting and processor support to run
KASAN for binary modules needs a KASAN-applied ker-
nel, thereby still the kernel source. Dynamic instrumentation
offers an alternative way to it but greatly increases the perfor-
mance overhead, rendering the kernel fuzzing impractical.

To address these problems, we present the first practical,
binary-only KASAN named BoKASAN, which conducts ad-
dress sanitization through dynamic instrumentation for the
entire kernel binaries efficiently. Our key idea is selective
sanitization, which identifies target processes to sanitize and
hooks the page fault mechanism for significantly reducing the
performance overhead of dynamic instrumentation. Our key
insight is that the kernel bugs are most relevant to the pro-
cesses created by a fuzzer. Thus, BOKASAN deliberately sani-
tizes the target memory regions related to these processes and
leaves the remains unsanitized for effective kernel fuzzing.

Our evaluation results show that BOKASAN is practical
on closed-source systems, achieving the compiler-level per-
formance of KASAN even on binary-only kernels and mod-
ules. Compared to KASAN on the Linux kernel, BOKASAN
detected slightly more bugs in the Janus dataset and slightly
fewer bugs in the Syzkaller/SyzVegas dataset; and BOKASAN
found the same number of unique bugs in the 5-day fuzzing
and executed the similar number of basic blocks. For binary
modules on the Windows kernel and the Linux kernel, resp.,
BoKASAN was effective in finding bugs. An ablation result
shows that selective sanitization affected these outcomes.

1 Introduction

Modern operating systems are susceptible to use-after-free
and out-of-bounds bugs that are hardly detectable by state-of-
the-art fuzzers [51]. Kernel Address Sanitizer (KASAN) is a
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dynamic analysis tool specifically designed to find these bugs
in the Linux kernel. KASAN uses compile-time instrumen-
tation to insert code for calling hook functions before each
memory access and validates the accessed memory bytes at
run time. According to Syzbot [56], the coverage-guided ker-
nel fuzzer Syzkaller detected a great number of Linux kernel
bugs by incorporating KASAN, which indeed contributed to
finding at least 27% of the bugs. However, this invaluable tool
cannot be applied to closed-source systems. Not all kernels
and modules are provided as open source, and even in the
case of open source, the corresponding version is not always
available. This crucial situation highlighted the need (§2.1)
for developing binary-only KASAN [9, 34].

The development of binary-only KASAN is challenging
though. It would be requiring dynamic or static binary instru-
mentation in the kernel mode as implementing binary-only
ASAN for user-mode applications [8, 10, 12]. In practical
senses, unfortunately, it is notorious to apply binary instru-
mentation to kernels because of the performance overhead
owing to the complexity and large size of the kernel binaries
(§2.2). For instance, Bochspwn Reloaded [21] used dynamic
taint analysis with the Bochs emulator to find kernel mem-
ory disclosure bugs; but, the 13—18 times increase in the
performance overhead was inevitable because of needing to
decode all the instructions for emulation, which made it im-
practical for fuzzing. KRetroWrite [47] applied static binary
instrumentation to support KASAN on the binary kernel mod-
ules. However, the binary rewriting of the modules requires
the main kernel to which KASAN has already been applied,
meaning that the correct kernel source is still necessary.

In this paper, we address these problems by introducing a
novel hooking-based approach called selective sanitization.
The basic insight behind this idea is that most of the bugs
detected by fuzzing are actually discovered in the processes
created by the fuzzer (§2.3). Thus, we selectively sanitize
the memory region allocated by the fuzzer-created kernel
processes and leave the remaining area unsanitized for exe-
cution (§2.4). This targeted sanitization method (§3.1) can
significantly reduce the performance overhead of dynamic
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instrumentation. We develop the first “practical” binary-only
KASAN named BoKASAN using this idea.

BoKASAN dynamically performs 1) function instrumen-
tation (§3.2) and 2) memory access instrumentation (§3.3),
respectively. On function instrumentation, BOKASAN cre-
ates a red zone by hooking the memory allocation func-
tions and then initializes the shadow memory. On memory
access instrumentation, BOKASAN exploits the page fault
mechanism of the OS. When the sanitized memory region
is accessed, BOKASAN forcibly produces a page fault and
checks the shadow memory. If the red zone was accessed,
then BOKASAN alarms this to the fuzzer.

We implement BOKASAN on the Linux kernel (§4) and
further on the Widows kernel (§A). We evaluate BOKASAN
regarding its bug-finding capability (§5.1) and overhead
reduction (§5.2), compared to KASAN on the Linux ker-
nel. We then evaluate the effectiveness of selective san-
itization in BoKASAN compared to its ablated version
(§5.3). We integrate BOKASAN with Syzkaller for fuzzing
and use Janus [64] and Syz (Syzkaller and SyzVegas [61])
datasets, respectively, and show that, unlike previous meth-
ods, BOKASAN practically uses dynamic instrumentation for
address sanitization of the entire kernel binaries. Moreover,
we evaluate BOKASAN with regard to binary-only fuzzing
on the Windows kernel compared to the Linux kernel (§5.4).
We integrate BOKASAN with kAFL for fuzzing and use the
kAFL’s buggy driver in our evaluation. We account for the
random nature of fuzzing as guided in [25].

To sum up, this paper makes the following contributions:

* We present a novel method called a selective sanitization
blended with a page-fault handling mechanism to signifi-
cantly reduce the performance overhead in dynamic instru-
mentation for binary-only kernel address sanitization.

* We design and implement BOKASAN that realizes our new
idea. To the best of our knowledge, BOKASAN is the first
binary-only kernel address sanitizer practical for the “entire”
kernel binaries, achieving compiler-level performance.

* We evaluate BOKASAN (with kernel binaries only) in com-
parison to KASAN (with kernel source code) on the Linux
kernel and produce the following results.

— BoKASAN detected slightly more bugs (21>20) in the
Janus dataset and slightly fewer bugs (14<15) in the
Syz dataset (§5.1); and the equal number of unique bugs
(21) and more bugs (178>139) in 5d fuzzing.

— BoKASAN executed almost the same number of ba-
sic blocks and 10.5% fewer syscalls in 24h fuzzing
(§5.2). BOKASAN executed 5.1 times more syscalls
than KASAN running with full emulation.

— Selective sanitization affected the performance (§5.3),
e.g., 4.3 times more syscalls than its ablated version.

* We further implement BOKASAN for binary-only fuzzing
on the Windows kernel and confirm that BOKASAN can be
applied to closed-source systems including COTS OSs.

-~ Process 1
(Child of Fuzzer)
Object A

_| Memory Allocation
Region

Process 2
Object B

7

Shadow Memory AN Iz_)rgjgeecsts éi

Region \\ =

\ °
\| [

Kernel Address Space

Figure 1: Overview of KASAN. Multiple processes share a single
memory region and KASAN sanitizes all processes.

2 Background and Motivation

In this section, we describe the necessity for binary-only
KASAN and explain why it is difficult to implement. We
then present our approach and consider its feasibility.

2.1 Binary-only KASAN Is Necessary

Kernel address sanitizer (KASAN) detects dynamic mem-
ory errors, such as out-of-bounds (OOB) and use-after-free
(UAF) bugs, in a kernel that employs an address space that
differs from that used for user-mode applications. KASAN
uses shadow memory-based red zones, similar to ASAN, to
effectively check memory errors, as illustrated in Figure 1.
For this purpose, it performs compile-time instrumentation
in three phases of memory management: allocation, use, and
free (deallocation). Memory allocation functions (e.g., kmal-
loc, kfree) are instrumented on memory allocation and free
phases, and memory accesses are instrumented on memory
use. The instrumentation operates as follows: First, the red
zones are added around the allocated memory, and the shadow
memory corresponding to this memory address is initialized.
The shadow memory sets the allocated memory as accessible,
but the red zones are inaccessible. When any process accesses
the memory, the shadow memory is checked to determine
whether the accessed memory address is valid (i.e., it is not
located in the red zones). When the memory is freed after use,
the shadow memory is updated to designate the corresponding
memory address an inaccessible red zone. Any access to the
red zones is reported as an error.

KASAN has been used with state-of-the-art kernel fuzzers,
such as Syzkaller, to discover a large number of Linux kernel
bugs. According to a report by Syzbot [60], among 3,173
Linux kernel bugs discovered by Syzkaller [59] and patched
by April 2022, 933 (26%) bugs were detected by KASAN.
Among the bugs found by KASAN, UAF and slab OOB ac-
cess were the most common at 535 (57%) and 203 (21%),
respectively. Based thereupon, we can conclude that KASAN
is essential for discovering kernel memory errors, especially
UAF and slab OOB access. However, existing technologies
for KASAN commonly require a kernel source, for exam-
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Table 1: LMBench Result. Time is in microseconds. Baseline and
KASAN use KVM, and KASAN (FE) uses full emulation without
using KVM. Numbers in parentheses indicate additional overhead
compared to baseline.

Syscall Baseline \ KASAN (%) \ KASAN (FE) (%)
null 0.228 | 0.243  (6.9) 1.737  (633.7)
open/close 2.184 | 7.540 (245.2) | 188571 (8,534.2)
read 0.470 | 0.529 (12.5) 7.550  (1,506.8)
write 0.338 | 0365 (8.1) 4213 (1,147.8)
stat 1312 | 4297 (227.5) | 82920 (6,220.6)
fstat 0.361 | 0457 (26.5) 4.141  (1,047.8)

ple, for compile-time instrumentation. Consequently, kernel
fuzzers can only find bugs in COTS OSs when a kernel panic
occurs. For example, Bochspwn Reloaded discovered more
than 70 memory disclosure bugs in the Windows kernel, but
existing kernel fuzzers cannot detect them. Note that both
Bochspwn Reloaded and kernel fuzzers cannot detect UAF
and slab OOB access bugs. Therefore, to discover memory
error bugs more effectively in COTS OSs, KASAN would
have to be applied to kernel binaries without requiring any
kernel source.

2.2 Implementing Binary-only KASAN Is
Challenging

To apply KASAN to kernel binaries only, we need a binary
instrumentation method against target kernels: static instru-
mentation for directly modifying the binary or dynamic in-
strumentation for inserting code at runtime. For example,
KRetroWrite [47] statically rewrites the binary kernel module
to apply KASAN, whereas Bochspwn Reloaded performs dy-
namic taint tracking on the Bochs emulator to discover kernel
memory disclosure bugs. However, our observation is that it
would be highly challenging to use both of these approaches
for implementing binary-only KASAN.

2.2.1 Static Instrumentation

For kernel binaries more complicated than user programs,
static instrumentation is challenging, and in particular, sound
instrumentation is infeasible [45], at least because of the fol-
lowing. If one part of the kernel does not work correctly, the
operation of entire system may fail. To the best of our knowl-
edge, a static instrumentation method does not exist for the
entire kernel binary, but only for the binary kernel module.
KRetroWrite [47] used static instrumentation to apply binary
KASAN to a binary kernel module. However, KRetroWrite
can only rewrite the binary kernel modules and directly load
the modules to the kernel that KASAN has already employed,
which means that it still requires the source code of the kernel.
This technique cannot support binary-only kernels. Note that
not all kernels are provided as open source, and even if the
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Figure 2: Time to access memory for 1,000 times. We used an
average time of 30 trials. PF is 972 and 563 times slower than the
baseline and KASAN for read, and 1,127 and 644 times slower for
write, respectively.

kernel were open source, the correct version is not always
available [9]. In addition, the distinct binary format used by
each vendor of COTS OSs makes static instrumentation more
difficult [2]. For example, at Apple, much of the kernel is
implemented in C++. This language has functions such as
classes and exception handlers, and static analysis of C++
binaries is known to be more difficult than that of C binaries
because much of the information necessary for these func-
tions disappears during the compilation [42, 50]. RetroWrite
fails in binary rewriting if a C++ exception handler exists.

2.2.2 Dynamic Instrumentation

Compared to static instrumentation, dynamic instrumentation
causes higher instrumentation overhead although it is rela-
tively easy to implement and effective in finding actual kernel
bugs (e.g., coverage measurement) [35,39]. Dynamic instru-
mentation methods for implementing binary-only KASAN
could involve either 1) using an emulator or 2) utilizing the
page fault mechanism of the kernel. We analyzed the overhead
caused by these two methods to see why they are impractical.

Emulation is slow. According to the Bochspwn project, the
Bochs [26] emulator takes approximately 13—18 times longer
to boot the operating system compared to a virtual machine
running on VirtualBox [21]. This means that at least 13 times
the overhead is generated only for kernel emulation, which
means that additional overhead is required for memory access
instrumentation. When taint tracking was applied to discover
memory disclosure in Bochspwn Reloaded, the total over-
head, including emulation, increased by approximately 32
to 50 times. Additionally, the overhead was measured us-
ing LMbench [38] as a benchmark in Linux running on the
QEMU emulator. Table 1 presents the results of running LM-
bench in Linux kernel v4.15 in microseconds. Baseline and
KASAN are the results of using QEMU with KVM enabled,
and KASAN (FE) results from full emulation without using
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KVM. For memory access instrumentation, full emulation is
required without KVM because it is trapped when a memory
access instruction is executed on the emulator. In Table 1,
when KASAN-applied Linux is operated with full emula-
tion, an overhead of approximately 7—85 times is generated
compared to the baseline. As a result, using the emulator in-
troduces a very large amount of overhead of approximately
10 times or more compared to KASAN, which incurs an over-
head of approximately three times more.

Hooking a page fault handler generates extremely high
overhead. To analyze the overhead resulting from using the
second method, the page fault mechanism, we hooked the
default page fault handler of the kernel to instrument memory
access. We then measured the memory read/write overhead.
The memory access instrumentation is performed in the same
way as Periscope [52]; however, unlike Periscope, which mod-
ifies the source code, we dynamically hooked the necessary
functions (kmalloc, page fault handler, debug exception han-
dler) using ftrace. Figure 2 shows the result of measuring the
overhead in memory access of the baseline, KASAN, and page
fault-based instrument (PF). The baseline is a kernel in which
KASAN is not applied. Memory read/write was performed
1,000 times after allocating memory in the kernel space with
the kmalloc function to measure the overhead. These mea-
surements indicated that the PF had approximately 972-1,127
times and 563-644 times overhead compared to the base-
line and KASAN, respectively. Because context switching
is performed when an interrupt is triggered, the context of
the current process is saved at the interrupt handler entry and
restored at the exit. A large amount of overhead is incurred
because all of the above processes must be performed for each
memory access. The overhead is incurred only in the memory
access instructions, meaning that the total overhead during the
actual system call would be less; however, the amount is ob-
viously large compared to the compile-time instrumentation,
which generates approximately 2-3 times more overhead. The
considerable overhead generated by such a dynamic instru-
mentation method makes kernel fuzzing impractical.

2.3 Interesting Difference in Kernel Fuzzing

Although binary-only KASAN is clearly required, the above-
mentioned challenging problems have prevented a practical
solution from being found. Before we attempt to solve this
problem, we observe an interesting fact: the difference be-
tween the user space and kernel space when fuzzing. The
intriguing difference between these two spaces is that in the
user space, one process is generally tested, whereas in the
kernel space, a specific process is tested in an environment
where multiple processes are running. Because the fuzzer
tests the entire code of the target program in the user space,
applying the sanitizer to all the code of the user program is
very reasonable. However, the kernel space is also used to
run processes that are basic functions of the OS, and these

Table 2: Results of fuzzing with Syzkaller for 7 days with 60 VMs.
20 out of 22 bugs (91%) found by KASAN and 50 out of 57 total
bugs (88%) were caused by the fuzzer process.

ID Bug Description Fuzzer Process
1 UAF Read in n_tty_receive_buf_common v
2 UAF Read in do_update_region X
3 UAF Read in vgacon_invert_region v
4 UAF Read in complement_pos v
5 UAF Read in disk_unblock_events v
6 UAF Read in screen_glyph v
7 Slab OOB Read in xattr_getsecurity v
8 Slab OOB Read in simple_xattr_alloc v
9 UAF Write in __ext4_expand_extra_isize v
10 UAF Read in vgacon_scroll v
11 Slab OOB Read in ext4_xattr_set_entry 4
12 UAF Read in vc_do_resize v
13 Stack OOB Read in xfrm_state_find v
14 UAF Write in do_con_write v
15 Slab OOB Write in perf_callchain_user X
16 UAF Read in vcs_write v
17 UAF Read in iptunnel_handle_offloads v
18 UAF Read in copyout v
19 UAF Write in con_shutdown v

20 UAF Write in vgacon_scroll v

21 UAF Read in build_segment_manager v

22 Slab OOB Read in do_con_trol v

Total 20/22

are generally not related to the process of being fuzzed (i.e.,
it does not receive input from the user). Therefore, applying
a sanitizer to processes other than the fuzzing target process
that receives user input and detects bugs can incur unneces-
sary overhead. For example, in the kernel space, as shown in
Figure 1, several processes allocate objects in one memory
area, but a large number of allocated objects are not related
to fuzzing.

Interestingly, most bugs found by kernel fuzzers are trig-
gered by processes created by the fuzzer (i.e., processes that
call random syscalls). Table 2 lists the memory corruption
bugs detected by KASAN as a result of fuzzing Linux kernel
v4.15. We performed 7d of fuzzing using 60 virtual machines.
As a result of the experiment, a total of 57 bugs, of which
KASAN detected 22 bugs, were found. The 22 OOB access
and UAF type bugs detected by KASAN are listed in the
second column of Table 2. The third column is the result of
comparing process identifiers (PIDs) to check whether the
crashed process is created by Syzkaller. As indicated in the
Table, 20 of the 22 crashes (91%) found by KASAN occurred
in the process generated by the fuzzer. In addition, 50 out
of a total of 57 crashes (88%) occurred as a result of fuzzer-
generated processes. Among the bugs detected by KASAN,
bugs with different PIDs have occurred in objects allocated
from system daemons such as systemd and systemd-udevd. If
the process is selectively sanitized, more than 80% of crashes
can be detected, and the performance overhead caused by
dynamic instrumentation can be minimized.
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Figure 3: Overview of the kernel memory with selective sanitization
applied. Unlike KASAN, selective sanitization is applied only to
objects allocated in the sanitized memory region.

2.4 Our Approach: Selective Sanitization

The insight we gained by making these interesting observa-
tions led us to the idea of sanitizing the kernel by selecting
the target process “well”. Thus, our basic idea is to selectively
sanitize only the memory objects allocated by the target pro-
cess to minimize the sanitizing overhead. Careful selection
of the target process means to select the process created by
the fuzzer to call a random system call or a specific process
running for kernel vulnerability analysis. Figure 3 depicts the
concept of selective sanitization. In general, in the kernel, one
memory allocation area is shared by multiple processes, and
KASAN sanitizes all processes using this area (§2.3). On the
other hand, selective sanitization does not entail applying the
sanitizer to all the memory objects of a process; instead, it
only applies the sanitizer to those of the target process. As
shown in Figure 3, objects allocated by the target process,
process 1, have a red zone, and objects allocated by other pro-
cesses do not have a red zone. Selective sanitization divides
the memory region into a memory allocation region where the
existing kernel objects are allocated and a sanitized memory
region where the sanitized objects are allocated.

3 Design

We designed and implemented a binary-only KASAN
BoKASAN, which practically performs address sanitizing
through dynamic instrumentation (without the source code)
for the entire kernel binary. The key accomplishments of
BoKASAN are as follows: (1) BOKASAN dramatically re-
duces the performance overhead of dynamic instrumentation
by performing selective address sanitizing, which identifies
the process targeted for vulnerability analysis among the pro-
cesses running in the kernel. (2) Dynamically hooks the page
fault mechanism to enable selective address sanitization on a
KVM-enabled virtual machine.

Figure 4 presents an overview of BoKASAN. First,
BoKASAN registers the target process for selective saniti-
zation (). The target process can be created by a fuzzer or
a specific process executed for vulnerability analysis. After

registering the target process, the registered process calls the
sanitized allocation instead of the default allocation mech-
anism when allocating a kernel object (€)). In sanitized al-
location, objects are allocated to a sanitized memory region
separate from the region generally allocated to the kernel
memory, and the page present bit is cleared in this region to
trap future memory access. Subsequently, when the memory
in the sanitized memory region is accessed, the hooked page
fault handler checks the validity of the memory address, and
BoKASAN raises a kernel panic when an inaccessible ad-
dress is accessed (€)). Finally, when the memory allocated to
the sanitized memory region is deallocated, sanitized deallo-
cations are performed (@)). The deallocated memory area is
never used in the future, and when access to this area occurs,
a use-after-free error is reported.

3.1 Target Selection

To apply selective sanitization, BOKASAN first registers the
sanitization target (€) in Figure 4). After the targets are reg-
istered, the memory allocator checks whether the requested
process is registered when a request occurs. In the case of a
registered process, sanitization is applied; otherwise, default
memory allocation is performed. BOKASAN uses a PID to
identify a sanitized target, which can be registered when a
kernel fuzzer (e.g., Syzkaller) creates a new process to test
a syscall. In addition, BOKASAN covers all descendant pro-
cesses by hooking fork(). Because BOKASAN mostly incurs
overhead when the page fault handler is executed, the overall
overhead is minimized by generating a page fault only for
objects to which the sanitizer had been applied through a sepa-
rated memory area. One might be concerned that bugs that oc-
cur in non-children processes may be missed. We can alleviate
this problem by randomly applying sanitization for the objects
allocated by non-target processes. Note that the method of
sanitizing random allocations is already used in memory error
detectors applied to production-level software that requires
minimal overhead. For example, GWP-ASan [29] is applied
to user space heap allocation, and KFENCE [23] is used to
heap allocation of the Linux kernel. As described in §2.3, our
selective sanitization detected more than 90% of bugs without
random sanitization, so we did not implement this feature in
the current version of BOKASAN. Further research can apply
random sanitization to minimize false negatives.

The use of selective sanitization enables BOKASAN to
use a larger red zone and less shadow memory. For example,
because BOKASAN sanitizes only approximately 12.5% of
the total allocation (Table 11), only the shadow memory cor-
responding to the object needs to be allocated. In addition,
owing to selective sanitization, BOKASAN uses a larger red
zone, it was able to accurately classify the bugs misclassified
by KASAN (§5.1). Since the address sanitizer cannot detect
OOB access that exceeds the size of the red zone, it is possible
to reduce such false negatives as the red zone grows.
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Figure 4: Overview of BOKASAN

3.2 Memory Allocation and Deallocation

BoKASAN dynamically hooks the memory allocation and
deallocation functions of the Linux kernel to implement the
sanitizer (the target functions are greater detail in §4). The pro-
cess whereby BOKASAN allocates and deallocates memory
is as follows.

Allocation. BOKASAN hooks the memory allocation func-
tions (e.g., kmalloc) to allocate the object including the red
zone (@ in Figure 4). The memory allocation process con-
sists of 1) checking whether the process is a target process;
2) allocating the requested memory including the red zone;
3) initializing the shadow memory; and 4) clearing the page
present bit.

The use of selective sanitization requires a sanitization tar-
get to be allocated among the memory allocations requested
by kernel processes. Because BOKASAN hooks the allocation
functions of the kernel, the allocation handler is called when-
ever an allocation is requested. The handler checks whether
the process that requested allocation is the target process. To
do this, it checks the PID of the current process, and if the
process is registered in BOKASAN, sanitized allocation is ex-
ecuted. However, if it is an unregistered process, the requested
allocation is performed without generating a red zone.

Sanitized allocation allocates a larger object than the re-
quested object, which includes a red zone when allocating
an object, and sets the shadow value to the shadow memory.
To initialize the shadow memory, we first obtain the shadow
memory address corresponding to the address of the allo-
cated object and check whether this address area is already
allocated. If the obtained shadow memory address is an un-
mapped area, BOKASAN allocates shadow memory to page
granularity. When shadow memory is allocated, the shadow
memory of the memory page containing the allocated object
is set to a shadow value, indicating that it is a sanitized page
(e.g., BOKASAN_PAGE). To separate the sanitized memory
region from the memory allocation region, only the target
process can allocate memory objects in the area where the
shadow value is BOKASAN_PAGE. After the initialization
of the shadow memory, the allocated shadow memory of the
allocated object is set to the shadow value indicating the sani-
tized object (e.g., BOKASAN_OBJECT), and the red zone

of the allocated object is set to the shadow value indicating
the address of the red zone (e.g., BOKASAN_REDZONE).
For example, if an object of size 1024 bytes is allocated,
BoKASAN allocates shadow memory of the size of a page
(4096 bytes), and 512 bytes (4096 > 3) of shadow memory
corresponding to the page containing the allocated object
is initialized to BOKASAN_PAGE. Thereafter, 128 bytes
(1024 > 3) of the shadow memory corresponding to the allo-
cated object is set to BOKASAN_OBJECT, and the shadow
memory corresponding to the red zone of the object is set to
BOKASAN_REDZONE. Details of the implementation of
the shadow memory are provided in §4.

After allocating memory, BOKASAN clears the present bit
of the page containing the allocated object by manipulating
the value of the page table entry. At this time, if the object is
located over several pages because the size of the allocated
object is larger than the page size, the present bits of all pages
including the object are cleared. As a result, when the object
is accessed in the future, the page fault handler is invoked,
and memory access instrumentation can be performed. Fi-
nally, to indicate that the present bit of the page is cleared by
BoKASAN, we set the PAGE_SPECIAL flag.

Deallocation. BOKASAN hooks memory deallocation func-
tions (e.g., kfree) to perform sanitized deallocation (@) in
Figure 4). Because selective sanitization is also applied to
memory deallocation, it selectively sanitizes memory objects
that are freed in the kernel space. BOKASAN only sani-
tizes the objects in the sanitized memory region by check-
ing the shadow memory of the object for which deallocation
is requested (i.e., when the shadow value of the object is
BOKASAN_OBIJECT).

The process of sanitized deallocation is as follows: 1)
Changing the shadow value of the freed object to a value
representing the freed object (e.g., BOKASAN_FREE) and
2) the object is not actually freed but remains in memory
(i.e., the address of the freed object will never be used). This
enables BOKASAN to check the shadow memory when the
freed object is accessed in the future. If a non-sanitized object
is freed, the memory is freed by the deallocation function of
the kernel.
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Figure 5: Memory access instrumentation overview.

3.3 Memory Access

BoKASAN hooks the kernel page fault handler and debug
exception handler for the memory access instrument (€) in
Figure 4). When a kernel process accesses the sanitized mem-
ory region, a page fault occurs because the present bit of that
region is not set. When a page fault occurs, the page fault
handler is executed, and the faulted instruction address, ac-
cessed memory address, and other flags are delivered to the
handler. BOKASAN uses this information to check whether
the memory access is valid. If it is valid, the trapped instruc-
tion is single stepped, and the present bit of the accessed
address is cleared in the debug exception handler. Otherwise,
if the memory address is invalid, BOKASAN raises a kernel
panic with an error report. Figure 5 shows the memory access
instrumentation process.

Filter Out. BOKASAN only investigates page faults that oc-
cur in the sanitized region. If the accessed address is not a
sanitized memory region (i.e., when a page fault occurs for
reasons other than a fault caused by BOKASAN clearing the
present bit), BOKASAN allows the default page fault handler
to process the fault. Otherwise, BOKASAN checks the valid-
ity of the accessed address. If the memory allocation region
and the sanitized memory region are completely separated
and independent, as shown in Figure 3, the faulted address can
be easily checked and filtered. However, because BOKASAN
uses a page-level sanitized memory region (additional details
are provided in §B), the address of the sanitized memory re-
gion is flexible, thus it cannot be filtered by simply comparing
address ranges. Because the PAGE_SPECIAL flag of the san-
itized page is always set, BOKASAN refers to the flag value
of the accessed memory pages to determine the page to be
filtered.

Check Address Validity. BOKASAN checks the shadow
memory of the accessed address to validate the address. If
the value of the shadow memory indicates an error, a ker-
nel panic is raised, and an error report is generated. For
example, if the shadow value is BOKASAN_REDZONE,
BoKASAN reports an OOB access bug and raises a kernel
panic. BOKASAN provides the accessed address, the instruc-

Table 3: Memory allocation and deallocation functions.

Category Function

kmem_cache_alloc, kmem_cache_alloc_node,
_kmalloc, kmem_cache_alloc_trace,
__kmalloc_node, kmem_cache_alloc_node_trace,

_ kmalloc_track_caller, _ kmalloc_node_track_caller,
kmalloc_order, kmalloc_large_node

Allocation

Deallocation  kmem_cache_free, kfree

tion address where the corruption occurred, and the call stack
obtained by dump_stack() in a format similar to KASAN.

Mark Page Present. If the shadow memory check determines
the trapped address to be valid, the trapped instruction should
be executed. However, the address the trapped process at-
tempts to access is a page without a present bit, thus it cannot
be executed until the present bit is set. Therefore, BOKASAN
temporarily sets the present bit of the page to execute the
trapped instruction.

Single-step. Now, the present bit of the page is set, the instruc-
tion is executed without a fault. BOKASAN regains control
after executing a single instruction by utilizing the single-step
supported by the processor. A single-step generates a debug
exception after one instruction is executed, and before the next
instruction is executed. BOKASAN hooks a debug exception
handler to bring control back after a single step.

Mark Page Not Present. Finally, a trapped instruction is
executed through a single step, and the present bit of the
accessed page is cleared in the debug exception handler to
trap future access to the memory page.

4 Implementation

We implemented BoKASAN with about 2,000 lines of C
code as a Linux kernel module and modified /etc/rc.local
to load the module during kernel booting. Function in-
strumentation was implemented using ftrace-based ftrace-
hook [17], and it hooks memory allocation/deallocation
functions, page fault handler, and debug exception handler.
To trace a function using firace, a kernel requires CON-
FIG_FUNCTION_TRACER, which is enabled by default in
major Linux distributions such as Debian, Fedora, and Ubuntu.
If CONFIG_FUNCTION_TRACER is disabled in the tar-
get kernel, function hooking can be implemented through
Kprobes [14] or inline hooking (a.k.a splicing). Kernel func-
tion hooking is widely used not only in Linux but also
in other operating systems such as Windows, macOS, and
iOS [7, 20, 32]. Note that, the implementation details of
BoKASAN of Windows version are described in §A. In this
section, we provide implementation details of BOKASAN.
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4.1 Function Instrumentation

BoKASAN instruments the memory allocation and dealloca-
tion functions of the Linux kernel. For the performance of
the kernel, the allocation functions are usually implemented
as an inline function. Because the inline function is inserted
directly into the code of the calling function, a separate func-
tion is not created. Therefore, function-level instrumentation
cannot be applied to inline functions. To address this prob-
lem, BOKASAN instruments the functions executed inside an
inline allocation function. Table 3 lists the functions of the
BoKASAN instrument.

When BoKASAN allocates an object, it additionally al-
locates a red zone area. Owing to selective sanitization,
BoKASAN uses a larger red zone of 256-2048 bytes
than KASAN, which uses a red zone of 16-2048 bytes.
Because BoKASAN only sanitizes 12.5% of the allo-
cated objects (§5.3), a larger red zone can be used com-
pared to KASAN. Among the allocation functions, because
kmem_cache_alloc(_node) allocates objects of a predeter-
mined size when a slab cache is created, it is difficult to al-
locate additional sizes for the red zone. To change the size
of the object to which kmem_cache_alloc is allocated, the
object_size of the slab cache must be changed, but most slab
caches are created by calling kmem_cache_create before the
BoKASAN module is loaded. Therefore, it is impossible for
BoKASAN to increase the object_size of the slab cache by
hooking this function. BOKASAN addresses this problem by
allocating two consecutive objects and using the object on the
right as a red zone. Because objects are not always allocated
consecutively, BOKASAN attempts a total of ten allocations.
For example, if BOKASAN allocates the requested object by
calling kmem_cache_alloc, it allocates one additional object
for use as the red zone. If the object allocated to the red zone
is not contiguous with the requested object, BOKASAN allo-
cates a new red zone object and repeats it up to ten times. If
consecutively allocated objects are not found, only the UAF
bug is detected without creating a red zone for the object.

In addition to the allocation function, BOKASAN in-
struments page faults and debug exceptions by hooking
do_page_fault and do_debug, respectively. The page fault
handler checks the shadow memory when the page where the
PAGE_SPECIAL flag is set is accessed. The debug exception
handler clears the present bit of the page after executing the
instructions trapped by the page fault handler. BOKASAN
accomplishes this by checking the DR_STEP flag of the DR6
register, and if set, clears the DR6 register, X86_EFLAGS_TF
flag, and page present bit in the debug exception handler.

4.2 Shadow Memory Management

BoKASAN is similar to KASAN in that it utilizes shadow
memory. The address of the shadow memory is computed
using one shift and one addition, as follows:

shadow_addr = (addr > 3) + shadow_offset

The problem that arises when implementing shadow mem-
ory is that KASAN uses the shadow address region reserved
for the Linux kernel; however, when KASAN is not enabled,
we cannot allocate memory in this region. BOKASAN over-
comes this problem by allocating shadow memory in the
vmalloc region rather than in the shadow address region.
BoKASAN reserves an area of approximately 8TB for shadow
memory (0xffffe0f000000000-0x fftfe8fffftffttf) in the vmal-
loc area. The reserved area corresponds to the 64 TB di-
rect mapping area (Oxffff880000000000—0xffffc87fLffTT)
where memory objects are allocated [22]. BOKASAN accom-
plishes this by setting shadow_offset to 0xdffteff000000000.
When the sanitized memory object is allocated, BOKASAN
allocates the shadow memory of the object located in the
shadow memory region for BOKASAN in page granu-
larity (4 KB). In addition, BOKASAN sets the shadow
values to BOKASAN_FREE for the pages ranging from
0xffff880000100000 to 0xffff880000200000 when loading
the module. These address ranges are freed by the kernel
before BOKASAN is loaded.

4.3 Fuzzing

BoKASAN can be integrated with existing kernel fuzzers, for
example, Syzkaller, the fuzzer we selected. For selective sani-
tization, before Syzkaller executes a program consisting of a
random sequence of system calls, the identifier of the worker
process of the fuzzer is registered in BOKASAN. For example,
Syzkaller creates several worker processes and executes a ran-
dom program for each worker. At this time, when each worker
process is executed, the PID is registered in BOKASAN to en-
sure that only the registered process is sanitized. To this end,
we modified the worker_thread() of the executor of Syzkaller
and added code to register the PID in the function. The PID
registered through IOCTL communication, and the thread
group id value, which is the identifier of the target process
obtained by the ger_tgid(), is transferred to the BOKASAN.

BoKASAN can also be used with non-Syzkaller-oriented
kernel fuzzers such as kAFL. kAFL executes a fuzzer agent
when fuzzing, and BoOKASAN can be applied by calling
IOCTL in the agent to register the target process.

5 Evaluation

We evaluated the performance of BOKASAN by attempting
to answer the following questions:

* RQ1: Can BOKASAN successfully detect OOB and UAF
bugs targeting only the kernel binary? (We tested this on
a Linux kernel and compared the result with source-based
KASAN.)

¢ RQ2: Is the amount of performance overhead incurred by
BoKASAN acceptable?

4992 32nd USENIX Security Symposium

USENIX Association



* RQ3: To what extent is the selective sanitization of
BoKASAN effective?

* RQ4: Can BoKASAN be applied to binary-only fuzzing?

Dataset. Known Linux kernel bugs were used to test the bug
detecting capability of the sanitizers. We used bugs found
by Syzkaller [59], SyzVegas [61], and Janus [64] as datasets.
First, we selected 23 OOB and UAF bugs out of 62 Linux
kernel bugs reported to Bugzilla by the author of Janus [64].
Since there is no ground-truth benchmark for evaluating ker-
nel fuzzing yet, we used a Janus-based dataset consisting of
the bugs discovered in the file system. To minimize the bias
on the file system, we selected the 16 bugs in various kernel
components found by Syzkaller and SyzVegas.

Sanitizers. We used three sanitizers, KASAN, KASAN (FE),
and BoKASAN, in the experiments. KASAN and KASAN
(FE) use a KASAN-applied kernel during compile time.
KASAN (FE) was tested on a VM that was fully emulated
without using KVM, thereby taking into consideration that
KASAN was implemented on the emulator. BOKASAN loads
a module into the kernel after the kernel is booted, and was
tested on the KVM-enabled VM.

Platform and Configuration. §5.1, §5.2, and §5.3 were con-
ducted on an Ubuntu 16.04 server with two Intel Xeon Gold
6148 CPUs (2.40 GHz * 80 cores) and 384 GB of RAM. Each
fuzzing campaign was performed on the three VMs, each of
which had one CPU and 4 GB of RAM. §5.4 was conducted
on an Ubuntu 20.04 with an Intel i7-12700 CPU and 64GB of
RAM. In consideration of the randomness of fuzzing, 20 re-
peated experiments were performed simultaneously according
to published guidelines [25].

The main goal of evaluation in this paper was to see whether
BoKASAN could find the bugs KASAN discovered. There-
fore, we decided to use Syzkaller, which was easy to build
environment, for our evaluation. Syzkaller was compiled from
git commit fdb2bb2c23ee7 using the default configuration.
We disabled the reproducing process of Syzkaller when per-
forming fuzzing. This is because the code coverage is af-
fected by the number of bugs found when reproducing is
enabled. For the experiment, Linux kernel v4.19 was built
according to the guidelines of Syzkaller, and we set the CON-
FIG_FUNCTION_TRACER to use BOKASAN. Note that
CONFIG_FUNCTION_TRACER is enabled by default in
most Linux distributions. In addition, to operate KASAN
(FE) in Syzkaller properly, we increased slowdown parame-
ter to 10 for full emulation experiments. The slowdown is a
scaling factor for configuring syscall timeout.

5.1 Bug Detection

To answer RQ1, we compared the number of bugs detected
by KASAN and BoKASAN using the Janus and Syz dataset.
Each bug was tested on the reported version of the kernel, and

Table 4: Overview of detected bugs by BOKASAN and KASAN,
resp., on Janus benchmark.

# FS Report ID  Version Type KASAN BoKASAN
1 199181 4.15 OOB X X
2 199347 4.16-rcl1  OOB! v v
3 199403 4.16-rcl  UAF v v?
4 199417 4.16-rc1  OOB v v
5 EXT4 199865 4.17-rc4  OOB /2 v
6 200001 4.17-rc4  OOB /3 v/?
7 200401 4.17-rc4  OOB! v v/
8 200931 4.18 UAF v v
9 199371 4.16-rcl1  UAF v v
10 199373 4.16-rcl  UAF v v
11 199381 4.15.13 OOB! X v
12 XFS 199443 4.17-rcl1  UAF v v/
13 200047 4.17-rc4  OOB v v
14 200053 4.17-rc4  OOB v v
15 200923 4.18 00B v v
16 199837 4.17-rc5  OOB X X
17 BTRES 199839 4.17-rc5  UAF v v/
18 200167 4.18-rcl1  OOB /3 v/
19 200173 4.18-rcl1  OOB v v
20 pops 200179 4.18-rcl  UAF v V2
21 200219 4.18-rcl1  OOB! v v
22 200419 4.16-rcl1  OOB v v
23 200421 4.18-rc3  OOB v V2
Total 20 21

! A bug is triggered in the memcpy and memmove.
2 Bugs can be detected depending on the allocated condition of the objects.
3 A bug reported by KASAN as UAF but actually OOB.

the code for applying the target selection of BOKASAN to the
provided POC code was added. Additionally, to evaluate the
bug detection capability of BOKASAN in fuzzing, the number
of bugs detected by KASAN and BOKASAN was compared
as a result of fuzzing for 5 days using Syzkaller. Because the
kernel is larger than that in user-level software, we conducted
long-term experiments in order to minimize the randomness
of fuzzing when attempting to detect bugs. Owing to time
constraints, only BOKASAN and KASAN were evaluated in
the long-term experiment. Each fuzzing experiment was run
on three VMs and was repeated 20 times (total of 360 CPU
hours per fuzzing campaign).

Dataset Result. Table 4 lists the bugs detected by BOKASAN
and KASAN. The third and fourth columns contain the bug
id and bug type.

Based on the result in Table 4, BOKASAN and KASAN
detected 21 and 20 bugs, respectively, among a total of 23
bugs. This shows that BOKASAN can detect slab OOB and
UAF bugs that are detectable by KASAN even without source
code being present in the Linux kernel; furthermore, it can
detect a bug that KASAN missed. Some of the bugs detected
by BoKASAN could be detected according to the location of
the object, and most of their allocation functions were unde-
termined. This occurs when the bug is triggered by accessing
the red zone of another object by greatly deviating from the
address of the object where the OOB occurred. Considering
that KASAN sanitizes most of the objects, even in this case,
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Table 5: Bugs detected by BOKASAN and KASAN, respectively,
on Syz (Syzkaller and SyzVegas) benchmark dataset.

# Function Version Type KA. BoK.
1 ves_write 4.19 OOB v v
2 ata_scsi_mode_select_xlat 4.19 UAF v v
3 clear_buffer_attributes 4.19 UAF v v
4 complement_pos 4.19 UAF v v
5 con_scroll 4.19 UAF v v
6 con_shutdown 4.19 UAF v v
7 do_con_write 4.19 UAF v v
8 do_update_region 4.19 UAF v v
9 get_work_pool_id 4.19 UAF v X
10 screen_glyph_unicode 4.19 UAF v v
11 ve_do_resize 4.19 UAF v v
12 ves_write 4.19 UAF v v
13 vc_uniscr_check 4.19 UAF v v
14 vgacon_invert_region 4.19 UAF v v
15 vgacon_scroll 4.19 UAF v v
Total 15 14

the bug is highly likely to be detected. BOKASAN can allevi-
ate this problem by increasing the total number of allocated
red zones by allocating objects dedicated to the red zone at
regular intervals.

Our observations indicated the existence of bugs that were
detected but misclassified because KASAN uses a small red
zone. The bugs with the identifiers 200001 and 200167 in
Table 4 were actually OOB bugs, but KASAN detected them
as UAF. Because OOB access occurred beyond the red zone,
KASAN can detect the bug only when other objects are deallo-
cated behind the object that actually triggers the bug. Because
BoKASAN uses a larger red zone compared to KASAN, it
accurately detected these bugs as OOB.

Table 5 shows the results of bug detection by BOKASAN
and KASAN to the Syz dataset composed of bugs dis-
covered by Syzkaller and SyzVegas. As a result of the
experiment, among 15 bugs, KASAN and BoKASAN de-
tected 15 and 14 bugs, respectively. A bug detected in
get_work_pool_id that BOKASAN did not detect is trig-
gered through #ty_release function. The Syzkaller generated
reproduce code of this bug calls perf_event_open syscall,
but this syscall collides with BOKASAN, causing a kernel
panic, as a result, BOKASAN fails to detect this bug. How-
ever, this does not mean that BOKASAN cannot detect this
bug. After detecting the bug in con_shutdown, BOKASAN
detected UAF in release_tty and __cancel_work_timer which
are the caller of get_work_pool_id. After detecting the
bug in con_shutdown, BOKASAN detected UAF in re-
lease_tty and __cancel_work_timer which are the caller of
get_work_pool_id. From this, we can infer that these two
bugs have some relationship, and if we can trigger UAF
in get_work_pool_id without perf_event_open, we can de-
tect this bug. Similarly, a bug that KASAN detected in
do_update_region was detected by BOKASAN in csi_J. Note
that, do_update_region is called in csi_J.

Fuzzing Result. Table 0 lists the bugs detected by KASAN

Table 6: Overview of bugs found as a result of 5d fuzzing.

Type Function KA BoK.
user-memory-access  n_tty_set_termios 1 0
use-after-free vt_do_kdgkb_ioctl 0 1
use-after-free vgacon_scroll 4 4
use-after-free vgacon_invert_region 15 18
use-after-free vgacon_blank 0 6
use-after-free ves_write 4 18
use-after-free vc_uniscr_check 9 13
use-after-free vc_do_resize 20 20
use-after-free try_to_grab_pending 0 3
use-after-free screen_glyph_unicode 8 13
use-after-free screen_glyph 0 1
use-after-free n_tty_receive_buf_common 1 4
use-after-free iowrite32_rep 0 2
use-after-free ioread32_rep 0 4
use-after-free get_work_pool_id 8 0
use-after-free do_update_region 7 0
use-after-free do_con_write 15 17
use-after-free csi_J 0 20
use-after-free con_shutdown 5 0
use-after-free con_scroll 3 11
use-after-free complement_pos 5 2
use-after-free clear_buffer_attributes 2 2
use-after-free ata_scsi_mode_select_xlat 2 0
use-after-free __xfrm_policy_unlink 2 0
stack-out-of-bounds xfrm_state_find 6 0
slab-out-of-bounds ves_write 20 15
slab-out-of-bounds sg_remove_sfp 0 1
slab-out-of-bounds ioread32_rep 0 3
slab-out-of-bounds corrupted 1 0
slab-out-of-bounds ata_scsi_mode_select_xlat 1 0
Total 139 178
Total Unique 21 21

and BoKASAN as a result of 5 days of fuzzing using
Syzkaller. The third and fourth columns show the number of
bugs found by KASAN and BoOKASAN in 20 repetitive exper-
iments. Among the 30 unique bugs, BOKASAN and KASAN
discovered 21 (178 in total) and 21 (139 in total) bugs, respec-
tively. Surprisingly, BOKASAN detected the same number
of unique bugs as KASAN and a larger number of bugs in
total. One might be concerned that bugs discovered only by
BoKASAN may include false positives, thus we performed
additional fuzzing using Linux kernel v4.19.219. If a bug is
found in v4.19.219, the possibility of false positives exists,
but as a result of the experiment, all the bugs that BOKASAN
detected in v4.19 were not detected in v4.19.219. As a result,
in this case of fuzzing, BOKASAN was able to detect a larger
number of bugs than KASAN, which means that BOKASAN
can be utilized for binary-only kernel fuzzing.

5.2 Performance Overhead

To answer RQ2, we compared the execution time for syscalls
of BOKASAN, baseline, KASAN, and KASAN (FE) using
LMbench. We tested six syscalls in our experiments, and
each syscall was measured 20 times by using the -N option
of lat_syscall. In addition, we performed fuzzing for 24h to
analyze whether BOKASAN incurs acceptable overhead for
fuzzing. Syscall was divided into three categories; all, file
system, and network, and 100 and 18 file system and network
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Table 7: LMBench Result. Time is in microseconds. Numbers in
parentheses indicate overhead compared to baseline.

Syscall Baseline =~ KASAN  BoKASAN  KASAN (FE)
. 0.228 0.243 0.2401 1.4015
nu 8) (6.9%) (5.5%) (663.7%)
open/close 2.184 7540 2,076.0000 188.571
P ; () (2452%)  (94,954.9%) (8,534.2%)
read 0.470 0.529 0.456 7.550
O (12.5%) (-3.0%) (1,506.8%)

writ 0.338 0.365 0.349 4213
e © (8.1%) (3.4%) (1,147.8%)

t 1312 4297 149.600 82.920
st () (2275%)  (11,303.3%) (6,220.6%)
st 0.361 0.457 0.360 4.141
() (26.5%) (-0.2%) (1,047.8%)

syscalls were selected by referring to [1]. Finally, we present
the results of the micro evaluation in §C.

LMbench Result. Table 7 lists the execution time for each
syscall evaluated on LMbench. BOKASAN has significantly
different execution times for different syscalls. In null, read,
write, and fstat, the amount of overhead was almost similar
to the baseline, and in open/close and stat, the amount of
overhead exceeded that of KASAN (FE). According to our
analysis, a very large number of memset-like functions were
executed in open/close and stat. These data manipulation
functions cause a large number of memory accesses, resulting
in a large number of page faults in BOKASAN. Currently, in
BoKASAN, the number of page faults is determined by the
size requested to memset. In this case, as described in §2.2,
the overhead may be approximately 1,000 times larger than
the baseline. In spite of the overhead, BOKASAN was able to
test a much larger number of syscalls than KASAN (FE) in
fuzzing owing to selective sanitization and the low overhead
incurred by syscalls such as read, write, and fstat. To alleviate
this problem, we plan to optimize BOKASAN such that when
a function such as memset is called, it can check the shadow
memory of the requested memory region in a single page
fault.

Fuzzing Result. Table 8 lists the number of executed syscalls
as a result of 24h fuzzing. As a result of the experiment, when
all syscalls were targeted, BOKASAN executed approximately
5.1 times more syscalls than KASAN (FE), and 10.5% fewer
syscalls than KASAN. Kernel fuzzing is performed by exe-
cuting a syscall, thus executing more syscalls can increase
the code coverage, and consequently, the likelihood of finding
bugs. Figure 9 in §D shows the number of executed syscalls
as a result of 24h fuzzing and shows that BOKASAN executes
a much larger number of syscalls than KASAN (FE) over
time and almost the same number of syscalls as KASAN. The
overhead of BOKASAN is incurred only when memory ac-
cess to sanitized page occurs. Therefore, BOKASAN was able
to execute many more syscalls compared to KASAN (FE),

Table 8: Number of syscall executions in 24h fuzzing.

Syscall ‘ Number of syscall execution (median)

Baseline KASAN BoKASAN Base.(FE) KA.(FE)
All 2,598,575 2,206,090 1,973,865 567,713 388,696
File sys. 4,743,271 3,943,488 1,617,095 656,461 423,549
Network | 4,688,673 4,435,589 2,559,070 714,866 422,210

Table 9: Number of discovered basic blocks in 24h fuzzing.

Number of discovered basic blocks (median)
Syscall

Baseline KASAN  BoKASAN  Base.FE) KA.(FE)
All 71,921 69,807 69,425 61,107 56,014
File sys. 30,496 30,585 29,984 29,650 29,209
Network 22412 22,661 23314 18,739 17,296

which had to emulate all instructions not related to sanitiza-
tion. In addition, owing to selective sanitization, BOKASAN
was able to execute a similar number of syscalls to KASAN by
checking memory access only for objects that need sanitizing.

The experiment on syscalls related to the file system re-
vealed that BOKASAN executed fewer syscalls than when all
syscalls were targeted. As indicated by the LMbench results,
a large number of memory copies occur in file system-related
syscalls, and as a result, BOKASAN is responsible for a large
number of page faults. Nevertheless, BOKASAN was still able
to execute approximately 3.8 times more syscalls compared
to KASAN (FE). BOKASAN can optimize this problem by
enabling memory access functions such as memcpy to check
the red zone with a single page fault.

Table 9 lists the number of basic blocks executed as a
result of 24h fuzzing. BOKASAN executed approximately
23.9% more basic blocks than KASAN (FE) and executed
almost the same number of basic blocks as KASAN when
all syscalls were targeted. BOKASAN executed a larger num-
ber of syscalls than KASAN (FE), and as a result, its code
coverage was higher than that of KASAN (FE).

5.3 Effectiveness of Selective Sanitization

To answer RQ3, we conducted 24h fuzzing with BOKASAN
by ablating selective sanitization and compared the results
to the original BOKASAN with selective sanitization. We ac-
complish this by sanitizing all the objects allocated by the
allocation functions except for those including ‘“node" in the
allocation function name. When sanitizing all objects allo-
cated by these functions, such as __kmalloc_node, the kernel
does not run normally. In addition, we compared the number
of sanitized allocations among all allocations executed while
fuzzing. This shows how many allocations are minimized by
BoKASAN. Finally, we compared the number of sanitized
syscalls among all executed syscalls during fuzzing.

Result. Figures 6 and 7 show the results of 24h fuzzing with
and without selective sanitization. When selective sanitization
was applied to BOKASAN, 4.3 times more syscalls were
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Figure 6: Number of syscalls executions during 24h fuzzing using
BoKASAN w/ and w/o selective sanitization, respectively.
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Figure 7: Number of discovered basic blocks during 24h fuzzing
using BOKASAN w/ and w/o selective sanitization, respectively.

executed and 32.8% higher code coverage was achieved than
when selective sanitization was not applied. Without selective
sanitization, lower code coverage was achieved than KASAN
implemented based on full emulation. In addition, BOKASAN
detected 14 and 6 when selective sanitization was applied and
when not, respectively. These results support that selective
sanitization helps BOKASAN to validate the address of the
accessed memory effectively.

Table 10 lists the total number of the allocation function
executed during fuzzing and the number of sanitized among
them. Notably, selective sanitization selected only 12.5% of
allocations to be sanitized. The three functions at the bottom
of the table are sanitized at a high rate because these functions
are not frequently used by background processes, and most al-
locations are requested by the fuzzer process. The allocations
requested by these functions occupy a small portion of the
total allocations. Owing to selective sanitization, BOKASAN
effectively reduced performance overhead incurred from ir-
relevant allocations without significant detriment to its bug
detection capability.

We evaluated selective sanitization by comparing the num-
ber of sanitized syscalls among all executed syscalls during
fuzzing. We hooked following functions for the experiments:
__x64_sys_open, ksys_read, ksys_write, __x64_sys_newstat
,and __x64_sys_newfstat. Table 11 lists the total number of
system calls executed and the number of sanitized as a result
of 24h of fuzzing using a single VM. As a result, only 16% of
open is sanitized among all the executed open owing to selec-
tive sanitization. In Table 7, BOKASAN incurred the largest

Table 10: Number of the allocation functions executed during
fuzzing and the number of sanitized allocations among them.

Function Total Sanitized Rate (%)
kmem_cache_alloc 5,496 m 660 m 12.0
kmem_cache_alloc_trace 329 m 62 m 19.0
__kmalloc 129 m 25m 19.3
kmem_cache_alloc_node 288 m 19m 6.7
kmem_cache_alloc_node_trace 66 m 4 m 6.4
__kmalloc_node 98 m 11 m 11.3
__kmalloc_track_caller 257 m 13m 52
__kmalloc_node_track_caller 16 m 9m 61.3
kmalloc_order 57k 56 k 99.2
kmalloc_large_node 24 k 17k 71.0
Total 6,431 m 806 m 12.5

Table 11: Number of syscalls executed on fuzzing. Sanitized
syscalls and their rates are also described.

Syscall Total Sanitized Rate (%)
open 438 m 72 m 16.5
read 689 m 54 m 8.0
write 1,133 m 594 m 52.5
stat 95k 10k 10.6
fstat 413k 27k 6.6
Total 2,261 m 721 m 31.9

overhead in open, however, because only 16% of open was
sanitized, the overhead incurred during fuzzing is much less
than that measured using the syscall benchmark. Although
some syscalls incur large overhead, BOKASAN effectively
reduced such overhead by sanitizing only a part of the syscalls
during fuzzing.

5.4 Binary-only Fuzzing

To answer RQ4, we conducted fuzzing using kAFL targeting
a binary-only kernel driver on Ubuntu 16.04 and Windows
10 21H2. Ubuntu and Windows run Linux kernel 4.15-140
and Windows 10 Build 19044.1288 x86 kernel, respectively.
To evaluate the efficiency (performance overhead) and effec-
tiveness (bug detection capability) of BOKASAN for binary-
only drivers, we decided to use the kafl_vuln_test provided
by kAFL [49] as the target kernel driver. This driver con-
tains three bugs, and the input values need to satisfy ‘KER-
NELAFL’, ‘SERGEJ’, and ‘KASAN’ to trigger each bug. To
evaluate the performance overhead generated by BOKASAN,
we selected the first two bugs that can be detected even in
baseline fuzzing without applying the sanitizer. To evaluate
the effectiveness of BOKASAN, we chose the last bug, which
cannot be detected in baseline fuzzing. Because in the bug
triggered by ‘KASAN’, kfree is called twice and crashed even
without sanitizer, we modified it to return after the UAF is
triggered to prevent double free. In Windows, we ported the
Linux version of kafl_vuln_test to the Windows for evaluation.
The source code and details of the Windows driver used in
the experiments can be found in §E.
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Table 12: Result of fuzzing binary-only driver by KAFL

Time to Crash (s)

Target Sanitizer Bugl Bug2 Bug3 #Execs

Linux Baseline 8.72 (20) 3.88 (20) 1.07 (3) 1,482,702
BoKASAN  20.56 (20) 4.87 (20) 6.68 (20) 997,259

Windows Baseline 48.63 (20)  25.32(20) -(0) 722,437
BoKASAN  54.23(20) 28.71(20)  75.50 (20) 288,771

Results. Table 12 lists the result of fuzzing using KAFL. Since
KASAN is not applied to the kernel of Ubuntu, we com-
pared BOKASAN with the baseline. As shown in the table,
BoKASAN took 2.56, 1.26, and 6.24 times longer time than
the baseline to trigger Bugl1, Bug2, and Bug3 on Ubuntu. The
number in parentheses shows the number of times the bug
was detected out of 20 attempts. In the case of Bug3, the
baseline detected only three times, while BOKASAN detected
all 20 times. Without BOKASAN, the bug was detected only
when freed memory is used by other processes, and when
BoKASAN is applied, the bug was always detected when
access to freed memory occurred.

The last column of Table 12 presents the number of tested
inputs during 180 seconds. After finding all the bugs, there
was a continuous kernel panic and executions hardly in-
creased. Therefore, we measured the number of executions in
180 seconds. As a result, BOKASAN performed 33% fewer
executions than the baseline. Since BOKASAN detected one
more UAF bug, additional overhead is incurred compared to
baseline for handling this crash (e.g., reset VM). Consider-
ing this, the 33% fewer executions is not a big problem in
real-world fuzzing where crashes are not frequently occurred.

On Windows, the baseline failed to detect Bug3, while
BoKASAN detected all three bugs. To trigger Bugl and Bug?2,
BoKASAN took approximately 12% longer than baseline, and
for 180 seconds, BOKASAN performed approximately 40%
of execution compared to baseline. In Windows, resetting the
virtual machine takes longer than in Linux, and BOKASAN
detects more panic than the baseline, hence, the total number
of executions is lower than that of Linux. When fuzzing a
kernel module that does not panic a lot, the difference in the
number of executions would be smaller than this.

In both Ubuntu and Windows, BOKASAN incurred slightly
higher overhead compared to baseline, but more importantly,
BoKASAN detected the UAF bug which is hard to detect
without address sanitizer. Through this, it was shown that
applying BOKASAN helps fuzzer to detect memory errors in
binary-only fuzzing.

6 Discussion

In this section, we discuss the limitations and future directions
for BOKASAN.

Support for other OS. The functions required to implement

BoKASAN are function and memory access instrumentation.
Kernel function hooking methods are already widely used in
Windows [7,43,58,65] and macOS [5], and various hooking
methods are publicly available [30]. In addition, because all
general-purpose OSs have a page fault handler, we can trap
memory access by hooking this handler function. Actually,
a method to manipulate the page fault handler on a running
OS is already used in the rootkit [55]. Therefore, BOKASAN
can be applied to COTS OSs such as macOS and this would
require additional engineering effort.

Building BoOKASAN without any source code. In Linux,
we can obtain the header files necessary to build the driver.
We can also apply BOKASAN by building a standalone kernel
module [28], extracting required function definitions from
kernel binary, or hooking the necessary functions using binary
rewriting (easier than instrumenting the entire kernel) without
source code. In COTS OS, since they provide SDK for driver
development, we can easily build the driver for BOKASAN.

Stack and global variable. KASAN sanitizes not only slab
objects but also stack and global objects by performing
compile-time instrumentation, but BOKASAN only targets
bugs that occur in slab objects. The memory space for the
stack frame and global variables is determined at compile
time, thus sanitizing them using binary approaches still re-
mains a great challenge [10, 12, 54]. For example, Retrowrite
creates a limited red zone in frame granularity (not object
granularity) in the stack, and QASAN does not create red
zones in both global and stack. Among the bugs discovered by
KASAN, UAF and slab OOB account for the highest percent-
age, whereas stack and global OOB form a relatively small
number. For example, among the bugs reported to Syzbot that
were fixed, 535 and 203 were UAF and slab OOB, and 70 and
19 of the latter were stack and global OOB. Therefore, we
focused on detecting UAF and slab OOB bugs, leaving stack
and global OOB bugs for future studies.

7 Related Work

Sanitizing for memory error detection. The C and C++ pro-
gramming languages are still favored for low-level system
software, such as operating system kernels and runtime li-
braries; however, these languages remain notoriously insecure
to memory errors that make the software vulnerable to ex-
ploitation. Dynamic bug-finding tools known as sanitizer have
been proposed for the detection and analysis of memory bugs
regardless of related crashes [11,16,18,27,40,51,63,66,67].
Readers are referred to the systemization work of Song et
al. [54] for the types of detectable vulnerabilities and the
strengths and weaknesses of each sanitizer. Among the vari-
ous sanitizing techniques, ASAN leverages the red-zone inser-
tion technique to assist with the detection of memory bugs that
accessed invalid address space, such as OOB and UAF [51].
The detection accuracy of ASAN is proportional to the size
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of the red zones; but, as the red zones are enlarged to im-
prove the accuracy, memory usage also increases. MEDS [16]
addresses this problem using infinite gap and infinite heap.
These two techniques enable MEDS to detect both spatial and
temporal errors more accurately and efficiently than ASANS.

Unlike the above compile-time instrumentation methods,
RetroWrite [10] implements the address sanitizer using static
binary rewriting that adds the necessary instrumentation at
the binary level as if it were inserted at compile time, actu-
ally outperforming Valgrind’s binary-only Memcheck. Thus,
without severely sacrificing the performance, memory errors
can be detected without the source code of target applica-
tions. KRetroWrite [47] extends RetroWrite, which is ap-
plied to user-space programs only, for a kernel module. How-
ever, for the execution of the rewritten binary kernel mod-
ule, KRetroWrite requires the kernel to be recompiled with
KASAN, which means that the source code of the kernel
still needs to be available. Unfortunately, not all kernels are
provided as open-source, and even if it is an open-source
kernel, the corresponding version of the kernel source is not
necessarily available [9]. In contrast, BOKASAN does not
require a KASAN-compiled kernel, which indicates the truly
binary-only nature of KASAN.

Techniques for detecting uninitialized variables used by
the kernel are also being studied [4,21,33,41]. Bochspwn
Reloaded [21] used kernel taint tracking on the Bochs emu-
lator to detect kernel memory leakages into the user space.
TimePlayer [4] is a proposed differential replay technique
that can effectively detect the use of uninitialized variables.
Although BoKASAN currently targets OOB and UAF bugs
only, we plan to extend our study to determine the usage of
uninitialized variables in the future by using a binary-only
function and memory access instrumentation.

Kernel fuzzing. Syzkaller, which is the most commonly used
kernel fuzzer in Linux, has discovered thousands of Linux
kernel bugs, showing that kernel fuzzing is effective [59].
Syzkaller is currently being extended to support other OS
kernels, and many other advanced kernel fuzzers are being
developed based on Syzkaller. These fuzzers are successfully
discovering a large number of kernel bugs [57]. For example,
DIFUZE [9] and Agamotto [53] successfully targeted kernel
drivers, Razzer [19], KRace [62] focused on race condition
bugs, HFL [24] applied hybrid fuzzing, and SyzVegas [61]
applied reinforcement learning.

Apart from the Linux kernel, several kernel fuzzers target-
ing COTS OSs such as macOS and Windows had been stud-
ied [3,6,13,15,31,37,44]. LynxFuzzer [37] and kAFL [49]
leverage a hypervisor to collect code coverage and use it for
coverage-guided fuzzing. BSOD [36] targets binary-only de-
vice drivers. However, because a sanitizer applicable to COTS
OSs has not yet been developed, most fuzzers targeted COTS
0OSs without applying address sanitizer. BOKASAN would be
able to find more bugs more effectively with existing kernel
fuzzers in a COTS OS.

8 Conclusion

This paper presented BOKASAN, which is the first practical
binary-only KASAN to realize the novel selective sanitiza-
tion idea with sophisticated engineering effort on the page-
fault handling mechanism. BOKASAN was effective in bug-
finding at compiler-level performance, e.g., even comparable
to KASAN on the Linux kernel, by significantly reducing the
performance overhead in dynamic instrumentation for sanitiz-
ing the entire kernel binaries (RQ1, RQ2). We also showed
that selective sanitization contributed to the performance gain
of BOKASAN in the ablation experiment (RQ3). Further-
more, compared to emulation-based KASAN emulating all
instructions, BOKASAN significantly reduced the overhead
by only instrumenting memory accesses related to the san-
itized objects. Finally, we showed that BOKASAN applies
to binary-only driver fuzzing on Ubuntu and Windows, re-
spectively (RQ4). The observed performance of BOKASAN
renders great opportunities for kernel memory sanitization
and fuzzing in future studies
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A Applying BOKASAN to Windows Kernel

Since BOKASAN utilizes the functions of the OS kernel such
as paging, it can be applied to operating systems other than
Linux. To implement BOKASAN, we should be able to do
the followings: 1) select target process using PID, 2) hook
necessary functions, 3) instrument memory access through
page fault mechanism, and 4) manage shadow memory.
Unlike Linux, since the source code of Windows is not
publicly released, it is more difficult to identify and modify
the kernel function compared to Linux. Fortunately, we were
able to implement BOKASAN on Windows with minimal
engineering work required owing to two projects: Windows

research kernel (WRK) [48] and Vergilius project [46]. WRK
provides x86/x64 Windows Server 2003 SP1 kernel source
code for teaching and research purposes. Although it is a
previous version of Windows, the core of the kernel operates
similarly to Windows 10, so it could be used as a reference
for analyzing Windows 10. The Vergilius project provides
information on various structures used in the Windows kernel,
so we were able to obtain the structure information necessary
for BOKASAN implementation.

Selective sanitization. Kernel fuzzing in Windows is also
performed by calling the system call in the fuzzer process
as in Linux. Therefore, we register the PID of the fuzzer
process through IOCTL to BoKASAN for selective san-
itization. In Windows, the PID can be obtained by call-
ing the GetCurrentProcessId in the user process and the
PsGetCurrentProcessId in the kernel process.

Function instrumentation. We instrument functions through
inline hooking. Inline hooking is a method of inserting in-
structions by modifying an instruction at the beginning of
functions to a jump. The original instruction is copied to
the trampoline buffer, and the instruction that jumps to the
hooking handler replaces it. Through this, when the target
function is executed, the hooking handler of the target func-
tion is executed, and in the handler, the original function can
be executed by calling the trampoline address. In Windows,
BoKASAN hooks the following four functions.

e nt!ExAllocatePoolWithTag — A allocation function
used in Windows. BOKASAN creates a red zone and
clears the present bit when the request process is a target
process. In Windows, BOKASAN allocates objects with
page-aligned size including a red zone.

e nt!ExFreePoolWithTag — A deallocation function
used in Windows. When a target object is requested
to free, BOKASAN does not actually deallocate and up-
dates shadow memory to BOKASAN_FREE.

* nt!MmAccessFault — A page fault handler in Win-
dows. BOKASAN sets the page present bit of the ob-
ject and the trap bit of the eflags register when the
fault address is a target object (i.e., shadow value is
BOKASAN_OBIJECT).

* nt!KiTrap0l — A debug exception handler in Windows.
It is executed when single-step triggering. BOKASAN
clears the present bit in this function.

Memory access instrumentation. BOKASAN utilizes the
page fault mechanism in Windows as described in §3.3
to instrument memory access. To do this, we hook
nt !MmAccessFault and nt!KiTrap01l described above as
page fault handler and debug exception handler.

Shadow memory. Windows does not provide a kernel API
that allocates memory in a fixed area, so we use a dynamic
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Figure 8: Time to access memory for 1,000 times. (Update of
Fig. 2) PF uses a Linux handler while BOKASAN uses our own
implementation. BOKASAN further overcomes this overhead by
handling memory access of target processes only (e.g., 3.5%) for
fuzzing.

shadow memory by utilizing a lookup table. For this, if
shadow memory has not been allocated when an object is
allocated, we use the nt !ExAllocatePoolWithTag with the
NonPagedPool flag to allocate the shadow memory. The
shadow memory is allocated in 2k granularity correspond-
ing to 16 pages memory area. In 32 bits Windows, an address
in the range of 0x80000000-0xffftfftf is reserved for the ker-
nel, so a maximum of 0x8000 (0x80000000/0x10000) shadow
memory fragments are used.

B Page-level Sanitized Memory Region

Implementation of the sanitized memory region introduced
in §2.4 requires the memory region in which objects are al-
located to be separated into the memory allocation and the
sanitized memory regions. However, to the best of our knowl-
edge, a method that allocates memory objects to separated
memory areas without changing the source code of the Linux
kernel is not yet known to exist. The separation of memory
regions requires sanitized allocation to always allocate objects
to the sanitized region, but Linux does not provide a func-
tion to do this. Therefore, BOKASAN applied a page-level
sanitized memory region.

The page-level sanitized memory region only sanitizes
memory pages that contain sanitized objects. This situation
allows sanitized and non-sanitized pages to coexist in the
same memory area. Because the present bit of the sanitized
page is cleared, a page fault occurs only when memory ac-
cess occurs on the sanitized page. Non-sanitized pages have
the present bit set, thus page faults do not occur because
of sanitizer operation. When a process other than the target
process requests memory allocation, BOKASAN checks the
PAGE_SPECIAL flag of the page to which the object is al-
located to determine whether the page is sanitized. If it is a
sanitized page, BOKASAN re-requests memory allocation to

Table 13: Number of checking memory access in 1h fuzzing

| Mean Median
KASAN 4,278,871,654 4,977,754,112
BoKASAN 151,354,982 157,100,032
BoKASAN / KASAN ‘ 3.5% 3.2%

enable the requested object to be allocated to a non-sanitized
page. As a result, although this is not a separate memory re-
gion, page faults occur only on the sanitized page, resulting
in the number of page faults that occur being almost the same
as the number of when sanitized memory regions were used.

C Micro Evaluation of BOKASAN

Table 13 lists the number of memory accesses that occurred
for 1h of fuzzing. The number of memory accesses of KASAN
is measured in the check_memory_region_inline that checks
the shadow memory, and that of BOKASAN was measured
in the hooked page fault handler. Note that we only counted
the page fault caused by BOKASAN. As can be seen from Ta-
ble 13, BOKASAN checked only approximately 3.5% of mem-
ory accesses compared to KASAN. Consequently, BOKASAN
minimizes the overhead incurred by page faults by checking
only a tiny number of memory accesses.

Figure 8 shows the elapsed time when read or write mem-
ory 1,000 times in Linux kernel v4.19. It can be seen that
BoKASAN incurs 1042 and 948 times overhead compared
to Baseline and KASAN in memory write due to overhead
incurred by page fault as described in §2. Although the page
fault incurs a large overhead, such overhead incurs only for the
memory access instruction among all executed instructions,
and because the memory access instruction occupies only
a part of the total executed instruction, the entire overhead
in fuzzing appears smaller than this. Moreover, as described
above, among these memory access instructions, only 3.5% of
the memory accesses compared to KASAN are instrumented
by BoKASAN, hence, the BOKASAN incurs KASAN-level
overhead in fuzzing.

PF is the page fault overhead without checking memory
access validity using the default handler of Linux to handle de-
bug exception. BOKASAN minimizes the overhead occurring
in the debug handler by performing the minimum instruction
for handling a single-step in the debug exception handler.

D Fuzzing Results

Figure 9 shows the number of syscalls executed as a result of
24h fuzzing for all, file system and network-related syscalls.
When file system and network-related syscalls were targeted,
BoKASAN executed approximately 34% and 58% of syscalls
compared to KASAN, respectively, and executed 4.3 and 6.1
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Figure 9: Number of syscalls execution during 24h fuzzing. We state the p values with statistical tests of KASAN vs. BOKASAN.
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Figure 10: Number of discovered basic blocks during 24h fuzzing.

times more syscalls than KASAN (FE), respectively. Fig-
ure 10 shows the number of discovered basic blocks as a re-
sult of fuzzing. When file system and network-related syscall
were targeted, BOKASAN discovered 2% lesser and 3% more
basic blocks compared to KASAN, respectively, and discov-
ered 3% and 35% more basic blocks compared to KASAN
(FE), respectively. This shows that BOKASAN can perform
binary-only kernel fuzzing much more effectively than full
emulation-based KASAN for all categories of syscalls. Ad-
ditionally, we used the Mann-Whitney U-test according to
the guidelines in [25] and noted the p-values for 20 runs
of KASAN and BoKASAN in the parentheses in Figures 9
and 10. Every p-value was significantly lower than 0.001,
indicating statistical confidence in our experimental results.

E Binary-only Fuzzing Dataset

Listing | shows the code of the vulnerable function included
in the target driver used in our Windows experiment. The origi-
nal version of the Windows driver does not have the “KASAN”
bug, but to evaluate the performance of BOKASAN’s bug de-
tection, the third bug was added to be the same as the Linux
version. The first and second bugs, if the input value satisfies
the string in the if statement, result in a kernel panic due to
a null pointer dereference (lines 22 and 29), which can be
detected even without a sanitizer. On the other hand, the third
bug writes data to the memory address that has been freed
by the ExFreePool function (lines 35-36) and immediately
returns. In this case, if another object is not allocated in the
freed memory address, the kernel panic does not occur and
without the help of the sanitizer, the fuzzer cannot detect the
bug even if it is triggered.

B S

W

NTSTATUS crashMe (IN PIO_STACK_LOCATION IrpStack) {
SIZE_T size = 0;
PCHAR userBuffer = NULL;
int* array = (int*)ExAllocatePoolWithTag (NonPagedPool
, 1332, ’"tset’);

userBuffer = (PCHAR) IrpStack->Parameters.
DeviceIoControl.Type3InputBuffer;

size = IrpStack->Parameters.DeviceIoControl.
InputBufferLength;

if (size < 0Oxe) {
return STATUS_SUCCESS;
}

if (userBuffer[0] == 'K’
if (userBuffer[l] == "E')
if (userBuffer[2] == 'R’)

if (userBuffer[3] == ’'N’
if (userBuffer[4] == 'E
if (userBuffer[5] == '

if (userBuffer([6] == )
if (userBuffer[7] == 'F')
if (userBuffer [8] "L

((VOID (*) ())0x0) ();

if (userBuffer[0] == 'S")
if (userBuffer[l] == 'E')
if (userBuffer[2] == 'R’/
if (userBuffer[3] == ’'G
if (userBuffer[4] == '
if (userBuffer[5] =
size = *((PSIZE_T
if (userBuffer[0] == 'K’
if (userBuffer[l] == 'A
if (userBuffer[2] == '
if (userBuffer[3] ==
if (userBuffer[4] ==
ExFreePool (array);

array [0] = 1234;
return STATUS_SUCCESS;

}

ExFreePool (array) ;

return STATUS_SUCCESS;
}

Listing 1: Vulnerable function of Windows driver.
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