
GLeeFuzz: Fuzzing WebGL Through Error Message Guided Mutation

Hui Peng
Purdue University

Zhihao Yao
UC Irvine

Ardalan Amiri Sani
UC Irvine

Dave (Jing) Tian
Purdue University

Mathias Payer
EPFL

Abstract
WebGL is a set of standardized JavaScript APIs for GPU

accelerated graphics. Security of the WebGL interface is
paramount because it exposes remote and unsandboxed
access to the underlying graphics stack (including the native
GL libraries and GPU drivers) in the host OS. Unfortunately,
applying state-of-the-art fuzzing techniques to the WebGL
interface for vulnerability discovery is challenging because
of (1) its huge input state space, and (2) the infeasibility
of collecting code coverage across concurrent processes,
closed-source libraries, and device drivers in the kernel.

Our fuzzing technique, GLeeFuzz, guides input mutation
by error messages instead of code coverage. Our key obser-
vation is that browsers emit meaningful error messages to aid
developers in debugging their WebGL programs. Error mes-
sages indicate which part of the input fails (e.g., incomplete
arguments, invalid arguments, or unsatisfied dependencies
between API calls). Leveraging error messages as feedback,
the fuzzer effectively expands coverage by focusing mutation
on erroneous parts of the input. We analyze Chrome’s
WebGL implementation to identify the dependencies between
error-emitting statements and rejected parts of the input, and
use this information to guide input mutation. We evaluate
our GLeeFuzz prototype on Chrome, Firefox, and Safari on
diverse desktop and mobile OSes. We discovered 7 vulnerabil-
ities, 4 in Chrome, 2 in Safari, and 1 in Firefox. The Chrome
vulnerabilities allow a remote attacker to freeze the GPU and
possibly execute remote code at the browser privilege.

1 Introduction
The increasing demand for high-performance 2D/3D

graphics in web applications culminated in the creation of
WebGL (Web Graphics Library) [29], a standardized set of
JavaScript APIs supported by all modern browsers. Going
beyond browsers, WebGL is also enabled in mobile and desk-
top application frameworks (e.g., the Android WebView [8]
component, iOS WKWebView [10], or Electron [12]). This
proliferation and fast adoption of WebGL makes it a lucrative

target for attackers because it exposes a large attack surface.
WebGL gives potentially malicious remote users access

to the native graphics stack, previously only available locally.
Security analysis of the graphics stack is challenging as it of-
ten involves closed-source binary blobs developed by OEMs
or third-party GPU vendors. Many recent high-severity CVEs
in Chrome and Firefox demonstrate this unfortunate situation
(e.g., CVE-2020-6492 [42] and CVE-2020-15675 [41]). As
a short-term remedy, Chrome and Firefox both implement
a deny-list of GPU models, API calls and parameters that
would trigger known bugs in the native software stack [32].
This reactive, per-bug-focused solution is not suitable for
protecting such a large attack surface of millions of lines of
code across user-space and kernel-space.

Unfortunately, applying state-of-the art fuzzing techniques
to the WebGL interface for vulnerability discovery is
challenging because of (1) its huge input state space, and (2)
the infeasibility of collecting code coverage due to the inter-
leaving of multiple processes, libraries, and device drivers.
The massive input space of WebGL are two dimensional: (1)
ordered sequences of API calls and (2) various arguments
passed to each API call. Typically, the execution of one API
is dependent on both its arguments and the internal global
state, which then sets up the state required by subsequent
APIs. The inputs along both dimensions influence code
coverage, and thus the effectiveness of a fuzzer.

Given such a huge input space with interleaved dependen-
cies, a naive fuzzer can only explore shallow code paths. To
effectively reduce the search space, state-of-the-art fuzzing
tools use code coverage as feedback to guide their input muta-
tion [13,26]. However, this approach depends on precise code
coverage, which is hard to obtain across the complex WebGL
stack as it consists of multiple layered components running
in different processes and kernel space. In addition, some
components are closed-source and proprietary. Moreover,
coverage feedback does not indicate how to effectively extend
coverage when performing input mutation due to a priori
unknown dependencies between input and code coverage.

We design a novel technique, called error message guided

fuzzing, which replaces code coverage with error messages
as a feedback mechanism to perform meaningful mutations.
The idea of error message guided fuzzing is based on the key
observation that during the execution of a WebGL program,
when errors are detected, browsers emit meaningful messages
to aid developers in correcting their code. Similar to how a
programmer fixes bugs in their JavaScript code, the fuzzer
mutates the input to get past the error messages or warnings.

We study WebGL error messages and distinguish two
types: (1) messages indicating the invalidity of some
arguments passed to the current API, and (2) messages
indicating the invalidity of the internal WebGL program state
caused by unsatisfied dependency between API calls. For
type 1 error messages, we compute its target arguments (i.e.,
which arguments it references); for type 2 error messages,
we compute its dependent API set by analyzing which APIs
update the internal states on which the checks of the error
message is dependent. Using this information, instead of per-
forming random mutation, the fuzzer focuses its mutation on
the target argument when a type 1 error message is triggered,
or tries to fix the unsatisfied dependency using APIs from
its dependent set when a type 2 error message is triggered.

To demonstrate the feasibility of error message guided
fuzzing, we evaluate our GLeeFuzz prototype on popular
browsers (Chrome, Firefox, and Safari) on both desktop
(Linux, Windows, and macOS) and mobile (Android and iOS)
OSes. So far we have found 7 vulnerabilities (4 in Chrome,
2 in Safari, and 1 in Firefox). One vulnerability freezes the X-
Server on Linux, and another vulnerability enables privilege
escalation and possibly remote code execution. GLeeFuzz
is available at https://github.com/HexHive/GLeeFuzz.
Our main contributions are as follows:

1. A new fuzzing technique that leverages feedback from
error messages (instead of code coverage) to guide the
fuzzer and to perform meaningful input mutations.

2. A fuzzer for WebGL, GLeeFuzz, that implements our
proposed error message guided fuzzing technique.

3. Applying GLeeFuzz to major web browsers across
multiple platforms, and responsibly disclosing 7
vulnerabilities so far. We have responsibly reported all
our findings to their respective developers.

2 Background
2.1 WebGL Interface

WebGL [29] is a set of JavaScript APIs for 2D and 3D
rendering with output to a HTML5 Canvas element. It is
designed to closely conform to OpenGL ES API (a subset of
OpenGL API tailored to embedded systems) [28], with sim-
ilar constructs and using the same shading language (GLSL).
There are two versions of WebGL specifications: WebGL v1
exposes 163 APIs and WebGL v2 exposes 333 APIs.

WebGL implementations build on the native graphics
stack to take advantage of GPU acceleration provided by
the user’s device. For example, the Chrome browser uses
the ANGLE [50] component to transparently translate the
WebGL calls to the hardware-supported APIs available on
the underlying OS (e.g., OpenGL/OpenGL ES on Unix-like
systems and Direct 3D on Windows), which in turn leverages
the underlying GPU drivers for GPU accelerated graphics.
Note the underlying native graphics stack is usually provided
by GPU vendors and mostly in closed-source binary format.

Support for WebGL has gone far beyond browsers in
desktops and mobile devices. Application frameworks such
as Electron [12] and CORDOVA [53] are built on top of the
browser stack; and the GUI of ChromeOS [7] fully builds
on the chrome browser. In addition, mobile app frameworks
of Android and iOS contain web gadgets (i.e., Android We-
bview [8] and iOS WKWebView [10]) to allow developers to
load and execute web programs in their apps directly. WebGL
is by default enabled in all these frameworks and gadgets.

2.2 WebGL Security
The graphics stack has grown over many years and has

now reached high feature and code complexity. Historically,
applications running on this stack were trusted as they were
distributed by well-known software vendors. Moreover,
operating systems have traditionally required explicit consent
from users to install applications. However, WebGL changes
this landscape: it exposes the underlying legacy graphics
stack to potential remote adversaries unbeknown to the user.
Therefore, its security implication is a great concern for
browser vendors. Some vendors (e.g., Microsoft) consider
WebGL overly permissive and were highly reluctant in
supporting it [6]. The security concern with WebGL is rooted
in the complex and potentially vulnerable graphics stacks
provided by OEM or third-party GPU vendors, which are not
fully prepared to defend against remote attackers.

To mitigate security concerns, multiple dynamic security
defense mechanisms are deployed in modern browsers. For
example, consider Chrome. First, Control-Flow Integrity
(CFI) is deployed to protect C++ virtual calls and C indirect
calls [54] from being hijacked. Second, a multi-process

3

GPU Driver

Untrusted WebGL Code (JS)

GPU

Sanity Checks

WebGL Frontend

WebGL Backend

Sanity Checks

Native GL Lib (OpenGL etc)

IP
C

Renderer Process GPU Process

Chrome Browser

Figure 1: Chrome’s WebGL implementation.

https://github.com/HexHive/GLeeFuzz

design [5] is employed to compartmentalize the untrusted
WebGL code in a renderer process and the graphics stack code
in a service GPU process (see Figure 1). The renderer process
is sandboxed without direct access to system resources, while
the GPU process is launched with access to GPU drivers.
Moreover, invocation of the underlying graphics stack from
the WebGL code (running in the renderer process) is redi-
rected to the GPU process through an IPC mechanism. Third,
a diverse set of sanity checks is used to vet the arguments
passed to WebGL API calls and internal program state transi-
tions. Most of the sanity checks are derived from the OpenGL
ES specification [28]. Other checks include filters introduced
by browser vendors in reaction to new vulnerabilities found
in the underlying drivers before they are fixed by GPU
vendors. A comprehensive study on the types of deployed
WebGL checks in Chrome is presented in Milkomeda [60].

Chrome deploys sanity checks in both the renderer and
GPU processes. As the checks for defending against known
vulnerabilities may be driver-specific and thus need to access
the graphics stack, they are deployed only in the GPU process.
The checks derived from OpenGL ES specification are
deployed in both the renderer process and GPU process. The
deployment of checks in the renderer process avoids the per-
formance penalties introduced by IPC with the GPU process.
The deployment of checks in the GPU process is based on
the consideration that the integrity of the renderer process is
uncertain. More specifically, as in Chrome’s threat model [5],
the execution of the renderer process may be under the
control of an adversary due to potential vulnerabilities in it.

Even with these mitigations, the exposed attack surface
remains significant. Deployed CFI systems demonstrate poor
effectiveness because of the large permissible target sets over-
approximated by practical static analysis techniques [15, 37].
Although compartmentalization avoids direct access to the
underlying graphics stack, indirect access is still unsafe, as
demonstrated by recently disclosed CVEs in Chrome [14, 43].
The deployed checks only serve as a passive approach to
defend against known vulnerabilities, not targeting zero-days.

3 Threat Model

Our threat model consists of an adversary trying to gain con-
trol of a machine by exploiting a vulnerability in the target’s
WebGL software stack. To carry out the attack, the adversary
sends their malicious WebGL program as a drive-by-
download payload [2]. For example, the attacker may encode
their exploit as an online advertisement that is then down-
loaded and executed automatically on the victim machine.

Aligning with assumptions by Google [1, 3], we refer to
vulnerabilities as defects that may be exploited by an attacker
to compromise the confidentiality, integrity, or availability
of the browser or beyond (e.g., the X-Server or desktop envi-
ronment). Other (less critical) defects are referred to as bugs.

4 Design Overview of GLeeFuzz
WebGL is a complex, high-risk interface as it allows re-

mote adversaries to access a privileged, complex, obscure, and
largely untested interface. The risks exposed by WebGL and
the severity of potential consequences of attacks motivate our
urge to uncover anomalies in the underlying graphics stack
that can be directly triggered through WebGL APIs. In partic-
ular, we target the components running in the GPU process,
including the WebGL backend implementation, and the GL
libraries, as well as the GPU driver. As the WebGL implemen-
tation adopts a complex multi-process design that involves
binary-only components (close-source GL libraries and GPU
drivers), it is challenging to apply static analysis across all
these different layers. Instead, we leverage fuzz testing to
dynamically analyze the security of the WebGL interface.

4.1 Motivation and Intuition

Algorithm 1: Syzkaller Fuzzing algorithm

1 counter←0,corpus← /0

2 while true do
3 if corpus= /0or counter % gen_period=0 then
4 i←gen_random()

5 else
6 i←select_input(corpus)
7 random_mutate(i)

8 execute_input(i)
9 if i triggered newcoverage then

10 corpus←corpus
⋃
{i}

11 counter←counter+1

A key metric for WebGL fuzzing is to generate inputs that
bypass deployed security checks and cover the underlying lay-
ers of the software stack. Two key challenges when targeting
WebGL are: (C1) generating proper values for API arguments;
and (C2) handling dependencies between API calls.

As a program interface, WebGL is similar to system calls.
Several fuzzers already target exposed APIs at the OS or
hypervisor level [13,26,33,36,46]. As shown in Algorithm 1,
Syzkaller uses two complementary approaches to generate
inputs: (i) random new seed generation using gen_random in
line 4; (ii) random mutation on existing seeds in corpus using
random_mutate in line 7. Random new seed generation aims
to explore code that cannot be covered through mutations of
existing seeds while random mutation expands coverage of
existing seeds in the corpus. Note that random seed gener-
ation and mutation are based on carefully manually crafted
templates, which capture the signatures and argument types
of system calls. While it is tempting to apply coverage-guided
fuzzing on the WebGL interface, it is challenging to collect
code coverage. Also, coverage feedback is not indicative on

how to mutate existing seeds. These two limitations make
coverage-guided fuzzing unsuitable for WebGL fuzzing.

Challenge in collecting code coverage. WebGL code runs
in a multi-process, multi-stack environment. As mentioned
in Section 2.2, most GL libraries and some GPU drivers are
close-source. Coverage collection for binary code is possible
through dynamic instrumentation or static binary rewriting,
however, they either incur prohibitive runtime overhead
or rely on brittle techniques, which are detrimental to the
applicability of the technique. Even for open-source browsers
and graphic stacks, precise coverage collection remains chal-
lenging due to the multi-process design. With this design, the
execution of a WebGL API spans across the renderer process
that invokes the API and a shared GPU process, which serves
the entire browser’s rendering and composition through an
asynchronous IPC interface used by various browsers and web
app renderer processes, resulting in a needle-in-a-haystack
scenario where the WebGL-induced coverage is overwhelmed
by large amounts of coverage noise. Thus collecting precise
code coverage triggered by WebGL APIs is infeasible without
a nontrivial engineering effort in overhauling the target.

Coverage-guided feedback is futile. Coverage feedback
is not indicative of where and how to mutate the input to
effectively expand coverage. In coverage-guided fuzzers like
Syzkaller, coverage feedback serves as a metric to judge input
quality, based on which the mutating seeds are selected (see
select_input function in Algorithm 1) in the fuzzing pro-
cess. For a given input, coverage feedback lacks information
about which input parts are erroneous; therefore coverage-
guided Syzkaller simply resorts to random mutations.

Algorithm 1 highlights Syzkaller’s approach to WebGL
fuzzing. To address C1, Syzkaller randomly chooses some
APIs from the input and mutates their arguments (as part
of random_mutate in line 7). To address C2, it randomly
adds APIs at random locations to hopefully fix dependencies
between APIs. Random mutation is inefficient to expand code
coverage as the mutator has no intuition on what to mutate
to explore new code areas. Appendix A shows an example.

Error Messages. To aid WebGL program debugging,
WebGL implementations provide error messages as feedback
when errors are detected in the input. We distinguish two
types of such error messages. The first type (type 1) flags
issues with the arguments (e.g., an argument is not of the
expected format) and the second type (type 2) flags issues
with internal state (e.g., an internal variable has not been set
up correctly). Section A.1 discusses this in more detail.

Error messages carry human understandable information
regarding which part of the input was rejected. This
information helps a WebGL developer locate and fix errors.
Error messages are manually written by browser developers,
are not standardized and differ from browser to browser. In
Chrome, the error message also contains a field indicating
the type of the error message (in Listing 2 and Listing 3
GL_INVALID_ENUM or GL_INVALID_VALUE passed to the first

argument of SynthesizeGLError indicates a type 1 error,
while GL_INVALID_OPERATION indicates type 2).1

Error Message Guided Fuzzing. Considering the
challenges in collecting precise code coverage from WebGL
and the inefficiency of coverage-guided fuzzing, we design
an error message guided fuzzing technique that leverages
the error messages as feedback to guide input mutation.
More specifically, if a type 1 error message is emitted when
executing some API in the input, the fuzzer focuses its
mutation on the argument indicated by the message, instead
of mutating random arguments of randomly chosen APIs.
Similarly, if a type 2 error message is emitted, the fuzzer tries
to fix the unsatisfied dependency by choosing an API from
a computed dependent API set, instead of randomly.

Compared with coverage-guided fuzzing, a key feature of
our error message guided fuzzing technique is that it performs
mutation on the parts of the input indicated by the error
messages, thus improving fuzzing efficiency by avoiding
meaningless mutations in other parts of the API chain (as
done by Syzkaller or other error-agnostic approaches).

4.2 Research Challenges and Approaches
Our goal is to build a fuzzer that generates dependent API

sequences using error message guided mutation, instead of
random approaches used in coverage-guided fuzzers like
Syzkaller. To build an error message guided fuzzer, the key
challenge is to locate errors in the input when a certain error
message is emitted. For a human analyst who is familiar with
the WebGL specification, it might be straight-forward to infer
such information simply from the error messages, but it is
difficult for an automated approach.

A feasible solution is to analyze all possible error messages
for each API, infer the target arguments for type 1 error
messages and a dependent API set for type 2 error messages
beforehand. During fuzzing, the fuzzer programmatically
applies mutations on the target arguments or using the depen-
dent API set when error messages are emitted. To construct
an error message guided fuzzing technique using this solution,
the following research problems need to be addressed.

C1. Computing possible error messages: computing all
possible error messages for each API is the first step.
We leverage static analysis (Section 5.1) to identify
all call statements to SynthesizeGLError function
(the function for emitting graphics error messages
in Chrome) that are reachable from the entry of the
native function corresponding to the WebGL API under
analysis. This gives us a set of call statements from
which we can extract all error messages.

C2. Inferring target arguments for type 1 error messages:
inferring target arguments is the process of identifying

1This field is not available in Firefox, but as we show next, we focus on
analyzing error messages from Chrome and then generalize to other browsers.

8

Fuzzer

Error Messages

browsers

WebGL Spec (IDL)
LLVM bitcode of

WebGL in Chrome

Error Messages

Target
Arguments

Dependent API
Set

corpus

Pre-Processing Fuzzing

input

Figure 2: GLeeFuzz design. In the pre-processing
stage, GLeeFuzz identifies error messages, and computes
their target arguments and the dependent API set, which
the fuzzer uses for error message guided input mutations.

the arguments whose invalidity is indicated by an error
message, so the fuzzer can focus its mutation on the
identified arguments of the API emitting the message,
instead of randomly chosen arguments of random
APIs. We identify the target arguments by performing
a backward taint analysis on the path condition of the
call statement emitting the error message (Section 5.2).

C3. Inferring the dependent API set for type 2 error
messages: the dependent API set is an approximated set
of APIs that may fix the invalid dependency indicated
by an error message. GLeeFuzz uses the computed
dependent APIs, instead of randomly chosen ones, to
fix dependency when the error message is emitted. To
identify the dependent APIs, we look for any API that
updates the internal variables of the path condition of the
call statement emitting the error message (Section 5.3).

5 GLeeFuzz Design

Figure 2 depicts the overall workflow of GLeeFuzz. From
a high-level point of view, GLeeFuzz is divided into two
phases: a pre-processing phase and a fuzzing phase. In the
pre-processing phase, all error messages that may be emitted
by each API are computed (Section 5.1). For each error
message that may be emitted by an API, depending on the
type of the message, either its target arguments (Section 5.2)
or the dependent API set (Section 5.3) are computed. In the
fuzzing phase, GLeeFuzz iteratively generates random inputs,
executes the generated inputs on target browsers, takes the
error messages from Chrome browser as feedback, and
performs error message guided mutation on the fuzzing inputs
based on computed results from the pre-processing stage.

GLeeFuzz also features a multi-browser execution
technique, which enables us to apply our error message
guided fuzzing technique based on analysis on the source
code of Chrome to other browsers (Section 5.6).

5.1 Computing Error Messages
To build our error message guided fuzzing technique, the

first step is to compute all error messages that may be emitted
by an API at runtime. To this end, there are two options:
dynamic analysis and static analysis. Considering that it is
difficult to trigger a complete set of error messages using
dynamic analysis, we use static analysis in this step.

Chrome emits error messages using SynthesizeGLError,
thus all error messages of an API can be enumerated by
identifying the calls to SynthesizeGLError reachable from
the entry point of the native function of a WebGL API. Note
WebGL APIs are implemented as C++ methods and accessed
using JavaScript. We refer to these C++ methods as native
functions or native implementation of WebGL APIs.

To search all call statements to SynthesizeGLError, we
use a worklist-based algorithm to traverse all code paths
in the control-flow graph from the entry point of the native
function of the API (see Section 6). This gives us a list of
call statements, from which we can extract the error message
and its type. Other analysis in the following subsections are
based on these identified call statements.

We conduct static analysis on Chrome’s source code. These
results guide the fuzzing of other WebGL-compliant browsers
using our multi-browser execution. As the WebGL APIs
and their error conditions are standardized, repeating static
analysis on other browsers would not add new information.
We discuss the multi-browser execution in Section 5.6.

5.2 Inferring Target Arguments
For type 1 error messages, GLeeFuzz analyzes the

target arguments of the corresponding API calls during the
pre-processing phase, and focuses mutation on the target
arguments, if the error message is triggered by the input.

To infer the target arguments, a naive approach is to
manually analyze the messages. This approach is clearly not
scalable as the total number of log messages is substantial
(more than 3,000 messages in Chrome, see Section 7.1),
and it requires nontrivial effort in understanding the internal
state machine of the WebGL specification. Another plausible
approach we tried is to use natural language analysis on the
log messages. However, as our efforts showed, this approach
still needs large efforts to label log messages as there are no
ground facts to train the data set.

We observe that the call statement of a type 1 error message
is conditioned on sanity checks on the values that are relevant
to its target arguments. For example, in the native function
of bufferData shown in Listing 2, the call statement of the
“invalid target” message is guarded by a sanity check on the
target argument. Note that we simplified the native function
shown in Listing 2. In the actual code, the argument is passed
to a helper function to perform the sanity check.

Based on this observation, we use a backward taint analysis
to infer the target argument. More specifically, we search in

the taint sources of the path condition (of the call statement
of the error message) for arguments of the native function
of the API under analysis. The algorithm and implementation
details are presented in Section 6.

Algorithm 2: Inferring Target Arguments
Input: API: native function of the API under analysis
Input: PC:

path condition of the error emitting statement
Output: ARGS: detected target arguments

1 V FG←build_v f g(API)
2 pc←get_node_ f rom_V FG(PC)
3 work_list←{pc}
4 visited←{}
5 while work_list 6=∅ do
6 v←work_list.pop()
7 if v /∈visited then
8 for p∈v.pred do
9 work_list←{p}∪work_list

10 if v isanargument o f API then
11 ARGS←ARGS∪{arg#o f v}
12 visited←{v}∪visited

5.3 Inferring Dependent API Set
For type 2 error messages, GLeeFuzz pre-computes its

dependent API set in the pre-processing phase. In the fuzzing
phase, when mutating a given input, the fuzzer tries to fix
invalid dependencies using the dependent API set if a type
2 error message is triggered by an API in the input.

We observe that call statements of type 2 error messages
are guarded by checks on some internal variable, which is
updated by the execution of its dependent APIs. For example,
the call statement for the message “no valid shader program in
use” in Listing 3 is nested in an if statement conditioned on
a check on an internal variable currnet_program_, which
is updated by the native function of useProgram in Listing 4.

Accordingly, in GLeeFuzz, we identify the dependent API
set of a type 2 error message as those updating the dependent
internal variables of the call statement emitting the error mes-
sage, which entails solving two sub-problems: (P1) analyzing
the internal variables an API may update; (P2) analyzing the
internal variables an error message is dependent on.

P1 is close to the problem of computing error messages
discussed in Section 5.1, which can be solved by searching
for all update (assign) statements to WebGL internal variables
in all code paths using a classical worklist-based algorithm.
P2 is close to the problem of computing target arguments in
Section 5.2, which can be solved by searching for internal
variables in the taint sources of the path condition of the call
statement emitting the error message. Here we use the follow-
ing heuristic rule to identify internal variables of WebGL: all

variables of types defined in the WebGL namespace or fields
of such variables are considered as WebGL internal variables.

Based on solutions to P1 and P2, we compute the
dependent API set DM of error message M in 3 steps. (1) For
each API X , we compute the set of internal variables UX that
X updates, by solving P1. (2) We compute the set of internal
variables DIM the call statement of M is control dependent
on, by solving P2. (3) We iterate through all APIs and add
API X to DM if DIM is a subset of UX ; i.e., DIM⊂UX .

5.4 Collecting Error Messages as Feedback
As shown in Figure 2, in the fuzzing phase, GLeeFuzz

relies on the error messages emitted by executed APIs to
perform error message guided mutations based on on the
results computed in Section 5.2 and Section 5.3. To this end,
the fuzzer needs to access the error messages emitted by APIs.

The error messages emitted by WebGL APIs are written
to the browser console, which is not directly accessible from
the fuzzer code. To access the error messages from the fuzzer
code, one naive option is to save the output of the browser
console to a file and extract the error messages from it. This
approach is used in a related work [4] to extract log messages
emitted by some APIs from the system log. As the browser
console contains a lot of unrelated messages concurrently
emitted by other modules in the browser, it is challenging
to identify which message was emitted by which API during
the execution of an WebGL program.

GLeeFuzz relies on precise error message feedback from
the target (e.g., which error message was triggered by which
API). We therefore add a new JavaScript API to Chrome
that allows the fuzzer to retrieve error message triggered by
the previously executed API. Using multi-browser execution
in the fuzzing phase, GLeeFuzz relies on the customized
Chrome browser to perform error message guided mutation,
and tests other browsers by replaying mutated inputs.

5.5 Error Message Guided Mutation
Test case generation in GLeeFuzz is inspired by Syzkaller.

Similar to Syzkaller, GLeeFuzz generates random inputs
and mutates seeds chosen from a corpus following the
API signatures and their argument types defined in the
specification. However, unlike Syzkaller, API signatures
and argument types are parsed automatically from the
specification where these API information are defined in the
WebGL IDL (Interface Definition Language) sources [30, 31].

The major difference to Syzkaller is that instead of using
random mutation on seeds chosen from the corpus, GLeeFuzz
leverages error messages to infer erroneous parameters. This
information subsequently guides input mutation. As code
coverage collection is challenging in WebGL, instead of using
code coverage, we use the number of successfully executed
APIs and the number of unique error messages as a metric
to evaluate the quality of an input. Based on our study of the

source code, the execution of a WebGL API returns with an
error message if the arguments or the internal state fail to pass
sanity checks. Although we cannot corroborate that returning
without error message always indicates successful execution,
it is reasonable to assume that it has bypassed deployed
sanity checks and considered to be executed successfully.

Given an input consisting of a list of APIs, GLeeFuzz
iteratively applies mutation on the input based on the error
messages triggered by each API in the input. We now detail
the mutation rules for each type of error message.

Mutating target arguments. During fuzzing, when a type
1 error message is triggered, our mutation focuses on the
target argument of the API by which the error message was
emitted. The mutation on the identified target argument is
random in general, with two optimizations: (1) when mutating
argument of enum type, as the value space is small, the chance
of generating the same value (which results in meaningless
mutation) using a random approach is high, so we always
generate a value that is different from the current one. (2)
Certain integer arguments are used as indexes to access
WebGL objects in memory buffers. Sanity check failures on
this type of argument result in error messages complaining
that the value is too large or too small (e.g., “xxx is out of
bound”). When mutating this type of argument, we introduce
heuristics using a manually curated list of 12 keywords (e.g.,
“too large”, “too small”), to detect messages of the form “Pa-
rameter XXX is too large” or “Parameter XXX is too small”.
We generate a random index number that is either smaller or
larger than the current one as indicated by the error messages.

Fixing API dependency. When a type 2 error message is
triggered, GLeeFuzz mutates the inputs based on the result
computed in Section 5.3. To fix the dependency using the
dependent API set, GLeeFuzz checks the APIs before the
API emits the error message, and performs mutation on the
input based on the following heuristic rules. (1) If none of the
dependent APIs are used before the current API, we choose
a random dependent API, randomly generate its argument
values, and then insert it before the error-emitting API. The
inserted API may fix the dependency by properly setting up
the internal variables for the next test case or future test cases.
If not, we continue this process in the iteration. (2) If any one
of the dependent APIs has already been used before the error
message emitting API, but its execution failed in the previous
execution with its own error message emitted (which indicates
that fixing of dependency was not attempted at all), we do not
perform any additional mutation to the input because the prior
mutations based on the feedback of the dependent APIs may
have already fixed the erroneous inputs and its successful exe-
cution may fix the dependency in the current mutant. (3) If any
dependent API have been used and its execution succeeded
(without triggering any error message), another randomly cho-
sen dependent API is inserted before the current API with the
intuition that the new API might fix the dependency in the
resulting mutants, because the dependent API that is already

in the input was not (yet) able to fix the dependency.
Our input generation only leverages the dependencies of er-

ror emitting statements to infer “where to mutate” (i.e., target
argument and dependent API) except for the mentioned op-
timizations. As error messages carry human-understandable
information regarding how the input is invalid they indicate
“how to mutate”. While it is tempting to perform smarter mu-
tations based on the meaning of error messages, our attempt
was fruitless. Training NLP models to infer better mutators
failed as the models lacked domain knowledge of WebGL. In
our current implementation, we only employ the mentioned
optimizations based on our study on the error messages.
Thus, “interpreting” more informative error messages may
potentially improve the effectiveness of these optimization.

5.6 Multi-Browser Execution
GLeeFuzz relies on static analysis on the source code

of WebGL implementation in the Chrome browser and
collection of error messages as feedback. These requirements
make it difficult to apply our error message guided fuzzing
on closed-source browsers (e.g., Safari).

The WebGL specification defines error scenarios, such
as invalid inputs and disallowed states [30]. Since WebGL
implementations in different browsers follow the same
standardized specification, GLeeFuzz uses multi-browser ex-
ecution to apply fuzzing, guided by error messages collected
from our instrumented Chrome. More specifically, in addition
to executing newly generated inputs on our customized
Chrome (which allows the fuzzer to collect error message,
see Section 5.4), GLeeFuzz relays the same inputs to other
browsers (e.g., Firefox or Safari). As shown in Figure 2, input
mutation is based on the error message collected from the cus-
tomized Chrome, whereas, the generated inputs are replayed
on all browsers instances. As a result, GLeeFuzz allows for
testing WebGL implementations in different browsers based
on the analysis on the source code of Chrome—implementing
a form of cross-pollination across different targets.

6 Implementation Details
The implementation of GLeeFuzz is divided into two parts:

(1) a set of static analysis tools used in the pre-processing
phase; (2) a dynamic fuzzer used in the fuzzing phase. In this
section we present their technical details.

6.1 Static Analysis
Our static analysis (Section 5) runs on the LLVM bitcode

of WebGL implementation in Chrome. To get the IR code of
the WebGL component in Chrome, we modified the Chrome
build system to generate LLVM bitcode using wllvm [55].

Our static analysis leverages the SVF framework [52].
First, we use SVF to build the inter-procedural control flow
graph (ICFG) for native functions of WebGL APIs, which
we use to determine emitted error messages (see Section 5.1)

and dependent API calls (see Section 5.3). During ICFG
construction, we discovered unresolved virtual calls. Without
knowing the target, static analysis cannot compute error
message emitted in callees of virtual calls. The callee of a
virtual call is loaded from the vtable of the API’s C++ class.
We statically resolve the callees of a virtual call to the set
of possible implementations, i.e., the target class and its
subclasses. This callee set is an over-approximation, thus
the computed error messages may include ones that cannot
be triggered at runtime. However, as the error messages
merely guide the input mutation when they are triggered,
the imprecision in callee resolution does not impact fuzzer
performance. Second, to perform taint analysis as mentioned
in Section 5.2 and Section 5.3, we use SVF to build a value
flow graph (VFG), which is a directed graph capturing the
tainted relationship of variables and expressions in a program.

Based on the computed ICFG and VFG, we implement
our static analyses as a graph traversal from the root node
to search for nodes satisfying certain conditions based on a
worklist algorithm. Algorithm 2 shows the implementation
of a backward taint analysis based on traversing the VFG to
search for the target arguments of an error message.

6.2 Fuzzer
Due to the uniqueness of our proposed approach (error

message guided fuzzing) and target (to the best of our
knowledge, this is the first work targeting WebGL), there
is no existing baseline for reuse or customization, we
implemented the fuzzer from scratch. Input generation
described in Section 5.5 is written in Python. To support
executing inputs (i.e., sequences of WebGL API calls) in
browsers, we implemented an executor module consisting
of an HTML page and a Javascript function which parses and
executes inputs generated by the fuzzer. To execute an input,
GLeeFuzz loads the executor onto a target browser, and calls
the Javascript function (passing the input as argument) using
the standardized WebDriver [57] interface in form of RPC.
The implementation of our execution engine is based on
Selenium [51], a Python wrapper of the WebDriver interface.
To test browsers on Android and iOS devices via the
WebDriver interface, Appium [49] is used as a proxy between
our fuzzer and the browsers running on the device side. As
discussed in Section 5.4, GLeeFuzz relies on a customized
Chrome for error message collection. Our executor module
uses the additional API to collect error messages if available.

7 Evaluation
We conduct extensive experiments to evaluate our

GLeeFuzz prototype on a broad set of GPUs ranging from
Intel, NVIDIA, and AMD desktop GPUs to mobile systems
on ARM such as Adreno, Mali, or PowerVR along with
the Apple GPU. At the same time we evaluate across five
operating systems and three widely used browsers (Chrome,

Firefox and Safari) on both desktop and mobile systems on
x86 and ARM. Table 1 shows the different configurations.

7.1 Static Analysis
In this section, we present the total number of error

messages identified by our static analysis and the runtime
of the pre-processing phase. The experiments in this section
were performed on Ubuntu 20.04 LTS running on an x86-64
desktop equipped with an Intel i7-8086K CPU and 32GB of
memory.

Error message distribution. Table 2 summarizes the num-
ber of error messages detected by our static analysis tool. Col-
umn 2 and 3 show the total number of type 1 and type 2 error
messages in all APIs of WebGL v1 and v2 interface implemen-
tations. As we over-approximate the callees of virtual calls
(see Section 6.1) the detected error messages may contain
false positives. In total there are 998 and 2934 error messages
in WebGL v1 and v2 respectively. This large number calls for
an automatic approach to identify the error messages.

Pre-processing time. Analyzing 12.3 MB of LLVM
bitcode for the WebGL implementation in Chrome is divided
into the following two steps: (1) construction of ICFG and
VFG and (2) static analysis on the ICFG and VFG to compute
error messages and infer target arguments or dependent API
set. We measured the total time spent on each step when
analyzing the native implementations of all APIs in WebGL
v1 and v2. The construction of ICFG and VFG takes 20.4
seconds for both versions, as the process is the same (SVF
builds ICFG and VFG for all functions in the input). The
static analysis on the ICFG and VFG takes 40.7 and 120.1
seconds respectively.

7.2 Effectiveness of Error Messages
To validate the relative effectiveness of our error message

guided fuzzing technique, we implemented a version of GLee-
Fuzz, referred to as GLeeFuzz-R, in which inputs are mutated
randomly, following the Syzkaller strategy (see Section 4.1).
A random mutating fuzzer for WebGL did not exist, and it
involves a non-trivial effort to overhaul a fuzzer designed for
another target to fuzz WebGL. Therefore, we implement the
random mutation approach on top of our system.

Due to the challenge in collecting precise coverage
information from the targets (as mentioned in Section 4.1
and Section 5.5), we use the number of successfully executed
APIs (i.e. APIs that return successfully without triggering
any error messages) and the number of error messages as an
alternative metric for coverage in comparison.

Fuzzers must restart the browser whenever a tab crash is
triggered. This is a heavy-weight operation, introducing noise
into the measurement process. To compare fuzzers, we record
generated inputs over time and replay non-crashing inputs in
sequence to measure time. We run each evaluation five times
for 12 hours, each targeting Chrome on an x86-64 desktop

OS Platform Browsers GPU
Windows x86-64 Desktop Chrome, Firefox Intel, NVIDIA, AMD
Linux x86-64 Desktop Chrome, Firefox Intel, NVIDIA, AMD
macOS MacMini Chrome, Firefox, Safari Intel, Apple M1
Android Android Smartphones Chrome Adreno, Mali, PowerVR
iOS iPhone Safari PowerVR, Apple GPU

Table 1: Selected targets used in GLeeFuzz evaluation. On x86-64 platforms, we evaluate Chrome and Firefox with graphic stacks
of Intel UHD 630, NVIDIA GeForce GTX 980 and AMD Radeon RX 550 on Windows 10 and Ubuntu 18.04. On Mac mini,

we evaluate Chrome, Firefox and Safari with graphic stacks of Intel UHD 630 and Apple M1 on macOS 11.6. On OnePlus 9 Pro,
OPPO Reno2 and OPPO Reno5, we evaluate Chrome with graphic stacks of Qualcomm Adreno 660, PowerVR 9446 and Mali G77
on Android 11. On iPhone 6s plus and iPhone X, we evaluate the Safari with stack of PowerVR 7660 and Apple GPU on iOS 11.4.

Version Type 1 Type 2 Total #
WebGL v1 706 292 998
WebGL v2 2028 906 2934

Table 2: The total number of error
messages detected in Chrome’s WebGL implementation.

0 10000 20000 30000 40000
Input Sequence #

20

40

60

80

100

of

 e
xe

cu
te

d
AP

Is

GLeeFuzz
GLeeFuzz-R

(a) WebGLv1 API Coverage

0 10000 20000 30000 40000
Input Sequence #

0

100

200

300

400

of

 tr
ig

ge
re

d
er

ro
r m

es
sa

ge
s

GLeeFuzz
GLeeFuzz-R

(b) WebGLv1
Error Message Coverage

0 10000 20000 30000 40000
Input Sequence #

0
25
50
75

100
125
150
175

of

 e
xe

cu
te

d
AP

Is

GLeeFuzz
GLeeFuzz-R

(c) WebGLv2 API Coverage

0 10000 20000 30000 40000
Input Sequence #

0

200

400

600

800

of

 tr
ig

ge
re

d
er

ro
r m

es
sa

ge
s

GLeeFuzz
GLeeFuzz-R

(d) WebGLv2
Error Message Coverage

Figure 3: Coverage comparison between
GLeeFuzz and GLeeFuzz-R in metrics of the number of

executed APIs and the number of triggered error messages.

running Ubuntu 18.04 with 32GB of memory. Since we only
select non-crashing inputs to minimize noise, fuzzing time
is spent entirely on executing the test cases, and none on
browser restarts. We break down the execution time including
the cost of browser restarts, in Section 7.3.

Figure 3 shows the progression of the number of success-

fully executed APIs and triggered error messages in WebGLv1
and WebGLv2 over five runs, the shaded area shows the
standard deviation. From Figure 3, we learn that GLeeFuzz
outperforms GLeeFuzz-R in terms of both the number of
successfully executed APIs and triggered error messages.
Starting from an empty corpus, the inputs generated by both
GLeeFuzz and GLeeFuzz-R are able to extend coverage (num-
ber of logs and APIs, as defined in Section 5.5), by triggering
more error messages and bypassing the sanity checks to make
more successful API execution. However, under the guidance
of emitted error messages, GLeeFuzz was able to expand cov-
erage at a much faster pace, by generating inputs triggering
more error messages and more successfully executed APIs.

Table 3 summarizes the total number of triggered error
messages and successfully executed APIs averaged across 5
runs. In 12-hour evaluations, GLeeFuzz triggered 1,208 (417
in v1 and 791 in v2) error messages and successfully executed
288 (104 in v1 and 184 in v2) APIs, while GLeeFuzz-R
triggered 933 (325 in v1 and 608 in v2) error messages and
successfully executed 213 (81 in v1 and 132 in v2) APIs.
Compared to GLeeFuzz-R, GLeeFuzz triggers 28.3% more
error messages and successfully executes 28.4% more APIs
(by generating inputs that bypass the sanity checks) in We-
bGLv1, while in WebGLv2 GLeeFuzz triggers 30.0% more
error messages and successfully executes 39.3% more APIs.

On average, there are 581 and 2,134 error messages not
triggered in WebGL v1 and v2 respectively. The number
of untriggered error messages is the difference between all
detected (Table 2) and triggered (Table 3) error messages.
Untriggered fall into 3 categories: (1) error messages that
cannot be triggered at all due to the overapproximated virtual
callees; (2) error messages detected in APIs that were not
tested by the fuzzer; (3) error messages detected in APIs that
were tested by the fuzzer, but its error emitting statement was
not executed because the arguments or internal state failed
to bypass earlier sanity checks.

7.3 Breakdown of Execution Time
To demonstrate the performance of GLeeFuzz, we have

broken down the execution time into launching a fuzzing

(a) Execution Time Breakdown (b) Number of Crashes

Figure 4: Execution time and crash comparison between
GLeeFuzz and GLeeFuzz-R. The y-axes show log scale.

GLeeFuzz-R GLeeFuzz
WebGL err msg API err msg ∆ API ∆

v1 325 81 417 28% 104 28%
v2 608 132 791 30% 184 39%

Table 3: Average number of successfully executed APIs and
triggered error messages and by GLeeFuzz-R and GLeeFuzz.

target, generating a test program, executing a program on
the target, and mutating the program. GLeeFuzz mutates
the program based on the collected error messages, whereas
GLeeFuzz-R simply mutates the program randomly. We
conduct this experiment for five times, 12 hours each,
targeting Chrome on x86-64 desktops running Ubuntu 18.04
with 16GB of memory. The results are shown in Figure 4.

Figure 4a shows the average percentage of execution time
spent on each of the fuzzing stages, and Figure 4b shows
the average number of crashes (over five runs, with standard
deviation) in our 12-hour experiments. Figure 4a, we observe
that, on average, GLeeFuzz spends 217× wall time on
launching the browser than GLeeFuzz-R, which is explained
by 202× counts of browser crashes. The high number of
crashes incurred by GLeeFuzz showcases the effectiveness
of our error message guided mutation. The breakdown of
execution time also shows that GLeeFuzz’s test program
generation and mutation do not incur significant overhead.
Both GLeeFuzz and GLeeFuzz-R, on average, spend about
2% of their time generating and mutating inputs.

Our error message guided fuzzing technique improves
fuzzing performance over random mutation as used
in coverage-guided fuzzers like Syzkaller. Focusing
mutation on parts of the input indicated by error mes-
sages, GLeeFuzz reaches higher coverage faster (in
terms of the number of triggered error messages and
APIs that returned successfully) and triggers a signifi-
cantly higher number of crashes than a random fuzzer.

7.4 New Vulnerability Findings

We evaluate GLeeFuzz’s effectiveness in discovering
previously unknown vulnerabilities in commodity browsers.
We run GLeeFuzz on the most widely used browsers (e.g.,
Chrome, Firefox, or Safari) on both desktop (Windows,
MacOS, Linux) and mobile (Android and iOS) OSes using
the setup shown in Table 1. Since an implementation of the
WebGL software stack consists of both the browser code and
underlying native graphic stack, it may form a diverse set of
combinations with a lot of options. Therefore, we focus our
selection of targets on the most widely used ones, selecting
common hardware components (e.g., Intel, NVIDIA, AMD,
or Apple). Finding vulnerabilities in such common environ-
ments is harder as the software stacks are generally better
tested than those of unknown niche hardware. For instance,
there are only 87 CVEs assigned across all WebGL imple-
mentations since WebGL was first available in 2011 [45].

Our fuzzing platform has been running intermittently for
more than two months and has triggered a large amount of
crashes. Crash analysis and bug deduplication is challenging
and we are continuously working on triaging the crashes.
So far we have reduced over a thousand crash detections
to identify and reproduce 7 previously unknown vulner-
abilities (shown in Table 4): 2 vulnerabilities in Safari, 4
vulnerabilities in Chrome and 1 vulnerability in Firefox.

Out of these 7 vulnerabilities, two were triggered in the
GPU driver in the kernel space: one in Chrome on Linux with
an Intel GPU, the other in Safari iOS on a PowerVR GPU.
The inputs generated by our fuzzer triggered GPU resets. Al-
though the GPU reset on iOS is properly handled and only
interrupts systems graphics, the reset triggered on the Intel
GPU cannot be handled by the X-Server running on Ubuntu,
resulting in a system freeze. After triggering this vulnerability,
a hard reboot (shutdown and then boot) is required to restore
GPU functionality. We suspect that it compromises state in
the GPU firmware that is persistent cross soft reboots. In our
evaluation, we realized that once this vulnerability is triggered,
the fuzzer remains blocked and cannot proceed without restart.
This issue is also hardware dependent, although we can re-
produce it with the fuzzer generated input on our machine, it
cannot be reproduced by the Chrome developers on a similar
but slightly different model of the GPU. After we reported it
to the developers, it was fixed in recent versions of Ubuntu.

GLeeFuzz automatically recovers from browser crashes
and system reboots. However, minimal manual intervention
is required when the machine needs a hard reset. On average,
GLeeFuzz takes 2.98 seconds to relaunch a browser after
a browser crash, and 36.40 seconds to restart the fuzzing
session after a system reboot.

Discovering two kernel-level vulnerabilities demon-
strates GLeeFuzz’s capability in generating inputs
that can bypass all sanity checks deployed in the
upper layers and trigger exceptions in the lowest
level of the software stack.

In addition, GLeeFuzz finds three vulnerabilities in
Chrome: one assertion failure in the renderer process, and two
vulnerabilities that crash the browser’s privileged GPU pro-
cess due to memory corruptions and subsequent assertion fail-
ures. Assertions are written by developers in the source code
to check for preconditions expected by the code following it.
In debug builds, assertion statements are enabled and asser-
tion failures terminate the process. In release builds assertions
are disabled, thus executing the code beyond the assertion
statement. The crash in the renderer process is raised by an
assertion placed on the link counter of a shader program to pre-
vent it from being double-linked (by calling linkProgram).
The impact of the assertion failure in the renderer process
remains opaque in release builds; consequently, the devel-
opers evaluated this issue as a low-severity security bug. The
other two vulnerabilities in the GPU process have confirmed
security impact since the GPU process is shared among the
browser components and has access to GPU drivers. One
vulnerability is a null pointer deference followed by multiple
assertion failures in the restarted GPU process, allowing
denial of service attacks. Another vulnerability is memory
corruption in the GPU process, potentially allowing remote
code execution. These two vulnerabilities in the GPU process
remain unpatched as of this writing. One (memory corruption
in the GPU process) has received high severity ratings.

The Firefox vulnerability triggers an unbounded heap
memory allocation. We have received a security rating from
Mozilla, but this bug remains under embargo and is unpatched,
awaiting final confirmation. The reason for the tab crash in
Safari remains unclear due to the lack of source code. Al-
though we have not received any feedback from Apple for our
report, the vulnerability has been patched in recent versions.

Finding vulnerabilities on non-Chrome browsers
demonstrates the effectiveness of our multi-browser
execution technique mentioned in Section 5.6. Prior
to GLeeFuzz, our evaluation of these browsers using
a naive fuzzing technique did not find any of these
vulnerabilities.

7.5 Finding Known Vulnerabilities
To validate GLeeFuzz’s relative effectiveness in bug

finding capability in comparison to random mutation, we
evaluate it against a set of known ground truth vulnerabilities
reported in WebGL of Chrome in the past years.

For this evaluation we created a ground truth benchmark

by porting known bugs to a recent version of Chrome. This
allows reproduction of multiple bugs on a single system and
circumvents dependencies issues due to outdated libraries
in older versions of the browser. We selected all bugs in
the browser layer reported between 2012 and 2021 that
are labeled as security issues. Table 5 shows the list of the
selected known vulnerabilities. We studied their patches
and found that all these selected vulnerabilities are fixed by
introducing new security checks before the execution reaches
the crash site. To “reintroduce” these vulnerabilities into a
recent version of Chrome, we extract the triggering conditions
of these issues from their respective security checks, and add
conditional assertions to signal that an issue is triggered.

The evaluation on this benchmark was performed on an
x86-64 Desktop running Ubuntu 18.04 with 32G memory.
For comparison, on a version of Chrome with our selected
security bugs ported, we run GLeeFuzz and GLeeFuzz-R
5 times, each lasting 12 hours. Table 6 shows the detected
vulnerabilities for each run. In total, GLeeFuzz detected 3 of
the issues (145544, 765469, and 784183), while GLeeFuzz-R
only detected one (765469). Issue 765469, which was
detected by both GLeeFuzz and GLeeFuzz-R, was detected
in 4 runs of GLeeFuzz, while in only 2 runs of GLeeFuzz-R.

We investigated the triggering conditions of the vul-
nerabilities that were not detected by either GLeeFuzz or
GLeeFuzz-R. Issue 848914 requires a WebGL v2 object
that is then passed to a WebGLv1 context [20]. In the
implementation level, as WebGL v1 and v2 APIs are exported
through different Javascript objects and it is only allowed to
export either a v1 or v2 object on one HTML Canvas element,
our fuzzer currently does not generate cross-version fuzzing
inputs and this issue therefore remains undetected. Issue
1149204 can only be triggered in the constructor of a WebGL
context object (a Javascript object through which WebGL
APIs are exported) with certain incompatible parameters [23],
and issue 1219886 can only be triggered from an exported API
of a WebGL extension object. Our fuzzer detected neither as it
only tests the APIs exported through a WebGL context object.

While issue 774174 can be triggered from texImage2D
API, its condition is guarded by around 10 sanity checks
on input. Our investigation shows that in each of the 5 runs,
there are some generated inputs by GLeeFuzz containing
calls to texImage2D, with arguments that bypass some sanity
checks, but unfortunately not all of them within 12 hours.

The ground truth evaluation results show that error
message guided fuzzing performs better in finding
vulnerabilities than random mutation approach used
in coverage-guided fuzzers.

Bug Descriptions GPU Platform Browser Bug Location Severity
GPU hang Apple GPU iOS Safari GPU Driver Not set
GPU hang; X-Server freeze Intel Ubuntu Chrome GPU Driver Medium
Nullptr dereference in GPU process N/A N/A Chrome Browser Not set
Memory corruption in GPU process N/A N/A Chrome Browser High
Assertion failure N/A N/A Chrome Browser Low
OS memory leak Intel macOS; Ubuntu Firefox Browser Low
Tab crash N/A macOS Safari Browser Not set

Table 4: New Vulnerabilities found by GLeeFuzz

Issue Bug Description
774174 [18] Fail to check for a disallowed GL value type in the argument of TexSubImage2D
145544 [16] Fail to check for integer overflow in the arguments of TexSubImage2D
1219886 [24] The check for out-of-bound array access is incomplete without considering drawcount+offset
848914 [20] WebGL context version confusion leads to operations on invalid context
784183 [19] Insufficient security check leads to integer overflow in ValidateTexImageSubRectangle
1149204 [23] WebGL does not support offscreen canvas, but it can still happen due to the lack of validation
765469 [17] Fail to check for a disallowed GL format and type combination in WebGLImageConversion

Table 5: List of known and fixed WebGL vulnerabilities used in our evaluation.

GLeeFuzz-R GLeeFuzz
Issue 1 2 3 4 5 1 2 3 4 5
774174
145544 3 3

1219886
848914
784183 3 3

1149204
765469 3 3 3 3 3 3

Table 6: Comparison of vulnerability detection between GLee-
Fuzz GLeeFuzz-R on our manually collected benchmark.

8 Related Work
8.1 Runtime Mitigations

The graphics stack is a lucrative target of attack since it of-
ten runs in a privileged context. To protect the graphics stack,
many defense mechanisms are proposed to detect attacks or
reduce the risks of attacks. Milkomeda [60] leverages existing
browser security checks to safeguard the mobile graphics
stack. To compartmentalize the graphics stack, Sugar [59]
runs the WebGL graphics stack in an isolated environment
leveraging GPU virtualization. To further protect the rendered
content, recent related work runs the graphic stack in trusted
environments. E.g., VButton [39], TruZ-View [61] and
Rushmore [47] produce secure framebuffers and display
secure content with a self-contained graphics stack running
in the secure world of ARM TrustZone.

Defense mechanisms protect the users from potential

exploits at runtime, while GLeeFuzz complements the
defense mechanisms by finding and fixing vulnerabilities.

8.2 Interface Fuzzing
Fuzzing plays an important role in unveiling software and

hardware vulnerabilities. Recent work in fuzzing interfaces
employs diverse program analysis techniques and has shown
promising results. E.g., to apply coverage guided fuzzing
on system calls, kAFL [56] leverages a hypervisor and
Intel PT (Processor Trace) to obtain code coverage from an
unmodified OS. Syzkaller [26] applies generational fuzzing in
system calls based on manually crafted interface specification,
its input generation is also guided by code coverage which
is obtained by static instrumentation (through kCov). To
address explicit dependencies among system calls, IMF [33]
tracks API return values and the parameters passed to other
APIs in strace logs. MoonShine [46] improves syzkaller’s
input generation distilling seeds from real-world programs.
FuzzGen [35] and APICRAFT [62] automate fuzz driver
generation by static/dynamic data flow analysis on the target.
USBFuzz [48] and FuzzUSB [38] target I/O interface between
drivers and their hardware devices, addressing the challenge
of injecting random device input through device emulation.
GraphicsFuzz [11,25] is an automated fuzzing system that tar-
gets shader compilers by generating metamorphic inputs, i.e.,
semantically equivalent shader programs. Aafer et al. [4] an-
alyze input validation logs to infer specifications of Android
media APIs in TV Boxes and to guide input generation.

Compared to these works, GLeeFuzz targets WebGL
(where code coverage collection is hard), leveraging our

novel error messages guided fuzzing technique. In contrast
to coverage guided fuzzing techniques, error message guided
fuzzing can perform mutations on input parts indicated by the
feedback and avoid meaningless (i.e., low quality) mutations.

8.3 Browser Fuzzers
Web browsers are an attractive target with multiple attack

surfaces, for which there are varying fuzzing tools, each
targeting a different part with their own approach.

Domato [27] and BFuzz [40] target HTML parsing and
generate input from templates. FreeDom [58] further applies
coverage guided fuzzing to test DOM parsing. Funfuzz [44]
targets the Javascipt engine with generational fuzzing (based
on manually crafted templates). Grammarinator [34] tests
JavaScript engines by generating inputs following the
grammars of the JavaScipt language. Favocado [9] targets the
PDF, MOJO, and DOM binding layer in the JavaScript engine
and generates inputs based on semantic API information.

Among these tools, Favocado is most relevant to GLee-
Fuzz. GLeeFuzz also generates inputs following the API
specification. However, GLeeFuzz uses its novel error
message guided fuzzing to perform tailored input mutation.

9 Discussion and Future Work
Improving crash detection. In the current implementation,

our crash detection relies on feedback from the WebDriver.
Sometimes, as shown by our evaluation, the WebDriver
feedback is insufficient or incomplete, e.g., when a tab
crashes it only returns “tab crash”. A simple extension is to
obtain browser logs through side channels, such as redirecting
stderr over the network. This approach does not apply to all
devices because some operating systems, such as iOS, do not
allow log redirection. Without access to more information
about the crash such as a stack trace or at least crash location,
the fuzzer cannot tell if the detected crash is a duplicate or
not. De-duplication requires manual work, and thus makes
bug triaging harder. In the future, we plan to make the stack
trace accessible in the WebDriver and implement crash
de-duplication based on the stack traces of crashes.

Extending error-guided fuzzing technique to other tar-
gets. The design and implementation of error message guided
fuzzing presented in this work targets the Chrome WebGL im-
plementation. However, our technique applies to a much wider
range of targets, since it only relies on indicative feedback
which pinpoints faults in the input. To facilitate application
using this technique, on one hand, without aggressive code
instrumentation for code coverage, developers can include
such information in the error code; on the other hand, on
targets where there is no such clear feedback, static analysis
(e.g., taint analysis) and instrumentation can be applied on the
target to make it amenable to error message guided fuzzing.
We leave error-guided fuzzing on other targets as future work.

Supporting the WebGPU interface. WebGPU is the

upcoming successor of WebGL [22]. In addition to rendering,
WebGPU is designed to further expose GPU accelerated
computational interfaces to web apps. In August 2021,
Chrome was the first browser to release a beta test version
of WebGPU, which does not yet fully support the promised
features, and the initial specification is still in a draft
stage [21]. Because WebGPU does not yet have a finalized
specification, we wait for its final roll-out. The information
available so far indicates that WebGPU implementations in
major browsers will continue to provide web developers with
informative error messages to facilitate web app debugging.
Therefore, GLeeFuzz will be able to use these error messages
to extend our support to future WebGPU implementations.

10 Conclusion
WebGL is a widely supported, security-critical interface

exposing the native graphic stack to remote users. Collecting
code coverage from WebGL is both challenging (code is
spread across processes, libraries, kernel, and GPU firmware)
and inapt (code coverage lacks a straight-forward mapping to
the API sequences with complex arguments that trigger bugs).
Fuzzers such as Syzkaller exclusively rely on code coverage
therefore resort to semi-random mutation and highly depend
on starting seeds and templates to find bugs.

To mitigate these challenges and provide more informed
and tailored fuzzing, we present a novel error message
guided fuzzing technique, which uses the triggered error
messages, instead of code coverage, as feedback to guide
input mutation. Our mutators are API aware and mutate the
parts of the input indicated by the observed error messages.
So far, GLeeFuzz, our prototype, has discovered 7 new
vulnerabilities in widely used browsers: 4 in Chrome, 2
in Safari and 1 in Firefox. Source code is available at
https://github.com/HexHive/GLeeFuzz.

Acknowledgements
We thank Adrian Herrera and the anonymous reviewers

for their insightful feedback, and Google for acting quickly
and professionally on our bug reports. We also thank
Apple for silently patching our reported bugs but would
have appreciated an acknowledgement. This project has
received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 850868),
DARPA HR001119S0089-AMP-FP-034, US AFRL FA8655-
20-1-7048, SNSF PCEGP2_186974, and NSF awards
CNS-1846230, CNS-1953932, and CNS-2145744.

https://github.com/HexHive/GLeeFuzz

References
[1] Chromium Sandbox. https://

chromium.googlesource.com/chromium/src/+/
refs/heads/main/docs/design/sandbox.md.

[2] Drive-by download. https://en.wikipedia.org/
wiki/Drive-by_download.

[3] Post-Spectre Threat Model Re-Think. https:
//chromium.googlesource.com/chromium/src/+/
master/docs/security/side-channel-threat-
model.md.

[4] Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu
Zhang, and Heng Yin. Android smarttvs vulnerability
discovery via log-guided fuzzing. In 30th USENIX
Security Symposium (USENIX Security 21), 2021.

[5] Adam Barth, Collin Jackson, Charles Reis, TGC Team,
et al. The security architecture of the chromium browser.
In Technical report. Stanford University, 2008.

[6] Microsoft Security Response Center. Webgl considered
harmful. https://msrc-blog.microsoft.com/
2011/06/16/webgl-considered-harmful/, 2021.

[7] Chromium. Chromium OS - the chromium projects.
https://www.khronos.org/opengles/, 2021.

[8] Android Developers. Webview | android developers.
https://developer.android.com/reference/
android/webkit/WebView, 2021.

[9] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam
Oest, Kyle Zeng, Alexandros Kapravelos, Gail-Joon
Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, et al.
Favocado: Fuzzing the binding code of javascript
engines using semantically correct test cases.

[10] Apple Developer Documentation. Wk-
webview | apple developer documentation.
https://developer.apple.com/documentation/
webkit/wkwebview, 2021.

[11] Alastair F Donaldson, Hugues Evrard, Andrei Lascu,
and Paul Thomson. Automated testing of graph-
ics shader compilers. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):1–29, 2017.

[12] Electron. Electron | build cross-platform
desktop apps with javascript, html, and css.
https://www.electronjs.org/, 2021.

[13] Jesse Hertz etc. Project triforce: Afl + qemu +
kernel = cves! (or) how to use afl to fuzz arbitrary
vms. https://raw.githubusercontent.com/
nccgroup/TriforceAFL/master/slides/
ToorCon16_TriforceAFL.pdf, 2018.

[14] Sergiu Gatlan. Google chrome 85 fixes
webgl code execution vulnerability. https:
//www.bleepingcomputer.com/news/security/
google-chrome-85-fixes-webgl-code-
execution-vulnerability/, 2020.

[15] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out of control: Overcoming
control-flow integrity. In 2014 IEEE Symposium on
Security and Privacy, pages 575–589. IEEE, 2014.

[16] Google. Chromium issue 145544. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=145544, 2012.

[17] Google. Chromium issue 765469. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=765469, 2017.

[18] Google. Chromium issue 774174. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=774174, 2017.

[19] Google. Chromium issue 784183. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=784183, 2017.

[20] Google. Chromium issue 848914. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=848914, 2018.

[21] Google. Access modern gpu features with webgpu.
https://web.dev/gpu, 2021.

[22] Google. Chromium blog: Chrome 94 beta:
Webcodecs, webgpu, scheduling, and more.
https://blog.chromium.org/2021/08/chrome-
94-beta-webcodecs-webgpu.html, 2021.

[23] Google. Chromium issue 1149204. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=1149204, 2021.

[24] Google. Chromium issue 1219886. https:
//bugs.chromium.org/p/chromium/issues/
detail?id=1219886, 2021.

[25] Google. How it works: metamorphic testing using glsl-
fuzz. https://github.com/google/graphicsfuzz/
blob/master/docs/glsl-fuzz-intro.md, 2021.

[26] Google. Syzkaller - kernel fuzzer. https:
//github.com/google/syzkaller, 2021.

[27] google project zero. Dom fuzzer. https:
//github.com/googleprojectzero/domato, 2021.

[28] Khronos Group. Opengl es overview. https:
//www.khronos.org/opengles/, 2021.

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://en.wikipedia.org/wiki/Drive-by_download
https://en.wikipedia.org/wiki/Drive-by_download
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://msrc-blog.microsoft.com/2011/06/16/webgl-considered-harmful/
https://msrc-blog.microsoft.com/2011/06/16/webgl-considered-harmful/
https://www.khronos.org/opengles/
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview
https://www.electronjs.org/
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://www.bleepingcomputer.com/news/security/google-chrome-85-fixes-webgl-code-execution-vulnerability/
https://www.bleepingcomputer.com/news/security/google-chrome-85-fixes-webgl-code-execution-vulnerability/
https://www.bleepingcomputer.com/news/security/google-chrome-85-fixes-webgl-code-execution-vulnerability/
https://www.bleepingcomputer.com/news/security/google-chrome-85-fixes-webgl-code-execution-vulnerability/
https://bugs.chromium.org/p/chromium/issues/detail?id=145544
https://bugs.chromium.org/p/chromium/issues/detail?id=145544
https://bugs.chromium.org/p/chromium/issues/detail?id=145544
https://bugs.chromium.org/p/chromium/issues/detail?id=765469
https://bugs.chromium.org/p/chromium/issues/detail?id=765469
https://bugs.chromium.org/p/chromium/issues/detail?id=765469
https://bugs.chromium.org/p/chromium/issues/detail?id=774174
https://bugs.chromium.org/p/chromium/issues/detail?id=774174
https://bugs.chromium.org/p/chromium/issues/detail?id=774174
https://bugs.chromium.org/p/chromium/issues/detail?id=784183
https://bugs.chromium.org/p/chromium/issues/detail?id=784183
https://bugs.chromium.org/p/chromium/issues/detail?id=784183
https://bugs.chromium.org/p/chromium/issues/detail?id=848914
https://bugs.chromium.org/p/chromium/issues/detail?id=848914
https://bugs.chromium.org/p/chromium/issues/detail?id=848914
https://web.dev/gpu
https://blog.chromium.org/2021/08/chrome-94-beta-webcodecs-webgpu.html
https://blog.chromium.org/2021/08/chrome-94-beta-webcodecs-webgpu.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1149204
https://bugs.chromium.org/p/chromium/issues/detail?id=1149204
https://bugs.chromium.org/p/chromium/issues/detail?id=1149204
https://bugs.chromium.org/p/chromium/issues/detail?id=1219886
https://bugs.chromium.org/p/chromium/issues/detail?id=1219886
https://bugs.chromium.org/p/chromium/issues/detail?id=1219886
https://github.com/google/graphicsfuzz/blob/master/docs/glsl-fuzz-intro.md
https://github.com/google/graphicsfuzz/blob/master/docs/glsl-fuzz-intro.md
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/

[29] Khronos Group. Webgl overview. https:
//www.khronos.org/webgl/, 2021.

[30] Khronos Group. Webgl overview. https:
//www.khronos.org/registry/webgl/specs/
latest/1.0/, 2021.

[31] Khronos Group. Webgl overview. https:
//www.khronos.org/registry/webgl/specs/
latest/2.0/, 2021.

[32] The Khronos Group. Blacklists and whitelists.
https://www.khronos.org/webgl/wiki/
BlacklistsAndWhitelists, 2022.

[33] HyungSeok Han and Sang Kil Cha. Imf: Inferred
model-based fuzzer. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2345–2358, 2017.

[34] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy.
Grammarinator: a grammar-based open source fuzzer.
In Proceedings of the 9th ACM SIGSOFT international
workshop on automating TEST case design, selection,
and evaluation, pages 45–48, 2018.

[35] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan,
and Mathias Payer. FuzzGen: Automatic fuzzer
generation. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2271–2287, 2020.

[36] Dave Jones. Trinity: Linux system call fuzzer. https:
//github.com/kernelslacker/trinity, 2018.

[37] Mustakimur Rahman Khandaker, Wenqing Liu, Abu
Naser, Zhi Wang, and Jie Yang. Origin-sensitive control
flow integrity. In 28th USENIX Security Symposium
(USENIX Security 19), pages 195–211, 2019.

[38] Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungy-
oung Lee, Kevin RB Butler, Antonio Bianchi, and
Dave Jing Tian. Fuzzusb: Hybrid stateful fuzzing of
usb gadget stacks. pages 632–649, 2022.

[39] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia,
Long Lu, Haibo Chen, Binyu Zang, and Haibing
Guan. Vbutton: Practical attestation of user-driven
operations in mobile apps. In Proceedings of the 16th
annual international conference on mobile systems,
applications, and services, pages 28–40, 2018.

[40] Dhiraj Mishra. Fuzzing browsers. https:
//github.com/RootUp/BFuzz, 2021.

[41] MITRE. Cve-2020-15675. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-15675,
2021.

[42] MITRE. Cve-2020-6492. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-6492, 2021.

[43] Mozilla. Mozilla foundation security advisory 2020-
42. https://www.mozilla.org/en-US/security/
advisories/mfsa2020-42/, 2020.

[44] MozillaSecurity. Javascript engine fuzzers. https:
//github.com/MozillaSecurity/funfuzz, 2021.

[45] National Institute of Standards and Technol-
ogy. Search results for webgl. https://
nvd.nist.gov/vuln/search/results?form_type=
Basic&results_type=overview&query=WebGL,
2022.

[46] Shankara Pailoor, Andrew Aday, and Suman Jana.
Moonshine: Optimizing OS fuzzer seed selection with
trace distillation. In 27th USENIX Security Symposium
(USENIX Security 18), pages 729–743, 2018.

[47] Chang Min Park, Donghwi Kim, Deepesh Veersen
Sidhwani, Andrew Fuchs, Arnob Paul, Sung-Ju Lee,
Karthik Dantu, and Steven Y Ko. Rushmore: securely
displaying static and animated images using trustzone.
In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and
Services, pages 122–135, 2021.

[48] Hui Peng and Mathias Payer. USBFuzz: A framework
for fuzzing USB drivers by device emulation. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 2559–2575, 2020.

[49] Appium project. Appium: Mobile app automation made
awesome. http://appium.io/, 2021.

[50] Chromium Project. Angle - almost native graphics layer
engine. https://chromium.googlesource.com/
angle/angle, 2021.

[51] Selenium Project. Seleniumhq browser automation.
https://www.selenium.dev/, 2021.

[52] SVF Project. Static value-flow analysis framework for
source code. https://github.com/SVF-tools/SVF,
2021.

[53] The Cordava Project. Apache cordava.
https://cordova.apache.org/, 2021.

[54] The Chromium Projects. Control flow integrity.
https://www.chromium.org/developers/testing/
control-flow-integrity, 2021.

[55] Tristan Ravitch. wllvm: A wrapper script to build whole-
program llvm bitcode files. https://github.com/
travitch/whole-program-llvm, 2021.

https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists
https://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/RootUp/BFuzz
https://github.com/RootUp/BFuzz
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15675
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15675
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6492
https://www.mozilla.org/en-US/security/advisories/mfsa2020-42/
https://www.mozilla.org/en-US/security/advisories/mfsa2020-42/
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=WebGL
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=WebGL
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=WebGL
http://appium.io/
https://chromium.googlesource.com/angle/angle
https://chromium.googlesource.com/angle/angle
https://www.selenium.dev/
https://github.com/SVF-tools/SVF
https://cordova.apache.org/
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

[56] Sergej Schumilo, Cornelius Aschermann, Robert
Gawlik, Sebastian Schinzel, and Thorsten Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In
26th USENIX Security Symposium (USENIX Security
17), pages 167–182, 2017.

[57] W3C. Webdriver-w3c working draft 24 august 2020.
https://www.w3.org/TR/webdriver/, 2021.

[58] Wen Xu, Soyeon Park, and Taesoo Kim. Freedom: En-
gineering a state-of-the-art dom fuzzer. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 971–986, 2020.

[59] Zhihao Yao, Zongheng Ma, Yingtong Liu, Ardalan
Amiri Sani, and Aparna Chandramowlishwaran. Sugar:
Secure gpu acceleration in web browsers. ACM
SIGPLAN Notices, 53(2):519–534, 2018.

[60] Zhihao Yao, Saeed Mirzamohammadi, Ardalan
Amiri Sani, and Mathias Payer. Milkomeda: Safe-
guarding the mobile gpu interface using webgl security
checks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1455–1469. ACM, 2018.

[61] Kailiang Ying, Priyank Thavai, and Wenliang Du.
Truz-view: Developing trustzone user interface for
mobile os using delegation integration model. In
Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, pages 1–12, 2019.

[62] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue, and
Yang Liu. Apicraft: Fuzz driver generation for closed-
source SDK libraries. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 2811–2828, 2021.

A Concrete WebGL example program
To illustrate, assume the sample WebGL program shown

in Listing 1 is selected by a coverage-guided fuzzer for
mutation. This WebGL program is a partially valid input
generated by the fuzzer with two errors: (1) in line 6, the first
argument passed to bufferData is invalid and its execution
will stop at the return statement in line 10 in Listing 2; (2)
in line 10, although all the arguments passed to drawArrays
are valid, as the program is in an invalid internal state (no
shader program is properly set up by calling useProgram)
its execution will stop at the return statement in line 5 in
Listing 3. To effectively expand the coverage to execute the
code not triggered in bufferData in this input, ideally, the
fuzzer needs to generate a valid value for its first argument;
similarly, to expand the coverage of drawArrays the fuzzer
needs to insert a call to useProgram to set up the shader
program. Unaware of which part of the input is erroneous, the
random approach taken by the random_mutate function is

highly unlikely to choose the right argument of the right API
to mutate, or to select the right API to fix the dependency.

1 canvas = document.createElement("canvas");
2 gl = canvas.getContext("webgl");
3 shader = gl.createShader(gl.VERTEX_SHADER);
4 buffer = gl.createBuffer();
5 // ...
6 gl.bufferData(gl.ALPHA , 100, gl.STATIC_DRAW);
7 program = gl.createProgram();
8 // ...
9 // gl.useProgram(program);

10 gl.drawArrays(gl.POINTS , 100, gl.STATIC_DRAW);

Listing 1: A sample WebGL program.

1 void bufferData(GLenum
target , int64_t size , GLenum usage) {

2 // ...
3 switch (target) {
4 case GL_ELEMENT_ARRAY_BUFFER:
5 buffer = bound_vertex_array_object_

->BoundElementArrayBuffer();
6 break;
7 // ...
8 default:
9 SynthesizeGLError

(GL_INVALID_ENUM ,"invalid target");
10 return;
11 }
12 // ...
13 }

Listing 2: The native function of bufferData.

1 void drawArrays(
GLenum mode , GLint first , GLsizei count) {

2 // ...
3 if (!current_program_) {
4 SynthesizeGLError(GL_INVALID_OPERATION

, "no valid shader program in use");
5 return;
6 }
7 // ...
8 }

Listing 3: The native function of drawArrays.

1 void useProgram(WebGLProgram* program) {
2 //
3 current_program_ = program;
4 //
5 }

Listing 4: The native function of useProgram.

A.1 Type 1 and type 2 error messages
For example, in Listing 1, when bufferData is executed at

runtime, an error message “invalid target” will be emitted by
calling SynthesizeGLError (line 9 in Listing 2) when the

https://www.w3.org/TR/webdriver/

target argument is detected to be invalid. This message is
representative of a category of error messages in WebGL that
indicates that some argument passed to the executed API is
invalid. We denote those collectively as type 1 error messages.
The argument whose invalidity is indicated by a type 1 error
message is called the target argument of it. Similarly, the
implementation of drawArrays emits an error message
“no valid shader program in use” (in line 4 of Listing 3)
when the internal variable current_program_ is not set up.
This message is representative of another category of error
messages that indicates an invalid internal state caused by
unsatisfied dependencies. We denote this category of error
messages collectively as type 2 error messages. The set of
APIs that are able to fix the invalid internal state indicated
by this type of message is called dependent API set.

	Introduction
	Background
	WebGL Interface
	WebGL Security

	Threat Model
	Design Overview of GLeeFuzz
	Motivation and Intuition
	Research Challenges and Approaches

	GLeeFuzz Design
	Computing Error Messages
	Inferring Target Arguments
	Inferring Dependent API Set
	Collecting Error Messages as Feedback
	Error Message Guided Mutation
	Multi-Browser Execution

	Implementation Details
	Static Analysis
	Fuzzer

	Evaluation
	Static Analysis
	Effectiveness of Error Messages
	Breakdown of Execution Time
	New Vulnerability Findings
	Finding Known Vulnerabilities

	Related Work
	Runtime Mitigations
	Interface Fuzzing
	Browser Fuzzers

	Discussion and Future Work
	Conclusion
	Concrete WebGL example program
	Type 1 and type 2 error messages

