MULTIFUZZ: A Multi-Stream Fuzzer For Testing Monolithic Firmware

Michael Chesser
The University of Adelaide
Data61 CSIRO, Cyber Security
Cooperative Research Centre

Abstract

Rapid embedded device proliferation is creating new targets
and opportunities for adversaries. However, the complex in-
teractions between firmware and hardware pose challenges to
applying automated testing, such as fuzzing. State-of-the-art
methods re-host firmware in emulators and facilitate complex
interactions with hardware by provisioning for inputs from a
diversity of methods (such as interrupts) from a plethora of
devices (such as modems). We recognize a significant discon-
nect between how a fuzzer generates inputs (as a monolithic
file) and how the inputs are consumed during re-hosted exe-
cution (as a stream, in slices, per peripheral). We demonstrate
the disconnect to significantly impact a fuzzer’s effectiveness
at discovering inputs that explore deeper code and bugs.

We rethink the input generation process for fuzzing mono-
lithic firmware and propose a new approach—rmulti-stream
input generation and representation; inputs are now a col-
lection of independent streams, one for each peripheral. We
demonstrate the versatility and effectiveness of our approach
by implementing: i) stream specific mutation strategies; ii) ef-
ficient methods for generating useful values for peripherals;
iii) enhancing the use of information learned during fuzzing;
and iv) improving a fuzzer’s ability to handle roadblocks.
We design and build a new fuzzer, MULTIFUZZ, for testing
monolithic firmware and evaluate our approach on synthetic
and real-world targets. MULTIFUZZ passes all 66 unit tests
from a benchmark consisting of 46 synthetic binaries target-
ing a diverse set of microcontrollers. On an evaluation with
23 real-world firmware targets, MULTIFUZZ outperforms the
state-of-the-art fuzzers Fuzzware and Ember-10. MULTIFUZZ
reaches significantly more code on 14 out of the 23 firmware
targets and similar coverage on the remainder. Further, MUL-
TIFUZZ discovered 18 new bugs on real-world targets, many
thoroughly tested by previous fuzzers.

1 Introduction

With the availability of lower cost, lower power and smaller
computing devices, we are witnessing a proliferation in smart

Surya Nepal
Data61 CSIRO, Cyber Security
Cooperative Research Centre

Damith C. Ranasinghe
School of Computer Science
The University of Adelaide

devices. Now, microcontrollers running firmware are becom-
ing integral components of safety and security critical systems.
Firmware on embedded systems integrates and interacts with
a diverse set of peripheral devices, such as modems or serial
ports, while managing communications with the user, often
without any supervisory control from an operating system.
Importantly, the lack of supervisory control reduces the abil-
ity to detect faults and abort in a controlled manner [38] with
potential safety and security implications. So, a scalable and
automated method to identify software bugs and vulnerabili-
ties before public release is a research and societal imperative.

Fuzzing is a de-facto industry standard for software testing
and can play a crucial role in developing secure connected
devices through scalable and automated testing of firmware.
To test software, fuzzers automatically generate and execute
inputs to uncover unusual program behavior. However, the
unique characteristics of embedded devices and their firmware
present challenges for adopting fuzzing tools [38]. To over-
come these challenges, it is becoming increasingly common
to execute firmware in an emulated environment in a process
known as re-hosting [15].

When firmware runs on top of a standard operating system,
re-hosting is possible by emulating operating system abstrac-
tions [6,30,48,52,53]. Unfortunately, this approach cannot be
applied to fuzz monolithic firmware, which directly interacts
with a large number of peripherals through memory-mapped
Input/Output (MMIO) as shown in Figure 1. Fuzzing this
type of firmware effectively requires supplying values for
each peripheral register whenever accessed

Handling MMIO Accesses. One solution for dealing with
MMIO accesses is to perform hardware-in-the-loop testing,
where each access is forwarded to physical hardware [11, 12,
37,38]. However, interacting with physical hardware can be
complex and slow, introduces restrictions on how inputs can
be manipulated, and inhibits the fuzzer’s scalability. Alter-
natively, high-level emulation approaches enable hardware-

'Our work focuses strictly on monolithic firmware, for simplicity, the
term ‘firmware’ refers to ‘monolithic firmware’ in the remainder of the paper.

! !

ILoad/Store
| Memory Bus |
IMMIOAccess
|GPIO|UART| = | RTC pe%thSa/s
[cRicRe[sRT[SR2] — [DR ART

Control Registers Status Registers Data Register

Figure 1: An overview of how the CPU of a microcontroller
(MCU) interacts with memory-mapped (MMIO) peripherals.
Monolithic firmware fuzzing requires supplying values for
each of the peripheral registers whenever they are accessed.

free firmware re-hosting by abstracting away the hardware.
These approaches avoid MMIO accesses either by emulating
hardware-abstraction layers (HALSs) [10,47] or by building
target-specific fuzzing harnesses [34,44]. However, these ap-
proaches require significant engineering effort and can miss
bugs in low-level code that is not executed because of the
high-level emulation.

Instead, recent approaches [13, 16,42, 54] have shown it
is possible to fully automate firmware re-hosting by using
a fuzzer to generate inputs for MMIO accesses to unknown
peripherals. These approaches exploit the fact that approxi-
mate emulation of peripheral values is sufficient for the ex-
ecution of most firmware. In fact, unusual values can be de-
sirable for fuzzing, as they allow error handling code to be
more thoroughly tested, which is often a source of bugs [28].
To improve the effectiveness of fuzzers based on this idea,
prior work has investigated several approaches, including
building peripheral models by observing MMIO access pat-
terns [16, 35], utilizing a symbolic solver to guide execu-
tion [5,29,54], performing local symbolic execution to obtain
precise access models that focus mutations only on the rele-
vant bits of the input [42], and exploiting commonalities in
hardware behavior to make better use of input data [13].

Input Generation and Representation. Existing re-hosting
approaches use off-the-shelf fuzzing frameworks such as
AFL [51] and AFL++ [18] for input generation. However,
these frameworks are primarily designed to test programs that
take files as inputs. The input representation used by a fuzzer
can significantly impact on its ability to generate effective
inputs [1, 19, 33,45,46]. We observe this to be the case for
firmware fuzzing.

A file-based input representation is ineffective for fuzzing
firmware because there is a significant disconnect between
the way the input is generated and how the input is consumed
during execution. Values for peripheral accesses are derived
by consuming bytes from the input file. However, firmware
usually interacts with multiple peripherals in an order that
depends on the specific execution path. This results in data
consumed by each peripheral being scattered, in an unknown
manner, throughout the input file.

Consequently, mutation strategies and instrumentation tech-
niques that assume values are accessed in contiguous blocks
are less effective as even a tiny change in a sequential file
input can lead to significant changes in the execution path and
the subsequent mapping of bytes to peripherals. Our key in-
sight is to recognize the inputs behave more like streams than
files and current file-like representation limits the fuzzer’s
ability to take advantage of stream or peripheral specific mu-
tations and prevents the fuzzer from effectively employing
techniques that rely on inferring relationships between inputs
and the state of the program during execution to solve fuzzing
roadblocks.

Our Approach. Driven by these observations, we propose
a multi-stream input representation for firmware fuzzing.
This representation splits the input into multiple indepen-
dent streams, one for each MMIO peripheral register. This
is a more natural input representation, as it more closely
reflects how firmware consumes data during execution. A
multi-stream representation makes mutation operations that
rely on manipulating contiguous bytes in the input, such as
splicing and input-to-state replacement strategies, more effec-
tive. Additionally, by detecting when streams run out of data
and employing one of three stream-specific length extension
strategies, we avoid cases where the firmware gets stuck wait-
ing for data. Further, by ensuring that streams are mutated
independently, the fuzzer no longer spends a disproportionate
amount of effort mutating values for MMIO peripherals that
are frequently read but are uninteresting.

We implemented our approach in a new fuzzing framework,
MULTIFUZZ, which we evaluate with 66 unit-tests developed
by P2IM [16], the 20 firmware binaries used for benchmark-
ing in existing state-of-the-art firmware fuzzers, and 3 new
real-world firmware targets. Compared to existing fuzzers,
Fuzzware and Ember-10, MULTIFUZZ achieves higher code-
coverage, and uncovers 18 previously undiscovered bugs.

Our Contributions. In summary, we make the following
contributions:

* We share limitations associated with using existing input
representation methods for fuzzing firmware.

* We re-think input generation and propose a new
approach—multi-stream input generation and represen-
tation. We design strategies for generating and mutat-
ing multi-stream inputs to solve fuzzing roadblocks and
reach deeper code faster.

* We design and implement a new fuzzer, MULTIFUZZ,
specifically tailored to improving firmware fuzzing by
taking advantage of a multi-stream input representation.
We open-source” our fuzzer to facilitate further research
in firmware fuzzing.

* We demonstrate MULTIFUZZ outperforms existing state-

2Repo: https://github.com/MultiFuzz/MultiFuzz

https://github.com/MultiFuzz/MultiFuzz

of-the-art firmware fuzzers, Fuzzware and Ember-IO, in
code coverage and bug discovery with real-world targets.

Responsible Disclosure. We disclosed the bugs found in our
work in accordance with the security policies listed for the
associated projects (see Appendix A.3).

2 Input Representation for MMIO Accesses

Prior to delving into the technical details of our approach,
we re-visit the implications of using a file-based input rep-
resentation for fuzzing re-hosted firmware to understand the
limitations with existing approaches.

A Perspective on Mutational File Fuzzing for
Firmware. The fuzzing frontends, AFL [51] and
AFL++ [18], utilized by existing state-of-the-art firmware
fuzzers [13, 16, 42, 54] are designed to test applications
that take a single file as input. Therefore, to test firmware,
individual MMIO accesses must be mapped back to the
generated file at execution time. To do so, firmware fuzzers
keep track of the position within the input to read the next
value from, irrespective of the peripheral being accessed by
the firmware. If there is no data left, then execution stops.
Since the fuzzing frontend is unaware of this mapping, it
introduces issues when mutating inputs that reduce the
fuzzer’s effectiveness. In this section, we describe three
critical issues associated with using a file-based input
representation for firmware fuzzing: Input stability, data
scattering and ineffective input extensions.

Input stability. A small mutation to a file-based input can
lead to highly non-local changes throughout input due to the
manner in which the firmware receives input data from the
fuzzer. Consider the example in Figure 2, when the value

Value read by GPI0_1.IDR is mutated

loo 73 - — 73 AA o¢ oo ook
Bytes after the mutation are
interpreted as different registers
Original input Mutated input

—— if(GPIO_1.

POWER # 8) {«—

if(GPIO0_2 & POWER = B)«——
return; 's' read for
is_active = true; GPI0.2.IDR
}
> if(URTDR = 's")
's' readfor if(is_active) Code not
UART.DR stop_now() ; } reached

Figure 2: An example of input stability issues manifesting
with file-based input representation. The byte mutation in the
mutated input changes the value read by GPIO_1.IDR (0x00
to 0x80) and causes the execution path to change. Conse-
quently, the value originally used for the UART.DR (0x73 or
s), is now consumed by an access from a different peripheral.

(0x00) read from the first GPIO peripheral (GPIO_1.IDR)
undergoes mutation, it results in the input taking a different
path through the program. Consequently, the value originally
read for UART data register (0x73 representing an ASCII ‘s’
character) is instead consumed when a different peripheral
is accessed (the second GPIO peripheral GPIO_2 . IDR). This
leads to the firmware reading a different value (0xAA) for the
data register, causing a later comparison that expects the value
to be ‘s’, to suddenly be false. In fact, this not only impacts the
UART data register but potentially changes the values read for
all future MMIO accesses. These input stability issues make
it difficult for a fuzzer to make a small mutation to one part of
the input without inadvertently breaking seemingly unrelated
other parts of the input. Notably, the presence of interrupts
further exacerbates this problem. Interrupts typically access
multiple peripherals, and the scheduling of these interrupts
depends on the execution path, increasing the likelihood of a
significant divergence from a small change.

Data Scattering. Firmware intersperses accesses to different
peripherals during execution. Using a file-based input can
cause data accessed by a particular peripheral to be scattered
across a large portion of the input. This can significantly
hinder mutation strategies that rely on data being contiguous
in the input. For example, a value is inserted from a dictionary,
different bytes of the inserted value may be read by multiple
peripherals. This also poses challenges for mutation strategies
that rely on identifying associations between input bytes and
values observed during executions, such as Redqueen [2].
Additionally, mutations that involve copying sub-slices of
inputs, such as the splice operation in AFL, are also likely
to be less effective, as the copied data can be consumed by
different peripherals.

Ineffective input extensions. Firmware often executes con-
tinuously in a loop, waiting for data or events to occur before
performing other actions. Consequently, during fuzzing, it
is imperative for the fuzzer to provide adequate and valid
data to the multiple registers associated with each MMIO
peripheral. Existing firmware fuzzers, relying on file-based
mutation strategies, do not attempt to discover effective input
extensions that provide sufficient data for peripherals. Instead,
these fuzzers rely entirely on mutation operations that only
indirectly increase the size of inputs [7]. As a result, existing
fuzzers experience roadblocks when firmware requires large
amounts of data to be read from peripherals. Consider the
function shown in Listing 1, which is used to print startup
messages to a serial port. This function writes characters to
the serial device one byte at a time, first checking whether
the device is ready by reading a 32-bit value from the sta-
tus register, then writing the byte to the data register. Some
firmware may try to print large messages (e.g., exceeding 100
characters). Therefore, to make progress, the fuzzer must also
extend inputs by a large number of bytes, all of which must in-
dicate that the peripheral is ready to receive. In practice even

larger extensions are required due to the presence of inter-
rupts and other MMIO accesses that can occur while the print
function is executing. Further, since existing input generation
strategies cannot differentiate between MMIO peripherals,
they are unable to inform future input extensions based on
prior accesses.

void serialprintPGM(char* buf) {

1
2 while (*buf != NULL) ({

3 while ((UART.SR & READY) != READY);
4 UART.DR = *buf;

5 ++buf;

6 }

7}

Listing 1: A simplified version of the function used to printing
startup messages to the console in the 3D Printer firmware.

3 MuLTIFUZZ Design

As discussed in the previous section, executing firmware relies
on managing inputs for multiple MMIO peripherals. However,
the normal approach to input generation based on mutating
file-like inputs leads to fuzzing roadblocks and ineffective
mutations, inhibiting progress. Generating and providing ef-
fective values for MMIO accesses is critical to building an
efficient and effective fuzzer. In the following section, we in-
troduce the design of MULTIFUZZ, a generic firmware fuzzer
that removes the disconnect between the generation-time and
execution-time usage of inputs to enable more effective ex-
ploration of firmware binaries.

Instead of relying on a normal file-based input represen-
tation, we propose representing inputs as a collection of in-
dependent streams, with each stream corresponding to an
MMIO peripheral register. To make effective use of the pro-
posed representation, we design strategies for generating and
mutating multi-stream inputs. These strategies address the
challenges presented in Section 2, allowing the fuzzer to reach
deeper code faster. In particular:

* We develop a strategy for initializing and extending each
stream within the input driven by feedback from stream
exhaustion (see Section 3.1).

* We develop a series of stream-specific mutation opera-
tions: stream-to-stream splicing, mutations using a dy-
namic dictionary, and colorization and input-to-state re-
placement by adopting Redqueen for multiple-streams
(see Section 3.2 and Section 3.3).

» To improve efficiency, we develop a strategy to prevent
a disproportionate amount of mutation effort from be-
ing spent on peripheral registers with a large number of
accesses and automatically reduce the effort spent mutat-
ing streams with no influence on program control flow
(see Section 3.3.1).

A high-level overview of MULTIFUZZ is shown in Fig-
ure 3a. With this approach, the fuzzer can mutate and extend
data for individual MMIO peripherals independently by em-
ploying a set of multi-stream specific strategies. This intuitive
approach solves the problems posed by input stability, periph-
eral data scattering, and the ineffectiveness of input extensions
in normal mutational file fuzzing, as discussed in Section 2.

3.1 Effective Input Extension

Determining the appropriate sizes for fuzzing inputs is chal-
lenging, even in normal mutational file fuzzing [2,7,20]. In-
puts that are too short may fail early validation checks, while
overly long inputs slow down execution and reduce the likeli-
hood of byte-orientated mutations affecting critical bytes. One
solution is to start with a good initial input corpus [26]. How-
ever, accomplishing this is extremely difficult for firmware
since the fuzzer needs to manage MMIO accesses to a vari-
able number of unknown peripherals. In fact, obtaining even
a single effective starting input is challenging [29, 42, 54].
Consequently, firmware fuzzers typically start with a simple,
generic input seed and heavily rely on mutations to reach
deeper into the code.

As we discussed in Section 2, the file-based input represen-
tation used in existing approaches inhibits the fuzzer’s ability
to extend inputs effectively, reducing fuzzing performance.
However, a multi-stream representation introduces new chal-
lenges, as the fuzzer must now initialize multiple streams. To
address the complexity in initializing multi-stream inputs, we
employ two techniques we: i) extend inputs using stream-
specific length extension strategies; and ii) then utilize an
improved trimming strategy to eliminate uninteresting bytes
from each stream. We discuss these methods in detail, next.

3.1.1 Multi-stream Length Extension

The core of MULTIFUZZ’s approach to generating multi-
stream inputs is an efficient length extension strategy. Starting
with an initial value for every stream would be impractical,
as it is common for a large, mostly unused, region of memory
to be reserved for MMIO®. Instead, our approach is to start
with an empty input and develop techniques for dynamically
initializing streams. MULTIFUZZ first executes the firmware
until it accesses a MMIO peripheral for the first time, then
captures a snapshot of the emulator’s state at that point. Using
this snapshot, the fuzzer rapidly tests new inputs by extend-
ing the stream that the firmware failed to read, creating a
new empty stream if one does not already exist. A similar
approach is used to extend non-empty seed inputs, except the
snapshot is taken when all the data for a stream has been
consumed. When extending a stream, one of, or a combina-
tion of, the following three strategies is selected: (1) random
extension, (2) copying previous bytes within the input, and

3For example, ARM Cortex-M reserves a 0.5 GB region for peripherals.

»

End of stream feedback

Length extension

>

(1) Random extension

) |<—|»SR
|68 65 6C 00 DR

Havoc mutations |

Dynamic
_gUpdate
al

Multi-stream MMIO access

Per-stream

ISA Emulator {82 89 o0 60 88 80 80]6F 88 08 0a 83
(2) Copy previous bytes
Firmware [8080 60 (38 80 80[@B 6A]
. N
i *,(3) Value / dictionary extension
» Interesting ... {86 80 60 06 86 30 86[4d 31 30 38]

inputs - Coverage

Input-to-state

dictionary

Trimmed Input

| Smart Trim I‘—' Auto Trim |

Per-stream l W) Y o }

Dicionary |1 ¥H FF FF

feedback

(a) An overview of the core components of MULTIFUZZ.

(3) utilizing interesting values and values from a dynamic
dictionary. Figure 3b contains a visual example of each of
these strategies.

Random extension. The simplest length extension strategy
used by MULTIFUZZ is to generate random bytes and ap-
pend them to the end of the target stream. This strategy is
effective at extending streams for MMIO peripherals that the
firmware does not expect to return exact values. As an exam-
ple, firmware typically expects to read data from an Analog-
to-Digital Converter (ADC) peripheral that lies within a range
of outputs, so generating any value within the expected range
allows the fuzzer to make progress.

Copy previous bytes. We propose extending streams by copy-
ing bytes from earlier slices within the same stream. As shown
in Figure 3b (2), the fuzzer first selects a slice of bytes ([00
00]) from a previous location in the stream and then ap-
pends them to the end of the stream. This strategy leverages
the observation [13] that peripheral registers are often inter-
acted with in similar ways at different points during execution.
Values that enable progress to be made for earlier reads are
often useful to use for subsequent reads. For example, in
the code presented in Listing 2, the firmware waits for the
USART peripheral to finish synchronization, monitoring the
SYNCBUSY register until it reads zero. To make progress,
every time the firmware calls the usart_is_syncing func-
tion, the fuzzer must generate a value of ‘0’ for the stream.
By using a length extension strategy that duplicates previous
values within the stream, subsequent calls to this function are
solved more easily, improving fuzzing performance.

void usart_is_syncing() {
while (USART.SYNCBUSY != 0) {
// Wait until synchronization is complete.
}
}

Listing 2: Example of a function that waits until the value read
from USART sync register is non-zero prior to continuing.

Value and dictionary extension. Streams can also be ex-
tended using a predefined set of interesting values or values

(b) An overview of the three length extension
strategies utilized by MULTIFUZZ.

collected into a stream-specific dictionary that is dynamically
updated as part of the input-to-state stage (Section 3.2). For
interesting values, we use a reduced set of values used by ex-
isting fuzzers [18,19,51]. We observed that values with a bit
pattern of all ones or all zeros (i.e., the bytes 0x£f and 0x00)
are effective. This effectiveness arises from how firmware
interacts with certain MMIO registers. For example, it is com-
mon for actions the firmware takes to depend on whether a
specific bit within a status register is set or cleared. By extend-
ing the input with values consisting of all zeros or all ones,
both possibilities can be tested without knowing the exact bit
checked. In the code shown in Listing 3, the firmware only
reads data from the UART peripheral after checking whether
the receive ready bit is set in the status register (UART. SR).
By extending the input with a value consisting of all ones,
the fuzzer successfully progresses through this check, as the
necessary bit is set. These values are also good starting points
for additional mutation strategies such as bit-flipping, which
are incorporated within the Havoc stage (see Section 3.3).

void UARTClass::IrgHandler (void) {
// Check if new data
uint32_t status UART.
if ((status & RXRDY)
// Read new data.
store_char (UART.RHR) ;
}
/Y ooo
}

is available.
SR;
RXRDY)

{

Listing 3: Firmware code snippet checking a ready bit in a
status register (UART . SR) prior to accessing the data register.

Inspired by the effectiveness of mutation stacking in
AFL [20], MULTIFUZZ may choose to apply multiple ex-
tension strategies to a single stream. Each time MULTIFUZZ
attempts to extend an input, it chooses a random number of
extensions to apply and chooses a random strategy for each
extension. Like mutation stacking in AFL, if the fuzzer fails to
make any progress after many attempts, we allow the amount
of stacking to increase.

After applying one or more extension strategies and exe-

cuting the modified input, the fuzzer then evaluates the code-
coverage for the input. Whenever an extension causes the
input to reach new code, we save the mutated input for future
mutations; otherwise, we revert the extension and make a new
attempt from the saved snapshot.

In the code shown in Listing 3, for a new data byte to be
read from the UART peripheral, both the UART. SR stream
and the UART . RHR stream must be extended. However, if the
fuzzer has found other inputs that already cover the code, then
an extension just to UART. SR is ‘uninteresting’ and discarded.
To address this issue, whenever execution halts due to reach-
ing the end of a stream that was not extended, in subsequent
extension attempts the fuzzer also extends this stream. As an
additional optimization, if a stream is consistently exhausted,
then larger extensions to this stream are used in future at-
tempts.

3.1.2 Input Trimming

Since the length extension stage always increases the size of
inputs, the fuzzer may generate inputs that are longer than nec-
essary. Given two different inputs that cover the same code,
the shorter input is often preferable for fuzzing. Shorter inputs
have several advantages: they can generally be executed more
quickly, enabling the fuzzer to attempt a greater number of
mutations within the same amount of time. Performing mu-
tations on shorter inputs is more likely to yield a meaningful
change to the program’s behavior. Additionally, shorter inputs
tend to be simpler and thus easier to understand, which aids
in the analysis and triaging of crashes.

To address this, MULTIFUZZ utilizes a smart trimming
strategy, which consists of two steps: first, the fuzzer automat-
ically removes any unused bytes at the end of a stream (Auto
Trim), then the fuzzer repeatedly attempts to remove slices
within each stream, while ignoring uninteresting changes to
control flow (Smart Trim).

Auto Trim. After execution halts due to reaching the end of
one of the input streams, it is possible that there are bytes at the
end of other streams that were never accessed. By maintaining
a cursor for each stream that tracks bytes read, Auto Trim can
efficiently truncate input streams, removing all unread data
that can never impact the execution path. This is particularly
effective later in the fuzzing campaign when a greater number
of extensions are attempted.

Smart Trim. It is also desirable for the fuzzer to remove
bytes within a stream. For example, consider the control-flow
graph (CFG) depicted in Figure 4. This CFG corresponds
to a function where the firmware repeatedly reads from the
UART status register (dev->SR) until a ready bit is set. If the
status register stream is filled with bytes where the ready bit
is not set, then the fuzzer will execute unnecessary iterations
of the loop. However, the trimming strategies employed by
traditional fuzzers such as AFL [51] and AFL++ [18] are
incapable of removing these bytes primarily because of the

Interrupt:

usart_putc(USART* dev, ‘SYSTICK():

char ¢):

while(dev—>SR & TX_READY’“” """"" -

+ TX_READY) {}
| ———

[dev—>DR =c]

Figure 4: The control-flow graph associated with a function
for writing a character to a USART peripheral. In the exam-
ple, while waiting for the peripheral to be ready, an interrupt
occurs, resulting in additional control flow.

criteria they employ to determine valid removals. Traditional
fuzzers only consider a removal to be valid if the execution
path is unaltered after the removal. Changes in the execution
path are detected by monitoring whether different bits are set
in the coverage bitmap. For the example in Figure 4, removing
bytes without the ready bit set leads to the removal of the
loop back-edge and any interrupt handlers that were triggered
during the loop. This change to the execution path causes
existing trimming strategies to reject the removal.

To improve MULTIFUZZ’s ability to trim input streams, we
developed an alternative heuristic for rejecting inputs modi-
fied during the trim stage, which we call Smart Trim. In con-
trast to the approach used by AFL and AFL++, our approach
only rejects removals that prevent newly covered code from
being reached. This approach is based on the observation that
the newly covered code is the only part of the execution path
that we care about keeping. In other words, if the trimmed
input was found first, the untrimmed input would never have
been saved. In Figure 4 for example, if the fuzzer has saved at
least one prior input that covers the loop edge and any inter-
rupt handlers, the trim stage can fully remove all non-ready
values from the status register (SR) stream. Smart Trim can
remove bytes from both within and at the end of streams, but
it carries a runtime cost proportional to the size of the input.
Auto Trim reduces the overhead of Smart Trim by enabling it
to start with an already reduced input.

3.2 Multi-stream Input-to-State Replacement

A fuzzer’s ability to reach deeper parts of the code in a target
can be hindered by complex comparison operations, such as
multi-byte integer and string comparisons. This challenge
has led to the development of various techniques targeted at
addressing this issue [7,9,17,21,27]. Notably, the input-to-
state (I12S) replacement technique introduced by Redqueen [2]
has proven highly effective at directly solving many complex
comparisons and has been incorporated into several fuzzing
frameworks [8, 18, 19,31]. I12S replacement operates in two
stages: first, the fuzzer adds instrumentation to record compar-

1. Colorize streams

2. Collect Comparisons

3. Apply Replacements

--- (00 08 parse_command(buf): 6a 11|
UART.SR [08 88 f6 cc a6 c2 60 00] b9 86 f6 cc ab c2 9c 94]
UART.DR [61 61 61 61 Ba arg0: £ 6 570a]
6a 11 } [6a 11]
h9 86 f6 cc ab c2 9c 94| v v b9 86 f6 cc ab c2 9c 94]
64 2b 52 75 Ba] (64 2b 52 75, 68 65 6c 70) argl:: 68 65 6¢c 710:0a]
arg0 arg1 A A o L

Figure 5: An overview of the multi-stream input-to-state replacement strategy employed by MULTIFUZZ. (1) The fuzzer first
attempts to colorize each stream individually. (2) Next the colorized input is executed with instrumentation that logs the operands
comparison operations and functions. (3) The fuzzer then searches and replaces matching operands within each stream.

vart_read(...):
while (UART.SR==READY) {}
buf[offset] = UART.DR;

offset +=1; 7
par587Command(buulf)..:."W_"_",,“.n"'"u 2h3852 75 |
if(strcmp "help") =0) Bytes read from the data register (DR)

// ’ are scattered throughout the input

Figure 6: With a file-based input representation, bytes read
from the data register of the UART peripheral and stored into
the buffer buf become scattered throughout the input.

ison operands during program execution, and then the fuzzer
searches for bytes in the input that match one of the operands.
When a match is found, the fuzzer attempts to replace the
input bytes with the correct value (i.e., the matched operand).

In firmware, most complex comparisons involve bytes read
from data registers. However, between reading each byte of
data, firmware typically waits for new data to become avail-
able, either by polling the associated status register or by wait-
ing for an interrupt to be triggered. This is problematic when
using a file-based input representation as the interspersed ac-
cesses between data registers and other peripherals makes
it difficult to identify complete multi-byte values within the
original input, as shown in Figure 6. In contrast, our multi-
stream input representation inherently solves this issue. By
separating each peripheral into individual streams, we ensure
that the data associated with each stream remains contiguous.
This enables MULTIFUZZ to solve complex comparisons by
performing I2S-style replacements on individual streams with
minimal changes, as shown in Figure 5.

Similar to the original implementation in Redqueen [2], we
first attempt to replace non-critical bytes (i.e., bytes that do
not affect control flow) with randomly generated values in
a process called colorization. This increases the entropy of
the input, which decreases the likelihood of a spurious match
for a comparison. Colorization is performed on a per-stream
basis, and we also keep track of streams where every byte has
been replaced with a random value (fully colorized) for later
use in stream selection (Section 3.3.1).

After colorization, MULTIFUZZ executes the firmware with

the modified input and records the operands of each compari-
son that is encountered. After execution, the fuzzer searches
each stream for a match with one of the recorded operands,
and if a match is identified, the fuzzer replaces the operand
with the other recorded value. To evaluate each replacement,
MULTIFUZZ re-executes the firmware with the modified input
and checks for changes to the execution path. The replace-
ments are tested individually, with the bytes that were replaced
in the input restored to their original values after each attempt.
The fuzzer saves any input that reaches new code for future
mutations and records any replacement value that changes the
execution path into a per-stream dictionary. This dictionary is
later employed by the length extension stage (Section 3.1.1)
and for havoc-style mutations discussed in the next section.

3.3 Multi-stream Mutations

By construction, length extension only modifies values that
appear at the end of input streams. However, it is also of-
ten beneficial to mutate earlier bytes within the input. To
achieve this, MULTIFUZZ includes a havoc stage that ran-
domly applies one or more mutations to any part of the input
stream. We then enhance the standard havoc operations by
introducing several modifications aimed at improving their
effectiveness in mutating multi-stream inputs. We describe
these modifications in the remainder of this section.

Stream-to-stream splicing. Splicing involves combining
parts of existing inputs to generate new inputs, enabling a
fuzzer to repurpose useful sections of previous inputs in dif-
ferent ways. However, data that is useful for one MMIO reg-
ister is often less relevant for other registers, particularly if
they differ in type. For example, Figure 7 shows the streams
associated with a UART peripheral from an input discovered
while fuzzing the CNC target. In the stream for the status reg-
ister, nearly all bytes have either the transmit ready bit or the
receive ready bit set (bits 5 & 6). Conversely, the stream for
the data register consists almost entirely of printable ASCII
characters. Therefore, using bytes from one stream as part of
a splice operation on a stream of a different type is unlikely
to be effective. A multi-stream representation enables us to
implement a more targeted splicing operation and prevent

inter-mixing of data across streams. Whenever a stream is
selected for a splice operation, the fuzzer ensures that the
operation uses data from streams associated with the same
MMIO register (see Section 4). For example, in Figure 7, data
from the UART.DR stream of one input will be spliced with
data from the UART.DR stream of another input.

0x400044008: UART.SR

b9 ff ... (not all bytes for the UART.SR are shown)

Bx400084404: UART.DR

24 30 3d 38 38 38 38 38 38 38 38 00 08 01 38 38
38 38 38 38 38 @d 47 38 @d 38 59 32 52 38 38 38

$0-88888888... 88
88888.G8.8Y2R888

ASCII characters corresponding to G-code commands

Figure 7: A fragment of an input generated while fuzzing
the CNC target. This fragment demonstrates the difference
between data generated for a status register (UART . SR), favour-
ing repetition of bytes for signalling TX/RX ready, compared
to a data register (UART.DR), favoring ASCII characters.

Per-stream dictionary replacement. As part of the input-
to-state stage, the fuzzer collects values found in comparison
operations into a per-stream dictionary. During the muta-
tional stage, the fuzzer may mutate an input by copying values
from the dictionary into the associated stream. Like stream-
to-stream splicing, the per-stream nature of the dictionary
ensures that it contains a higher proportion of values relevant
to the target stream. In Figure 8, the fuzzer inserts a value
of “getalarm” into the UART data register stream using the
associated per-stream dictionary.

0x4006a007: UART.DATA Input

78 85 ff X..

£F £F FF
70 6f 77 65 72 6F 66 66

poweroff | UART.STATUS =
" UART.DATAS]

poweron. ric > '

{ i | getalarm | [72774 63 20 3c 6a
7277483768 rtc. :
68 65 6c 70 00 08 08 help... v v

[72 74 63 28 67 ¢5 74 61 6c 61 72 6d 3c Ba]
rtc getalarm>

Per-stream dictionary

Figure 8: An example of a dictionary mutation when fuzzing
the Console binary. The fuzzer inserts the dictionary value
“getalarm” into the stream for the UART . DATA register.

3.3.1 Stream Selection

MULTIFUZZ utilizes a stream selection strategy that avoids
excess mutations to uninteresting input streams. When per-
forming havoc-style mutations, first the fuzzer randomly
chooses a stream, then the fuzzer selects a random number
of mutations to apply to the stream. The fuzzer selects short
streams just as frequently as long streams. Given that longer

streams contain more bytes, this effectively biases mutations
such that an individual byte within a longer stream is less
likely to be mutated than an individual byte within a shorter
stream. This bias is both intentional and desirable. Status
registers are almost always read before accessing data reg-
isters, usually to ensure that the peripheral is ready before
performing an action or to check for errors. Consequently,
significantly more data is read from status registers compared
to data registers. If each byte was given equal weight for muta-
tion, it would result in a disproportionate amount of mutation
effort being devoted to status registers, which are typically
significantly less interesting from a security perspective. By
selecting the stream for mutation independently to the loca-
tion within the stream to mutate, we ensure that the fuzzer
better balances its mutational effort.

One issue with this approach is that firmware may access
peripheral registers during initialization, which have no im-
pact on the behavior of the firmware. For instance, interactions
with configuration registers during initialization have no im-
pact on the behavior of the firmware since the configuration
is ignored by the emulator. To reduce the number of muta-
tions performed on these streams, MULTIFUZZ employs a
simple heuristic based on information collected during the
colorization (see Section 3.2). During colorization, we track
how much of the stream can be replaced by random bytes
without changing the execution path, which we refer to as
the colorization rate. If a stream has a colorization rate of
100%, then it was never observed to change the execution
path, making it unlikely that mutating the stream is useful.
However, in rare cases, this heuristic may fail, such as when
the value is used in a single comparison with a hard-to-solve
value. Therefore, we still occasionally mutate fully colorized
streams (with a probability of 0.1 that of mutating other
streams).

4 Implementation

To execute the ARM firmware targets, we utilize the timer and
NVIC implementation from Fuzzware [42], and ICICLE [§]
for emulation and instrumentation. Additionally, we adopt
the same three hang detection heuristics as Fuzzware: i) an
upper limit on the number of interrupts triggered (excluding
SysTick), ii) a limit on the number of blocks executed with-
out any MMIO access, and iii) an overall limit on the total
blocks executed. While MULTIFUZZ is compatible with addi-
tional features from Fuzzware (such as MMIO models), the
additional features are not used in our evaluation.

For input generation, MULTIFUZZ’s core fuzzing loop fol-
lows a similar design to AFL and AFL++ [18,51], then incor-
porates the new mutation and extension operations described
in Section 3. Additional implementation details are discussed
in the following section.

MMIO dispatching. Each multi-stream input is represented

as a mapping from a memory address to a stream (an array
of bytes with a cursor). Like other firmware fuzzers, MUL-
TIFUZZ assumes that the emulator is aware of the location
of the memory region corresponding to memory-mapped In-
put/Output (MMIO). Whenever firmware accesses memory
within the MMIO region, the emulator uses the target address
of the access as a key in the map maintained for the input. If
no mapping exists for the address, execution is terminated.
Otherwise, the emulator returns the next value from the stream
to the firmware and updates the cursor. The fuzzer dispatches
MMIO accesses of different sizes that target the same address
to the same stream. Overlapping accesses that start at differ-
ent addresses are treated as different streams. This typically
only occurs as part of APIs that end up discarding the overlap
using a bit mask. As a concrete example, when the firmware
attempts to read a value from the address 0x40004404, the
emulator checks that 0x40004404 is within the ARM MMIO
region (it is) and resolves the value by looking up the address
0x40004404 in the map for the multi-stream input.

Input-to-state (I2S) replacement. I2S replacement consists
of three parts: colorization, comparison logging, and replace-
ment. We re-implemented colorization by adapting the algo-
rithm described in Redqueen [2] to be performed one stream
at a time. To capture comparison operands, we use the im-
plementation of CmpLog from Icicle, which injects code at
translation time to record the operands of comparison-like
instructions and function calls. The operands are stored in
a region of memory shared with the fuzzer and used as part
of the replacement step. We implement a per-stream replace-
ment process, which includes a restriction on the number of
attempts per stream, to avoid excess overhead in the presence
of large streams, along with an additional enhancement to
address oversized reads, described below.

It is common for firmware to perform oversized reads of
MMIO registers and either truncate or mask the value before
using it. This causes the values in the original input stream to
be padded with the bits removed during truncation, resulting
in the interesting bytes being strided within the stream. In
cases where the firmware immediately truncates the value af-
ter it is read, as shown in Figure 9, we can detect and replace
the oversized read with a smaller read when the pattern is en-
countered by the emulator. To handle cases where truncation
is not performed immediately, we also search each stream
for strided matches of operands whenever multi-byte reads
to a peripheral register are detected. When performing a re-
placement on a strided match, we repeat the character up to
the stride amount, which addresses any alignment issues. An
example of a strided replacement being applied is shown in
Figure 10.

Hangs from length extension. During testing, we observed
that the length extension mutation strategy can overshoot
and cause the input to reach (and become stuck in) an error
handler or another kind of loop. For example, in the GPS

char usart_getc(wvoid) { 1dr r3, [->UART]
int value = UART.DR; 1ldr r0, [r3, #0x4]
return (char)value; uxtb r0, r0

} bx 1r

Figure 9: The source code (left), and assembly code (right)
used for reading a byte from a serial device. The code reads 32-
bits, but immediately discards the top 24-bits. MULTIFUZZ
detects this pattern and resizes the load instruction.

read(...):

uint32_t data = uvart_read(); UART.DR)
buf[offset] = (uint8_t)data; . Search for strided match

offset += 1; 64 2b 52 75 |
l Apply strided

replacement

[68686868 65656565 cecsebe 70767076 |

v v
(64 2b 52 75, 68 65 6¢c 78)
arg0 argl

Figure 10: An example illustrating how checks for strided
matches enables matching comparison operations even in the
presence of oversized reads from the data register.

Tracker binary, triggering the USB ISR (interrupt service
routine) could cause the firmware to hang depending on the
value read from a peripheral®. These states are considered
hangs by the fuzzer, and the inputs that reach these states
are typically excluded from future mutations. However, if
these states are easily reachable, this can result in a significant
proportion of extensions leading to hangs. To mitigate this
issue, unlike AFL-derived fuzzers, which discard hanging
inputs, MULTIFUZZ saves and mutates (but does not attempt
to extend) hanging inputs if they reach new coverage.

Code-coverage feedback. MULTIFUZZ uses block-only cov-
erage for feedback instead of using edge hit counts like exist-
ing firmware fuzzers. This approach simultaneously addresses
two issues. First, block-only coverage inherently avoids the
excess edges added on interrupt entry and exit which can
cause the fuzzer to waste time exploring equivalent paths,
a problem highlighted by Ember-10 [13]. Second, because
interrupts are triggered in a round-robin manner after a fixed
number of blocks are executed, our length extension strategy
is easily able to reach more interrupt triggers by extending
input streams by larger and larger amounts. Consequently,
inputs that hit edges multiple times are considered to have
unique coverage when coverage feedback is based on edge
hit counts’. This results in the fuzzer saving huge numbers
of increasingly larger inputs, which is avoided when using
block-only coverage.

One drawback of block-only coverage is that it provides
less feedback for code that needs to be repeatedly executed,

4This corresponds to a hardware error on a real device.

5 Although most approaches bucket hit counts to small power-of-two to
mitigate this problem, the large number of interrupts and edges within each
interrupt, easily overcomes the power-of-two barrier.

such as loops. However, since our length extension strategy is
already effective at exploring loops, this does not inhibit the
effectiveness of MULTIFUZZ.

Stage scheduling. The input-to-state stage is performed once
for each saved input before any extension or havoc mutations
are attempted. Then, the first time an input is selected, the
fuzzer favors length extension 90% of the time (to accommo-
date inputs with new MMIO accesses). In later attempts, the
fuzzer randomly selects between the length extension and the
havoc stage. Whenever a generated input leads to new code
coverage, it is trimmed with Auto Trim followed by Smart
Trim before being saved.

5 Evaluation

We designed our evaluation of MULTIFUZZ to answer the
following questions:
1. How effective is MULTIFUZZ at fuzzing a wide range
of firmware targets and hardware? (Section 5.1 and Sec-
tion 5.2)
2. How does MULTIFUZZ perform relative to previous
state-of-the-art firmware fuzzers? (Section 5.2)
3. How effective are the fuzzing strategies enabled by a
multi-stream input representation? (Section 5.3)

4. Can MULTIFUZZ find previously undiscovered bugs in
real-world firmware? (Section 5.4)

All the experiments were conducted on an AMD Ryzen
Threadripper 3990X, with one core allocated per fuzzing in-
stance. MULTIFUZZ is always configured to start with no
initial inputs (the inputs are generated from an empty seed
during the length extension stage); other fuzzers are config-
ured to start with the seeds specified in their original paper.

5.1 Evaluation On Synthetic Unit Tests

To determine whether MULTIFUZZ generalizes to a wide
range of firmware and hardware, we configured the fuzzer to
run the 46 binaries introduced by P2IM [16]. Within these 46
binaries P’IM defines 66° unit tests that evaluate the fuzzer’s
ability to reach specific locations in each binary. Within 10
minutes MULTIFUZZ successfully passes 100% of the unit
tests, matching the performance of Fuzzware [42] and surpass-
ing both P2IM and uEmu [54]. This result demonstrates that
MULTIFUZZ works across a wide range of firmware targets.

5.2 Comparison with the State of the Art

In this section, we compare MULTIFUZZ’s fuzzing perfor-
mance (in terms of block coverage and bug discovery) against
two comparable, fully automated state-of-the-art firmware
fuzzers: Fuzzware [42] and Ember-10 [13].

SFuzzware [42] observed that 4 of the original 70 unit tests were invalid,
and one binary has no valid unit tests so is excluded.

We use the set of 20 real-world firmware samples used
for benchmarking in prior work [13,42,54]". This includes
firmware from a diverse range of applications, OS libraries,
and hardware platforms; 10 from P2IM [16], 6 from UEmu
[54], 2 from Pretender [24], and one each from HALucina-
tor [10] and WYCINWYC [38].

We also evaluated three additional firmware targets built
on RIOT-OS: gnrc_networking, File system and CCN-Lite
Relay. We selected RIOT-OS for its widespread usage, and the
three specific targets were chosen to evaluate distinct RIOT
subsystems (i.e., the filesystem, the networking stack, and
the CCN-Lite library). The gnrc_networking and File system
firmware were compiled to target a STM32F3 MCU and CCN-
Lite Relay was compiled to target a nRF52832 MCU. Each
target was compiled using their default settings without any
modifications, and we configured them in a similar manner to
the other benchmark binaries, except to allow the triggering
of nested interrupts, which is required because the RIOT-OS
scheduler runs in handler mode®. Each target is fuzzed for 5
trials for 24 hours each, and coverage over time achieved by
each fuzzer is shown in Figure 11

In terms of coverage, MULTIFUZZ achieves performance
equal to or better than existing techniques across almost all the
binaries in the benchmark (statistical analysis is provided in
Appendix Table 2). In 13 out of the 23 targets, MULTIFUZZ’s
worst performing trial achieves higher coverage than both
Fuzzware and Ember-10. Across all binaries, MULTIFUZZ
is observed to discover new code earlier. This demonstrates
that MULTIFUZZ can initialize peripherals more effectively
than past approaches due to our multi-stream length exten-
sion strategy. This is particularly apparent in several of the
binaries including, the Drone target, which we analyze in
Section 5.3, and the 3D Printer target where Fuzzware gets
stuck in initialization because it fails to generate enough data
for the UART peripheral while printing boot messages. For
the Thermostat target, MULTIFUZZ achieves less coverage,
however after further analysis we conclude that the additional
code is only reachable using a bug exploit (see Section 5.2.1).

We also evaluated MULTIFUZZ’s ability to discover bugs
by manually triaging any crashes that were found. To triage
crashes, we begin by identifying the root cause issue using a
debugger (GDB). Then, to validate the feasibility of reaching
the state where the error occurs, we refer to the datasheet cor-
responding to the microcontroller the firmware was compiled
for. For example, we ensure that the data returned from periph-
erals leading to the state is possible to generate, and that the
peripherals are enabled when the corresponding interrupts are
triggered. Detailed information about each crash, including
the crash-triggering input and a comprehensive root-cause

"We only fuzz one of 6LoOWPAN Sender/Receiver since they are almost
identical (they differ by just 3 blocks), and both crash with the same inputs.

8Ember-10 does support not nested interrupts so we only compare against
Fuzzware on these targets.

P2IM/CNC P2IM/Console P2IM/Drone

P2IM/Reflow Oven

1500 1000

P2IM/Robot P2IM/Steering Control HALucinator/6LoWPAN UuEmu/LiteOS loT

1000 1200 4 600 3000 1200
2000 800 800 1000 - 500 2500 1000 4
1500 600 1000 600 800 4 400 2000 800 4
1000 600 300 1500 600
400 500 400 400 4 200 1000 400
500 200 200 200 4 100 500 200
0 T T T T T 0 T T T T T 0 T T T T T 0 T T T T T 0 ‘v T T T T 0 0 T T T T T 0 or T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 10 15 20 5 10 15 20 0 5 10 15 20 0 5 10 15 20
UEmu/3D Printer UEmu/GPS Tracker uEmu/uTasker MODBUS uEmu/uTasker USB YC/NWYC/XML Parser uEmu/Zephyr SocketCan P2IM/Gateway P2IM/Soldering Iron
4000 1400 2000 2000 4000 4 3500 3000 3000
= 1200 1500 3000 2500 2500
T 3000 1000 1500 3000 4 2500 2000 2000 4
2000
2 2000 800 1000 1000 2000 4 1500 1500
9 600 1500 1000 1000 -
9 1000 400 500 500 1000 4 1000
m 200 500 500 j 500 4
H oo 0 0 0 0-— T o 0‘ — O
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 10 15 20 10 15 20 0 5 10 15 20
P2IM/Heat Press P2IM/PLC Pretender/Thermostat Pretender/RF Door Lock gnre nelworkmg File Syslem CCN-Lite Relay
1000 4000 2500 2000 1400 4000
1500 1200
800 3000 2000 1500 1000 3000
600 1500
; 1000 s 1000 800 2000
400 1000 4 600
500 I 400
200 1000 500 1000
[] 200
O —— 0 0 T T 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Duration (hours)

¢ Fuzzware

4 Ember-10

% MultiFuzz (Ours)

Figure 11: Code coverage for 5 trials of each target over 24 hour period. The solid line represents the median number of unique
basic blocks hit, and the area represents the number of blocks hit in the best/worst trials. Subplots shaded in grey represent
binaries containing bugs that a fuzzer manages to exploit to reach additional coverage, making the block count metric unreliable.

analysis, is available in our GitHub repository”’. After iden-
tifying the root causes of the crashes found by MULTIFUZZ,
we compared the bugs to the ones reported in prior work. We
find all 35 unique crashes reported by Fuzzware [42], and
the 6 additional crashes found by Ember-10 [13]. Further,
MULTIFUZZ finds 13 new bugs on the existing benchmark
binaries, and 6 bugs in the new binaries, as detailed in Ap-
pendix Table 3. On the new binaries, MULTIFUZZ discovered
5 additional bugs (1 in gnrc networking, and 4 in CCN-Lite
Relay). Only one of these bugs could be found by Fuzzware
(the reentrancy issue in CCN-Lite Relay)'".

5.2.1 Bug Exploits Leading to Additional Coverage

Several of the binaries contain bugs that allow arbitrary code
execution, enabling the fuzzer to generate inputs that reach
code by exploiting these bugs. This can artificially inflate
the coverage results for these binaries. Prior work [13,42] at-
tempts to mitigate this issue by excluding crashing inputs and
filtering the coverage results to include only known valid basic
blocks (determined using static analysis tools). However, this
filtering process is insufficient because a bug exploit can lead
to the execution of valid code that is normally unreachable
via normal execution.

After analyzing the traces from prior work, we observed
bug exploits consistently occurring in both the Thermostat
and RF Door Lock binaries, and occasionally in the PLC
binary. For example, the Thermostat binary contains a bug

“nttps://github.com/MultiFuzz/MultiFuzz

10Fyzzware contains an emulation bug related to the interaction between
delayed interrupt checking and instruction barriers. This causes the CCN-Lite
Relay target to be emulated incorrectly, complicating bug analysis. However,
the reentrancy bug appears to occur prior to encountering the emulation bug.

where the return address of the get_new_temp function can
be manipulated with fuzzer controlled data by overflowing a
stack allocated buffer. By exploiting this bug, the fuzzer can
generate inputs that execute code that is normally unreachable.
This can include handler functions associated with disabled
interrupts, as well as normally unreachable error handlers and
print statements. Since bug exploits can lead to a significant
increase in the coverage reported by the fuzzer, in our results,
the binaries where a bug exploit is detected are shaded in grey.

In the results presented in Figure 11, at least one fuzzer
manages to exploit a bug in 6 of the 23 binaries that results
in an increase to the number of blocks hit. To detect bug ex-
ploits, we analyze the root cause of each bug and add hooks
for checking when the bug occurs. For example, in the Ther-
mostat target, we inject a hook that checks (by inspecting
register values) writes to the stack-allocated buffer do not
overflow into the stack slot containing the function return ad-
dress. If a block is only reachable by inputs that are detected
by the hook, then we treat the target as reaching code because
of a bug exploit. Additionally, during testing, we observed
rare cases where a bug exploit led to increased coverage in
both uTasker USB and Zephyr SocketCan; however, these bug
exploits were not observed in the final results.

5.3 Effectiveness of Multi-Stream Techniques

To evaluate the effectiveness of the techniques described in
the paper, we conducted 4 additional experiments on each
of the firmware targets with MULTIFUZZ configured with
subset of the techniques enabled. For configurations where the
dynamic dictionary is disabled, only the predefined interesting
values (like AFL-style fuzzers) are used for dictionary/value
mutations and extensions.

https://github.com/MultiFuzz/MultiFuzz

We start with a basic configuration where only the multi-
stream length extension stage (Section 3.1.1) is enabled, then
gradually add more complex features. Notably, not all targets
require every feature of the fuzzer to fuzz effectively. For
example, since the Robot target contains very little code after
initialization, the later mutation strategies are not needed to
reach all the code in the target. For each target we evaluate
whether each addition has a statistically significant impact
to the number of blocks reached by the fuzzer in 5 trials.
The results of our experiments are shown in Table 1, and we
further analyze the impact of the techniques in this section.

Length Extension Only. Our length extension strategy is
designed to rapidly discover initial inputs that make it through
firmware initialization, serving as an effective starting point
for subsequent mutations. As a baseline, we find that length
extension proves highly effective, on average reaching 77%
of the coverage achieved by the full version of MULTIFUZZ.

As a case study, we analyzed the effectiveness of this con-
figuration on the Drone target. By analyzing individual trials
(see Appendix Figure 12), we found Fuzzware struggles to
progress through 3 functions executed during initialization,
each of which involves a significant number of MMIO ac-
cesses as part of I2C communication with various subsystems.
This requires generating sufficiently large inputs to provide
the necessary data for communication. Because Fuzzware
does not directly increase the length of inputs, it can take up
to 3 hours to complete initialization, while MULTIFUZZ with
length extension accomplishes this within minutes.

+Havoc. We then add the multi-stream havoc mutations de-
scribed in Section 3.3 to the base configuration. The havoc
stage enables mutating more than just the end of inputs. Con-
sequently, we see an improvement to the targets that involve
logic that depends on different parts of the input. The largest
increase occurs in the Gateway target which we analyzed (see
Appendix Figure 13) and determined that the mutations en-
able the fuzzer to reach several message handlers that length
extension alone is unable to reach.

+Trim. In this variant inputs are trimmed using the strategies
described in Section 3.1.2 before being added to the input
queue. With larger inputs, the fuzzer is less likely to mutate
any individual byte, therefore by trimming inputs we make
havoc-style mutations more consistent and effective. There
are large increases to coverage reached for the CNC and XML
Parser targets, both of which involve parsing structured data
where smaller inputs are more likely to be valid data. Trim-
ming also improves the fuzzer’s consistency at generating
interesting control messages for the Gateway target (see Ap-
pendix Figure 13). We also observed a small decrease in
coverage in the Robot target, corresponding to code that han-
dles timeouts, that requiring very large inputs to reach. Heat
Press and Thermostat also have large increases, however these
can be attributed to bug exploits (Section 5.2.1).

+Input-to-state. In this configuration we combined the pre-

vious techniques with a stage that performs input-to-state re-
placement as described in Section 3.2. MULTIFUZZ achieves
substantially higher coverage on binaries that include a shell-
like interface (the RIOT-OS binaries, the two uTasker binaries
and Zephyr SocketCan), as input-to-state allows valid com-
mands and parameters (as analyzed in Appendix Figure 14)
to be generated more easily. It also provides significant im-
provements to other targets involving comparisons, including
the 3D Printer target, which uses string comparisons for pars-
ing G-code serial commands, and Steering Control which
waits for “steer” and “motor” events.

+DynamicDictionary. This configuration represents the full
version of MULTIFUZZ, which includes the per-stream dy-
namic dictionaries described in Section 3.2. Since the input-
to-state stage already solves most comparisons, adding a dic-
tionary has a muted effect. The dynamic dictionary is most
beneficial for reaching code that requires interactions between
multiple strings. For example, in the File System target, reach-
ing parts of the code requires first emitting a command to
create a file, then a second command that interacts with the
same file. However, even with dynamic dictionaries MULTI-
Fuzz is not always able to find inputs that reach these cases
in every trial, reducing statistical significance.

5.4 Analysis of newly discovered bugs

In this section, we analyze a subset of the bugs newly dis-
covered by MULTIFUZZ, focusing on the bugs with a higher
security risk. Notably, most of the binaries have been exten-
sively fuzzed by prior work and MULTIFUZZ still manages
to find 18 new bugs. A summary of all the newly discovered
bugs can be found in Appendix Table 3.

Gateway. The firmware processes messages consisting of
a command ID and payload. The length of the message is
calculated by counting the bytes received up to a termination
character. By sending just a termination character, it is pos-
sible to send zero-length messages. However, the firmware
incorrectly assumes that a command ID is always present, and
because the message buffer is reused and not cleared between
messages, the command ID read is the value set by the pre-
vious message. An integer underflow then occurs when the
payload length is adjusted to account for the command ID,
eventually resulting in a buffer overflow. Stream-to-stream
splicing enhances MULTIFUZZ’s ability find this bug by en-
abling multiple valid messages to be generated more easily.

6LoWPAN Sender/Receiver. The firmware receives 6LoW-
PAN packets from a SPI bus, storing the packet into a buffer.
The firmware then decodes the packet which potentially in-
volves reassembling fragmented payloads. To support re-
assembly, the packet header includes a fragment offset field.
However, the firmware fails to check that the fragment offset
is within bounds when copying the payload, causing corrup-
tion. MULTIFUZZ’s ability to quickly start generating valid

Table 1: Block coverage (median of 5 trials) after 24 hours for different configurations of MULTIFUZZ. Features are added
from left to right (e.g., ‘+Trim’ includes: length extension, havoc and the trim stage), the ‘+DynamicDictionary’ column is the
full version of MULTIFUZZ. The percentages show the change in coverage compared to the previous configuration. Changes
<0.1% are not displayed and statistically significant changes are marked in bold (based on a Mann-Whitney U test with a 0.05
significance threshold). Shaded rows include results where at least one configuration reaches additional blocks via a bug exploit.

. Extend +Havoc +Trim +Input-to-State +DynamicDictionary
Firmware

p-value p-value p-value p-value
CNC 2022 | 1995 (-1%) 0.676 | 2690 (+35%) 0.037 | 2672 (-1%) 0.835 | 2672 1.000
Console 807 | 807 1.000 | 807 0.600 | 1132 (+40%) 0.009 | 1167 (+3%) 0.019
Drone 1856 | 1855 (-0.1%) 0.753 | 1849 (-0.3%) 0.387 | 1850 (+0.1%) 0.334 | 1848 (-0.1%) 0.668
Reflow Oven 1191 | 1192 (+0.1%) 0.434 | 1193 (+0.1%) 0.389 | 1192 (-0.1%) 0.651 | 1193 (+0.1%) 0.651
Robot 1345 | 1398 (+4%) 0.010 | 1369 (-2%) 0.009 | 1325 (-3%) 0.295 | 1317 (-1%) 0.395
Steering Control 613 | 611 0512 | 620 (+1%) 0.021 655 (+6%) 0.011 652 (-0.5%) 0.737
6LoWPAN 3329 | 3369 (+1%) 0.022 | 3422 (+2%) 0.012 | 3433 (+0.3%) 0.530 | 3421 (-0.3%) 0.401
LiteOS IoT 1353 | 1352 (-0.1%) 0.738 | 1354 (+0.1%) 0.057 | 1373 (+1%) 0.024 | 1383 (+1%) 0.009
3D Printer 1634 | 1857 (+14%) 0.403 | 1389 (-25%) 0.095 | 3794 (+173%) 0.012 | 4268 (+12%) 0.144
GPS Tracker 998 | 1015 (+2%) 0.047 | 1026 (+1%) 0.172 | 1093 (+7%) 0.011 | 1218 (+11%) 0.057
uTasker MOD. 1332 | 1322 (-1%) 0.675 | 1340 (+1%) 0.210 | 1560 (+16%) 0.012 | 2028 (+30%) 0.021
uTasker USB 1623 | 1631 (+0.5%) 0.403 | 1812 (+11%) 0.037 | 1939 (+7%) 0.028 | 2113 (+9%) 0.144
XML Parser 3356 | 3263 (-3%) 0.676 | 3946 (+21%) 0.012 | 4163 (+5%) 0.037 | 4164 0.676
Zephyr Socket. 2707 | 2746 (+1%) 0.296 | 2786 (+1%) 0.295 | 3100 (+11%) 0.012 | 3147 (+2%) 0.713
Gateway 2075 | 2575 (+24%) 0.037 | 2915 (+13%) 0.095 | 2943 (+1%) 1.000 | 2936 (-0.2%) 0.676
Soldering Iron 2592 | 2593 0.835 | 2631 (+1%) 0.059 | 2937 (+12%) 0.036 | 2703 (-8%) 0.296
Heat Press 568 | 568 0.743 | 927 (+63%) 0.012 | 924 (-0.3%) 0.835 | 986 (+7%) 0.835
PLC 626 | 639 (+2%) 0.095 | 644 (+1%) 0.834 | 661 (+3%) 0.462 | 644 (-3%) 0.530
Thermostat 1467 | 1671 (+14%) 0.022 | 2420 (+45%) 0.020 | 2081 (-14%) 0.270 | 2352 (+13%) 0.144
RF Door Lock 779 | 779 0.424 | 780 (+0.1%) 0.020 | 1957 (+151%) 0.010 | 1935 (-1%) 0.835
gnrc networking 915 | 923 (+1%) 0.671 925 (+0.2%) 0.060 | 1831 (+98%) 0.010 | 2128 (+16%) 1.000
File System 846 | 850 (4+0.5%) 0.043 | 889 (+5%) 0.205 | 1264 (+42%) 0.012 | 1376 (+9%) 0.095
CCN-Lite Relay 2144 | 2146 (+0.1%) 0.119 | 2147 0.025 | 4070 (+90%) 0.012 | 4235 (+4%) 0.835

packets allows it to spend longer fuzzing the 6lowpan inter-
face enabling it to find this bug. Further analysis revealed the
bug is attributable to a known vulnerability in Contiki-OS,
which provides the networking interface used by the binary.

uTasker_USB. In one of the bugs within this target, the
firmware fails to validate that the interface index used for
device/interface requests from the setup packet is in-bounds.
For example, when handling a SET_LINE_CODING message,
if the target interface index is too large, then the settings from
the message payload will be copied to arbitrary memory.

gnrc_networking. The code responsible for creating an IPv6
echo packet calculates the total size of the packet by adding
the requested payload size to the header size. For a large
payload size, an integer overflow occurs when computing the
total size. This leads to a packet smaller than the header size.
If the overflown value is equal to zero the code dereferences
a NULL pointer, for other values smaller than the header size,
the code overflows a buffer when filling the packet payload.

6 Discussion

Direct Memory Access (DMA). For MULTIFUZZ we fo-
cused on the input-generation aspect of the fuzzing process.
We use a similar approach to existing fuzzers such as Fuz-
zware [42] and Ember-10 [13] when dealing with DMA.
MULTIFUZZ does not differentiate between DMA and other

MMIO accesses and instead relies on external configuration
when necessary. For the binaries included in the benchmarks,
we use the configuration files from Fuzzware. However, our
approach is fully compatible with other approaches that im-
prove the emulator’s ability to handle DMA peripherals, such
as DICE [35] or SEmu [55]. Data associated with DMA pe-
ripherals could be represented as separate streams in MULTI-
Fuzz and mutated using operations specialized for DMA.

False positive crashes. In addition to the crashes caused by
the bugs found by MULTIFUZZ, we also identified 7 addi-
tional false positives, and after further analysis we reclassified
9 of the bugs reported by prior work also as false positives.
Most of the false positive crashes are related to interrupts
being triggered before the firmware fully initializes data re-
lated to managing the peripheral (prior work reported these
issues as “Unchecked Init”’). However, on real ARM MCUs,
an interrupt for a peripheral should only be triggered if the bit
associated with the interrupt is enabled in the NVIC (nested
vectored interrupt controller) and the peripheral is enabled
and configured to generate the relevant interrupt. For MULTI-
Fuzz we use the same approach as Fuzzware [42] to handle
interrupt triggering, where interrupts can be scheduled as
soon as they are enabled in the NVIC. However, firmware
may configure the NVIC before fully initializing and enabling
peripherals, which can result in false positive crashes.

We also found 3 additional false positive crashes related to
hardware assumptions. Two of these occurred in Zephyr Sock-

etCAN related to the ‘canbus attach/detach’ sub-commands,
causing buffer overflows. The third was related to clock rate
initialization in 6LoWPAN Sender leading to unbounded recur-
sion resulting in a stack overflow. A comprehensive analysis
of false-positive crashes is available in our GitHub repository.

Multi-stream fuzzing with MMIO modeling. We have
demonstrated that our multi-stream input representation, when
used to implement a firmware fuzzer, outperforms prior ap-
proaches, including those that utilize modeling techniques.
However, our approach is completely independent to MMIO
modeling strategies, allowing MULTIFUZZ to be combined
with modeling approaches such as Fuzzware [42].

7 Related work

Fuzzing techniques have demonstrated a proven capability to
find bugs in diverse software [25,36]. As such, substantial re-
search effort has been devoted to improving the effectiveness
of fuzzers [2,7,17,32,39]. For example, Angora [7] attempts
to explore different input lengths by tracking the return value
for read-like function calls. However, these approaches are
typically focused on testing software written for desktop op-
erating systems and are not directly applicable to fuzzing
firmware. Although a range of approaches are proposed to
analyze the security of firmware more broadly, including tar-
geted approaches to search for specific vulnerabilities [22,50],
or those involving human analysis [5, 34,44, 55], we focus on
elaborating upon methods explored for fuzzing firmware.
Multiple approaches have explored firmware fuzzing with-
out the need for direct hardware access. Pretender [24]
attempts to re-host firmware in an emulated environment
by observing interactions between the firmware and hard-
ware during execution on the original hardware. HALucina-
tor [10] makes the observation that many IoT devices utilize a
hardware-abstraction-layer (HAL) instead of interacting with
the hardware directly and emulates the HAL instead of the
underlying hardware. Concurrently with our work, SAFIRE-
FUZZ [47] improves the efficiency of this approach by stat-
ically rewriting the binary to achieve near-native execution
on a more powerful ARM host machine instead of relying
on emulation. However, HAL-level emulation requires the
time-consuming task of identifying and manually implement-
ing replacements for all HAL functions; a task made more
difficult if the functions are inlined as a result of compiler
optimizations. P2IM [16] attempts to automatically classify
the type of peripheral using several heuristics. Fuzzware [42]
infers models for peripherals by locally applying symbolic ex-
ecution to analyze how peripheral data is used. They demon-
strated that their approach to modelling reduces the input
overhead, significantly improving the effectiveness of fuzzer
mutations. Ember-10 [13] foregoes modelling and introduces
two techniques, FERMCov to avoid saving excess inputs
added on interrupt entry and exit, and peripheral input play-

back (PIP) to allow the fuzzer to generate values that are
repeated. However, all these approaches either focus on mak-
ing more efficient use of the inputs consumed by the emu-
lator or preventing the fuzzer from exploring unprofitable
paths in a program. In contrast MULTIFUZZ focuses on bet-
ter input generation as part of the fuzzing frontend. The use
of alternative input representations to improve fuzzer effec-
tiveness has been explored in domains outside of firmware
fuzzing [1, 3,4,23,40,41,49]. For example, Nyx [46] repre-
sents bytecode programs for fuzzing hypervisors as directed
acyclic graphs. Further, generic fuzzing frameworks such as
LibAFL [19] are designed to be compatible with multiple
input representations. However, none of the existing input
representations are suitable for fuzzing firmware.

Notably, the concurrent work, Hoedur [43], also uses multi-
stream inputs to fuzz firmware. MULTIFUZZ places a greater
emphasis on length extension strategies compared to Hoedur,
incorporating specialized extension mechanisms and gener-
ally performing larger extensions. To solve string compar-
isons, Hoedur constructs a shared dictionary from strings
found in the firmware using static analysis. This approach lim-
ited to constant string comparisons only, in contrast, MULTI-
Fuzz’s input-to-state stage supports both non-constant string
comparisons and non-string memory comparisons. Addition-
ally, Hoedur assigns streams to access contexts (a tuple con-
sisting of the program counter and MMIO address). We de-
fine streams solely on MMIO addresses to ensure data read
from peripheral registers are contiguous even after inlining
optimizations, which improves the consistency of input-to-
state replacements. SplITS [14] solves string comparisons
in single-stream inputs by introducing an iterative algorithm
for matching partial strings that is resistant to data scattering
and input stability. This approach has a higher runtime cost
to input-to-state replacement in multi-stream inputs and does
not address the other issues with single stream inputs.

8 Conclusion

MULTIFUZZ utilizes a novel multi-stream input represen-
tation for handling MMIO accesses to fuzz firmware. This
new representation is combined with an efficient multi-stream
length extension strategy, improved trimming approach, and
multi-stream specific mutation operations enables MULTI-
Fuzz to achieve higher coverage and discover more bugs
than existing state-of-the-art firmware fuzzers.

Acknowledgements

The work was supported by the Cyber Security Research
Centre Limited whose activities are partially funded by the
Australian Government’s Cooperative Research Centres Pro-
gramme, and through the Australian Government’s Research
Training Program Scholarship (RTPS).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. NAUTILUS: Fishing for Deep Bugs
with Grammars. In Network and Distributed Systems
Security Symposium, NDSS, 2019.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In Sym-
posium on Network and Distributed System Security,
NDSS, 2019.

Nils Bars, Moritz Schloegel, Tobias Scharnowski, Nico
Schiller, and Thorsten Holz. Fuzztruction: Using Fault
Injection-based Fuzzing to Leverage Implicit Domain
Knowledge. In USENIX Security Symposium, USENIX
Security, 2023.

Tim Blazytko, Matt Bishop, Cornelius Aschermann,
Justin Cappos, Moritz Schlogel, Nadia Korshun, Ali Ab-
basi, Marco Schweighauser, Sebastian Schinzel, Sergej
Schumilo, et al. GRIMOIRE: Synthesizing Struc-
ture while Fuzzing. In USENIX Security Symposium,
USENIX Security, 2019.

Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-
Agnostic Firmware Execution is Possible: A Concolic
Execution Approach for Peripheral Emulation. In An-
nual Computer Security Applications Conference, AC-
SAC, 2020.

Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards Automated Dynamic Analysis
for Linux-based Embedded Firmware. In Network and
Distributed System Security Symposium, NDSS, 2016.

Peng Chen and Hao Chen. Angora: Efficient Fuzzing
by Principled Search. In IEEE Symposium on Security
and Privacy, SP, 2018.

Michael Chesser, Surya Nepal, and Damith C Ranas-
inghe. Icicle: A Re-Designed Emulator for Grey-Box
Firmware Fuzzing. In ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA,
2023.

Jaeseung Choi, Joonun Jang, Choongwoo Han, and
Sang Kil Cha. Grey-Box Concolic Testing on Binary
Code. In IEEE/ACM International Conference on Soft-
ware Engineering, ICSE, 2019.

Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. HALucinator: Firmware Re-hosting Through

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

Abstraction Layer Emulation. In USENIX Security
Symposium, USENIX Security, 2020.

Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: System-Wide Security Testing of
Real-World Embedded Systems Software. In USENIX
Security Symposium, USENIX Security, 2018.

Max Eisele, Daniel Ebert, Christopher Huth, and An-
dreas Zeller. Fuzzing Embedded Systems Using Debug
Interfaces. In ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA, 2023.

Guy Farrelly, Michael Chesser, and Damith C. Ranas-
inghe. Ember-IO: Effective Firmware Fuzzing with
Model-Free Memory Mapped 10. In ACM ASIA Confer-
ence on Computer and Communications Security, Asi-
aCCs, 2023.

Guy Farrelly, Paul Quirk, Salil S. Kanhere, Seyit
Camtepe, and Damith C. Ranasinghe. SplITS: Split
Input-to-State Mapping for Effective Firmware Fuzzing.
In European Symposium on Research in Computer Se-
curity, ESORICS, 2023.

Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, et al. SoK: Enabling Security Analyses of Embed-
ded Systems via Rehosting. In ACM Asia Conference
on Computer and Communications Security, AsiaCCS,
2021.

Bo Feng, Alejandro Mera, and Long Lu. P?IM: Scal-
able and Hardware-independent Firmware Testing via
Automatic Peripheral Interface Modeling. In USENIX
Security Symposium, USENIX Security, 2020.

Andrea Fioraldi, Daniele Cono D’Elia, and Emilio
Coppa. WEIZZ: Automatic Grey-Box Fuzzing for Struc-
tured Binary Formats. In ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA,
2020.

Andrea Fioraldi, Dominik Maier, Heiko EiBfeldt, and
Marc Heuse. AFL++: Combining Incremental Steps of
Fuzzing Research. In USENIX Workshop on Offensive
Technologies, WOQOT, 2020.

Andrea Fioraldi, Dominik Christian Maier, Dongjia
Zhang, and Davide Balzarotti. LibAFL: A Framework to
Build Modular and Reusable Fuzzers. In ACM SIGSAC
Conference on Computer and Communications Security,
CCS, 2022.

Andrea Fioraldi, Alessandro Mantovani, Dominik Maier,
and Davide Balzarotti. Dissecting American Fuzzy Lop:
A FuzzBench Evaluation. ACM Transactions on Soft-
ware Engineering and Methodology, 32(2):1-26, 2023.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
Data Flow Sensitive Fuzzing. In USENIX Security Sym-
posium, USENIX Security, 2020.

Fabio Gritti, Fabio Pagani, Ilya Grishchenko, Lukas
Dresel, Nilo Redini, Christopher Kruegel, and Giovanni
Vigna. HEAPSTER: Analyzing the Security of Dy-
namic Allocators for Monolithic Firmware Images. In
IEEE Symposium on Security and Privacy, SP, 2022.

Samuel Grof3. FuzzIL: Coverage Guided Fuzzing for
JavaScript Engines. Department of Informatics, Karl-
sruhe Institute of Technology, 2018.

Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Da-
vide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, and Giovanni Vigna. Toward the
Analysis of Embedded Firmware through Automated
Re-hosting. In International Symposium on Research in
Attacks, Intrusions and Defenses, RAID, 2019.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A Ground-Truth Fuzzing Benchmark. Pro-
ceedings of the ACM on Measurement and Analysis of
Computing Systems, 4(3), 2020.

Adrian Herrera, Hendra Gunadi, Shane Magrath,
Michael Norrish, Mathias Payer, and Antony L. Hosk-
ing. Seed Selection for Successful Fuzzing. In ACM
SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA, 2021.

Intel. Circumventing Fuzzing Roadblocks with Com-
piler Transformations, 2016.

Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Fuzzing Error Handling Code using Context-Sensitive
Software Fault Injection. In USENIX Security Sympo-
sium, USENIX Security, 2020.

Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted Firmware Rehosting for
Embedded Systems. In USENIX Security Symposium,
USENIX Security, 2021.

Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon
Kim, Yeongjin Jang, and Yongdae Kim. FirmAE: To-
wards Large-Scale Emulation of IoT Firmware for Dy-
namic Analysis. In Annual Computer Security Applica-
tions Conference, ACSAC, 2020.

AWS Labs. Snapcharge: Lightweight Fuzzing of a Mem-
ory Snapshot using KVM, 2023.

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

Myungho Lee, Sooyoung Cha, and Hakjoo Oh. Learn-
ing Seed-Adaptive Mutation Strategies for Greybox
Fuzzing. In International Conference on Software Engi-
neering, ICSE, 2023.

Zheyu Ma, Bodong Zhao, Letu Ren, Zheming Li, Siqi
Ma, Xiapu Luo, and Chao Zhang. PrIntFuzz: Fuzzing
Linux Drivers via Automated Virtual Device Simulation.
In ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA, 2022.

Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: Baseband SAnitized Fuzzing through Emu-
lation. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec, 2020.

Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
DICE: Automatic Emulation of DMA Input Channels
for Dynamic Firmware Analysis. In IEEE Symposium
on Security and Privacy, SP, 2021.

Jonathan Metzman, Laszl6 Szekeres, Laurent Simon,
Read Sprabery, and Abhishek Arya. FuzzBench: an
open fuzzer benchmarking platform and service. In
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE, 2021.

Marius Muench, Dario Nisi, Aurélien Francillon, and
Davide Balzarotti. Avatar>: A Multi-target Orchestra-
tion Platform. In Workshop on Binary Analysis Re-
search, BAR, 2018.

Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What You Corrupt Is
Not What You Crash: Challenges in Fuzzing Embedded
Devices. In Symposium on Network and Distributed
System Security, NDSS, 2018.

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. ParmeSan: Sanitizer-guided Grey-
box Fuzzing. In USENIX Security Symposium, USENIX
Security, 2020.

Van-Thuan Pham, Marcel Bohme, Andrew Edward San-
tosa, Alexandru Razvan Caciulescu, and Abhik Roy-
choudhury. Smart Greybox Fuzzing. IEEE Transactions
on Software Engineering, 2019.

Christopher Salls, Chani Jindal, Jake Corina, Christo-
pher Kruegel, and Giovanni Vigna. Token-Level
Fuzzing. In USENIX Security Symposium, USENIX
Security, 2021.

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using Precise MMIO Modeling for Effective Firmware

Fuzzing. In USENIX Security Symposium, USENIX
Security, 2022.

[43] Tobias Scharnowski, Simon Woerner, Felix Buchmann,
Nils Bars, Moritz Schloegel, and Thorsten Holz. Hoe-
dur: Embedded Firmware Fuzzing using Multi-Stream
Inputs. In USENIX Security Symposium, USENIX Se-
curity, 2023.

[44] Nico Schiller, Merlin Chlosta, Moritz Schloegel, Nils
Bars, Thorsten Eisenhofer, Tobias Scharnowski, Felix
Domke, Lea Schonherr, and Thorsten Holz. Drone Se-
curity and the Mysterious Case of DJI’'s DronelD. In
Network and Distributed System Security Symposium,
NDSS, 2023.

[45] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Worner, and Thorsten Holz. HYPER-CUBE:
High-Dimensional Hypervisor Fuzzing. In Symposium
on Network and Distributed System Security, NDSS,
2020.

[46] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Si-
mon Worner, and Thorsten Holz. Nyx: Greybox Hyper-
visor Fuzzing using Fast Snapshots and Affine Types. In
USENIX Security Symposium, USENIX Security, 2021.

[47] Lukas Seidel, Dominik Maier, and Marius Muench.
Forming Faster Firmware Fuzzers. In USENIX Security
Symposium, USENIX Security, 2023.

[48] Jack Tang and Moony Li. Project Triforce: Run AFL on
Everything! Black Hat Europe, 2016.

[49] Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du,
and Junjie Chen. FuzzJIT: Oracle-Enhanced Fuzzing for
JavaScript Engine JIT Compiler. In USENIX Security
Symposium, USENIX Security, 2022.

[50] Haohuang Wen, Zhiqgiang Lin, and Yinqian Zhang. Fir-
mXRay: Detecting Bluetooth Link Layer Vulnerabilities
From Bare-Metal Firmware. In ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS,
2020.

[51] Michal Zalewski. American Fuzzy Lop: A Security-
oriented Fuzzer, 2010.

[52] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. FIRM-AFL: High
Throughput Greybox Fuzzing of IoT Firmware via Aug-
mented Process Emulation. In USENIX Security Sympo-
sium, USENIX Security, 2019.

[53] Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu,
Yang Liu, and Limin Sun. Efficient Greybox Fuzzing of
Applications in Linux-Based IoT Devices via Enhanced
User-Mode Emulation. In ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA,
2022.

[54] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic Firmware Emulation through Invalidity-guided
Knowledge Inference. In USENIX Security Symposium,
USENIX Security, 2021.

[55] Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing
Zhang. What Your Firmware Tells You Is Not How You
Should Emulate It: A Specification-Guided Approach
for Firmware Emulation. In ACM SIGSAC Conference
on Computer and Communications Security, CCS, 2022.

A Appendix
A.1 Block Coverage Statistical Analysis

Table 2: Block coverage after 24 hours for Fuzzware (FW),
Ember-IO and MULTIFUZZ (median of 5 trials). To test
for statistical significance we conducted Mann-Whitney U
tests comparing the results for MULTIFUZZ to Fuzzware and
Ember-I0, and report the associated p-values in the final two
columns. Entries in bold represent the best performing fuzzer
with statistical significance (0.05 significance threshold). The
metrics for entries shaded in grey may be unreliable due to
code reached via bug exploits.

Firmware Average blocks hit p-value

FW Ember MultiFuzz | vs FW vs Ember
CNC 2672 2303 2672 0.90 0.02
Console 805 843 1167 0.01 0.01
Drone 1836 1835 1848 0.01 0.01
Reflow Oven 1192 1192 1193 0.65 0.52
Robot 1306 1315 1317 0.06 0.11
Steering Control 613 644 652 0.01 0.01
6LoWPAN 2967 3289 3421 0.01 0.01
LiteOS IoT 1319 1348 1383 0.01 0.01
3D Printer 933 3259 4268 0.01 0.02
GPS Tracker 1025 1001 1218 0.01 0.01
uTasker MODBUS | 1313 1252 2028 0.01 0.01
uTasker USB 1667 1336 2113 0.01 0.01
XML Parser 3641 3629 4164 0.01 0.01
Zephyr SocketCan | 2718 2468 3147 0.02 0.02
Gateway 2941 2214 2936 0.53 0.01
Soldering Iron 2515 2265 2703 0.01 0.01
Heat Press 539 554 986 0.01 0.01
PLC 637 642 644 0.02 0.25
Thermostat 3116 4284 2352 0.01 0.01
RF Door Lock 2661 782 1935 0.09 0.13
gnrc networking 926 - 2128 0.01 -
File System 686 - 1376 0.01 -
CCN-Lite Relay 2211 - 4235 0.01 -

A.2 MUuLTIFUZZ Component Impact Analysis

To support Section 5.3, we plot the time required by different
fuzzer configurations to generate inputs covering specific
code regions in various binaries. The right subfigures plot

Drone: MPU9250_Init() Drone: AK8963_Init()

12}
- ©° - ©°
= 1500 = = 1500+ =
21000 23 £ 1000 23
3 €2 3 £2
o 500 T & 500 @
g e1 g I
o o 0 g od——"b—
01234 01 2 3 4 01234 0123 4
Drone: MS5611_Init()
w
- =°
= 150041 =4
°
% 10004 82 Fuzzware
o £ A i
S 500 5 MultiFuzz (Extend Only)
* £
¢ 04—

0
01234 0 1
Duration (hours)

Figure 12: Time required to complete various initialization
functions in the Drone target.

Gateway: SYSEX 'q' Gateway: SYSEX'y'

3000 0 57 3000 @ 97
2 2500 -"_E 44 = 250043 -"_:“ 4
2000 = 23 g 2000 231
S 1500 £, S 1500 g,
25 1000 E 5 1000 g
#5001 517 ¥* 500 5 11
0 Todd 0 Totdh——
0 5101520 0 5 101520 0 5101520 0 5101520

Duration (hours)

4 Extend Only Extend+Havoc A Extend+Havoc+Trim

Figure 13: Time required to generate specific control mes-
sages in the Gareway target.

the amount time each fuzzing trial is stuck at a particular
region of code after reaching it for the first time. e.g., the
Drone: AK8963_Init() plot indicates that two Fuzzware trials
cover the function in less than an hour, while the remaining
trials take longer. The left subfigures are provided as context
to show where within the overall coverage graph the each
code snippet is encountered. The shaded rectangular region
represents the blocks hit while solving the code fragment.

Figure 12 analyzes the impact of length extension on
rapidly progressing through initialization compared to an
existing state-of-the-art fuzzer (Fuzzware [42]). It can take
Fuzzware almost 3 hours in total to finish initialization in
some trials, while MULTIFUZZ with length extension alone
completes initialization within minutes.

Figure 13 explore the necessity of havoc-style mutations
in reaching various control message handlers in the Gateway
target. Control messages consist of a command ID framed
with start and stop bytes. Without havoc-style mutations (i.e.,
Extend Only), the fuzzer never manages to generate a message
with a valid command ID. Introducing havoc-style mutations
enables the fuzzer to mutate the command ID while leaving
the start and stop bytes alone, albeit inconsistently. Trimming
inputs significantly increases the speed and consistency of
generating control messages, allowing the configuration with
trim enabled to generate both target messages within 5 hours.

Console: 'help’ Console: ‘ps

©0 5 L5

22 10004 §4_ 2 1000 24]

800+ 800

% 600-:= _83' % eoo,ﬁ E’G-I

S 400 £ 24 9 400 € 2+

o © o s, |

2 200 g1- 2 200 51-|

0 4 0 04
x V———— x V-————
0 5101520 0 5101520 0 5101520 0 5101520
Console: 'rtc'

©5_

= 10001 2,

T F 49

800 ;

% 600_1 ?3. L Extend+Havoc+Tr!m

© 4004 £ 24 Extend+Havoc+Trim+12S

m T 4

3F 2004 £

0 L 0
0 5101520 0 5101520

Duration (hours)

Figure 14: Time required to reach command handler functions
in the Console target.

Figure 13 investigates the impact of input-to-state (I2S)
replacements. Without a mechanism to solve string compar-
isons, the MULTIFUZZ struggles to reach any of the command
handlers. Across all trials, the configuration without I12S only
manages to reach a command handler twice. With 1285, all
command handlers are reached within minutes of fuzzing.

A.3 Responsible Disclosure

We disclosed security related bugs by sending bug-reports to
vendors/developers in accordance with the security policies
listed for the associated project. All reported issues have either
been fixed, or based on feedback from maintainers, are not

considered to

be security critical.

Table 3: Summary of the 18 new bugs found by MULTIFUZZ.

Target

Description

Status

6LoWPAN
Zephyr SocketCan
Zephyr SocketCan
Zephyr SocketCan
Zephyr SocketCan
Gateway

utasker MODBUS
utasker USB

utasker USB
GPSTracker

GPSTracker
GPSTracker

GPSTracker

Fragment offset is not bounds-checked

net pkt command de-references a user pro-
vided pointer.

canbus config command fail to validate ar-
gument count.

canbus sub-commands fail to verify device
type.

pwm sub-commands fail to verify device
type.

Incorrect handling of zero length sysex mes-
sages.

Direct manipulation of memory using I/O
menu.

Direct manipulation of memory using I/O
menu.

Out-of-bounds access from interface index.
strtok not checked for NULL in
gsm_get_imei.

strstr not checked for NULL in sms_check.
strstr not checked for NULL in
gsm_get_time.

strtok not checked for NULL in
gsm_get_time.

Fixed upstream at the time of
reporting.

Fixed at the time of report-
ing.

Code rewritten in latest re-
lease.

Noted as a known API limi-
tation.

Noted as a known API limi-
tation.

Reported & Fixed.

Intentional feature for debug-
ging.

Intentional feature for debug-
ging.

Reported & Acknowledged.

Input is trusted, not reported.

Input is trusted, not reported.
Input is trusted, not reported.

Input is trusted, not reported.

gnre_networking

CCN-Lite Relay
CCN-Lite Relay
CCN-Lite Relay
CCN-Lite Relay

Integer overflow when computing echo
packet size.

Data race during stdio initialization.
Use-after-free of temporary interface.
Re-initialization of shared global variables.
Incorrect handling of content messages with
invalid URIs.

Reported & Fixed.

Reported & Fixed.

Reported & Acknowledged.
Reported & Acknowledged.
Reported & Acknowledged.

	Introduction
	Input Representation for MMIO Accesses
	MultiFuzz Design
	Effective Input Extension
	Multi-stream Length Extension
	Input Trimming

	Multi-stream Input-to-State Replacement
	Multi-stream Mutations
	Stream Selection

	Implementation
	Evaluation
	Evaluation On Synthetic Unit Tests
	Comparison with the State of the Art
	Bug Exploits Leading to Additional Coverage

	Effectiveness of Multi-Stream Techniques
	Analysis of newly discovered bugs

	Discussion
	Related work
	Conclusion
	Appendix
	Block Coverage Statistical Analysis
	MultiFuzz Component Impact Analysis
	Responsible Disclosure

