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Abstract Fuzzing is a promising technique for bug detection [2,4, 15,

Database management systems (DBMSs) are essential parts
of modern software. To ensure the security of DBMSs, recent
approaches apply fuzzing to testing DBMSs by automatically
generating SQL queries. However, existing DBMS fuzzers
are limited in generating complex and valid queries, as they
heavily rely on their predefined grammar models and fixed
knowledge about DBMSs, but do not capture DBMS-specific
state information. As a result, these approaches miss many
deep bugs in DBMSs.

In this paper, we propose a novel stateful fuzzing approach
to effectively test DBMSs and find deep bugs. Our basic idea
is that after DBMSs process each SQL statement, there is
useful state information that can be dynamically collected to
facilitate later query generation. Based on this idea, our ap-
proach performs dynamic query interaction to incrementally
generate complex and valid SQL queries, using the captured
state information. To further improve the validity of generated
queries, our approach uses the error status of query processing
to filter out invalid test cases. We implement our approach
as a fully automatic fuzzing framework, DynSQL. DynSQL
is evaluated on 6 widely-used DBMSs (including SQLite,
MySQL, MariaDB, PostgreSQL, MonetDB, and ClickHouse)
and finds 40 unique bugs. Among these bugs, 38 have been
confirmed, 21 have been fixed, and 19 have been assigned
with CVE IDs. In our evaluation, DynSQL outperforms other
state-of-the-art DBMS fuzzers, achieving 41% higher code
coverage and finding many bugs missed by other fuzzers.

1 Introduction

Database management systems (DBMSs) play essential roles
in modern data-intensive applications [13,22,44], providing
fundamental functionalities of data storage and management.
Due to the large code size and complex logic of DBMSs,
bugs are inevitably introduced during development and main-
tenance. By exploiting DBMS bugs, attackers can introduce
malicious threats of paralyzing the system [1, 5, 7] or even
hacking secret data [14,46].

17,26,30,47], and it is applied to testing DBMSs [18,43,45,
48] by generating SQL (Structured Query Language) queries
that contain a series of SQL statements [48]. Specifically,
some fuzzers [18,43] utilize well-defined rules to randomly
generate SQL queries, feed these queries to target DBMSs,
and check whether bugs are triggered. To improve bug detec-
tion in DBMSs, several approaches [45, 48] further involve
feedback mechanisms. After the execution of each test case,
they collect the runtime information (e.g. code coverage) of
target DBMSs and check whether interesting behavior (e.g.
covering new branches) occurs. If so, the test case will be
stored as a seed for later test-case generation.

However, existing DBMS fuzzers are still limited in gener-
ating complex and valid queries to find deep bugs in DBMSs.
In general, a complex query contains multiple SQL statements
that involve various SQL features (e.g. multi-level nested sub-
queries), while a valid query satisfies the dependencies among
its statements (e.g., a subsequent statement references the el-
ements defined in an earlier statement) and guarantees both
syntactic and semantic correctness. Existing DBMS fuzzers
always make a trade-off between complexity and validity of
generated queries. For example, SQLsmith [43] generates
only one statement in each query, avoiding the analysis of
dependencies among statements, which sacrifices complexity
for validity; SQUIRREL [48] uses an intermediate represen-
tation (IR) model to infer dependencies and generate queries
that contain multiple statements, but it produces over 50%
invalid queries and tends to generate simple statements.

The contradiction between query complexity and query va-
lidity occurs because existing DBMS fuzzers heavily rely on
their predefined grammar models and fixed knowledge about
DBMSs, but do not capture runtime state information. They
either neglect state changes (e.g. SQLsmith [43]), or statically
infer the corresponding states (e.g. SQUIRREL [48]) but suf-
fer from soundness and completeness issues. Without accurate
state information, these fuzzers tend to build incorrect depen-
dencies among statements or misuse SQL features, causing
many invalid queries to be generated. To generate valid test



Table 1: Conceptual comparison of DBMS fuzzers

Features SQLsmith SQUIRREL DynSQL
Stateful Fuzzing None Partial Full

Query Generation Static Static Dynamic
Program Feedback None Code Cov Code Cov+Error
Query Validity High Middle High

Statement Number One Multiple Multiple
Statement Complexity High Low High

cases, these fuzzers have to limit the complexity of generated
queries to tolerate their inaccurate state information.

In fact, DBMSs process each query statement by statement,
and the states of manipulated databases change after each
statement is executed. In the interval of statement process-
ing, DBMS-specific state information, including the latest
database schema and status of statement processing, is avail-
able. However, existing DBMS fuzzers fail to capture such
information, as their query generation is finished before query
execution. To solve this problem, we propose a novel state-
ful fuzzing approach to perform dynamic query interaction
that merges query generation and query execution. This ap-
proach feeds each generated statement to the target DBMS
and then dynamically interacts with the DBMS to collect the
latest state information after the statement is executed. The
collected state information is used to guide the generation
of subsequent statements. Benefiting from dynamic query
interaction, our fuzzing approach transforms the complicated
process of query generation into several simple and indepen-
dent processes of statement generation, and thus can generate
complex and valid SQL queries effectively.

In addition, to further improve the validity of the gener-
ated queries, our fuzzing approach uses error feedback to
guide test-case generation with code coverage. It collects the
information on query execution and observes whether the
generated queries pass syntactic and semantic checks of the
target DBMS. If the generated queries trigger any syntactic or
semantic error, these queries are identified to be invalid and
are discarded directly. By using error feedback, our fuzzing
approach guarantees that all selected seeds are valid, which is
useful to generate valid test cases in subsequent mutations.

We implement our approach as a stateful DBMS fuzzing
framework, DynSQL. Table 1 concludes the conceptual dif-
ferences between DynSQL and two state-of-the-art DBMS
fuzzers, according to their design and our evaluation results.
Both DynSQL and SQUIRREL are aware of the state changes
caused by generated statements. However, SQUIRREL tends
to infer incorrect state information when it processes the se-
mantics of complex statements. DynSQL addresses these
problems by dynamically capturing the latest state informa-
tion for query generation. Besides the feedback of code cover-
age used by SQUIRREL, DynSQL also uses error information
to improve the validity of generated queries. Benefiting from
these improvements, DynSQL can effectively generate valid
queries containing multiple complex statements.

Overall, we make the following technical contributions:

* We propose a novel stateful fuzzing approach to address
the limitations of existing DBMS fuzzers. Our approach
performs dynamic query interaction that merges query gen-
eration and query execution to effectively generate complex
and valid SQL queries. In addition, it uses error feedback
to improve the validity of the generated queries.

* Based on our approach, we implement DynSQL, a practical
DBMS fuzzing framework that automatically detects deep
bugs in DBMSs, by generating complex and valid queries.

* We evaluate DynSQL on 6 widely-used DBMSs, includ-
ing SQLite, MySQL, MariaDB, PostgreSQL, MonetDB,
and ClickHouse. DynSQL finds 40 unique bugs among
which 38 have been confirmed, 21 have been fixed, and
19 have been assigned CVE IDs. We compare DynSQL to
state-of-the-art DBMS fuzzers, including SQLsmith and
SQUIRREL. Owing to its effectiveness in generating com-
plex and valid SQL queries, DynSQL achieves 41% higher
code coverage and finds many bugs missed by other fuzzers.

2 Background and Motivation

In this section, we first introduce how DBMSs process SQL
queries in brief, then illustrate the difficulty of generating
complex and valid queries, and finally reveal the limitations
of existing DBMS fuzzers.

SOL processing in DBMS. SQL queries are designed to per-
form the communication between users and DBMSs. To man-
age data, users often integrate multiple SQL statements (e.g.,
SELECT statement) into a query, and then send the query to
the DBMS, which manipulates databases. After receiving a
query, the DBMS first decomposes it into several statements
and then processes the statements in sequence.

DBMSs generally process each statement in four phases:
parsing, optimization, evaluation, and execution [38]. In the
parsing phase, DBMSs first check the syntactic correctness of
the statement according to their predefined grammar rules and
then check the semantic correctness according to the current
database schema. If any syntactic or semantic check fails, the
statement is discarded directly, and the whole query process-
ing may be terminated. In the later phases, DBMSs optimize
the low-level expression of the statement and generate several
possible execution plans. Then, DBMSs evaluate the cost of
each execution plan and finally execute the most efficient plan.
After the statement is executed, DBMSs update the states in-
cluding database schema and the execution status, and then
DBMSs process the following statement in the query.

Query generation. On the one hand, DBMS fuzzers should
guarantee both syntactic and semantic correctness of the gen-
erated queries, so that these queries can pass validation checks
without being discarded in earlier stages. However, doing so
is difficult, as DBMS fuzzers not only need to obey specific
SQL features and grammars, but also have to analyze possible



CREATE TABLE tl (£f1 INTEGER);
CREATE VIEW vl AS
SELECT subg 0.c4 AS c2, subg 0.c4 AS c4
FROM (
SELECT ref 0.f1 AS c4
FROM tl AS ref 0
WHERE (SELECT 1)
) AS subg 0
ORDER BY c2, c4 DESC;
WITH cte_0 AS (
SELECT subqg 0.c4 as c6
FROM (
SELECT 11 AS c4
FROM vl AS ref 0
) AS subg 0
CROSS JOIN vl AS ref 2)
SELECT 1;
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Figure 1: A malicious query that crashes the MariaDB server.

DBMS state changes caused by the generated statements so as
to precisely build statement dependencies and correctly refer-
ence attributes. On the other hand, to explore infrequent states,
DBMS fuzzers should generate complex SQL queries to trig-
ger deep logic of optimization, evaluation, and execution in
DBMSs. However, increasing query complexity significantly
increases the difficulty of guaranteeing query validity. Thus,
it is important but very challenging to generate both complex
and valid SQL queries to detect deep bugs in DBMSs.

Figure | shows a malicious query that crashes the Mari-
aDB server and enables denial-of-service (DoS) attacks. This
vulnerability affects a wide range of versions (10.2-10.5) of
the MariaDB server and has existed for over 5 years until
DynSQL found it. The query triggering this bug has been
simplified by us and developers, and it is considered as the
minimal test case. However, this query is still complex in
structures and semantics. It contains three SQL statements.
The first one is a simple CREATE TABLE statement that creates
atable t1. The second statement is a CREATE VIEW statement
that involves three-level nested sub SELECT statements to cre-
ate a view v1. The sub statement at the first level uses a sub
SELECT statement in its FROM clause. The sub statement at
the second level references the created table t1 and uses a
sub SELECT statement again in its WHERE clause. The last
statement in the query is a simple SELECT statement with a
complex COMMON TABLE EXPRESSION (CTE). The CTE uses
a two-level sub SELECT statement. The sub statement at the
first level uses a sub SELECT statement in its FROM clause, and
it is joined with the created view v1 that is referenced again
in the sub SELECT statement at the second level.

In fact, generating this query is difficult in DBMS fuzzing.
First, this query contains multiple statements that cause
DBMS state changes. Fuzzers need to capture such changes
so that the subsequent statements can correctly reference the
elements built by the earlier statements. Second, these state-
ments utilize various SQL features, such as sub SELECT state-
ment, CTE, CROSS JOIN, etc, which make it hard for fuzzers
to accurately infer possible state changes.

Limitations of existing DBMS fuzzers. Existing DBMS
fuzzers are limited in generating complex and valid SQL
queries (e.g. the malicious query in Figure 1), because they
cannot accurately capture the DBMS state changes caused
by generated statements. Instead, they either generate only
one complex statement in each query to avoid the analysis of
state changes [18,43], or combine multiple relatively simple
statements where the state changes can be easily inferred [48].
SQLsmith [43], a popular grammar-based DBMS fuzzer,
can generate complex SQL statements using its well-defined
abstract syntax tree (AST) rules; but it is stateless without con-
sidering state changes caused by its generated statements, as a
result of which it cannot build the dependencies among multi-
ple statements and thus generates only one statement in each
query. Using an intermediate representation (IR) to maintain
query structures, SQUIRREL [48] is aware of state changes
caused by its generated statements. It considers various SQL
features and maintains the scopes and lives of multiple vari-
ables in statements, causing its IR mechanism to be compli-
cated and error-prone when inferring state changes caused
by complex statements. To mitigate this impact, SQUIR-
REL tends to generate simple statements in queries. Even
so, SQUIRREL still generates over 50% invalid queries [48].
Without accurate DBMS state information, existing fuzzers
are limited in generating complex and valid queries to ex-
tensively test DBMSs, causing many deep bugs to still exist.
Therefore, proposing a practical solution to address these
limitations is necessary and important for DBMS fuzzing.

3 Stateful DBMS Fuzzing

DBMS:s process each statement of queries in sequence. Af-
ter each statement is executed, the content of manipulated
databases and the status of DBMSs are dynamically changed.
In the interval between two statement execution, DBMSs
record their latest state information, which accurately reflects
their real-time situations, including the latest database schema
and the status of statement processing. The state information
is valuable for guiding query generation. However, such in-
formation is available only after each statement is executed,
so existing DBMS fuzzers cannot capture it, because they
perform static query generation before query execution.

To solve this problem, we propose a novel stateful fuzzing
approach, which captures accurate state information by dy-
namically interacting with target DBMSs, not statically in-
ferring state changes. Figure 2 shows the overview of our
approach. Its core is dynamic query interaction, which merges
query generation and query execution into an interactive pro-
cess. During the interaction, our approach continuously cap-
tures the latest DBMS states to incrementally generate com-
plex and valid queries where dependencies among statements
are satisfied with correct data references. To further improve
the validity of generated queries, our approach utilizes error
feedback to filter out invalid test cases in the seed pool.
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Figure 2: Overview of stateful DBMS fuzzing.

3.1 Dynamic Query Interaction

Overview. Before generating each statement, dynamic query
interaction first queries the target DBMS to capture state
information, including database schema and status of state-
ment processing. Then, this technique uses such information
to generate a statement and feeds it to the DBMS. After the
statement is executed, this technique interacts with the DBMS
again for the latest state information and uses it to generate
subsequent statements. In this way, dynamic query interaction
can accurately capture the state changes caused by the exe-
cuted statements, and thus it can effectively generate complex
and valid queries.

Dynamic query interaction mainly consists of two parts,
Scheduler and Translator. Scheduler is used to interact
with the target DBMS to capture the latest DBMS states,
transfer the database schema to Translator, and manage the
whole interaction process. Translator is used to translate
an input file into an SQL statement based on the received
database schema. The workflow of dynamic query interaction
is described in Algorithm 1. Given an input file and the tar-
get DBMS, dynamic query interaction outputs the generated
query, the code coverage of the target DBMS, and the status
of query processing. The following discusses the details of
dynamic query interaction.

Scheduler. First, Scheduler initializes the used variables,
including file_size of the input file, the target DBMS, the read
bytes rb, the query, and the coverage cov. Then, Scheduler
enters a loop, which will end if all bytes in the input file file
have been read. In this loop, Scheduler first queries the target
DBMS to obtain its latest database schema (e.g. the attributes
of tables, columns, views, indexes) and then sends the queried
schema, the file, and read bytes rb to Translator, which
will return a generated statement stmt and the updated rb.
Scheduler stores stmt to the end of the query and feeds stmt

Algorithm 1: Dynamic Query Interaction

input : file, DBMS
output : query, cov, status
1 Function Scheduler (file, DBMS) :

2 file_size < GetFileSize (file);

3 DBMS < INITIAL_STATE;

4 rb < 0; query < []; cov < {};

5 for rb < file_size do

6 schema < QueryDBMS (DBMS) ;

7 stmt, rb <— Translator (schema, file, rb);
8 query < [query, stmt];

9 status, cov <— ExeStmt (stmt, DBMS) ;

10 if CheckStatus (status, query) then

1 | break;

12 return query, cov, status;
13 Function Translator (schema, file, rb):

14 tmp_file < file[rb, GetFileSize (file) - 1];

15 StmtGenerator.RandomSource (tmp_file) ;

16 stmt, tmp_rb < StmtGenerator.Gen (schema);
17 return stmt, rb + tmp_rb;
18 Function CheckStatus (status, query) :

19 if status == CRASH then

20 ReportCrash (query);

21 ‘ return TRUE;
22 if status € ERROR then

23 if status ¢ SynErr and status ¢ SemErr then
24 ‘ ReportAbnormalError (query);

25 return TRUE;
26 return FALSE;

to the target DBMS. After the DBMS processes the statement,
Scheduler collects the covered branches into cov, and checks
the status of statement processing. If the status indicates that
a crash or an error is triggered, Scheduler exits the loop.
When the loop ends, Scheduler returns the generated query,
the code coverage cov of the DBMS execution, and the final
status of the query processing.
Translator. Receiving the parameters from Scheduler,
Translator first extracts the fresh part of file, which has
not been read yet, into tmp_file. Translator uses an internal
SQL statement generator StmtGenerator to generate a state-
ment according to the provided schema and tmp_file. Finally,
Translator returns the generated statement stms and updates
the number of bytes that have been read by StmtGenerator.
The internal StmtGenerator deploys AST models to gen-
erate SQL statements. Typically, AST-based tools [39,41,43]
generate random SQL statements according to their random
seed (e.g. system clock), which makes the generation ineffi-
cient and difficult to guide [30,32]. In contrast to these tools,
StmtGenerator uses tmp_file as its random seed, which
means that when StmtGenerator traverses its AST tree to
generate SQL statements, it decides which paths should be
chosen according to the value read from tmp_file. Specifically,
it makes a decision by calculating the result of v mod n, where
v is the value read from the input file and n is the number of
available choices. In this way, StmtGenerator determinis-
tically generates SQL statements according to the provided
input file file and the current database schema schema.
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Figure 3: Generating the third SQL statement in Figure 1.

Figure 3 shows the generation process of the third state-
ment in Figure 1. After receiving the fresh part of the input
file from Translator, StmtGenerator starts traversing its
AST model to generate a SQL statement. When it needs to
determine the type of the statement, it reads a byte from the
file and gets value 5, which indicates that it should generate a
SELECT statement with CTE. Then, StmtGenerator reads the
file again and gets value 1, which indicates that it should use
CROSS JOIN to construct CTE. It needs to further determine
the right table and the left table used in CROSS JOIN, and
decides to use existing tables or views for the right table after
getting the value 3 from the file. As there are two available
candidates (i.e. table t1 and view v1), StmtGenerator reads
the file and gets value 9. According to the calculated result
of 9 mod 2, it uses the second candidate (i.e. view v1). The
subsequent generation process follows a similar procedure.
Status checking. Scheduler checks the execution status af-
ter each statement is fed to the target DBMS. Specifically,
Scheduler checks whether any crash of the DBMS or its
manipulated databases is triggered. If so, it reports the crash
with the query, including the crash-triggering statement and
the earlier statements generated in the previous interaction.
Similar to SQLancer [37], Scheduler also checks whether
the target DBMS reports any error. If so, it performs a fur-
ther check and reports an abnormal error if the error is not
a syntactic or semantic error. For example, "Subquery result
missing" in MonetDB is an abnormal error that indicates the
DBMS has lost the data of calculated results. These checks
enable our dynamic query interaction to report suspicious
bugs that make the target DBMS alert but do not cause it to
crash directly. Note that if any crash or any error is triggered,
Scheduler will terminate the interaction loop because the
target DBMS has entered a problematic state.

Example. Figure 4 illustrates how our dynamic query interac-
tion generates the malicious query in Figure | and detects the
vulnerability. When the test begins, Scheduler first queries
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Figure 4: Dynamic query interaction for the query in Figure 1.

the target DBMS (i.e. MariaDB) to obtain its database schema.
The schema is empty as no statement has been processed yet.
Scheduler sends the empty schema to Translator. Then,
Translator traverses its AST model and generates a CREATE
TABLE statement according to the read value from the file.
Scheduler feeds the statement to the DBMS and collects
the code coverage and the status of statement processing. As
there is no crash or error, Scheduler enters the next round
of interaction. In the second round, Scheduler queries the
DBMS for the latest schema again and then sends the schema
to Translator. As the CREATE TABLE statement has been ex-
ecuted, the schema contains a created table t1. Translator
first removes the part of the file that has been read and then
uses the processed file to generate a new statement, according
to the updated schema. It reads some bytes from the file and
generates a CREATE VIEW statement, which references the ta-
ble t1. The generated statement is fed to the DBMS again and
is processed normally, so Scheduler enters the third round.
In the third round, Scheduler queries the DBMS and gets the
latest schema that is extended with a view v1 containing two
columns c2 and c4. This schema is sent to Translator, and
Translator accordingly generates a SELECT statement with
CTE where the view v1 in the schema is referenced. When
Scheduler feeds the generated statement to the DBMS, a
crash is triggered, so Scheduler terminates the interaction
and reports a bug with the bug-triggering query that contains
the 3 generated statements.

3.2 Error Feedback

The input file of dynamic query interaction controls the pro-
cess of query generation. Proper files can guide the approach
to generate complex and valid SQL queries, while useless



|| —p | Increase ie; Trigger ﬂa ﬁ
Coverage ? O Errors ? O
Input Files of Queries Valid Seeds

Figure 5: Workflow of error feedback.

files can result in repeated and trivial queries. Thus, our state-
ful DBMS fuzzing needs to produce effective input files.
Coverage-guided fuzzers [2, 6, 15, 26, 30] for general files
seem useful to achieve this goal, with the program feedback
of code coverage. In DBMS fuzzing, when an invalid query
triggers a new syntactic or semantic error, code coverage is in-
deed increased. In this case, existing coverage-guided fuzzers
save this invalid query into the seed pool, and use it as a
seed to perform mutation for generating other similar queries.
However, these generated queries are very likely to trigger the
same syntactic or semantic error with the seed query, without
increasing code coverage.

To tackle this problem and further improve the validity
of generated queries, we propose error feedback to filter out
the input files of invalid queries in the seed pool. Figure 5
shows the workflow of error feedback. For each input file of
SQL query, our approach checks whether the query increases
the code coverage during execution. If the query causes the
DBMS to cover new branches at runtime, our fuzzing ap-
proach merges these branches into the global coverage. For
each input file of SQL query that increases the coverage, our
approach further checks whether the query makes the target
DBMS execute abnormally. If the DBMS reports any error,
the input file will be discarded for seed mutation. In this way,
our fuzzing approach guarantees that all the identified seeds
can produce valid SQL queries when they are used as input
files in dynamic query interaction. Using these valid seeds,
our seed mutation achieves a high possibility of generating
valid queries during fuzzing.

4 Framework and Implementation

Based on our stateful DBMS fuzzing approach, we develop
a new fuzzing framework, DynSQL, to detect deep bugs in
DBMSs by generating complex and valid queries. DynSQL
uses Clang [8] to compile and instrument target DBMSs for
collecting coverage information. Figure 6 shows the architec-
ture of DynSQL, which consists of six modules:

* Code instrumentor. It compiles and instruments the code
of the target DBMS, and generates an executable program
that receives and processes SQL queries.

* Query interactor. It receives input files from the file fuzzer
and performs dynamic query interaction to generate com-
plex and valid queries. It also collects necessary runtime
information of the target DBMS for dynamic analysis.

* Statement generator. It uses an internal AST model to gen-
erate syntactically correct SQL statements that only refer-
ence the data claimed in the given database schema.

c/c Code Executable
/CH++ Instrumentor DBMS

Source Files of -
the Target DBMS SQL Queries
Query Statement
Interactor Generator

Runtime
Information

Runtime Information

Bug Bug Report
Checker Bl

Figure 6: Overall architecture of DynSQL.

* Runtime analyzer. It analyzes the collected runtime infor-
mation, identifies seeds according to error feedback, and
selects a seed for the next round of fuzzing.

* File fuzzer. It performs conventional file fuzzing to generate
files based on the given seeds. We implement this module
by mainly referring to AFL [2].

* Bug checker. It detects bugs based on the collected runtime
information and generates corresponding bug reports.

The following discusses the important details of DynSQL.
DBMS supporting. DBMSs often provide interfaces for ex-
ternal programs to operate and query their databases. These
interfaces are used by DynSQL to set up the testing process.
Specifically, DynSQL needs interfaces to start the DBMS,
connect to the DBMS, stop the DBMS, send SQL state-
ments, get results of statement processing, and query database
schema. DBMSs often have well-defined interfaces for these
operations, so it is convenient for users to adopt DynSQL in
different DBMS:s. In our experience, it took one of our authors
less than one hour to make DynSQL support a DBMS.

SOQOL statement generation. We implement our AST-based
statement generator referring to SQLsmith [43], and addition-
ally support some SQL features, such as GROUP BY, UNION,
etc. Because many DBMSs use their own SQL dialects and
the common core of their SQL features is small [37,39], it is
difficult to use one grammar template to test all DBMSs effec-
tively. To address this problem, we fix the general parts of the
supported SQL features according to SQL standard [40] and
make other parts optional. When testing a specific DBMS, we
enable the optional SQL features supported by this DBMS
according to its official documents.

Bug detection. DynSQL uses ASan [3] as its default checker
to detect critical memory bugs. In addition, DynSQL analyzes
the abnormal errors collected in dynamic query interaction
(Section 3.1) to detect bugs that lead DBMSs to report strange
error messages.

Query minimization. To reproduce and locate DBMS bugs
more conveniently, we perform minimization for each gener-
ated query that triggers a new bug. Our minimization process
mainly refers to APOLLO [18] and C-Reduce [33]. In some
cases, developers help us further minimize the bug-triggering
queries with their professional knowledge.



Table 2: Basic information of the target DBMSs

DBMS Mode Version LOC
SQLite Serverless v3.33.0 165K
MySQL Client/Server  v8.0.22 3.25M
MariaDB Client/Server ~ v10.5.9 3.45M
PostgreSQL ~ Client/Server ~ v13.2 1.05M
MonetDB Client/Server ~ Oct2020_17 307K
ClickHouse Client/Server ~ v21.5.6.6 640K

5 Evaluation

To understand the effectiveness of DynSQL, we evaluate it
on real-world and production-level DBMSs. Specifically, our
evaluation aims to answer the following questions:
Q1 Can DynSQL find bugs in real-world DBMSs by gener-
ating complex and valid queries? (Section 5.2)
02 How about the security impact of the bugs found by
DynSQL? (Section 5.3)
03 How do dynamic query interaction and error feedback
contribute to DynSQL in DBMS fuzzing? (Section 5.4)
04 Can DynSQL outperform other state-of-the-art DBMS
fuzzers? (Section 5.5)

5.1 Experimental Setup

We evaluate DynSQL on 6 open-source and widely-used
DBMSs of the latest versions as of our evaluation, including
SQLite [42], MySQL [29], MariaDB [27], PostgreSQL [31],
MonetDB [28], and ClickHouse [9]. We choose these DBMSs
because they are widely used according to DB-Engines Rank-
ing [12] and extensively tested [18,24,41,43,48]. The basic
information of these DBMSs is listed in Table 2 (The lines
of the source code are counted by CLOC [10]). We run the
evaluation on a regular PC with eight Intel processors and
16GB physical memory, and the OS used is Ubuntu 18.04.

5.2 Runtime Testing

Following the evaluation setup of SQUIRREL [48] and the
recommendations of Klees et al. [21], we use DynSQL to
fuzz each target DBMS five times and calculate the average
to get sound results. We use 24 hours as the fuzzing timeout
because we observe that the branch coverage and the found
bugs of 6 target DBMSs converge and hardly change after 24
hours, which is consistent with SQUIRREL.

Table 3 shows the results of runtime testing. The columns
"Found", "Confirmed" and "Fixed" show the number of bugs
that are found by DynSQL, confirmed and fixed by developers,
respectively. The columns "Statement" and "Query" show the
numbers of SQL statements and queries, respectively, which
are valid and generated (valid/generated).

Generated queries and statements. DynSQL generates 101K
SQL queries, and 79K of them are valid. The percentage of
valid queries is 78%. These generated queries contain 866K

Table 3: Detailed results of DBMS fuzzing

Bug Validity
DBMS
Found Confirmed  Fixed Statement Query

SQLite 4 3 3 279K/286K 24K/30K
MySQL 12 12 6 91K/96K 9.4K/13K
MariaDB 13 13 6  170K/175K 17K/21K
PostgreSQL 0 0 0 154K/160K 14K/18K
MonetDB 5 5 5 70K/72K 7.0K/8.6K
ClickHouse 6 5 1 T4K/TTK 7.5K/10K
Total 40 38 21 838K/866K  79K/101K

m?@ﬂgﬂﬂ

SQlLite MysQL MariaDB  MonetDB ClickHouse
01 statement O 2 statements & 3 statements B > 4 statements

Figure 7: Number of SQL statements that trigger DBMS bugs.

SQL statements, and 838K of them are valid. The percentage
of valid statements is 97%. The average number of statements
contained by each valid query is 8.6. These results indicate
that DynSQL can effectively generate valid queries that con-
tain multiple statements. We investigate the invalid statements,
and find that they fail to pass validation checks as they use
complex expressions, whose results dissatisfy the constraints
of their data type or the integrity constraints of the databases.
Found bugs. DynSQL finds 40 unique bugs, including 4 in
SQLite, 12 in MySQL, 13 in MariaDB, 5 in MonetDB, and
6 in ClickHouse. Among these bugs, 31 are memory bugs,
and 9 are semantic bugs that cause DBMSs to report strange
errors. The details of these bugs are discussed in Section 5.3.
We reported these bugs to related developers. Among them,
38 bugs have been confirmed, 21 bugs have been fixed, and
19 have been assigned CVE IDs. For the 17 unfixed bugs (e.g.
two heap-buffer-overflow bugs in MySQL), the developers
have not figured out exact root causes due to the complex logic
of DBMSs, or they have not built proper fixing patches that
do not degrade DBMS performance. For the 2 unconfirmed
bugs, we are still waiting for the response from developers.
Statements in bug-triggering queries. We analyze the num-
ber of statements in the queries triggering DBMS bugs. Note
that all the analyzed queries have been simplified. The re-
sults in Figure 7 indicate that only 2 bugs can be triggered by
using 1 statement. These 2 bugs are triggered by a SELECT
statement and a CREATE TABLE statement, respectively. 19
bugs can be triggered using queries with 2 statements. These
queries all use a CREATE TABLE statement and a SELECT state-
ment. For the 19 remaining bugs, the bug-triggering queries
contain at least 3 statements. These queries often use different
kinds of statements with various SQL features. Listings 1-6
of Appendix A show some examples of these queries.
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Figure 9: Percentage of queries including specific statements
that trigger DBMS bugs.

Size of bug-triggering queries. Figure 8 shows the size of the
bug-triggering queries. Among the 40 found bugs, 35 bugs are
triggered by queries whose sizes are smaller than 1000 bytes.
As query size increases from 0 to 600 bytes, the number of
triggered bugs increases almost linearly. When query size
increases up to 600 bytes, 30 bugs are found. The queries in
Listing 1-4 of Appendix A are the examples. When query size
increases from 600 to 1000 bytes, only 5 additional bugs (e.g.
Listing 6 of Appendix A) are found. For the 5 remaining bugs
(e.g. Listing 5 of Appendix A), their bug-triggering queries
are very complex and hard to simplify. The biggest query is
over 300K bytes, triggering an integer overflow in MariaDB.
Validity of bug-triggering queries. We tried to check the va-
lidity of all 40 bug-triggering queries, but they caused DBMSs
to abnormally abort due to ASan alerts (for the 31 memory
bugs) or strange errors (for the 9 semantic bugs), and thus we
cannot clearly perform validity checking. Therefore, we focus
on the queries triggering the 21 fixed bugs. We first apply
the developers’ patches to fix corresponding bugs and then
check whether these queries work normally. We find that all
these queries are valid, without syntactic or semantic errors.
Indeed, many of these bugs are related to the deep logic of
query processing, and thus they are never triggered by invalid
queries discarded by earlier validation checks.

Statement distribution of bug-triggering queries. Figure 9
shows the statement distribution of the 40 bug-triggering
queries. The CREATE TABLE and SELECT statements are the
most common statements in these queries. In most cases, the
CREATE TABLE statement is used to create a basic table for
the subsequent statements to access and manipulate, and thus
most generated queries contain this statement. The majority
(32/34) of SELECT statements are used as the last statements

- a/sql/sql_lex.cc
+++ b/sql/sql_lex.cc
@@ -2998,7 +2998,7 @@ -3006,7 +3006,8
bool st_select_lex::setup_ref_array(...) {

- const uint n_elems= (n_sum_items +

+ const size_t n_elems= (n_sum_items +
n_child_sum_items +
item_list.elements +
select_n_reserved +
select_n_having_items +
select_n_where_fields +
order_group_num +
hidden_bit_fields +
fields_in_window_functions) * 5;

+ fields_in_window_functions) * SULL;

+ DBUG_ASSERT(n_elems % 5 == 0);

// Overflowed n_elems is very small
Item **array= static_cast<ltem**>(
arena->alloc(sizeof(Iltem*) * n_elems));
if (likely(array != NULL))
// the array will be referenced later
ref_pointer_array= Ref_ptr_array(array, n_elems);
return array == NULL;

Figure 10: Integer overflow in MariaDB.

in the queries, which trigger 80% of the found bugs. The re-
maining bugs are triggered by CREATE TABLE (10%), ALTER
(2.5%), DROP (2.5%), UPDATE (2.5%) and DELETE (2.5%)
statements, respectively. The INSERT, ALTER and CREATE
VIEW statements are often used as intermediate statements
that cause DBMSs into specific states tending to trigger bugs.

5.3 Security Impact

We classify the 40 found bugs by their security impact, and
show the results in Table 4. 18 bugs found by DynSQL
are null-pointer dereferences that can be exploited to per-
form denial-of-service (DoS) attacks by repeatedly crashing
DBMSs. DynSQL finds 7 critical memory bugs, including
2 use-after-free bugs, 2 stack-buffer-overflow bugs, 2 heap-
buffer-overflow bugs, and 1 integer-overflow bug. These 7
bugs can cause severe security problems like privilege esca-
lation and information leaks. DynSQL also finds 6 assertion
failures, indicating target DBMSs reach unexpected states. By
analyzing abnormal error reports, DynSQL additionally finds
9 semantic bugs. Among these 40 bugs, 19 have been assigned
with CVE IDs. The details of these CVEs are shown in Ta-
ble 8 of Appendix B. To better understand the security impact
of bugs found by DynSQL, we explain three confirmed bugs:
Case study 1: integer overflow in MariaDB. This bug is iden-
tified as a critical vulnerability and was assigned CVE-2021-
46667. It allows attackers to write and read arbitrary data
in the memory space. By exploiting this bug, attackers can
overwrite the data of other users, escalate their privileges and
even perform remote code execution (RCE). The related code
of this bug is shown in Figure 10. The MariaDB server cal-
culates the number of items in a SELECT statement and then
stores the result in an unsigned integer n_elems. After that,



Table 4: Types of the found bugs

Bug type SQLite  MySQL  MariaDB  PostgreSQL ~ MonetDB ClickHouse  Total
Null-pointer dereference 0 8 9 0 1 0 18
Use-after-free 0 0 2 0 0 0 2
Stack buffer overflow 1 1 0 0 0 0 2
Heap buffer overflow 0 2 0 0 0 0 2
Integer overflow 0 0 1 0 0 0 1
Assertion failure 1 0 1 0 3 1 6
Abnormal error 2 1 0 0 2 5 9

FILE: MariaDB/sql/sql_class.cc
void Item_change_list::rollback_item_tree_changes() {

I_List_iterator<Item_change_record> it(change_list);
Iltem_change_record *change;
while ((change= it++)) {

// change has been freed
*change->place= change->old_value;

Figure 11: Use after free in MariaDB.

the server uses n_elems as a parameter to allocate a memory
array that is later used to store and fetch items in the SELECT
statement. However, if the processed SELECT statement has
specific complex structures, the calculated result of its items
may be greater than the maximum value (i.e. 232 — 1 in Linux
64 bit) of n_elems. As aresult, an integer overflow happens in
n_elems that can become very small. In this case, the server
allocates a memory area of array that is much smaller than
needed. When the server stores or fetches items in array with
big indexes, a heap buffer overflow will be further triggered,
and attackers can exploit it to write or read arbitrary data in
the memory space. This bug is actually hard to find. DynSQL
uses a SELECT statement larger than 300K bytes to trigger the
integer overflow of n_elems. To fix this bug, the developers
use size_t to define n_elems in order to increase its max-
imum value (2°* — 1 in Linux 64 bit). The developers also
insert an assertion to prevent the integer overflow.

Case study 2: use after free in MariaDB. This bug is caused
by misusing rollback mechanism and was assigned CVE-
2021-46669. When processing a statement, the MariaDB
server stores each change caused by this statement into a
list and deletes the changes if the statement is processed suc-
cessfully. At subsequent stages, the server checks the change
list. If the list is not empty, indicating a failure of statement
execution, the server rolls back the changes. When processing
a specific query generated by DynSQL, the server frees the
content of changes but forgets to delete these changes in the
list, which triggers the rollback mechanism, causing the freed
changes in the list to be dereferenced. Figure 11 shows the
code where the bug is triggered. This bug can be exploited to
overwrite the data in arbitrary addresses with the freed data.
Case study 3: missing subquery result in MonetDB. This
bug is found due to capturing abnormal errors collected in
dynamic query interaction. The bug-triggering query contains

a CREATE TABLE statement and a SELECT statement with a
CTE. When the bug is triggered, the MonetDB server reports
an error message that indicates "Subquery result missing".
Literally, this error is not a syntactic or semantic error caused
by invalid queries. We report it as a bug that affects the avail-
ability of supported SQL features. The MonetDB developers
confirmed that this bug was caused by incorrect optimization
and fixed it by modifying optimization-related code.

5.4 Sensitivity Analysis

To understand the contribution of dynamic query interaction
and error feedback, we perform sensitivity analysis by dis-
abling these techniques. Specifically, we design DynSQL1pgy,
DynSQLzr and DynSQL;22". In DynSQLipg;, we disable
only dynamic query interaction; in DynSQL,zr, we disable
only error feedback; in DynSQLigg , we disable both dy-
namic query interaction and error feedback. In the cases of
disabling dynamic query interaction, because our statement
generator relies on database schema to work, we provide the
schema only when the first table is created, and do not update
the schema in subsequent statement generation. We evalu-
ate DynSQLipos, DynSQLgr and DynSQLigPQJ on the six
DBMSs in Table 2. Similar to Section 5.2, we use each fuzzer
to test each DBMS five times and set the time limit of each
fuzzing to 24 hours. Table 5 shows the average results. In Ta-
ble 5, the columns "Statement" and "Query" show the number
of SQL statements and queries, respectively, which are valid
and generated (valid/generated).

Validity of queries and statements. The percentages of valid
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statements and queries generated by DynSQL,. 7" are only
62% and 36%, respectively. By enabling error feedback (i.e.
DynSQL,pgy), these percentages are increased to 71% and
55%, respectively. It indicates that error feedback can improve
the validity of generated statements and queries by filtering
out invalid seeds in the fuzzing process. By enabling dynamic
query interaction (i.e. DynSQL,gr), the percentages of valid
statements and queries are dramatically increased to 95%
and 68%, respectively, because dynamic query interaction
involves state information (i.e. the latest database schema and
status of statement processing) to boost query generation. By
enabling both dynamic query interaction and error feedback
(i.e. DynSQL), the percentages of valid statements and queries
are increased to 97% and 78%, respectively.



Table 5: Results of sensitivity analysis

DBMS DynSQLigg’ DynSQLpo; DynSQL s DynSQL
Statement Query Coverage Bug Statement Query Coverage Bug Statement Query Coverage Bug Statement Query Coverage Bug
SQLite 175K/307K 11K /30K 49K 1 208K/305K 16K/35K 51K 1 285K/293K 21K/29K 53K 3 279K/286K 24K/30K 54K 4
MySQL 65K/100K  2.8K/12K 485K 4 65K/96K 7.5K/13K 502K 6  89K/94K 9.2K/13K 518K 10 91K/96K 9.4K/I3K 526K 12
MariaDB 123K/177K 7.9K/18K 275K 3 136K/176K 12K/22K 291K 6 165K/174K 13K/21K 309K 9 170K/175K 17K/21K 319K 13
PostgreSQL 103K/160K 6.4K/17K 125K 0 123K/162K 11K/18K 132K 0 144K/157K 13K/18K 141K 0 154K/160K 14K/18K 147K 0
MonetDB 41K/80K 3.2K/6.9K 126K 2 53K/78K  7.1K/11K 137K 2 66K/70K 4.9K/6.6K 145K 5 70K/72K  7.0K/8.6K 149K 5
ClickHouse 53K/83K 19K/7.8K 435K 3 55K/82K 63K/11K 458K 4 72K/76K 83K/12K 466K 6 74K/77K 75K/10K 476K 6
Total 560K/907K 33K/92K  1495K 13 641K/899K 61K/I10K 1571K 17 821K/864K 69K/101K 1632K 33 838K/866K 79K/101K 1671K 40
MySQL MariaDB
Table 6: Time-usage percentage of each stage in DynSQL g 540K
=
g 500K
DBMS Schema Querying  Query Generation  Query Execution © 260K
o
SQLite 1.17% 3.16% 95.67% g
MySQL 0.15% 0.44% 99.41% 5 420K
MariaDB 1.29% 4.67% 94.04% 3 380k A A
PostgreSQL 1.20% 10.04% 88.76% e
MonetDB 0.13% 2.20% 97.67% Oh 4h 8h Z!.Zh 16h 20h 24h Oh 4h 8h Z!.Zh 16h 20h 24h
ClickHouse 0.19% 1.42% 98.39% Time Time .
DYNSQL — - — DYNSQL;gz — — — - DYNSQLpg = DYNSQL,
Average 0.69% 3.66% 95.65% Q Qe pal e

From Table 5, we also observe that DynSQL generates
slightly fewer valid queries in MonetDB and ClickHouse,
compared to DynSQL,pg; and DynSQLiggl, for two reasons.
First, after enabling dynamic query interaction or error feed-
back, the fuzzer generates more valid statements in total, but
each valid query contains more valid statements, and thus
the number of valid queries may decrease. Second, enabling
dynamic query interaction or error feedback can also slightly
slow down query generation, due to monitoring DBMS states
or checking query results.

Runtime overhead. The overhead of error feedback is small
because it only adds some if checks in the process of seed
identification. Compared to DynSQLiggl, the number of state-
ments generated by DynSQL\po; decreases by less than 1%.
Dynamic query interaction may introduce overhead as it needs
to query database schema from target DBMSs. However, this
overhead is often small. On the one hand, most DBMSs pro-
vide efficient methods for these kinds of queries. On the other
hand, our fuzzer often generates complex queries that are time-
consuming for DBMSs, so the runtime overhead introduced
by querying the latest databa'se schema is very small in con-
trast. Compared to DynSQnggI, the number of statements
generated by DynSQL,gr only decreases by 5%.

To further validate the overhead, we record the time usage
of schema querying, query generation, and querying execu-
tion, respectively. The average results are shown in Table 6.
For each test case, the time usage of database schema query-
ing and query generation is on average less than 5%, while
more than 95% of the time is used for query execution. Note
that when testing PostgreSQL, DynSQL spends more time
(10%) on query generation, because DynSQL uses more com-
plex generation logic to satisfy the statement grammars of

Figure 12: Covered branches of MySQL and MariaDB.

PostgreSQL. The results indicate that the performance bot-
tleneck is query execution, and the overhead introduced by
dynamic querying interaction is comparatively small.

Code coverage. On average, DynSQLpor, DynSQLgr and
DynSQL cover 5%, 10% and 13% more code branches than
DynSQLigg[, respectively. These results indicate that dy-
namic query interaction and error feedback can help fuzzers
cover more code branches. Figure 12 shows the growth of cov-
ered branches for MySQL and MariaDB during fuzzing. Four
fuzzers cover new code branches quickly in earlier tests and
then cover fewer and fewer branches in later tests. In almost
the whole fuzzing process, DynSQL covers more branches
than the other three substitution fuzzers.

Bug detection. DynSQL,por additionally finds 4 bugs missed
by DynSQLiggI by enabling error feedback. Indeed, error
feedback can help the fuzzer generate more valid queries
to detect more bugs. However, error feedback cannot im-
prove query complexity, so DynSQLipp; and DynSQLigg[
find only the bugs triggering within two statements and miss
the bugs triggering by over two statements (e.g. the bug in Fig-
ure 1). In comparison, dynamic query interaction leverages
DBMS state information to improve both query complex-
ity and query validitg, and thus DynSQLgFr finds 20 bugs
missed by DynSQL; Egl. By further enabling error feedback
in DynSQL,gr, DynSQL additionally finds 7 bugs.

5.5 Comparison to Existing DBMS Fuzzers

We compare DynSQL to two state-of-the-art DBMS fuzzers,
SQLsmith [43] and SQUIRREL [48]. SQLancer [35-37] is
also a well-known DBMS testing tool, but it mainly focuses on
test oracles, which require test cases with specific patterns to



Table 7: Results of comparison

SQLsmith SQUIRREL DynSQL
DBMS
Statement Query Bug Statement Query Bug Statement Query Bug
SQLite 265K/267K  265K/267K 1 3IMA5M 24M/9.8M 1 279K/286K  24K/30K 4
MySQL 100K/102K  100K/102K 3 506K/854K  17K/171K 3 91K/M96K  94K/13K 12
MariaDB 148K/152K  148K/152K 3 245K/392K  425/78K 2 170K/175K  17K/21K 13
PostgreSQL  192K/197K  192K/197K 0  8M/IOM  35K/560K 0  154K/160K  14K/18K 0
Total 705K/718K  705K/718K 7 40M/56M 2.5M/11M 6 695K/TI6K  64K/82K 29
SQLite MariaDB PostgreSQL
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Figure 13: Code coverage of DynSQL and the other DBMS fuzzers.
find logic bugs in DBMSs, while DynSQL aims at generating oo SQite cook i
complex and valid queries to detect common bugs, especially S5k El 500K
memory bugs. Considering DynSQL and SQLancer are de- s0K é}fl o
signed for different research problems, we do not conduct the 45K 200K =

comparison experiment to SQLancer.

We exploit DynSQL, SQUIRREL, and SQLsmith to
test SQLite, MySQL, MariaDB, and PostgreSQL, because
SQUIRREL supports only these DBMSs and applying it to
other DBMSs requires significant modification of the SQUIR-
REL implementation [45]. Besides, SQLsmith supports only
SQLite, PostgreSQL, and MonetDB originally. To perform
better comparisons, we extend SQLsmith to support MySQL
and MariaDB via little modification of its code. For each test
case, we randomly generate a database with tables for SQL-
smith because it requires an available database to begin its
test. We use each fuzzer to test each DBMS five times, and the
time limit is 24 hours. Table 7 shows the comparison results.
The columns "Statements" and "Query" show the number of
SQL statements and queries, respectively, which are valid and
generated (valid/generated).

Generated queries and statements. Because SQLsmith gen-
erates each query with only one statement, the number of
its generated statements is equal to the number of generated
queries. According to Table 7, the percentages of valid state-
ments and valid queries are both 98%. However, it cannot
generate queries containing multiple statements. Using its IR
model, SQUIRREL can generate queries with multiple state-
ments, whose average number of statements in each query
is 5.1. However, SQUIRREL generates many invalid state-
ments and queries, as its percentages of valid statements and
valid queries are only 71% and 23%, respectively. In contrast,
the percentages of valid statements and queries generated
by DynSQL are up to 97% and 78%, respectively, and the
average number of statements contained by each generated
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Figure 14: Box plots of code-coverage comparison.

query is 8.7. These results indicate that DynSQL can generate
more valid queries containing multiple statements. In addi-
tion, we observe that SQUIRREL generates more statements
than DynSQL and SQLsmith in the given testing time, be-
cause SQUIRREL typically generates simple statements that
can be quickly executed by DBMSs.

Code coverage. As shown in Figure 13, DynSQL covers, on
average, 41% and 166% more code branches than SQLsmith
and SQUIRREL, respectively. Figure 14 shows the box plots
of code-coverage comparison, where p; and p; are the p val-
ues of SQLsmith vs. DynSQL and SQUIRREL vs. DynSQL,
respectively. Both p; and p; are less than 0.05, indicating that
DynSQL covers significantly more code branches than SQL-
smith and SQUIRREL. Indeed, though SQUIRREL generates
more statements, DynSQL and SQLsmith can generate more
complex statements than SQUIRREL, to cover deeper logic
of DBMS code. Compared to SQLsmith, DynSQL further
generates queries with multiple statements, to cover many
more code branches.
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Figure 15: Relation of bugs detected by three DBMS fuzzers.

Bug detection. We describe the relation of found bugs in
Figure 15. SQLsmith misses 2 bugs found by SQUIRREL.
Indeed, these two bugs can only be triggered by at least three
statements, but SQLsmith can generate only one statement in
each query. SQUIRREL also misses 3 bugs found by SQL-
smith. Indeed, these bugs can only be triggered by statements
with complex structure and references, which SQUIRREL
fails to generate. DynSQL finds all the bugs found by SQL-
smith and SQUIRREL, and additionally finds 20 bugs. Most
of the 20 bugs require bug-triggering queries to contain at
least three complex statements, which are difficult for SQL-
smith and SQUIRREL to generate.

Query complexity. We first minimize the 29 bug-triggering
queries generated by each fuzzer and then count their query
size, statement number, and SQL keyword number. We also
analyze their data dependency by checking the number of data
that is defined in earlier statements and then referenced in sub-
sequent statements. Note that we only consider bug-triggering
queries because the raw queries generated by each fuzzer typi-
cally contain redundant components (e.g. useless SQL clauses
and statements), and accurate minimization is difficult to per-
form on such queries if they do not cause distinct behavior
(e.g. triggering bugs). Figure 16 shows the results. SQUIR-
REL can generate queries with multiple statements. However,
the generated queries are small, with fewer keywords and less
referenced data, which indicates that these queries use rela-
tively simple statements. In contrast, SQLsmith can generate
bigger queries that have more keywords and more referenced
data, but it is limited in generating multiple statements for
each query. Although we provide it with a CREATE TABLE
statement for initialization, SQLsmith still cannot generate
queries with at least three statements. All the bug-triggering
queries of SQUIRREL and SQLsmith can be generated by
DynSQL, and DynSQL can also generate queries with mul-
tiple and complex statements. Figure 1 shows a query that
can only be generated by DynSQL. Some other examples are
shown in Listing 1-6 of Appendix A.

6 Limitations and Future Work

In this section, we discuss the limitations and future works of
DynSQL according to its current implementation.

Invalid queries. As demonstrated in Section 5.2, DynSQL
still generates 3% invalid statements and 22% invalid queries,
which are mainly caused by constraint violations. Because
DynSQL randomly generates expressions in statements, the
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Figure 16: Comparison of query complexity for the 29 bugs
found by DynSQL.

calculated values of these expressions probably violate the
constraints of their data types. Moreover, some tables created
by the earlier statements use specific clauses (e.g., UNIQUE,
NOT NULL, and CHECK) to claim integrity constraints that limit
the valid range of data. When subsequent DML (Data Ma-
nipulation Language) statements (e.g. INSERT and UPDATE)
update these tables, if the updated data violates their integrity
constraints, semantic errors will occur.

In our experience, it is difficult to eliminate these kinds of
semantic errors. On the one hand, some generated expressions
are very complicated, and their calculated values are difficult
to accurately obtain. On the other hand, some constraints (e.g.
constraints claimed in CHECK clause) are implicit, and thus
it is difficult to extract the valid range of specific data. To
mitigate this problem, we plan to exploit constraint solvers
(e.g. SAT solvers) when generating expressions.

Other kinds of bugs. DynSQL mainly detects memory bugs
with existing sanitizers like ASan, and it can additionally find
semantic bugs leading to strange error messages. However,
many semantic bugs silently affect the execution of DBMSs,
and cause no obvious problems. For example, logic bugs do
not cause any memory problem or strange error message, but
make DBMSs return incorrect results. Performance bugs do
not crash DBMSs directly, but often slow down its execu-
tion. Detecting these bugs is challenging because there is no
general test oracle for checking whether the bugs have been
triggered. Several existing DBMS testing works [35-37] use
special oracles to detect such bugs. But these oracles require
fixed patterns of test cases, which limits their scalability. In
the future, we will improve the detection of semantic bugs in
DynSQL by referring to these approaches.

AST rules construction. DynSQL uses an AST-based gener-
ator to produce SQL statements in each query. At present,
we construct the AST rules based on our domain knowledge.
Specifically, we construct general AST rules according to
SQL-92 standard [40] and additionally write specific rules



for each supported DBMS according to its official documents.
Users can enable just our general AST rules to test a new
DBMS. However, to thoroughly test the code about DBMS-
specific usages, users may need to write additional AST rules
to enable their unique SQL features. To reduce such manual
effort, inspired by existing work [11, 16], we plan to adopt
machine learning techniques to automatically extract AST
rules from valid queries.

7 Related Work
7.1 DBMS Testing

Some approaches are proposed to check the reliability and
security of DBMSs. They either discover specific kinds of
bugs [18,23,25,34-37], or detect common bugs using general
techniques [19,20,39].

DBMS testing for specific bugs. SQLancer [41] is designed
to detect logic bugs in DBMSs, and it integrates several novel
approaches [35-37]. PQS [37] can generate queries that re-
quire the target DBMS to return a result set where a specific
row should be included. If the DBMS fails to fetch the row,
it indicates a logic bug has been triggered. NoREC [35] is a
metamorphic testing approach. It translates a query that can
be optimized by the target DBMS to a query that cannot be
optimized effectively. NoREC identifies a bug when these two
queries make the DBMS return different results. To detect
performance bugs, AMOEBA [25] transfers the given queries
to semantically equivalent queries and then checks whether
these queries result in performance differences.

To trigger specific kinds of DBMS bugs, these approaches
generate test cases with specific patterns, limiting their ex-
tensibility to detect other kinds of bugs. In contrast to these
approaches, DynSQL is designed to detect common bugs in
DBMSs and does not limit the patterns of test cases.

DBMS testing for common bugs. RAGS [39] uses differen-
tial testing to detect bugs in DBMSs. It randomly generates
SQL statements and then feeds them to several DBMSs whose
databases are the same. RAGS reports bugs if the execution
status or returned results of these DBMSs are different. How-
ever, this approach is limited because the common part of
supported SQL features in different DBMSs is small [37,39].
Some approaches [19, 20] convert SQL statement genera-
tion into SAT problems and generate valid statements to test
DBMSs by solving syntactic and semantic constraints of the
SQL language. However, these approaches cannot infer state
changes caused by generated statements and thus can generate
only one statement in each query. In contrast, DynSQL can
generate queries with multiple statements by capturing the
latest DBMS states before each statement generation. In addi-
tion, these approaches perform random test-case generation,
or exhaustively enumerate all possible test cases. Compara-
tively, DynSQL uses coverage and error feedback to evolu-
tionarily generate effective and valid test cases.

7.2 Fuzzing

General-purpose fuzzing. Fuzzing has been proven to be a
promising technique for bug detection [2,6,15,17,26,30,47].
AFL [2] is one of the most famous fuzzers for general pro-
grams. It uses code coverage as feedback to boost its test-case
generation and integrates various mutation strategies and en-
gineering techniques to improve its efficiency. To cover more
branches, Angora [6] first uses taint analysis to track spe-
cific input bytes that influence the control flows, and then it
leverages gradient descent to quickly search for the suitable
values of these bytes that satisfy the path constraints. To find
more bugs, QSYM [47] adopts symbolic execution in fuzzing,
and further uses dynamic binary translation to integrate sym-
bolic emulation into the native execution, which dramatically
reduces the overhead of symbolic execution.

However, existing work [48] proves that general fuzzers
cannot effectively test DBMSs. These fuzzers fail to involve
any SQL knowledge and AST rules, and thus generate many
invalid queries violating syntactic or semantic checks.
DBMS fuzzing. To test DBMSs more effectively, several ap-
proaches [18, 43, 45, 48] combine fuzzing with grammar-
based generation techniques. SQLsmith [43], a state-of-the-art
DBMS fuzzer, uses its embedded AST rules to randomly gen-
erate SQL queries. However, each query generated by SQL-
smith contains only one statement, because it is not aware of
the state changes caused by generated statements. To generate
queries with multiple statements, SQUIRREL [48] uses a new
intermediate representation (IR) to model SQL queries and
statically infers DBMS state changes caused by the generated
statements. However, its static inference is inaccurate without
runtime information, as a result of which it still generates over
50% invalid queries in the evaluation.

These fuzzers are limited in generating complex and valid
queries, as they fail to consider state changes or infer accurate
state information. In contrast, DynSQL performs dynamic
query interaction to capture accurate state information, in-
cluding the latest database schema and the status of statement
processing. In this way, DynSQL can effectively generate
complex and valid queries to detect deep bugs in DBMSs.

8 Conclusion

In this paper, we develop a practical DBMS fuzzing frame-
work, named DynSQL, which can effectively generate com-
plex and valid SQL queries to detect deep bugs in DBMSs.
DynSQL integrates a novel technique, dynamic query interac-
tion, to capture accurate DBMS state information and boost
query generation. In addition, DynSQL uses error feedback
to further improve the validity of generated queries. We have
evaluated DynSQL on 6 widely-used DBMSs, and it finds 40
unique bugs. We also compare DynSQL to state-of-the-art
DBMS fuzzers, and the results indicate that DynSQL finds
more bugs in DBMSs with higher code coverage.



Acknowledgments

We thank our anonymous reviewers for their helpful and con-
structive feedback on earlier versions of the paper. We also
thank the DBMS developers for triaging and fixing our re-
ported bugs. This work was supported in part by the National
Natural Science Foundation of China under Project 62002195.
Jia-Ju Bai is the corresponding author.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

B. Acohido. Small banks and credit union attack set for
tuesday, 2013. https://www.usatoday.com/story
/cybertruth/2013/05/06/ddos-denial-of-ser
vice-small-business-cybersecurity-privacy
/2139349/.

American fuzzy lop. https://github.com/google/
AFL.

ASan: address sanitizer. https://github.com/goo
gle/sanitizers/wiki/AddressSanitizer.

Marcel Béhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 23rd International Conference on

Computer and Communications Security (CCS), pages
1032-1043, 2016.

E. V. Buskirk. Facebook confirms denial-of-service
attack, 2009. https://www.wired.com/2009/08/
facebook-apparently-attacked-in-addition-t
o-twitter/.

Peng Chen and Hao Chen. Angora: efficient fuzzing by
principled search. In Proceedings of the 2018 Sympo-
sium on Security and Privacy (S&P), pages 711-725,
2018.

C. Cimpanu. Google chrome impacted by new magellan
2.0 vulnerabilities, 2019. https://www.zdnet.com/
article/google-chrome-impacted-by-new-mag
ellan-2-0-vulnerabilities/.

Clang: a llvm-based compiler for C/C++ programs.
https://clang.llvm.org/.

ClickHouse. https://clickhouse.com/.

CLOC: count lines of code.
orge.net/.

https://cloc.sourcef

Chris Cummins, Pavlos Petoumenos, Alastair Murray,
and Hugh Leather. Compiler fuzzing through deep learn-
ing. In Proceedings of the 27th International Symposium
on Software Testing and Analysis (ISSTA ), pages 95-105,
2018.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

DB-Engines Ranking. https://db-engines.com/e
n/ranking.

UM Fayyad. Data science revealed: A data-driven
glimpse into the burgeoning new field, 2011. https:
//embed.cs.utah.edu/creduce/.

L. Franceschi-Bicchierai. Hacker tries to sell 427
milllion stolen myspace passwords for $2,800, 2016.

https://www.vice.com/en/article/pgkk8v
/427-million-myspace-passwords-emails-dat
a-breach.

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
data flow sensitive fuzzing. In Proceedings of the 29th
USENIX Security Symposium, pages 2577-2594, 2020.

Patrice Godefroid, Hila Peleg, and Rishabh Singh.
Learn&Fuzz: machine learning for input fuzzing. In
Proceedings of the 32nd International Conference on
Automated Software Engineering (ASE), pages 50-59,
2017.

Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min
Hu. Fuzzing error handling code using context-sensitive
software fault injection. In Proceedings of the 29th
USENIX Security Symposium, pages 2595-2612, 2020.

Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and
Woonhak Kang. APOLLO: automatic detection and di-
agnosis of performance regressions in database systems.
In Proceedings of the 46th International Conference on
Very Large Data Bases (VLDB), 2020.

Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Lal-
eye, and Sarfraz Khurshid. Query-aware test generation
using a relational constraint solver. In Proceedings of the

23rd International Conference on Automated Software
Engineering (ASE), pages 238-247, 2008.

Shadi Abdul Khalek and Sarfraz Khurshid. Automated
SQL query generation for systematic testing of database
engines. In Proceedings of the 2010 International

Conference on Automated Software Engineering (ASE),
pages 329-332, 2010.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 International Conference on Computer
and Communications Security (CCS), pages 2123-2138,
2018.

Doug Laney et al. 3d data management: Controlling
data volume, velocity and variety. META group research
note, 6(70):1, 2001.


https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-service-small-business-cybersecurity-privacy/2139349/
https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-service-small-business-cybersecurity-privacy/2139349/
https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-service-small-business-cybersecurity-privacy/2139349/
https://www.usatoday.com/story/cybertruth/2013/05/06/ddos-denial-of-service-small-business-cybersecurity-privacy/2139349/
https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://www.wired.com/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
https://www.wired.com/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
https://www.wired.com/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://www.zdnet.com/article/google-chrome-impacted-by-new-magellan-2-0-vulnerabilities/
https://clang.llvm.org/
https://clang.llvm.org/
https://clickhouse.com/
https://cloc.sourceforge.net/
https://cloc.sourceforge.net/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://embed.cs.utah.edu/creduce/
https://embed.cs.utah.edu/creduce/
https://www.vice.com/en/article/pgkk8v/427-million-myspace-passwords-emails-data-breach
https://www.vice.com/en/article/pgkk8v/427-million-myspace-passwords-emails-data-breach
https://www.vice.com/en/article/pgkk8v/427-million-myspace-passwords-emails-data-breach

[23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]

[31]
[32]

[33]

[34]

[35]

[36]

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao.
QTune: a query-aware database tuning system with deep
reinforcement learning. Proceedings of the VLDB En-
dowment, 12(12):2118-2130, 2019.

libFuzzer - a library for coverage-guided fuzz testing.
https://1lvm.org/docs/LibFuzzer.html.

Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso.
Automated performance bug detection in database sys-
tems. arXiv preprint arXiv:2105.10016, 2021.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: opti-
mized mutation scheduling for fuzzers. In Proceedings
of the 28th USENIX Security Symposium, pages 1949—
1966, 2019.

MariaDB. https://www.mariadb.org/.
MonetDB. https://www.monetdb.org/.
MySQL. https://www.mysqgl.com/.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Semantic fuzzing with
zest. In Proceedings of the 28th International Sympo-
sium on Software Testing and Analysis (ISSTA), pages
329-340, 2019.

PostgreSQL. https://www.postgresgl.org/.

Sameer Reddy, Caroline Lemieux, Rohan Padhye, and
Koushik Sen. Quickly generating diverse valid test in-
puts with reinforcement learning. In Proceedings of the

42nd International Conference on Software Engineering
(ICSE), pages 1410-1421, 2020.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case reduc-
tion for C compiler bugs. In Proceedings of the 2012
International Conference on Programming Language
Design and Implementation, pages 335-346, 2012.

Kim-Thomas Rehmann, Changyun Seo, Dongwon
Hwang, Binh Than Truong, Alexander Boehm, and
Dong Hun Lee. Performance monitoring in sap hana’s
continuous integration process. ACM SIGMETRICS
Performance Evaluation Review, 43(4):43-52, 2016.

Manuel Rigger and Zhendong Su. Detecting optimiza-
tion bugs in database engines via non-optimizing refer-
ence engine construction. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering (ESE/FSE), pages 1140-1152, 2020.

Manuel Rigger and Zhendong Su. Finding bugs in
database systems via query partitioning. Proceedings of
the ACM on Programming Languages, 4(OOPSLA):1—
30, 2020.

(37]

(38]

[39]

[40]

(41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

Manuel Rigger and Zhendong Su. Testing database
engines via pivoted query synthesis. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 667-682,
2020.

Avi Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts, Seventh Edition. McGraw-
Hill Book Company, 2020.

Donald R. Slutz. Massive stochastic testing of SQL. In
Proceedings of 24rd International Conference on Very
Large Data Bases (VLDB), pages 618-622, 1998.

Database Language SQL, 1992. http://www.contri
b.andrew.cmu.edu/~shadow/sql/sql1992.txt.

SQLancer. https://github.com/sqglancer/sqla
ncer.

SQLite. https://www.sglite.org/index.html.
SQLsmith.  https://github.com/ansel/sqlsmi
th.

Michael Stonebraker, Sam Madden, and Pradeep Dubey.

Intel” big data" science and technology center vision and
execution plan. ACM SIGMOD Record, 42(1):44-49,
2013.

Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chi-
jin Zhou, Huafeng Zhang, and Yu Jiang. Industry prac-
tice of coverage-guided enterprise-level DBMS fuzzing.
In Proceedings of the 43rd International Conference on
Software Engineering: Software Engineering in Prac-
tice (ICSE SEIP), pages 328-337, 2021.

Yahoo says all three billion accounts hacked in 2013
data theft, 2017. https://www.reuters.com/arti
cle/us-yahoo-cyber/yahoo-says-all-three-b
illion-accounts-hacked-in-2013-data-theft
-1dUSKCN1C8201.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of
the 27th USENIX Security Symposium, pages 745-761,
2018.

Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang,
Wenke Lee, and Dinghao Wu. SQUIRREL: testing
database management systems with language validity
and coverage feedback. In Proceedings of the 2020
International Conference on Computer and Communi-

cations Security (CCS), pages 955-970, 2020.


https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.mariadb.org/
https://www.monetdb.org/
https://www.mysql.com/
https://www.postgresql.org/
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://www.sqlite.org/index.html
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1

A Examples of Bug-Triggering Queries

Listing 1-6 show 6 generated queries that trigger 6 bugs, re-
spectively. Note that many bugs found by DynSQL have not
been fixed yet, and related developers (e.g. developers in
MySQL) hope that we do not publish the malicious queries
triggering unfixed bugs, in order to protect their customers.
Considering their concerns, we choose only the fixed bugs and
show their corresponding queries. These 6 selected bugs are
missed by both SQUIRREL and SQLsmith, and the queries
have been simplified by us and related developers.
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CREATE TABLE tl (il INT);
INSERT INTO tl VALUES (1), (2), (3);
CREATE VIEW vl AS

SELECT t1.il

FROM (
tl a JOIN tl1 ON (
tl.i1l = (
SELECT tl1.il
FROM tl1 b)));
SELECT 1
FROM (
SELECT count (SELECT il FROM vl)
FROM vl
) dtl;

sting 1: Generated query that crashes MariaDB 5.5-10.5

CREATE TABLE tl (il INT PRIMARY KEY);
INSERT INTO tl VALUES (62), (66);
CREATE TABLE t2 (il INT);
SELECT 1
FROM t1
WHERE t1.il = (
SELECT t1.il
FROM t2
UNION
SELECT dtl.il
FROM (tl AS dtl)
WINDOW wl AS (PARTITION BY t1.il)
LIMIT 1

)i

Listing 2: Generated query that crashes MariaDB 10.2-10.5
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CREATE TABLE tl (a INT NOT NULL PRIMARY KEY);
INSERT INTO tl VALUES (0), (4), (31);
CREATE TABLE t2 (i INT);
DELETE FROM tl
WHERE tl.a = (
SELECT tl.a
FROM t2
UNION
SELECT DISTINCT 52
FROM t2 r
WHERE tl.a = tl.a
)i

Listing 3: Generated query that crashes MariaDB 10.2-10.5
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CREATE TABLE tl1 (id int);
CREATE VIEW vl AS
SELECT
b AS a,

b AS b
FROM (

16
17
18

SELECT id AS b
FROM t1
) AS dt
ORDER BY a,b;
WITH cte AS (
SELECT dt.b
FROM (
(SELECT 11 AS b FROM vl) dt
JOIN vl
ON 1)
)
SELECT 5 ;

Listing 4: Generated query that crashes MariaDB 10.2-10.5
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CREATE TABLE tl (al TEXT) engine=myisam;
SELECT cl FROM (
SELECT DISTINCT
tl.al AS cl1,
tl.al AS c2,
tl.al AS c3,

tl.al AS c2591,
tl.al AS c2592
FROM t1
) dt;

Listing 5: Generated query that crashes MariaDB 10.2-10.5
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CREATE TABLE t1 (
tl_cO INTEGER,
tl_cl TEXT,
tl_c2 INTEGER,
PRIMARY KEY (tl_c0));
ALTER TABLE tl1 RENAME COLUMN tl_c2 TO tl_c3;
WITH cte_0 AS (
SELECT
ref 0.tl_cl AS cO
FROM
tl AS ref 0
GROUP BY ref 0.tl_cl)
SELECT
ref 2.c0 AS c0
FROM (
(tl AS ref 1 INNER JOIN cte_0 AS ref 2
ON ((
SELECT cO0
FROM cte_0
ORDER BY cO0
LIMIT 1 OFFSET 5
) IS NULL))
INNER JOIN (
SELECT
ref 3.c0 AS c0
FROM
cte_0 AS ref 3
WHERE EXISTS (

SELECT

(SELECT max (t1l_cO) FROM tl1l) AS cO
FROM

cte_0 AS ref 4
) AND 0<>0

ORDER BY c0 ASC LIMIT 86
) AS subq 0
ON ((ref_1.tl_c3 >= ref 1.tl_c3)
AND (ref_1.tl_c3 <= ref 1.tl_c0)));

Listing 6: Generated query that crashes MySQL 8.0



B CVE details

We applied for CVE IDs of the bugs found by DynSQL, and 19 were assigned, including 7 for MySQL bugs and 12 for MariaDB
bugs. Among them, CVE-2021-46667 and CVE-2021-46669 are considered to have high security impact. Table 8 shows the
details of the 19 assigned CVEs. The column "File location" shows the file name and line number where the bug is triggered, and
the column "Exploitation" shows the possible attack by exploiting the bug.

Table 8: The details of 19 assgined CVEs

DBMS Bug type File location Exploitation CVEID

MySQL Null-pointer dereference ~ MySQL/sql/item_subselect.cc:799 Denial-of-service CVE-2021-2357
MySQL Null-pointer dereference ~ MySQL/sql/sql_optimizer.cc:8881 Denial-of-service CVE-2021-2425
MySQL Null-pointer dereference ~ MySQL/storage/innobase/dict/dictOdd.cc:4184  Denial-of-service CVE-2021-2426
MySQL Null-pointer dereference ~ MySQL/strings/ctype-utf8.cc:5603 Denial-of-service CVE-2021-2427
MySQL Null-pointer dereference ~ MySQL/sql/item_subselect.cc:660 Denial-of-service CVE-2021-35628
MySQL Null-pointer dereference ~ MySQL/sql/sql_derived.cc:182 Denial-of-service CVE-2021-35635
MySQL Heap-buffer overflow MySQL/sql/sql_optimizer.cc:4231 Data leakage CVE-2022-21438
MariaDB  Null-pointer dereference ~ MariaDB/sql/sql_select.cc:25122 Denial-of-service CVE-2021-46657
MariaDB Null-pointer dereference ~ MariaDB/sql/field_conv.cc:204 Denial-of-service CVE-2021-46658
MariaDB Null-pointer dereference ~ MariaDB/sql/sql_lex.cc:2502 Denial-of-service CVE-2021-46659
MariaDB  Null-pointer dereference ~ MariaDB/sql/sql_base.cc:6013 Denial-of-service CVE-2021-46661
MariaDB ~ Use-after-free MariaDB/sql/item.cc:7956 Data leakage CVE-2021-46662
MariaDB  Null-pointer dereference ~ MariaDB/storage/maria/ha_maria.cc:2656 Denial-of-service CVE-2021-46663
MariaDB Assertion failure MariaDB/sql/sql_select.cc:18576 Denial-of-service CVE-2021-46664
MariaDB Null-pointer dereference ~ MariaDB/sql/sql_select.cc:18647 Denial-of-service CVE-2021-46665
MariaDB  Null-pointer dereference ~ MariaDB/sql/item.cc:3333 Denial-of-service CVE-2021-46666
MariaDB Integer overflow MariaDB/sql/sql_lex.cc:3521 Remote code execution ~ CVE-2021-46667
MariaDB Null-pointer dereference ~ MariaDB/storage/maria/ha_maria.cc:2782 Denial-of-service CVE-2021-46668
MariaDB Use-after-free MariaDB/sql/sql_class.cc: 2914 Privilege escalation CVE-2021-46669
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