
SyzScope: Revealing High-Risk Security Impacts of Fuzzer-Exposed Bugs in
Linux kernel

Xiaochen Zou
UC Riverside

Guoren Li
UC Riverside

Weiteng Chen
UC Riverside

Hang Zhang
UC Riverside

Zhiyun Qian
UC Riverside

Abstract
Fuzzing has become one of the most effective bug find-
ing approach for software. In recent years, 24*7 con-
tinuous fuzzing platforms have emerged to test critical
pieces of software, e.g., Linux kernel. Though capable of
discovering many bugs and providing reproducers (e.g.,
proof-of-concepts), a major problem is that they neglect a
critical function that should have been built-in, i.e., eval-
uation of a bug’s security impact. It is well-known that
the lack of understanding of security impact can lead to
delayed bug fixes as well as patch propagation. In this
paper, we develop SyzScope, a system that can auto-
matically uncover new “high-risk” impacts given a bug
with seemingly “low-risk” impacts. From analyzing over
a thousand low-risk bugs on syzbot, SyzScope success-
fully determined that 183 low-risk bugs (more than 15%)
in fact contain high-risk impacts, e.g., control flow hijack
and arbitrary memory write, some of which still do not
have patches available yet.

1 Introduction

Fuzzing is one of the most prolific approaches to dis-
cover bugs in software. Nowadays, it is even becom-
ing an integral part of the software development pro-
cess. For example, OSS-Fuzz [26] is a popular plat-
form that can fuzz open-source software continuously.
In addition to OSS-Fuzz which targets primarily user-
space applications, there is also an continuous fuzz test-
ing platform called syzbot [29] dedicated to fuzz testing
Linux kernels. The platform has been operational since
2017. Equipped with the state-of-the-art kernel fuzzer
Syzkaller [30], it has already reported more than 4,000
bugs to date.

Despite the huge success, such continuous fuzzing
platform leads to a major challenge — the rate of bug dis-
covery is much higher than the rate of bug fixes. Taking
the syzbot platform as an example, at the time of writing

(Jun 2021), we find that it takes on average 51 days to fix
a bug (over 3,396 fixed bugs), whereas it takes less than
0.4 day for syzbot to report a new bug.

Another critical challenge is the patch propagation to
downstream kernels [53], e.g., various PC distributions
such as Ubuntu, and the smartphone OS - Android. Even
if the syzbot bugs are patched in Linux, there is often a
lack of knowledge on which patched bugs are security-
critical. This can have a significant impact on patch prop-
agation delays [53]. One prominent example is CVE-
2019-2215 [17], a use-after-free bug that can root most
Android devices (e.g., Samsung Galaxy S9). It was ini-
tially reported by syzbot and fixed in Linux upstream in
52 days [16]. Unfortunately, it took over a year for the
patch to propagate to downstream Android kernels due
to the lack of knowledge on its security impact. In fact,
it was only until after bad actors were caught exploiting
this vulnerability in the wild did Google start to realize
its severity and obtained a CVE number [17].

The previous two challenges illustrate a critical defi-
ciency in today’s continuous fuzzing platforms — lack of
automated bug triage, or bug impact analysis. The goal
of this paper is to bridge this gap in the context of Linux
kernel bugs. Performing automated bug impact analyses
is challenging and an active area of research, especially
in the kernel space. Recently, Wu et al. proposed a solu-
tion called sid on inferring the security impact of a patch
statically [48], e.g., use-after-free, or out-of-bound mem-
ory access. However, due to the nature of the analysis
being completely static, it has to make tradeoffs between
soundness and completeness. Furthermore, without an
actual reproducer, it falls short in determining whether
the bug is actually triggerable and exploitable in reality.
On the other end of the spectrum, there has been recent
progress on automated exploit generation against kernel
bugs, fully demonstrating the exploitability of a bug by
turning a reproducer into an actual exploit. Fuze [50] and
KOOBE [21] are two representative studies that target
use-after-free (UAF) and out-of-bound (OOB) memory

access bugs respectively.
However, fuzzer-generated bug reports often do not

contain the real security impact. For example, as we find
in our experiments, a WARNING error can in fact lead
to UAF or OOB. Furthermore, while UAF and OOB bug
types are arguably the most impactful bug types that lead
to most real-world exploits, not all of them are created
equal. For example, a write primitive, as opposed to read,
is always more dangerous than a read, potentially caus-
ing corruption of critical pieces of data (e.g., function
pointer), leading to arbitrary code execution and privi-
lege escalation. Similarly, a function pointer dereference
primitive is also more dangerous than a read primitive.
We define the high-risk and low-risk impacts in §2.2.

As evidence that such a distinction between high-risk
and low-risk bugs already exists, we find, from syzbot’s
historical data, that UAF/OOB write bugs are often fixed
much sooner than UAF/OOB read bugs — 37 days vs. 63
days for UAF and 29 days vs. 89 days for OOB in terms
of average attempt-to-fix delay. In addition, we also look
at the patch propagation delays from upstream to down-
stream using Ubuntu Bionic as an example. Patches for
WARNING errors have an average delay of 83 days vs.
59 in the case of patches for OOB write bugs.

In lieu of the above, the goal of this paper is to check
whether any of the seemingly low-risk bugs (e.g., the
ones with read primitives or simply an assertion error)
can be turned into high-risk (e.g., write primitive or func-
tion pointer dereference?) To this end, we design a sys-
tem called SyzScope that takes a reproducer and the cor-
responding bug report as input and produces a report on
any high-risk impacts that are associated with the bug
(and optionally new PoCs that exhibits such high-risk
impacts). SyzScope has two distinct modes of opera-
tions with respect to the two challenges aforementioned
(details are in §3). First, to evaluate the security impact
of open bugs and facilitate prioritized bug fixing, we per-
form a combination of static analysis and symbolic exe-
cution to look beyond the initial bug impact reported by
the reproducer. Second, to evaluate the security impact
of fixed bugs and facilitate timely patch propagation, we
additionally allow a fuzzing component as we can use
the patch to confirm whether new impacts belong to the
same bug.

Surprisingly, after analyzing thousands of seemingly
low-risk bugs published on syzbot, SyzScope found 183
bugs have high-risk impacts. Along the process, we have
identified the limitations of the current bug reports and
believe SyzScope is a great complement to recognize the
hidden impacts of a bug.

In summary, this paper makes the following contribu-
tions:

• We propose SyzScope, a system that can automatically
evaluate the impact of a given seemingly low-risk bug

Bug type Bug Impact

Sanitizer: KASAN
use-after-free (UAF)
out-of-bounds (OOB)

double-free
Sanitizer: KCSAN data race
Sanitizer: KMSAN uninitialized use
Sanitizer: UBSAN variety*

Kernel: WARNING / INFO / BUG Assertions on any unexpected behaviors
Kernel: GPF corrupted pointer dereference

* UBSAN (Undefined Behavior Sanitizer) can detect a variety of impacts

Table 1: Main impacts of bugs on syzbot

and uncover its true nature. The system can be easily
integrated into the pipeline of syzbot.

• To achieve both accuracy and scalability, we have
packaged together fuzzing, static analysis, and sym-
bolic execution together to achieve the end goals. To
facilitate reproduction and future research, we open
source the system [11].

• Our tool successfully converts 183 seemingly low-risk
bugs on syzbot to high-risk bugs including 42 of them
with control flow hijacking primitives and 173 with
write primitives.

2 Background and Overview

2.1 Syzbot and Bug Reporting
As mentioned earlier, syzbot is a platform that contin-
uously fuzzes the Linux mainline kernel branches. The
kernel version advances on a daily basis so that syzbot
always fuzzes the latest version. All discovered bugs are
not only sent to kernel developers and maintainers but
also published on an open dashboard in real time [29].
For every bug, it also includes valuable information such
as bug reports (e.g., call trace, perceived bug impact),
valid reproducers, specific kernel source version where
the bug was found, kernel configuration files, and patches
(if available). This is a valuable data source that is also
suitable for automated analysis.
Bug detectors. Syzbot uses the state-of-the-art ker-
nel fuzzer Syzkaller [30] which relies on handcrafted
“templates” or specifications that encode various knowl-
edge about syscalls, including their relationships (e.g.,
open() and close()) and the domain of syscall argu-
ments. During fuzzing, test cases will be generated ac-
cording to the templates and mutation on the test cases
will occur as well. Most importantly, there are two
general mechanisms to catch bugs at runtime. First, it
leverages various sanitizers that instrument the kernel
code to catch memory corruption bugs, including Ker-
nel Address Sanitizer (KASAN) [19], Kernel Concur-
rency Sanitizer (KCSAN) [27], and Kernel Memory San-
itizer (KMSAN) [28], each capable of catching a certain
class of bugs (categorized by their impacts, e.g., use-

after-free). Undefined Behavior Sanitizer (UBSAN) [13]
is a special sanitizer that is recently enabled and can de-
tect a variety of bug impacts [44]. Second, it relies on the
kernel itself with its built-in assertions such as BUG and
WARNING representing uncategorized errors and unex-
pected behaviors, as well as exception handling, e.g.,
general protection fault (GPF) due to accessing invalid
memory pages. Whenever a bug is discovered, it must be
caught by one of the mechanisms. The details are listed
in Table 1. In fact, the title of a bug report is automat-
ically generated according to the detection mechanism
and the perceived bug impact. For example, the bug title
“KASAN: use-after-free Read in hci dev do open” indi-
cates that it is caught by KASAN and the perceived bug
impact is use-after-free read.
Limitations of the current bug detectors. One princi-
ple currently embraced by fuzzers is that the execution
of some buggy input stops as soon as any bug impact
is discovered. This is because the goal of a fuzzer is to
discover new bugs and fix them. When the first error
is caught, it is pointless to let the program continue ex-
ecuting because it is already in a corrupted state. Any
subsequent buggy behaviors are further and further away
from the root cause of a bug, and therefore do not really
contribute in understanding and fixing a bug. However,
this principle does not help with realizing the maximum
impact of a bug. In fact, it is the opposite of what we
need because a bug can often lead to multiple impacts,
some of which may not be immediately uncovered and
may even require additional syscall invocations to mani-
fest.

2.2 High-Risk vs. Low-Risk Bug Impacts

Based on the recent literature [50, 21, 48, 49] and
the recent high-profile bugs that are exploited in prac-
tice [45, 33, 17], we define high-risk bug impacts to be
the following:

1. Any UAF and heap OOB bugs1 that lead to a func-
tion pointer dereference primitive, which is effectively a
control flow hijacking primitive that can likely lead to an
end-to-end exploitation (i.e., arbitrary code execution in
the kernel context) [49]. Such primitives can happen for
example when the function pointer is located in a freed
object or out-of-bound memory, and is incorrectly deref-
erenced.

2. Any UAF and OOB bugs that lead to a write prim-
itive, including overwriting a freed object or an object
out-of-bounds, and in general any writes to unintended
locations and/or with unintended values (e.g., a write by
dereferencing an unsafe data pointer). Write primitives,
as opposed to read, have the opportunity to corrupt con-

1Subsequently, we refer to heap OOB bugs as OOB bugs for brevity

trol data (e.g., function pointers) and can be effectively
turned into control flow hijacking as well. In addition,
write primitives can be used for data-only attacks that
achieve privilege escalation without explicitly altering
the control flow (e.g., by modifying the uid of a pro-
cess) [24].

3. Any invalid free bugs. This includes freeing a mem-
ory area that should not be freed or an already freed ob-
ject (the latter corresponds to double-free bugs). Invalid
frees can be turned into a UAF of multiple different can-
didate objects chosen by an adversary [22]. With the
freedom of choice of various candidate objects, the like-
lihood of finding a function pointer dereference or write
primitive is high.

In contrast, a low-risk impact is defined to be any-
thing other than the above. This includes any UAF or
OOB bugs that lead to only read primitives (without
write or function pointer dereference primitives), as well
as any other impacts such as WARNING, INFO, BUG,
and GPF, as defined in Table 1. Finally, we will give
a more detailed breakdown of the high-risk impacts by
their primitives in §3.3.

2.3 Motivating Example

To illustrate why that is the case, we use a real bug from
Syzbot [18] as an example to demonstrate how it is pos-
sible to turn a low-risk slab-out-of-bounds read bug into
a control flow hijack exploit.

As shown in Figure 1, the bounds of the iteration
cp->hash (line 2) can be turned larger than the size of ar-
ray cp->perfect (which resides on the heap), creating
a potential OOB situation(the vulnerable object marked
in green). More precisely, at line 8, an OOB read access
occurred via exts->actions, leading to a slab-out-of-
bounds read. Syzkaller stops at line 8 and generates a
bug report with the title of “KASAN: slab-out-of-bounds
Read in tcf exts destroy” on syzbot. Interestingly, even
if we allow the execution to continue forward during
fuzzing, it will almost always end up with an exception
at line 14 because it is highly likely that actions[i]
attempts to retrieve an element from an invalid address,
i.e., it is equivalent of *(actions+i). Note that actions it-
self can point to any random location because it was read
out-of-bounds (see line 8 and 9). As a result, one may
come to the conclusion this is indeed a low-risk bug.

However, since the entire exts structure is out-of-
bounds, it is actually possible for an attacker to control
the data at an appropriate offset by spraying a number
of objects nearby [21]. Specifically, if the correct data
is sprayed, actions[i] will retrieve an element from
a valid address and prevent the kernel from crashing at
line 14. After that, we are able to observe an arbitrary
address write opportunity at line 16. This is because

1 static void tcindex_free_perfect_hash(struct
tcindex_data *cp) {

2 for (int i = 0; i < cp->hash; i++)
3 tcf exts destroy(&cp->perfect[i].exts);
4 kfree(cp->perfect);
5 }
6

7 void tcf_exts_destroy(struct tcf_exts *exts) {
8 if (exts->actions)
9 tcf action destroy(exts->actions);

10 }
11

12 int tcf_action_destroy(struct tc_action *
actions[]) {

13 struct tc_action *a;
14 for (i = 0; i < TCA_ACT_MAX_PRIO &&

actions[i]; i++) {
15 a = actions[i];
16 actions[i] = NULL; // AAW
17 ret = tcf idr release(a);
18 }
19 }
20

21 int __tcf_idr_release(struct tc_action *p) {
22 if (tcf action put(p, ...))
23 ...
24 }
25

26 static int __tcf_action_put(struct tc_action
*p, ...) {

27 struct tcf_idrinfo *idrinfo = p->idrinfo;
28 if (refcount_dec_and_mutex_lock (&

p->tcfa refcnt, &idrinfo->lock)) {
29 ...
30 tcf action cleanup(p);
31 }
32 }
33

34 static void tcf_action_cleanup(struct
tc_action *p) {

35 if (p->ops->cleanup)
36 p->ops->cleanup(p); // FPD
37 }

AAW = Arbitrary address write
FPD = Function pointer dereference

Figure 1: A slab-out-of-bounds Read bug on syzbot

the pointer action comes from the OOB memory exts,
which means action can potentially point to any arbi-
trary memory address. Even further down, we can see a
control flow hijack opportunity arises at line 36 through
a function pointer dereference, where the value of the
function pointer p is controlled by an attacker as well
(basically actions[i]). By now, we can conclude that
this bug is actually very much high risk and needs to be
patched as soon as possible. Interestingly, no one seemed
to have realized the potential impact of the vulnerabil-
ity. As a result, the bug was silently fixed without any
CVE being assigned and it took almost 4 months (much
longer than the average time-to-fix). The fact that there is
no CVE assigned would also delay downstream kernels
from applying the patch.

2.4 Goals and Non-Goals
Goals. SyzScope aims to reveal high-risk impacts of a
seemingly low-risk bug by analyzing subsequent behav-
iors since the first reported impact and alternative paths
where high-risk impacts may be located. As alluded to
earlier, we believe there are two benefits provided by
SyzScope. First, it will facilitate prioritized bug fixing.
This is especially important given that the number of
kernel bugs that are discovered on a daily basis due to
continuous fuzzing and the transparency offered by the
syzbot platform. Second, it will speed up the patch prop-
agation in Linux-derived ecosystems. Even when a patch
is already available in Linux mainline, it can take months
and even years to propagate to all its downstream kernels,
e.g., Android [48, 53].
Non-goals. SyzScope does NOT aim to produce an
end-to-end exploit automatically, which would require
the automation of a number of additional steps such as
reliable heap feng shui, bypass of various defenses in-
cluding KASLR, SMEP, and SMAP [49]. Therefore,
we do not claim that the high-risk impacts we defined
are 100% exploitable. Instead, we aim to uncover as
many such high-risk impacts as possible, within a rea-
sonable time and resource budget. The more high-risk
impacts, the more likely an exploit can be generated. In
fact, our work is complementary to the research on au-
tomated exploit generation. For example, KOOBE [21]
is designed to take an OOB write bug and turn it into a
control flow hijack primitive. SyzScope can turn a seem-
ingly non-OOB bug or an OOB read into an OOB write
such that KOOBE can take it further and prove its actual
exploitability. Finally, SyzScope does NOT aim to eval-
uate bugs whose impacts are outside of the types listed
in Table 1.

3 Design

In this section, we describe the design of SyzScope. The
intuition driving the design is that uncovering more im-
pacts of a bug is fundamentally a search problem. In-
terestingly, even though a fuzzer is designed to essen-
tially search through an input space as well, its goal is
to optimize for maximum code coverage and/or number
of bugs; it is never to maximize the impacts of a given
bug. Therefore, SyzScope is designed to perform a much
more targeted search starting from a PoC that already un-
covers some impact of a bug.

High-level Workflow The workflow is depicted in Fig-
ure 2, which contains three main components: Vulner-
able Contexts Exploration, Hidden Impacts Estimation,
and Validation and Evaluation. They correspond to the
three main techniques that we leverage and integrate to-
gether: fuzzing, static analysis, and dynamic symbolic

Deployer
Low-risk bug
（PoC, report)

Kernel

PoC

System
call

Build

Extract

Distill

Kernel
Fuzzer

Vulnerable Context Exploration

Bug
Analysis

Taint
Analysis

Vulnerable
Site

Vulnerable
Object

Hidden Impact Estimation

PoCs with
additional

impacts

Paths to
each impact

Symbolic
Execution

Guide

Collector

Valid
Additional

Uses

Exploration and Validation

New
Bug

report

PoC 1

PoC 2

PoC N

…

Read/write
impacts

Figure 2: Workflow

1 void __rxrpc_put_peer(struct rxrpc_peer *peer) {
2 struct rxrpc_net *rxnet = peer ->local->rxnet;
3 ...
4 }
5

6 void rxrpc_send_keepalive(struct rxrpc_peer *peer)
{

7 ...
8 whdr.epoch=htonl(peer ->local->rxnet->epoch);
9 ...

10 peer ->local->socket->ops->sendmsg()
11 ...
12 }

Figure 3: Impacts of the same bug located in different
syscalls

execution. At a high level, given a PoC and its bug
report that demonstrates some low-risk impact, we first
start with a “fuzzy” approach by performing a targeted
fuzzing campaign to explore other potential vulnerable
contexts, i.e., additional impacts. This will allow us to
cast a wider net early on. Second, given these additional
PoCs and impacts (where some may be high-risk already
and may still be low-risk), we then leverage static analy-
sis to locate any potential high-risk impacts in alternative
execution paths that we have not yet been able to reach
during fuzzing. Finally, the static analysis will guide
the execution of symbolic execution to confirm whether
these high-risk impacts are reachable in practice.

3.1 Vulnerable Contexts Exploration

As can be seen in Figure 2, the vulnerable context
exploration component takes a seemingly low-risk bug
(including a PoC and a corresponding bug report), and
produces one or more new PoCs that exhibit additional
impacts (either low-risk or high-risk). The problem with
the original PoC is that it traverses only a single path
in the kernel and can therefore be very limited in terms
of impact coverage. By exploring more contexts (i.e.,
paths) associated with the bug, we are more likely to
uncover additional impacts. In general, there are two
logical possibilities that additional impacts are located.
First, it may be hidden directly behind the reported im-
pact, i.e., in the same invocation of a syscall as shown
in Figure 1. Second, it may be triggered in a completely

different syscall not present in the original PoC, and may
even require additional syscalls to set up the state before-
hand and removal of existing syscalls to undo some state.
Figure 3 illustrates a real case from syzbot (simplified)
to show two different impacts of the same bug. In the
original PoC, it causes peer->local to be freed acci-
dentally before entering function rxrpc put peer(),
leading to a UAF read. However, the PoC fails to dis-
cover the additional function pointer dereference which
is located in rxrpc send keepalive(). In addition,
rxrpc send keepalive() is not a function reachable
by rxrpc put peer(). Therefore, a good test case
would need to insert an additional syscall (with the right
arguments) after the syscall that triggered the free.

To this end, we will leverage Syzkaller to mutate the
original PoC and explore any missed additional impacts.
As mentioned in §2.1, the goal of a fuzzer is never to
uncover a bug’s maximum impact. However, it is suit-
able for Syzkaller to search for new contexts that may
be locked away in a specific sequence of syscalls [14].
More specifically, we define the original context as the
execution path exercised by the original PoC. Any new
context by definition must be associated with a different
execution path that must not share the same initial primi-
tive (UAF/OOB read or write). Along with vulnerable
context exploration, we also log all the impacts along
each path and attribute any high-risk impacts to the cor-
responding context.

Nevertheless, there are three challenges in making the
search effective. First, as illustrated earlier in Figure 1,
an earlier impact can block the execution from exploring
deeper parts of the code and uncovering additional im-
pacts. Second, even though a coverage-guided fuzzing
strategy is approximately aiming to explore more code
blocks and paths, it does not directly recognize the im-
portance of impacts. In fact, it is possible that a new im-
pact is triggered in an already explored path, e.g., OOB
access can happen in array element access only when an
argument (representing the array index) of a syscall be-
comes large enough. Third, we need to ensure that the
mutated PoC, should it uncover any new impacts, is still
exercising the same bug. Indeed, if we allow Syzkaller
to mutate any part of the PoC, e.g., by removing a criti-
cal syscall or adding arbitrary syscalls, then it is entirely
possible that the mutated test case will trigger a different

bug altogether.
To overcome the challenges, we make two important

changes to Syzkaller and made an important observation.
Impact-aware fuzzing. To address the first challenge,
we will attempt to carry on the fuzzing session even when
impacts are detected (by sanitizers or the kernel itself).
Specifically, only a few bugs like general protection fault
or some BUG impacts are irrecoverable errors (e.g., a
NULL pointer dereference and divide by zero); other
ones can be simply safely ignored. For example, when
an OOB read impact occurs, we simply allow the ker-
nel to read any data from out-of-bounds memory with-
out panic and continue executing. This way, it is pos-
sible that KASAN catches another OOB write eventu-
ally. To address the second challenge, we note again that
Syzkaller is an entirely coverage-guided fuzzer, i.e., its
feedback metric is only the coverage. However, it tends
to focus its attention and energy quickly on newly cov-
ered code, leaving covered but potentially buggy code
space behind. Therefore, we introduced the feedback of
impact. The idea is that Syzkaller will now consider a
test case as a seed not only when it discovers any new
coverage but also when it discovers any new impact. As
it is rare to discover test cases that uncover new impacts,
we always assign higher priority to them for mutation.
Restricted-fuzzing space. By default, Syzkaller con-
siders all syscalls in the operating system as candidates
to insert into a test case (during mutation). However,
clearly this is undesirable for uncovering impacts of a
specific bug. For instance, a bug in the kvm module
should not allow the TCP/IP modules’ syscalls, which
will likely drive the test cases to cover code outside of
kvm. Therefore, to address the third challenge, we re-
strict the syscalls to those Syzkaller templates that sub-
sume the syscalls in the PoC. In addition, we preserve
all the syscalls in the original PoC and allow only inser-
tion of syscalls. We also allow the mutation of arguments
of existing syscalls. This strategy aims at preserving the
root cause of a bug while still allowing new impacts to
be discovered. If the above restricted-fuzzing strategy
cannot uncover any new impacts or coverage (currently
after a threshold of 5 minutes), we will activate another
slightly more aggressive fuzzing strategy, where we will
relax the restrictions to allow syscalls against the entire
module, e.g., all syscalls related to the networking mod-
ule or kvm module (one module sometimes can corre-
spond to multiple templates). In addition, we also allow
the removals of syscalls in the original PoC (though the
latter is set to a very low probability).
Side effects of fuzzing. Unfortunately this does still re-
sult in test cases that trigger different bugs. In fact, as we
later find out, close to half of the new impacts are associ-
ated with a completely unrelated bug, where the other
half are indeed new impacts belonging to the original

bug. Therefore, we choose to perform fuzzing only when
we have a strategy to confirm whether a new impact be-
longs to the original bug. Specifically, where patches are
already available, i.e., the second use case of SyzScope
as discussed in §2.4, we develop a heuristic that can do
so accurately. The details are deferred to §4.

3.2 Hidden Impacts Estimation

From the previous step, we have likely found more PoCs
that uncovered additional impacts. However, it is pos-
sible that they are still low-risk impacts. After all, it is
challenging for a fuzzer to explore deeper part of the ker-
nel code, especially when there are complex conditions
that may prevent it from making progress. Therefore, we
can invoke the hidden impact estimation component to
determine whether further high-risk impacts beyond the
low-risk ones are available. Specifically, given an exist-
ing low-risk impact, we leverage static analysis to con-
duct a type-specific search. At the moment, we support
the analysis of two types of low-risk impacts, i.e., UAF
read and OOB read. Again, we choose them because
UAF and OOB are two of the most dangerous bug im-
pact types. In order to discover high-risk impacts such as
write or function pointer dereference impact, we formu-
late the problem as a static taint analysis problem as will
be articulated later.

This component requires two inputs: a PoC that trig-
gers one or more UAF/OOB read impacts, and the corre-
sponding bug report as input. It then extracts two pieces
of critical information from the report: (1) vulnerable ob-
ject and (2) vulnerability point(s). A vulnerable object is
defined to be the freed object (in the UAF case) and the
object intended to be accessed yet an out-of-bound ac-
cess occurred (in the OOB case). A vulnerability point is
the statement where the use of a freed object happens (in
the UAF case) or the OOB memory access (in the OOB
case) occurs.

We first observe that the UAF/OOB read impacts are
due to the read of some data that can be potentially con-
trolled by an adversary, i.e., either a freed and refilled ob-
ject or something sprayed next to the vulnerable object.
This means that any subsequent use of the read memory
can be potentially dangerous. Specifically, we consider
dereferences of function pointers that are derived from
such memory high-risk impacts, i.e., UAF/OOB function
pointer dereferences (as mentioned in §2.4). Similarly,
we consider any dereferences of data pointers that are de-
rived from such memory high-risk impacts if they lead to
memory writes (to an attacker-controlled address), e.g.,
*data ptr = 0.

The second observation is that UAF/OOB write im-
pacts are basically writes to the same planted memory
by an adversary. For example, if a planted object whose

function pointer is overwritten due to a UAF/OOB write,
it can potentially lead to arbitrary code execution, as line
32 in the example presented in Figure 1 shows.

To summarize, the above high-risk impacts can be for-
mulated as a static taint analysis problem. For pointer
dereferences, the taint source will be the vulnerable ob-
ject. The sink would be the dereference of a pointer (ei-
ther function pointer or data pointer that leads to a write).
Whenever any source flows to the sink, we consider it a
high-risk impact. It is slightly different for UAF/OOB
write. The taint source is the same. However, we do not
need any sinks. Instead, whenever any value is written to
the tainted memory, we consider it a high-risk impact. In
the example presented earlier in Figure 1, line 16 is such
a write to the OOB memory.

In addition to reporting the additional impacts, we also
record the branches that definitely need to be taken and
the ones that definitely need to be avoided in order to
reach the them. This is later used to guide the symbolic
execution. We defer the implementation details of the
static taint analysis to §4.

3.3 Validation and Evaluation
As shown in Figure 2, this module takes a PoC with po-
tentially new high-risk impacts, aim to achieve two goals
in this component: (1) validating the feasibility of reach-
ing these high-risk impacts, and (2) evaluating the more
fine-grained impact in terms of the enabled primitives,
e.g., arbitrary value write vs. constrained value write.
Validate the feasibility of high-risk impacts. In this
step, we symbolize the same vulnerable object, i.e., taint
source in static analysis, dynamically at the point when
the vulnerable object is first read, e.g., an OOB read or
UAF read. The entire vulnerable object is symbolized
with the assumption that an attacker can spray desired
payloads onto the heap. However, a well-known limita-
tion of symbolic execution is its scalability due to path
explosion. Therefore, we additionally leverage static
analysis to guide the symbolic execution in two ways: (1)
When an additional impact is found to be far away(40 ba-
sic blocks is our current threshold, see the details at 5.2)
from the initial impact, we take the path guidance from
static analysis results in terms of which branches must
and must not be taken. For example, an additional im-
pact can be located in only a specific true branch, and
therefore the false branch does not need to be explored.
This avoid unnecessary explorations during symbolic ex-
ecution and therefore speed up the process. Currently we
choose to apply the guidance only when the additional
high-risk impact is at least 40 basic blocks away intrapro-
cedurally . This is because if they are nearby, symbolic
execution will have no problem locating them anyways.
Furthermore, we are not able to rule out any potential

false negatives from static analysis and therefore it is best
to let symbolic execution explore all possible paths. (2)
Based on the farthest potential high-risk impact, we limit
the scope of the analysis up to that point. Otherwise, the
symbolic execution may continue executing until the end
of a syscall, taking much more significant time.
Evaluate the fine-grained impacts. As mentioned ear-
lier in §2.2, the high-risk impacts can include three types
of primitives: write, func-ptr-deref, and double free. Be-
low we discuss the write and func-ptr-deref primitive.

(1) Overwriting symbolic memory. The impact of such
a write requires a more careful analysis. For example,
when such an OOB write occurs, it is necessary to un-
derstand the offset of the write, the length of the write,
and the data that can be written [21]. Then we can eval-
uate whether the write is flexible enough to overwrite a
function pointer in a heap-sprayed object nearby. Since
such an analysis is already done in [21], we simply refer
to such writes as UAF write or OOB write and leave them
to existing work for further triage.

(2) Write with symbolic data or write to symbolic ad-
dress. When the write target is symbolic or data to-
be-written is symbolic, We follow a classic definition
of a write primitive is “write-what-where” [1]. For the
“what” dimension, it will be either an “arbitrary value”
or “constrained value” write, depending on the absence
or presence of any symbolic constraints on the value. For
the “where” dimension, it will be either an “arbitrary ad-
dress” or “constrained address” write, again depending
on the symbolic constraints of the address. More con-
cretely, considering a write instruction mov qword ptr

[rax], rdi. It attempts to store the data in rdi to an
address stored in rax. If rdi is symbolic, it may be
considered an arbitrary value or constrained value write.
Similarly, if rax is symbolic, it may be considered an ar-
bitrary address or constrained address write. Note that
KASAN cannot detect such primitives because it is de-
signed to catch the initial read of freed/OOB memory.
Subsequent propagation of them via writes may require
taint tracking.

(3) Dereferencing symbolic function pointer is de-
tectable by monitoring the symbolic status of the func-
tion pointer. Similar to the write primitives, KASAN can
only detect the initial problematic read, and not the sub-
sequent use (i.e., function pointer dereference) of the
freed/OOB memory.

(4) Passing pointer (either being symbolic or pointing
to symbolic memory) to free function. To detect invalid
frees (including double frees), we examine the pointer
argument of heap free functions such as kfree(). If the
pointer itself is symbolic, it indicates that an attacker can
control the memory that will be freed, therefore corre-
sponding to the invalid free cases. If the pointer itself
is not symbolic but the memory the pointer points to is,

it is considered a double free (we group these two cases
together as invalid frees).

4 Implementation

In this section, we describe details about each component
in SyzScope. In total, the system has over 10K lines of
code and is fully automated.

4.1 Vulnerable Context Exploration

There are several things worth describing in more details
in this component.
Impact-aware fuzzing. Syzkaller has two major com-
ponents: (1) the fuzzer itself that runs on a target OS
where test cases are executed (i.e., syz-fuzzer), and (2)
a manager that runs outside of the target OS, oversee-
ing the fuzzing process (i.e., syz-manager). The fuzzer is
designed to mutate test cases locally and only send test
cases that contribute to more coverage back to the man-
ager. However, different for traditional coverage-guided
fuzzing, our impact-aware fuzzing will mutate a PoC that
already leads to an impact, which essentially causes a
crash of the entire target OS. This often leads to a burst
of crashes, which means the fuzzer will lose the states of
the mutation because of the crash. By default, the man-
ager will simply log the test case but no further mutation
will be performed, because it is likely going to trigger the
same bug over and over again. In our implementation,
we enable the manager to remember the impact-inducing
PoC and send it to the fuzzer for mutation (currently 500
times), preempting any other mutation of regular seeds.
If a new impact is discovered, the corresponding PoC
will then be treated similarly.
Multiple impacts in a single PoC. As mentioned ear-
lier in §2.1, Syzkaller by default allows only the first
impact to be reported while ignoring all the rest. This
means that if a PoC happens to trigger multiple bug im-
pacts, e.g., one UAF read and another UAF write, the
later impacts are hidden. This contradicts with our goal
of recovering more bug impacts. Therefore, we turn
on a KASAN booting option called kasan multi shot

when booting the kernel, which will present all im-
pacts instead of only the first. However, there are some
impacts that are not possible to ignore, e.g., a NULL
pointer dereference which would cause an irrecoverable
crash. We can bypass some other assertion-related ker-
nel panics by disabling panic on warn in the kernel
boot options or some options in the kernel config like
CONFIG BUG ON DATA CORRUPTION. Note that these de-
bugging options are turned on specifically for fuzzing or
debugging (as they are useful in catching errors). In prac-
tice, they are off by default in production settings.

Confirming the impact belonging to the same bug. As
described earlier in §3.1, when a bug already has a patch
available (we assume that these patches are correct), we
use a heuristic that can use the patch to test whether a
new PoC and its new impacts (generated from fuzzing)
are still a result of the same bug. The idea is as follows.
If a new PoC can still trigger the same impact after the
patch (as well as all prior commits) is applied, clearly the
new PoC is triggering a different bug. However, if it no
longer works, we are not sure if it is because of the patch
itself that breaks the PoC or one of the earlier commits
does so. To deal with this ambiguity, instead of applying
the patch and its prior commits up to that point, we will
attempt to apply the patch commit itself directly. If it
can be successfully applied, i.e., git does not reject it and
kernel compiles/boots normally without breakage, then if
the new PoC no longer works, we say that the PoC is in-
deed exploiting the same bug. Otherwise, if it cannot be
successfully applied, we will instead apply all the com-
mits up to the patch (but not including the patch itself)
and retest the PoC. If it can reproduce the impacts, then
we know that these intermediate commits do not inter-
fere with the bug triggering. Therefore, we know that the
new PoC is still triggering the same bug, because earlier
we have verified that it does not work against a patched
kernel (with all prior commits applied also). The one
last remaining corner case is that the PoC cannot repro-
duce the impacts when we apply all the commits up to the
patch (but not including the patch itself). In such cases,
we will act conservatively and simply give up the new
PoC because it remains ambiguous.

4.2 Hidden Impacts Estimation

Our static analysis engine is built on top of DR.

CHECKER [39], which is flow-sensitive, context-sensitive,
field-sensitive, and inter-procedural. We made some
changes to adapt it to our scenario as described below.
Interfacing with the fuzzer result. Recall that our static
analysis engine takes a vulnerable object and vulnerabil-
ity point(s) as input. Since DR. CHECKER is based on
LLVM IR, the input would also be given at the LLVM
IR level. However, the fuzzing result (KASAN report)
includes such information at the binary level, thus re-
quiring a mapping from the binary to IR. Specifically,
it includes (1) the call trace that contains vulnerability
points that trigger the UAF/OOB bug (binary instruction
addresses). (2) the size of a vulnerable object and the off-
set at which the vulnerable object is accessed (in either
UAF or OOB).

With such information, we will first try to locate the
vulnerable function that triggered the impact in LLVM
IR. Usually, the vulnerable function is the first function
on the call trace besides KASAN-related ones. However,

if the vulnerable function is inlined, we then resort to
its caller (potentially recursively if multiple layers of in-
lining occur). To simplify the handling of inlined func-
tions, we choose to compile the kernel using Clang with-
out any inlining to generate the kernel bitcode. After lo-
cating the vulnerable function in LLVM IR, we leverage
the Clang-generated debug information to map each IR
instruction back to a corresponding source line. Specifi-
cally, we look for a load IR instruction that maps to the
same source line number as what is reported in the vul-
nerable function in the KASAN report. Once we success-
fully locate such a load instruction that triggers the bug,
we can retrieve the base pointer (vulnerable object) of the
load instructions and taint the object.
Trace recorder: In order to generate the branch guid-
ance for symbolic execution (described in §3.2), we
record the detailed taint trace from an initial vulnerability
point to the high-impact one, including the calling con-
text and instruction of each taint propagation. This way,
if the taint propagation occurs in a specific call sequence
and specific branch, we can precisely drive the dynamic
symbolic execution accordingly.

4.3 Validation and Evaluation
There are two possible symbolic execution engines we
can potentially use: S2E [23] and angr [15]. S2E is a
great candidate as it is designed to support dynamic (in-
vivo) symbolic execution, such that most of the memory
locations are populated with runtime data. This limits the
symbolized memory to a much smaller scope, i.e., those
that are potentially controlled by an adversary. Unfor-
tunately, S2E supports only a single CPU core in each
QEMU instance [8]. Therefore, it has a major drawback
in its ability to reproduce race condition bugs. In our
preliminary experiments, we find that over half of the
race condition bugs simply cannot be reproduced reliably
within a reasonable time frame, i.e., an hour. Therefore,
we decided to first reproduce bugs in a vanilla QEMU.
Once the bug is successfully reproduced (KASAN report
being triggered). The breakpoint we set in KASAN report
function will immediately freeze the memory of QEMU,
and provide the corresponding CPU registers and mem-
ory address of the vulnerable object (either freed object
or an object that is out-of-bounds) to angr. Whenever
angr needs to access a memory location, we will look up
their actual values on the snapshot on demand.

5 Evaluation

5.1 Dataset and Setup
We evaluate SyzScope against the majority of low-risk
bugs reported on syzbot. At the time of writing, there

are 3,861 low-risk bug reports in total according to our
definition. We exclude the ones detected by KCSAN,
KMSAN, UBSAN. This is because they are either not
mature enough yet (KMSAN and UBSAN) and do not
contain critical information in the bug reports for us to
continue the analysis (e.g., vulnerable object), or do not
have any valid reproducer (none of the KCSAN bugs has
a reproducer). After this step, there are 3,267 remaining
bug reports.

Next, we filter the bug reports that do not target the up-
stream Linux kernel (which is our main focus) and those
that do not contain any reproducer (either a Syzkaller
program or a C program). Then, we divide the dataset
into “fixed” and “open” sections. For the fixed cases,
since each bug report comes with a corresponding patch,
we can deduplicate bug reports based on shared patches
(unfortunately we are unable to do so for the bugs in the
open section), e.g., the bug reports may look different but
their root causes are the same. In our tests, we pick only
one bug report from the group that share the same patch.
Specifically, we use the one with the highest risk impact.
For example, if a low-risk impact bug report (e.g., UAF
read) happens to share the same root cause (i.e., same
patch) with a high-risk one (e.g., UAF write), we elimi-
nate the entire group of reports because the correspond-
ing bug should be recognized as high-risk already. If a
WARNING bug report happens to share the same patch
with a UAF read report, we will pick the UAF one as
input to SyzScope, because it already contains critical
information such as the vulnerable object, allowing us to
continue the analysis in the pipeline. Otherwise, we sim-
ply randomly pick a bug report among the available ones
(WARNING, INFO, BUG, or GPF) as there is no major
difference. Finally, we obtain 1,170 bug reports (after
deduplication) and their corresponding reproducers.

In our current configuration, to be conservative, we do
not attempt the vulnerable context exploration step on
bug reports in the open section since we can not ver-
ify the new impacts still belong to the same bug (as
discussed in §3.1). All experiment are conducted in
Ubuntu-18.04 with 1TB memory and Intel(R) Xeon(R)
Gold 6248 20 Core CPU @ 2.50GHz * 2. For each bug
report and its reproducer, we allocate a single CPU core
for 3 hours of kernel fuzzing maximum, 1 hour of static
analysis (it usually finished within half an hour), and 4
hours of symbolic execution.

5.2 Overall Results

In total, out of the 1,170 low-risk bugs analyzed by SyzS-
cope, we report that 183 of them turn out to contain at
least one high-risk impact. This is more than 15% of all
the bugs. Furthermore, out of the 183 bugs, 173 have at
least one write primitive (e.g., UAF/OOB write, arbitrary

Initial Bug Impact Raw bug
reports

Valid
bugs*

High-risk
bugs*

High-risk
impacts

High-risk impact breakdown by primitive type

UOW AAW CAW AVW CVW FPD IF

Fixed
GPF and BUG 687 215 17 323 71 124 62 29 20 8 9
WARNING and INFO 918 293 15 379 85 166 66 20 30 9 3
UAF and OOB Read 680 202 99 2866 319 1490 446 271 153 104 83

Open
GPF and BUG 225 83 4 6 4 0 0 0 0 0 2
WARNING and INFO 541 292 10 501 97 213 91 47 22 18 13
UAF and OOB Read 216 85 38 768 151 381 113 43 22 40 18

Sum 3267 1170 183 4843 727 2374 778 410 247 179 128
* Valid bugs and high-risk bugs in the fixed section are all unique ones (after deduplicating based on the bug reports)

UOW= UAF/OOB write, AAW= Arbitrary address write, CAW= Constrained address write, AVW= Arbitrary value write
CVW= Constrained value write, FPD= Function pointer dereference, IF= Invalid Free

Table 2: Overall Results

address write). 42 of them have at least one func-ptr-
defer primitive.

We break the results down, first by open vs. fixed
bugs, and then by the initial bug impact type. The re-
sults are shown in Table 2. In addition, we categorize
the high-risk impacts into 7 primitives, as defined in §3.3
and listed in the table.

First, comparing the results for open and fixed bugs,
we can see in general there is a higher percentage of low-
risk bugs turned into high-risk in the fixed section com-
pared to the ones in the open section (18.4% vs. 11.3%).
In addition, the average number of primitives for each
bug in the fixed section is 27.2 versus 24.5 in the open
section. This is because the open bugs did not go through
the vulnerable context exploration phase, due to the con-
cern that newly discovered contexts may belong to dif-
ferent bugs (as mentioned in §3.1). As another evidence
demonstrating the utility of fuzzing, we find that bugs
in the fixed section have 1.33 contexts on average com-
pared to the only 1 context per bug in the open section.
Since each context has about 22 primitives on average, it
is clear that fuzzing will allow more primitives to be un-
covered. Nevertheless, even without the help of fuzzing,
SyzScope still managed to turn 52 open bugs from low-
risk into high-risk.

In addition, it is worth noting that bugs with initial im-
pacts being UAF/OOB read have a much higher chance
of turning into high-risk cases. In the fixed section, 99
out of 202 UAF/OOB read cases can be turned into high-
risk. Furthermore, the total number of high-risk impacts
for just the 99 cases is 2866 (on average 29 per case). In
the open section, 38 out of 85 UAF/read cases (slightly
smaller fraction) can be turned into high-risk.

For GPF, BUG, WARNING, and INFO, they usually
represent a diverse set of root causes which are masked
by the kernel itself or simply exceptions. In reality, there
are still a subset of these cases that are really memory
corruption bugs. Indeed, we are able to discover 46 high-
risk cases out of 883 in these categories across fixed and

open sections. In general, GPF and BUG cases typically
represent more serious bugs in the kernel (compared to
WARNING and INFO) and some of these impacts can
lead to exceptions that are difficult to bypass (as men-
tioned previously, e.g., NULL pointer dereference). As
a result, we find that the number of new impacts discov-
ered under them is very small in the open section, as we
did not perform any fuzzing.

With respect to the impact primitives, We can see that
the arbitrary address write has by far the highest num-
ber. This demonstrates the necessity of applying sym-
bolic execution, as such impacts can only be uncovered
with such analyses. If one can write to an arbitrary ad-
dress, it is typically a strong primitive (even if the write
value is not arbitrary) that is highly exploitable, espe-
cially when combined with a read primitive [32].

The second most common types of primitives are ar-
bitrary value and constrained value write (778 and 410
cases in total), followed by UAF and OOB wirte (727 in
total). Writing arbitrary values can be dangerous but its
exploitability depends highly on where we can write to.
The UAF and OOB write are generally serious as an at-
tacker can often choose multiple different objects (e.g.,
containing a function pointer) to overwrite [21, 50].

The func-ptr-defer primitives are relatively rare (179
cases in total) but highly exploitable [49]. We sampled
a few cases for further analysis and managed to write
three working PoCs that can successfully hijack the con-
trol flow of the kernel. One of them will be described
in the case studies later. Finally, we find 128 invalid free
primitives, which can be turned into adjustable UAF bugs
as mentioned in §2.2.

5.3 Component by Component Analysis
Now that we have shown the end-to-end results, we break
them down by components to understand the contribu-
tion of each. Here we focus on fixed bugs only because
we applied all the components in SyzScope.

Initial bug impact High-risk bugs
by fuzzing

Primitives found by
fuzzing

Extra high-risk
bugs by S&S

Extra primitives
found by S&S

GPF and BUG 13 37 4 285
WARNING and INFO 11 33 4 346
UAF and OOB Read 42 128 57 2738

S&S = Static analysis and symbolic execution

Table 3: Result breakdown by components on fixed bugs

Specifically, we show the intermediate results ob-
tained from fuzzing alone, and then the additional results
from performing the static analysis and symbolic execu-
tion (S&S) on top of fuzzing. As a main result shown
in Table 3, we can see that 66 bugs are turned from low-
risk to high-risk by fuzzing alone, and an extra 65 bugs
are turned after the static analysis and symbolic execu-
tion (S&S).
Vulnerable Context Exploration. Even though fuzzing
is generally effective, due to the lack of systematic path
exploration as is done by symbolic execution, we see that
the number of primitives found by fuzzing alone is lim-
ited (as shown in Table 3). This is because every context
(i.e., path) provided by fuzzing is concrete and thus only
a limited number of primitives may be covered. Further-
more, as mentioned in §3.3, fuzzing relies on KASAN
which by design is unable to recognize the more indirect
types of primitives such as arbitrary address write or con-
trol flow hijacking. This is the reason why we still con-
tinue with S&S even if the bug is determined to be high-
risk by fuzzing. For example, we may find a UAF write
primitive through fuzzing, but through S&S we may find
an even more serious control flow hijacking primitive.
Nevertheless, new contexts can be beneficial for S&S, as
they can be considered as ”seeds” fed into the S&S to ex-
plore many more paths and uncover more primitives. As
we mentioned in §5.2, there are on average 1.33 contexts
on average per fixed bug from fuzzing.

On a different note, we verified the heuristic we pro-
posed in §4.1 to confirm that the new impacts found
through fuzzing indeed belong to the same bugs. To do
so, we manually analyzed 10 sampled new impacts cor-
responding to 10 different bugs found by SyzScope. We
are able to confirm they are all caused by the same bug.
Hidden Impact Estimation. Here, we evaluate the ef-
fectiveness of using static analysis to guide the symbolic
execution. In particular, we sampled 53 bugs and eval-
uated them with and without the guidance using static
analysis. We observed 16 bugs, with guidance, expe-
rienced a 12x-190x speedup compared to no guidance,
which allowed the symbolic execution to finish in min-
utes as opposed to hours. In addition, we found 2 bugs
whose high-risk impacts can be found only with guided
symbolic execution, and the unguided version simply
finds nothing in four hours.

However, we note that there is a fundamental tradeoff

between running time and false negatives. This is be-
cause our static analysis is not sound and can potentially
miss important primitives. Therefore, as mentioned in
§3.3, we set a threshold of 40 basic blocks and only prim-
itives beyond the distance of 40 will trigger the guidance.
We also evaluate the choice of the threshold by varying
it as 30, 40, and 50. With a threshold of 30, we observe
seven more false negative cases compared to the thresh-
old of 40, due to the fact the static analysis missed those
primitives that are located in a distance between 30 and
40. With a threshold of 50, we find two primitives in
a distance between 40 and 50 will take more than four
hours to finish (as they become unguided). Note that this
threshold is considered suitable for our experiment setup
only. With more resources to expend on symbolic execu-
tion, the threshold can be further increased.
Exploration and Validation. As we mentioned earlier,
on top of the 66 bugs that were turned from low-risk
to high-risk by fuzzing alone, SyzScope turned an ad-
ditional 65 bugs (via S&S) from low-risk into high-risk,
i.e., from zero primitive to at least one. The result shows
that the different components are complementary to each
other. Note that even if fuzzing has already found a prim-
itive, we still applied the static analysis and symbolic ex-
ecution to find even more primitives, to obtain a more
complete picture of the bug impact. In fact, the major-
ity of the high-risk primitives are attributed to S&S, as
shown in Table 3.

We also considered the scenario where we omit the
fuzzing phase altogether and apply S&S directly to the
original context provided by the reproducer. Interest-
ingly, we find that it is still capable of turning all but
two bugs into high-risk (albeit with a a subset of primi-
tives discovered). This shows that there are many bugs
that had at least one primitive reachable from the original
context.

5.4 False Positives & False Negatives
False Positives. By design, SyzScope confirms all the
high-risk impacts dynamically through either fuzzing or
dynamic symbolic execution, and therefore should not
incur any false positive. Nevertheless, in practice, we do
make implementation-level simplifications for scalabil-
ity considerations that can potentially lead to false pos-
itives. For example, during the dynamic symbolic exe-
cution, we skip a list of common kernel functions (a to-
tal of 51) such as printk(), kasan slab free() for
performance reasons, which can potentially lead to un-
wanted side effects. Fortunately, we have not observed
any false positives because of this.
False Negatives. It is expected that SyzScope will incur
false negatives as the solution is opportunistic in nature.
To understand the extent of the problem, we manually

1 static int bfs_create (...){
2 ...
3 ino = find first zero bit(info->si imap, info ->

si_lasti + 1);
4 if (ino > info ->si_lasti) {
5 ...
6 return -ENOSPC;
7 }
8 set bit(ino , info->si imap);
9 ...

10 }
11

12 unsigned long find_first_zero_bit(const
unsigned long *addr, unsigned long size)

13 {
14 unsigned long idx;
15 for (idx = 0; ...) {
16 if (addr[idx] != ~0UL)
17 return min(idx * BITS_PER_LONG + ffz(

addr[idx]), size);
18 }
19

20 return size;
21 }

Figure 4: Code snippet of a arbitrary address write

inspected 83 bugs and noticed that the false negatives
can come from three different sources. (1) Failing to
find more vulnerable contexts. We observed 4 bugs with
an incomplete set of primitives because SyzScope fails
to find the appropriate vulnerable contexts. Specifically,
race condition is the major reason in such cases. (2) Im-
precise static analysis. We observed 2 bugs that have
an incomplete set of primitives because of the imprecise
result from static analysis. (3) Timeout of symbolic exe-
cution. We observe 3 bugs that have an incomplete set of
primitives due to the early termination of symbolic exe-
cution (currently a 4-hour timeout). We discover these
cases by increasing the timeout to 16 hours. In sum-
mary, all of the above false negatives can be potentially
reduced when given more computational resources, e.g.,
more fuzzing time and symbolic execution time (with-
out having to rely on the precision of static analysis). We
also note these 9 bugs are all turned into high-risk already
because SyzScope found other primitives.

5.5 Case Studies

In this section, we provide a few case studies to high-
light the process through SyzScope successfully con-
verted low-risk bugs into high-risk ones.

OOB read =⇒ Arbitrary address write. Figure 4
shows a real case on syzbot titled “KASAN: slab-out-
of-bounds Read in find first zero bit” [5]. Starting at
line 3, info->si imap was already out-of-bounds (we
omit the code earlier), which is passed as an argument to
find first zero bit(). Then, there is an OOB read
impact caught by KASAN at line 16. However, if line 17
is executed next, which does occur during fuzzing, it will

1 static void tcp_check_sack_reordering(struct
sock *sk, ...)

2 {
3 struct tcp_sock *tp = tcp_sk(sk);
4 ...
5 fack = tcp highest sack seq(tp);
6 if (! before(low_seq , fack))
7 return;
8 tp->reordering = min_t (... , ...);
9 tp->reord seen++;

10 ...
11 }
12

13 static inline u32 tcp_highest_sack_seq(struct
tcp_sock *tp)

14 {
15 if (!tp->sacked out)
16 return tp->snd_una;
17 if (tp->highest sack == NULL)
18 return tp->snd_nxt;
19 return TCP_SKB_CB(tp ->highest_sack)->seq;
20 }

Figure 5: Code snippet of a constrained value write.

lead to a write impact in set bit() (invoked at at line
8). Since we allow the kernel to continue executing de-
spite a bug impact being caught by KASAN (see §4.1),
the write impact is reported during the fuzzing process.
Specifically, set bit() will take the info->si imap

as a memory address and set one bit to ino. During
the symbolic execution (the scope of which is guided by
static analysis), we can quickly determine the write im-
pact is feasible and determine that it is an arbitrary write
primitive because the only constraint on info->si imap

is addr[idx] != 0UL at line 16.
UAF read =⇒ UAF write. Figure 5 is a real ex-

ample from a use-after-free read bug [7] on syzbot,
tp is a freed object, KASAN catches the UAF read
at line 15. There are two UAF write impacts at line
8 and 9 afterwards. Due to the non-zero value of
tp->sacked out at line 15 and tp->highest sack at
line 17, tcp highest sack seq() consistently return
at line 19, which makes the following condition at line 6
always true. This prevents the two write impacts from
being unreachable. However, since we know the en-
tire tp object was freed, we can in principle control
the value of the object by heap spraying. Therefore,
symbolic execution will determine the right values of
tp->sacked out and tp->highest sack in order to
reach the write impacts. Note that according to §3.3,
these two write impacts are considered “UAF write prim-
itives” because it writes to the symbolic memory (i.e.,
freed object tp), as opposed to the above case study
where the we write to a symbolic address. In order to
exploit the bug further, we will need to spray an object
that has a function pointer or data pointer which will be
overwritten (due to line 8 and 9).

UAF/OOB read =⇒ func-ptr-deref. Figure 1 illus-

1 bool refcount_dec_and_mutex_lock(refcount_t *
r, struct mutex *lock)

2 {
3 if (refcount_dec_not_one(r))
4 return false;
5 ...
6 return true;
7 }
8

9 bool refcount_dec_not_one(refcount_t *r)
10 {
11 unsigned int new , val = atomic_read (&r->refs);
12

13 do {
14 if (unlikely(val == UINT_MAX))
15 return true;
16 if (val == 1)
17 return false;
18 new = val - 1;
19 if (new > val) {
20 ...
21 return true;
22 }
23 } while (...);
24 return true;
25 }

Figure 6: Code snippet of refcount dec and mutex lock
and refcount dec not one

trates a real case [6] on syzbot initially marked as an
OOB read. It was described as the motivating exam-
ple already. To exploit the bug, we need to reach line
36 to dereference a function pointer from the out-of-
bounds object or its derived objects, and then we can
hijack the control flow. Again, due to the fact that
the fuzzing process is blocked at line 14 due to an ex-
ception, it required symbolic execution to provide a le-
gitimate value of actions. In addition, at line 28,
there is another condition regarding the return value
of refcount dec and mutex lock() (invoked at line
28), which has to turn true. Figure 6 illustrates the in-
ternals of the function. Here, the parameters r and lock

are still from out-of-bounds memory, and therefore take
symoblic values. In order to determine the right values of
them, we need to follow into refcount dec not one()

and make sure that it will return false, in order to return
true at line 6 ultimately, we have determined that val
should be 1 in order for this to happen. As we can see,
this example is more convoluted involving more condi-
tions and more path exploration by symbolic execution.
As a result, the symbolic execution is guided according
to the direction at each condition, which eventually fin-
ishes the exploration in only 18 seconds. Without guid-
ance from static analysis, symbolic execution is unable
to find this function pointer dereference in 2 hours. We
have managed to write an actual exploit that does the ac-
tual heap spraying and show that we can hijack the con-
trol flow, i.e., execute code at an arbitrary address.

5.6 Disclosure
In this section, we validate the utility of SyzScope in
terms of helping with timely patch propagation to down-
stream kernels (for fixed bugs), as well as enabling the
prioritization of bug fixes in the upstream (for open
bugs).
Downstream kernels. We initially attempted to report
to downstream kernels (e.g., Ubuntu) and have them
apply patches from upstream after we determine that
the patches are missing. This is unfortunately time-
consuming as we have to manually analyze the source
to determine which downstream kernels are actually af-
fected by the bug. Eventually, we followed the sugges-
tion from a Ubuntu kernel developer [3] and resort to
the CVE Numbering Authority. Interestingly, we ob-
serve that the majority of the syzbot bugs do not have
any CVEs assigned to them. Thus, if we are able to suc-
cessfully request CVEs for the high-risk bugs, we can
potentially benefit all the distributions that follow the
CVE database. We reported all 32 high-risk bugs after
Linux kernel v4.19. At the time of writing, 8 of them
have already been assigned CVEs and we have not heard
back from the remaining 24. As an example demon-
strating the effectiveness of this strategy, the publica-
tion of CVE-2021-33034 has led to immediate actions
by Ubuntu [12], Fedora [4], RedHat [9], and Debian [2].
Upstream kernels. Since the CVE assignment is pred-
icated on the availability of patches, we had to report
our findings directly to upstream kernel developers. This
process is more tricky than we anticipated. In total, we
have reported 6 bugs in the open section out of the total
34 high-risk bugs determined by SyzScope. We reported
a subset because it turns out that most open bugs already
have a pending fix (but need time to be confirmed effec-
tive). At the time of writing, we have seen two patches
submitted because of our reporting (with email replies
to the same thread), demonstrating the positive influence
on getting important security bugs fixed. During the pro-
cess of reporting, while we have received appreciation of
our project and reports, we have also learned that there is
a serious lack of resources to fix syzbot-generated bugs,
which is likely the reason why we have not received re-
sponses for the other 4 bugs. Nevertheless, we do receive
some positive feedback on our research [10].

6 Discussion

Evaluating bugs that are already high-impact. In this
project, we take only low-risk bugs as input to SyzScope.
However, the result shows the number of high-risk im-
pacts associated with a single bug can be extremely high.
Specifically, among the 183 high-risk bug cases, we find
4,843 high-risk impacts. Moreover, not all high-risk im-

pacts are equal, e.g., func-ptr-deref being the most dan-
gerous. Therefore, even if a bug already exhibits some
high-risk impact, e.g., OOB write, we can still feed it to
SyzScope to uncover even more high-risk impacts. This
can be beneficial if the goal is to further determine the
exploitability of a bug.
Supporting more types of bug impacts. SyzScope cur-
rently focused on modeling OOB and UAF, starting from
the hidden impact estimation component, i.e., identifying
the vulnerable objects and symbolizing the memory that
the adversary can control. However, there are still other
bug types such as unitialized use of memory which we
can support in the future.
Interfacing with other exploitability testing systems.
SyzScope is complementary to these projects that aim
to automatically or semiautomatically evaluate the ex-
ploitability of kernel bugs. Fuze [50] and KOOBE [21]
are two representative projects that target UAF and OOB
bugs respectively. For example, KOOBE [21] can work
with only bugs that exhibit an OOB write impact already
and ignore any OOB read bugs by design. According to
our results, SyzScope is able to turn 32 OOB read bugs
into OOB write ones, which would allow KOOBE to al-
most double the number of cases that it has evaluated
against.
Pending patches for Syzbot open bugs. Syzbot re-
cently added a new feature called Patch testing requests.
This feature allows developers and maintainers to upload
patches for bug testing, if a patch managed to eliminate
the bug, syzbot will release such patches on the dash-
board and the patch will be merged into the upstream.
This feature speeds up the patching process by automat-
ing the testing of patches. We note that it is possible to
use those pending patches in the context exploration pro-
cess when it comes to eliminate unrelated bugs. How-
ever, we did not choose to do this because such patches
are not officially accepted by Linux and can potentially
lead to misleading results.

7 Related Work

Kernel fuzzing. There are several prominent general-
purpose kernel fuzzers that have been developed to dis-
cover security bugs [30, 36, 35]. More recently, many
projects have focused on improving various aspects of
kernel fuzzing [40, 37, 34, 51]. For example, Moon-
Shine [40] aims to provide highly distilled seeds to
bootstrap the fuzzing process. HFL [37] proposed a
hybrid fuzzing solution to address a few weaknesses
encountered in coverage-guided fuzzing, e.g., identify-
ing explicit dependencies among syscalls. Razzer [34]
and KRACE [51] improve the fuzzing logic specifi-
cally against race condition bugs. Unfortunately, these

general-purpose or custom kernel fuzzers all target at
uncovering more bugs quickly instead of understanding
the security impacts of reported bugs (which are often
manually investigated afterwards). Finally, in addition
to syzbot, continuous fuzzing against Linux kernels has
become a common practice in the industry [41].

Security impact of Linux kernel bugs and crash dedu-
plication. A recent talk at Linux Security Summit by
Dmitry Vyukov has shown that some seemingly low-risk
bugs from syzbot turn out to be of high risks [43]. How-
ever, no systematic and automated solution has been pro-
posed to understand this phenomenon on a large scale.
A closely related work [48] aims to infer the security
impact of a bug by analyzing its patches (as opposed
to a bug reproducer and sanitizer-generated bug report).
Unfortunately, due to the limited information provided
by a patch, they were able to identify only 227 patches
that are fixing security bugs (with only 243 security im-
pacts identified) after scanning 54,000 commits. This is
in contrast with the 4,843 security impacts that we dis-
cover from only 183 low-risk bugs. We believe the in-
complete result is partly due to the lack of runtime in-
formation which forces the analysis to be constrained at
a local scale. Furthermore, there is no differentiation of
high-risk and low-risk impacts, which is a key goal of
SyzScope. Finally, there have been many studies on de-
termining the security impact of bugs based on text anal-
ysis (e.g., bug report descriptions) using data mining and
machine learning [47, 20, 31, 42, 46].

Exploitability testing. Recent work has attempted to
turn different types of Linux kernel security bugs into
actual exploits in an automated or semi-automated fash-
ion. Fuze [50] and KOOBE [21] are two representa-
tive projects that target use-after-free (UAF) and out-of-
bound (OOB) bugs respectively. They take in a proof-of-
concept (PoC) that can trigger a bug (often only crashing
the kernel) as input, and then conduct various analyses
to convert the PoC into an exploit. In addition, there are
also related work on exploiting other types of security
bugs such as uninitialized uses of stack variables [38],
which we did not support in our current implementation,
due to the fact the corresponding KMSAN sanitizer cur-
rently does not provide sufficient details in the bug re-
port. Finally, there are also related work that aim to assist
the process of generating an exploit [22, 49]. All of these
related work are complementary to SyzScope, where our
system can be considered a frontend that can interface
with these systems as backends. In addition to kernel
exploits, there are also other related work on userspace
analyzing the exploitability of heap bugs [25, 52].

8 Conclusion

In this paper, we perform a systematic investigation on
fuzzer-exposed bugs on the syzbot platform. In order
to conduct such an analysis, we develop an automated
pipeline that combines fuzzing, static analysis, and sym-
bolic execution together to reveal high-risk security im-
pacts of seemingly low-risk bugs. The system can be
easily integrated into the syzbot platform that continu-
ously evaluates newly discovered bugs. After analyz-
ing over one thousand such bugs, we demonstrate that
183 of them can be turned into high-risk bugs. The re-
sults have important implications on patch prioritization
and propagation moving forward. To facilitate reproduc-
tion and future research, we open source SyzScope at
https://github.com/seclab-ucr/SyzScope.

References

[1] CWE-123: Write-what-where Condi-
tion. https://cwe.mitre.org/data/

definitions/123.html.

[2] Debian cve-2021-33034. https://

security-tracker.debian.org/tracker/

CVE-2021-33034.

[3] Discussion with ubuntu maintainers.
https://lists.ubuntu.com/archives/

ubuntu-devel/2021-May/041457.html.

[4] Fedora cve-2021-33034. https:

//lists.fedoraproject.org/

archives/list/package-announce@

lists.fedoraproject.org/message/

GI7Z7UBWBGD3ABNIL2DC7RQDCGA4UVQW/.

[5] Kasan: slab-out-of-bounds read
in find first zero bit. https://

syzkaller.appspot.com/bug?id=

93d1336016a1e1cdade11339e85f7b85ce3d4abc/.

[6] Kasan: slab-out-of-bounds read in tcf exts destroy.
https://syzkaller.appspot.com/bug?id=

2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2/.

[7] Kasan: use-after-free read in tcp fastretrans alert.
https://syzkaller.appspot.com/bug?id=

7be8b464a3a27e6dc5c73d3ffe3b56dc0cf51e52/.

[8] Parallel S2E. http://s2e.systems/docs/

Howtos/Parallel.html.

[9] Red hat cve-2021-33034. https://access.

redhat.com/security/cve/cve-2021-33034.

[10] Syzscope debate positive opinion. https://

lore.kernel.org/lkml/YL3zGGMRwmD7fNK+

@zx2c4.com/.

[11] Syzscope github repo. https://github.com/

seclab-ucr/SyzScope/.

[12] Ubuntu cve-2021-33034. https://ubuntu.com/
security/CVE-2021-33034.

[13] The undefined behavior sanitizer - ubsan.
https://www.kernel.org/doc/html/v4.

14/dev-tools/ubsan.html.

[14] Coverage-guided kernel fuzzing with syzkaller.
https://lwn.net/Articles/677764/, 2016.

[15] a binary analysis framework. https://angr.io/,
2017.

[16] ANDROID: binder: remove waitqueue
when thread exits. https://git.

kernel.org/pub/scm/linux/kernel/

git/torvalds/linux.git/commit/?id=

f5cb779ba16334b45ba8946d6bfa6d9834d1527f,
2018.

[17] CVE-2019-2215 - Bad Binder: An-
droid In-The-Wild Exploit. https:

//googleprojectzero.blogspot.com/2019/

11/bad-binder-android-in-wild-exploit.

html, 2019.

[18] KASAN: slab-out-of-bounds Read
in tcf exts destroy. https://

syzkaller.appspot.com/bug?id=

2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2,
2020.

[19] Kernel addresssanitizer. https://github.com/

google/kasan, 2020.

[20] D. Behl, S. Handa, and A. Arora. A bug mining tool
to identify and analyze security bugs using naive
bayes and tf-idf. In 2014 International Conference
on Reliability Optimization and Information Tech-
nology (ICROIT), 2014.

[21] Weiteng Chen, Xiaochen Zou, Guoren Li, and
Zhiyun Qian. KOOBE: towards facilitating ex-
ploit generation of kernel out-of-bounds write vul-
nerabilities. In 29th USENIX Security Symposium,
2020.

[22] Yueqi Chen and Xinyu Xing. Slake: Facilitating
slab manipulation for exploiting vulnerabilities in
the linux kernel. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2019.

https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/123.html
https://security-tracker.debian.org/tracker/CVE-2021-33034
https://security-tracker.debian.org/tracker/CVE-2021-33034
https://security-tracker.debian.org/tracker/CVE-2021-33034
https://lists.ubuntu.com/archives/ubuntu-devel/2021-May/041457.html
https://lists.ubuntu.com/archives/ubuntu-devel/2021-May/041457.html
https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/message/GI7Z7UBWBGD3ABNIL2DC7RQDCGA4UVQW/
https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/message/GI7Z7UBWBGD3ABNIL2DC7RQDCGA4UVQW/
https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/message/GI7Z7UBWBGD3ABNIL2DC7RQDCGA4UVQW/
https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/message/GI7Z7UBWBGD3ABNIL2DC7RQDCGA4UVQW/
https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/message/GI7Z7UBWBGD3ABNIL2DC7RQDCGA4UVQW/
https://syzkaller.appspot.com/bug?id=93d1336016a1e1cdade11339e85f7b85ce3d4abc/
https://syzkaller.appspot.com/bug?id=93d1336016a1e1cdade11339e85f7b85ce3d4abc/
https://syzkaller.appspot.com/bug?id=93d1336016a1e1cdade11339e85f7b85ce3d4abc/
https://syzkaller.appspot.com/bug?id=2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2/
https://syzkaller.appspot.com/bug?id=2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2/
https://syzkaller.appspot.com/bug?id=7be8b464a3a27e6dc5c73d3ffe3b56dc0cf51e52/
https://syzkaller.appspot.com/bug?id=7be8b464a3a27e6dc5c73d3ffe3b56dc0cf51e52/
http://s2e.systems/docs/Howtos/Parallel.html
http://s2e.systems/docs/Howtos/Parallel.html
https://access.redhat.com/security/cve/cve-2021-33034
https://access.redhat.com/security/cve/cve-2021-33034
https://lore.kernel.org/lkml/YL3zGGMRwmD7fNK+@zx2c4.com/
https://lore.kernel.org/lkml/YL3zGGMRwmD7fNK+@zx2c4.com/
https://lore.kernel.org/lkml/YL3zGGMRwmD7fNK+@zx2c4.com/
https://github.com/seclab-ucr/SyzScope/
https://github.com/seclab-ucr/SyzScope/
https://ubuntu.com/security/CVE-2021-33034
https://ubuntu.com/security/CVE-2021-33034
https://www.kernel.org/doc/html/v4.14/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/ubsan.html
https://lwn.net/Articles/677764/
https://angr.io/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5cb779ba16334b45ba8946d6bfa6d9834d1527f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5cb779ba16334b45ba8946d6bfa6d9834d1527f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5cb779ba16334b45ba8946d6bfa6d9834d1527f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5cb779ba16334b45ba8946d6bfa6d9834d1527f
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://syzkaller.appspot.com/bug?id=2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2
https://syzkaller.appspot.com/bug?id=2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2
https://syzkaller.appspot.com/bug?id=2389bfc4b1c4ea3969629ed19bef0b3b2ec741f2
https://github.com/google/kasan
https://github.com/google/kasan

[23] Vitaly Chipounov, Volodymyr Kuznetsov, and
George Candea. S2e: A platform for in-vivo multi-
path analysis of software systems. 2011.

[24] Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Pt-rand: Practical mit-
igation of data-only attacks against page tables. In
Proc. of 24th Annual Network & Distributed Sys-
tem Security Symposium (NDSS), 2017.

[25] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Heaphopper: Bringing bounded model
checking to heap implementation security. In 27th
USENIX Security Symposium (USENIX Security
18), pages 99–116, Baltimore, MD, August 2018.
USENIX Association.

[26] Google. Oss-fuzz. https://google.github.

io/oss-fuzz/, 2016.

[27] Google. Kcsan. https://www.kernel.org/

doc/html/latest/dev-tools/kcsan.html,
2020.

[28] Google. Kmsan. https://github.com/google/
kmsan, 2020.

[29] Google. syzbot. https://syzkaller.appspot.
com/upstream/, 2020.

[30] Google. syzkaller. https://github.com/

google/syzkaller, 2020.

[31] K. Goseva-Popstojanova and J. Tyo. Identification
of security related bug reports via text mining us-
ing supervised and unsupervised classification. In
2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), 2018.

[32] Hongli Han and Mingjian Zhou. Android binder:
The bridge to root. https://conference.

hitb.org/hitbsecconf2019ams/sessions/

binder-the-bridge-to-root/, 2019.

[33] Hongli Han and Mingjian Zhou. CVE-2019-
2025 - Android Binder: The Bridge To
Root. https://conference.hitb.org/

hitbsecconf2019ams/materials/D2T2%

20-%20Binder%20-%20The%20Bridge%

20to%20Root%20-%20Hongli%20Han%20&

%20Mingjian%20Zhou.pdf, 2019. HITBSec-
Conf.

[34] Dae R. Jeong, Kyungtae Kim, Basavesh Shivaku-
mar, Byoungyoung Lee, and Insik Shin. Razzer:
Finding kernel race bugs through fuzzing. In 40th
IEEE Symposium on Security and Privacy, 2019.

[35] Dave Jones. trinity. https://github.com/

kernelslacker/trinity, 2011.

[36] Dave Jones. Triforce linux syscall
fuzzer. https://github.com/nccgroup/

TriforceLinuxSyscallFuzzer, 2016.

[37] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee.
HFL: hybrid fuzzing on the linux kernel. In 27th
Annual Network and Distributed System Security
Symposium, NDSS, 2020.

[38] Kangjie Lu, Marie-Therese Walter, David Pfaff,
Stefan Nürnberger, Wenke Lee, and Michael
Backes. Unleashing use-before-initialization vul-
nerabilities in the linux kernel using targeted stack
spraying. In 27th Annual Network and Distributed
System Security Symposium, NDSS, 2017.

[39] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vi-
gna. DR. CHECKER: A soundy analysis for linux
kernel drivers. In 26th USENIX Security Sympo-
sium, 2017.

[40] Shankara Pailoor, Andrew Aday, and Suman Jana.
MoonShine: optimizing os fuzzer seed selection
with trace distillation. In 27th USENIX Security
Symposium, 2018.

[41] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe
Wang, Xiaohai Shi, Xun Jiao, Houbing Song,
Yu Jiang, and Jiaguang Sun. Industry practice of
coverage-guided enterprise linux kernel fuzzing. In
ESEC/FSE, 2019.

[42] Jacob P. Tyo. Empirical analysis and automated
classification of security bug reports. In Graduate
Thesis and Reports, 2016.

[43] Dmitry Vyukov. Syzbot and the tale of thousand
kernel bugs - dmitry vyukov, google. https://

youtu.be/qrBVXxZDVQY, 2018.

[44] Dmitry Vyukov. syzbot: enable ubsan for linux.
https://github.com/google/syzkaller/

issues/1523, 2020.

[45] Yong Wang. CVE-2018-9568 - From Zero
to Root: Building Universal Android Rooting
With a Type Confusion Vulnerability. https:

//github.com/ThomasKing2014/slides/

blob/master/Building%20universal%

20Android%20rooting%20with%20a%20type%

20confusion%20vulnerability.pdf, 2019.
Zer0Con.

https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://github.com/google/kmsan
https://github.com/google/kmsan
https://syzkaller.appspot.com/upstream/
https://syzkaller.appspot.com/upstream/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://conference.hitb.org/hitbsecconf2019ams/sessions/binder-the-bridge-to-root/
https://conference.hitb.org/hitbsecconf2019ams/sessions/binder-the-bridge-to-root/
https://conference.hitb.org/hitbsecconf2019ams/sessions/binder-the-bridge-to-root/
https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20Binder%20-%20The%20Bridge%20to%20Root%20-%20Hongli%20Han%20&%20Mingjian%20Zhou.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20Binder%20-%20The%20Bridge%20to%20Root%20-%20Hongli%20Han%20&%20Mingjian%20Zhou.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20Binder%20-%20The%20Bridge%20to%20Root%20-%20Hongli%20Han%20&%20Mingjian%20Zhou.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20Binder%20-%20The%20Bridge%20to%20Root%20-%20Hongli%20Han%20&%20Mingjian%20Zhou.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D2T2%20-%20Binder%20-%20The%20Bridge%20to%20Root%20-%20Hongli%20Han%20&%20Mingjian%20Zhou.pdf
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://youtu.be/qrBVXxZDVQY
https://youtu.be/qrBVXxZDVQY
https://github.com/google/syzkaller/issues/1523
https://github.com/google/syzkaller/issues/1523
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf

[46] Dumidu Wijayasekara, Milos Manic, and Miles
McQueen. Vulnerability identification and classi-
fication via text mining bug databases. In IECON
2014 - 40th Annual Conference of the IEEE Indus-
trial Electronics Society, 2014.

[47] Dumidu Wijayasekara, Milos Manic, Jason L.
Wright, and Miles McQueen. Mining bug
databases for unidentified software vulnerabilities.
In 5th International Conference on Human System
Interactions, 2012.

[48] Qiushi Wu, Yang He, Stephen McCamant, and
Kangjie Lu. Precisely characterizing security im-
pact in a flood of patches via symbolic rule com-
parison. In 27th Annual Network and Distributed
System Security Symposium, NDSS, 2020.

[49] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou.
KEPLER: Facilitating control-flow hijacking prim-
itive evaluation for linux kernel vulnerabilities. In
28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 1187–1204, Santa Clara, CA, Au-
gust 2019. USENIX Association.

[50] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xi-
aorui Gong, and Wei Zou. FUZE: towards facil-
itating exploit generation for kernel use-after-free
vulnerabilities. In 27th USENIX Security Sympo-
sium, USENIX Security, 2018.

[51] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and
Taesoo Kim. Krace: Data race fuzzing for kernel
file systems. In 41st IEEE Symposium on Security
and Privacy, 2020.

[52] Insu Yun, Dhaval Kapil, and Taesoo Kim. Au-
tomatic techniques to systematically discover new
heap exploitation primitives. In 29th USENIX Se-
curity Symposium (USENIX Security 20), pages
1111–1128. USENIX Association, August 2020.

[53] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy
Lau. An investigation of the android kernel patch
ecosystem. In 30th USENIX Security Symposium,
2021.

	Introduction
	Background and Overview
	Syzbot and Bug Reporting
	High-Risk vs. Low-Risk Bug Impacts
	Motivating Example
	Goals and Non-Goals

	Design
	Vulnerable Contexts Exploration
	Hidden Impacts Estimation
	Validation and Evaluation

	Implementation
	Vulnerable Context Exploration
	Hidden Impacts Estimation
	Validation and Evaluation

	Evaluation
	Dataset and Setup
	Overall Results
	Component by Component Analysis
	False Positives & False Negatives
	Case Studies
	Disclosure

	Discussion
	Related Work
	Conclusion

