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Abstract honest). The scheme is “verifiable” if honest receivers can reli-

Verifiable Secret Sharing (VSS) is a foundational crypto-
graphic primitive that serves as an essential building block in
multi-party computation and decentralized blockchain appli-
cations. One of the most practical ways to construct VSS is
through a polynomial commitment, where the dealer commits
to a random polynomial whose 0-th coefficient encodes the se-
cret to be shared, and proves the evaluation of the committed
polynomial at a different point to each of N verifiers, i.e., the
polynomial commitment is used in a “one-to-many” fashion.

The recent work of Tomescu et al. (IEEE S&P 2020) was
the first to consider polynomial commitment with “one-to-
many prover batching”, such that the prover can prove evalua-
tions at N different points at the cost of O(1) proofs. However,
their scheme is not optimal and requires a trusted setup.

In this paper, we asymptotically improve polynomial com-
mitment with one-to-many prover batching. We propose two
novel schemes. First, we propose a scheme with optimal
asymptotics in all dimensions in the trusted setup setting.
Second, we are the first to consider one-to-many prover batch-
ing for transparent polynomial commitments, and we pro-
pose a transparent scheme whose performance approximately
matches the best-known scheme in the trusted setup setting.

We implement our schemes and evaluate their performance.
Our scheme in the trusted setup setting improves the proof
size by 20x and the verifier time by 7.8x for 22! parties,
with a small overhead on the prover time. Our transparent
polynomial commitment removes the trusted setup and further
improves the prover time by 2.3 x.

1 Introduction

In an (N,r+ 1) Verifiable Secret Sharing (VSS) proto-
col [3,9,11,25,32], roughly speaking, there is a dealer and N
receivers. The dealer has a secret s, and it wants to split s into
N shares, and gives out one share to each receiver. The secret
s can be reconstructed if at least # + 1 receivers combine their
shares. However, any coalition of ¢ or fewer receivers can-
not learn any information about s (assuming that the dealer is

ably detect a cheating dealer who deals internally inconsistent
shares to different receivers. VSS is a foundational building
block and widely used in multi-party computation [3,9,32],
threshold cryptosystems [32, 35], and distributed key gen-
eration (DKG) [23, 24, 35]. Recently, VSS has received in-
creasing attention since decentralized blockchains provide a
large-scale playground for threshold cryptosystems [20, 35].

Several recent works [25,35] showed that round-efficient
VSS can be constructed from polynomial commitment
schemes — this is one of the most practical approaches for
constructing VSS. In a polynomial commitment scheme, a
dealer (also called a prover) can produce a commitment c of a
polynomial f whose coefficients are assumed to be in some fi-
nite field. Later, during an opening phase, the dealer can claim
that the committed polynomial evaluates to y at a given point x,
and it can prove to a verifier that this is indeed the correct eval-
uation result by producing an ideally succinct proof 7. Given
a polynomial commitment scheme, it is relatively straightfor-
ward to construct a VSS scheme [25, 35]. Specifically, the
dealer chooses a random degree-¢ polynomial f whose O-th
coefficient encodes the secret s. The dealer now commits to
the polynomial and broadcasts the commitment ¢ to all re-
ceivers. Next, it chooses N distinct points x1,x2,...,xy, and
gives y; = f(x;) to receiver i € [N] respectively, and proves
to the receiver that the purported outcome y; is correct with
respect to the commitment c. If the dealer is honest, then opti-
mistically the protocol can end here. If the dealer is dishonest
and deals incorrect shares to many receivers, the receivers can
resort to some complaint mechanism to disqualify the dealer
(assuming a synchronous network).

To construct VSS from polynomial commitments, the un-
derlying polynomial commitment scheme is used in a one-
to-many fashion, i.e., for the same committed polynomial,
the dealer needs to prove N evaluations on different points
to N different receivers. To produce these N proofs, a naive
approach is for the prover to repeat N times the proving algo-
rithm of the underlying polynomial commitment scheme, thus
incurring N times the computational overhead. The recent



work of Tomescu et al. [35] showed an elegant one-fo-many
prover batching technique for the well-known KZG polyno-
mial commitment [25], such that the dealer can produce N
proofs with only O(1) slowdown (relative to computing a sin-
gle proof). Tomescu et al.’s work, however, does not achieve
prove batching directly for the KZG scheme, but rather, a
more involved variant of KZG. It breaks down the proof gen-
eration of the KZG scheme into log N steps and constructs
an authenticated multipoint evaluation tree (AMT) to store
redundant computations and improve the efficiency of mul-
tiple proofs. Consequently, the verification time and proof
size become a logarithmic factor more costly than the original
KZG protocol. Another limitation of Tomescu et al.’s work
is that it relies on a trusted setup. If the trusted setup is com-
promised, then the soundness of the scheme can be broken.
In decentralized blockchain applications, such a trusted setup
is undesirable.

In this paper, we revisit the interesting direction suggested
by Tomescu et al. [35]. We ask the following two questions:

1. Can we achieve one-to-many prover batching directly for
the KZG polynomial commitment? If so, can we preserve
the optimal verification time and proof size of KZG, while
computing N proofs for the cost of one (or for the cost of
O(1) proofs)?

2. Can we approximately match the asymptotic overhead
of Tomescu et al. [35] in all dimensions, but remove the
trusted setup?

1.1 Our Results and Contributions

We answer these questions with two novel constructions of
“polynomial commitment with one-to-many prover batching”.

* Prover batching for the KZG polynomial commitment.
The first contribution is a new algorithm for computing N
KZG proofs for the same committed polynomial, paying
the cost of only O(1) proofs. Since our algorithm does not
modify the underlying KZG polynomial commitment, we
inherit the constant verification time and constant proof
size of KZG. Our scheme achieves asymptotic optimal-
ity in all dimensions: the proof size and verification time
are optimal; the prover time for generating N proofs is
O(NlogN) which is also optimal, since simply evaluating
the polynomial at N different points would incur NlogN
time using the Fast Fourier Transformation (FFT), assum-
ing that 7 = @(N). Therefore, our scheme also subsumes the
results of the original Kate et al.’s paper [25] and Tomescu
et al.’s paper [35]'.

! After submitting our paper, we found that the same algorithm was
also proposed independently by Dankrad Feist and Dmitry Khovratovich
at https://github.com/khovratovich/Kate. We thank Alin Tomescu
for pointing it out.

e Transparent polynomial commitment with prover
batching. Our second contribution is a transparent poly-
nomial commitment scheme where a dealer can produce
N proofs in O(NlogN) time, and the verification time and
proof size are both 0(10g2 N). Here, the prover time is op-
timal for the same reason as mentioned earlier. Both the
proof size and the verification time are succinct and only a
logarithmic factor worse than Tomescu et al. [35].

¢ Implementation and evaluation. We fully implemented
both our schemes and evaluated their performance. We
then used our new “polynomial commitment schemes with
prover batching” to implement VSS and DKG protocols.
We compared the efficiency of the resulting schemes with
prior work in the same setting. With N = 22! parties,
our KZG-based polynomial commitment and the corre-
sponding VSS scheme reduced the proof size of the AMT
scheme [35] by 20x, reduced the verifier time by 7.8,
while introducing a small overhead of 3x on the prover
time. These led to 3.3 x better computation time and 20x
smaller communication in the DKG scheme. Our trans-
parent scheme not only removes the trusted setup but also
improves the prover time by an order of magnitude. How-
ever, it does introduce a large proof size. Our code is open
source (the code is available at https://github.com/
sunblaze-ucb/eVSS).

* Techniques: ‘“one-to-many zero-knowledge proof”. To
construct our transparent polynomial commitment with
prover batching, we come up with a more general technique
which can be of independent interest and lead to other in-
teresting applications. Basically, consider a circuit C with
N outputs, wherein the prover wants to prove one output
to each verifier respectively. We give a “one-to-many zero-
knowledge proof” construction where the prover’s computa-
tion is only O(|C|) where |C| denotes the size of C, whereas
a straightforward application of existing techniques where
the prover produces a separate proof for each verifier would
have incurred at least N - |C| prover time.

Table 1 shows how our “polynomial commitment with
one-to-many prover batching” compares with prior schemes.
Given such a polynomial commitment scheme, one can di-
rectly construct (synchronous) VSS and DKG using exist-
ing techniques described by Tomescu et al. [35]. Table 2
shows the asymptotic overhead of the resulting VSS and DKG
schemes and how our work improves over prior work.

1.2 Technical Highlights

1.2.1 Transparent Polynomial Commitment with

Prover Batching

A naive idea is to commit to the coefficients of the polyno-
mial f using a vector commitment, resulting in a concise


https://github.com/khovratovich/Kate
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https://github.com/sunblaze-ucb/eVSS

Table 1: Polynomial commitment with a one-to-many prover:
comparison with prior works. We assume t = @(N).

Scheme Trans. | P time 7 time Proof size
KZG [25] X O(N?) o(1) o(1)
AMT [35] X O(NlogN) | O(logN) O(logN)
hbACSS [40] v O(N?) O(N) O(logN)
Our KZG-based | X O(NlogN) | O(1) o)

Our Transparent | v/ O(NlogN) | O(log?N) | O(log’>N)

e Trans. means without a trusted setup. P time represents the dealer time for
producing all N proofs. V time represents the verification time per verifier.

commitment c. Now, the dealer can use a non-interactive zero-
knowledge proof system to produce a proof that vouches for
the evaluation at a specific point. Since the dealer needs to
produce a proof for each of the N verifiers, the naive approach
is to repeat the zero-knowledge proof N times — however,
this approach would result in at least N? prover time for pro-
ducing all N proofs (since evaluating the polynomial at each
point requires at least N amount of computation).

Note that if the dealer only had to evaluate the polynomial
f at N different points without having to produce proofs, this
could be accomplished through the Fast Fourier Transform
(FFT) in O(NlogN) time. The intriguing question is whether
we can evaluate the polynomial at all N points and produce
all N proofs in O(NlogN) time as well.

A more general problem: one-to-many zero-knowledge
proof. To answer this question, we in fact turn our attention
to a more general problem. Suppose that there is some circuit
C with N different outputs. There are N verifiers, and each of
them cares about receiving and verifying one of the outputs of
C. Can the prover produce all N proofs in time O(|C|) where
|C| denotes the size of the circuit?? Note that in comparison,
the naive approach of repeating the ZKP independently N
times would result in at least N - |C| prover time.

Brief background on GKR. To achieve this, we will base
our scheme on Virgo [41], which is in turn based on the fa-
mous GKR protocol [19]. For simplicity, we will explain our
intuition without worrying about zero-knowledge, and there-
fore we can think of the original GKR protocol. It helps to first
consider the interactive version, and then we will describe a
new Fiat-Shamir-style transformation to make our interactive
protocol non-interactive in the random oracle model.

In the GKR protocol, the prover starts with the output layer
(henceforth called the last layer). Proving the output layer
boils down to proving a sumcheck statement for a special
polynomial that encodes the wiring structure of the output
layer of the circuit. This sumcheck would then be reduced to
proving two sumchecks for the last but one layer, which can
be coalesced into a single sumcheck proof (for the last but
one layer) by taking random linear combinations. This goes
on recursively layer by layer. If the prover simply ran GKR
with each verifier separately, the prover would have to prove
a different statement to each verifier at every layer.

2We use the notation O to hide polylogarithmic factors.

Idea 1: using an extra sumcheck protocol to unify state-
ments for all layers. Our idea is to introduce a clever sum-
check protocol after the output layer, such that after the sum-
check protocol with each verifier, the prover would be proving
the same statement to all N verifiers for all other layers, as
long as all verifiers use the same random challenges in every
round of the protocol. This way, except for proof component
corresponding to the extra sumcheck, computing the proof
components for all other layers is a shared effort among all
verifiers. Moreover, we propose a new algorithm for the prover
to run all sumchecks with N verifiers in O(NlogN) time. We
defer the details of the construction to Section 3.

Idea 2: a new Fiat-Shamir-style transformation to make
it non-interactive. With the first idea, we could achieve
prover batching as long as all verifiers use the same random
challenges in every round of the interactive protocol. Our
final construction is non-interactive, and to achieve this we
describe a new Fiat-Shamir-style transformation such that the
prover can emulate the verifiers’ challenges non-interactively
by making queries to a random oracle.

Note that applying the standard Fiat-Shamir transformation
does not work for us since we additionally require that the
random challenges are shared among all verifiers in each
round. Recall that the standard Fiat-Shamir transformation
queries the random oracle on the transcript with the verifier
so far. In our case, the transcript with each verifier differs in
the output layer. If we simply hashed the entire transcript, it
would result in different challenges for different verifiers.

A conceptually simple but somewhat inefficient approach to
overcome this discrepancy among verifiers is to use a Merkle
tree to hash all verifiers’ transcripts and use the root as a uni-
fied random challenge among all verifiers. The prover also
needs to send the corresponding Merkle branch to each indi-
vidual verifier, such that a verifier can ascertain that its view
of the transcript so far has been incorporated in generating the
random challenge. A similar idea was suggested by Yurek et
al. [40] but for a somewhat different purpose. The drawback
with this approach is that it incurs a logarithmic blowup in
proof size and verifier time for every round of the protocol.

Our final approach is a hybrid one. We apply the Merkle
tree only to the first logarithmically many rounds, i.e., rounds
for the extra sumcheck protocol after the output layer. Re-
call that for every other layer in the circuit, the prover would
be proving the same statement to all verifiers, and therefore
the transcripts among the verifiers would converge after the
extra sumcheck protocol. Thus for all other layers, we can
rely on the standard Fiat-Shamir heuristic. This hybrid ap-
proach would save us a logarithmic factor in comparison with
applying Merkle hash tree to every round.

Proving soundness of our new Fiat-Shamir-style trans-
form. In the most general setting, the standard Fiat-Shamir
transformation is known to work only for constant-round in-
teractive proofs if we want the soundness loss in the reduction
to be polynomially bounded. In our case, the original inter-



Table 2: Comparison of our schemes and prior works in VSS and DKG settings. We assume t = ©(N).

Scheme Trans Broad- Optimistic case Worst-case*
cast P time vV time Communication || 2 time v time Communication
Feldman-VSS [15] O(N) O(NlogN) | O(N) O(N) O(NlogN) | O(N?) O(N)
eVSS [25] X o(1) O(N?) o(1) o(1) O(N?) O(N) O(N)
AMT-VSS [35] X o(1) O(NlogN) | O(logN) | O(logN) O(NlogN) | O(NlogN) | O(NlogN)
hbACSS-VSS [40] v o(1) O(N?) O(N) O(logN) O(N?) O(NlogN) | O(NlogN)
Our KZG-based-VSS | X o) O(NlogN) | 0(1) o) O(NlogN) | O(N) O(N)
Our Transparent-VSS | v/ o(1) O(NlogN) | O(log?N) | O(log>N) O(NlogN) | O(Nlog?N) | O(Nlog?N)
Table 3: VSS schemes
Optimistic case Worst-case®

Scheme Trans. | Broadcast Computati[(,m Communication || Computation | Communication

JE-DKG [18] O(N) O(N?) O(N) O(N?) O(N?)

eJF-DKG [23] X o(1) O(N?) O(N) O(N?) O(N?)

AMT-DKG [35] X o(1) O(NlogN) O(NlogN) O(N?logN) O(N?*1ogN)

hbACSS-DKG [40] v/ o(1) O(N?) O(NlogN) O(N?1ogN) O(N?logN)

Our KZG-based-DKG | X o(1) O(NlogN) O(N) O(N?) O(N?)

Our Transparent-DKG | v/ o(1) O(Nlog?N) | O(Nlog?N) O(N?10g>N) | O(N*10g®N)

Table 4: DKG schemes (per party overhead)

In this table we only compare VSS/DKG schemes that are in the same synchronous model and incur a constant number of rounds. We discuss other schemes in different settings
(e.g., asynchronous, gossip model with O(log N) rounds) in Section 1.3. Trans. means without a trusted setup. © time represents the dealer’s computation for producing N proofs for
N receivers. V time represents the verification time per receiver. Communication represents the proof size for each receiver in VSS setting and the total communication for each
party in DKG setting. & Worst-case represents ®(N) bad shares, which results in the complaint round.

active protocol is O(d -logN) rounds where d denotes the
depth of the circuit C. Nonetheless, we can still prove the
soundness of our new Fiat-Shamir-style transformation with
only polynomial loss in soundness in our reduction. To prove
this, we suggest a different way to view our transformation.
We focus on the perspective of a single verifier and consider
a variant (denoted Tq,) of our original interactive protocol. In
T4y, we introduce some dummy rounds and dummy messages
which correspond to hash computations in the Merkle tree.
We then view our final non-interactive proof as applying an
alternative heuristic transformation to the modified protocol
Tqy. Using this alternative view, we are able to use techniques
from Ben-Sasson et al. [4] to prove soundness. First, we show
that the protocol Ty, satisfies a stronger notion of soundness
called state restoration soundness. Given the stronger sound-
ness property, we can show that applying the aforementioned
heuristic transformation to Ty, gives a sound non-interactive
protocol in the random oracle model.

Putting everything together. So far, we have described our
ideas neglecting the zero knowledge requirement. It is rela-
tively easy to augment the protocol with zero knowledge using
techniques proposed in [10,39,41]. The modifications to the
protocol do not fundamentally alter the soundness proof of
our Fiat-Shamir-style transformation. We refer to the details
of how to achieve zero knowledge in the full version.

Summarizing the above, we now have a non-interactive,
one-to-many zero-knowledge proof system with a batched
prover. One-to-many polynomial commitment is a special
case of this more general problem where the circuit C is an
FFT circuit that evaluates the polynomial at N different points.

We emphasize that in solving the one-to-many polynomial
commitment problem, we actually come up with a “one-to-
many zero-knowledge proof” technique that is much more
general, and can be of independent interest and will likely
lead to broader applications.

1.2.2 New Prover Batching

We propose a new prover batching technique for the KZG
polynomial commitment. We review the KZG polynomial
commitment scheme in Section 4.1. Our novel technique is
the following. We show that if the dealer needs to open the
polynomial f at the points ®,®?,...,»" where o is the N-th
root of unity, then the N proof terms can be computed ef-
ficiently using a constant number of FFT and inverse FFT
invocations. Moreover, the FFT computation can be directly
applied to the public parameters of the KZG commitment
scheme in the base group of a bilinear map, without know-
ing the trapdoor, as FFT only involves additions and scalar
multiplications. Observing this requires some more involved
algebraic manipulations which we defer to Section 4.2.

1.3 Related work

VSS. Chor et al. [11] were the first to introduce the
notion of VSS. Feldman [15] constructed the first ef-
ficient Feldman-VSS scheme with homomorphic encryp-
tion schemes. Feldman-VSS is computational hiding and
information-theoretic binding. The following work of Peder-
sen [31] presented a counterpart protocol with information-
theoretic hiding and computational binding. However, both



schemes broadcast O(N) messages during the dealing phase
and cost O(N) time for each verifier to check the correctness
of the share. Kate et al. [25] reduced the broadcast message
and the verification time to O(1) in eVSS by the constant-
sized KZG polynomial commitment. Their polynomial com-
mitment needed a trusted setup and increased the dealer’s
computation to O(N?). Tomescu et al. [35] achieved a quasi-
linear dealing time at the cost of the O(logN) verification
time. The communication for each verifier also increased to
O(logN).

DKG. VSS plays an essential role in constructing DKG pro-
tocols. Ingemarsson and Simmons [22] first proposed DKG.
Pederson [31] improved their scheme for discrete log-based
cryptosystems. Gennaro et al. [18] showed that the secret
generated by Pederson’s scheme was biased and fixed the
problem in their JF-DKG schemes. Neji et al. [30] debiased
the secret by a more efficient method. Moreover, JF-DKG
scheme was converted into an adaptively secure DKG by
Canetti et al. [8]. All DKG protocols mentioned above need
O(N) broadcast messages. Later on, Kate’s eJF-DKG [23]
tamed the broadcasting cost to O(1) on top of eVSS. Tomescu
et al. [35] built AMT-DKG based on their AMT-VSS scheme
to achieve a space-time trade-off for eJF-DKG. In this work,
our KZG-based-DKG applies our KZG-based-VSS directly to
DKG to remove the overhead on time and space in eJF-DKG
and AMT-DKG respectively. Recently, Gurkan et al. [21] pre-
sented an aggregatable VUF-DKG without a trusted setup. It
achieves O(Nlog? N) computation and communication com-
plexity, which is asymptotically the same as our Transparent-
DKG. However, the scheme is in the “gossip” model where
each party sends messages to her neighbors and has logN
rounds.

Disambiguation. In our experiments, we focus on VSS and
DKG in the synchronous setting. Earlier works have also
shown that polynomial commitment schemes give rise to asyn-
chronous VSS and DKG schemes [14,17,24,26,40]. In the
asynchronous setting, the resulting VSS and DKG schemes
would also benefit from one-to-many prover batching. An
interesting future direction is to apply our prover batching
technique and improve VSS and DKG in the asynchronous
setting.

2 Preliminary

We use negl(-) : N — R to denote the negligible function,
where for each positive polynomial f(-), negl(k) < % for
sufficiently large integer k. We use nonegl(-) : N — R to de-
note the complement of negl(-). Let A denote the security
parameter. “PPT" stands for Probabilistic Polynomial Time.
We use f(),h() for polynomials, x,y,z for single variable,
X,¥,7 for vectors of variables and g, i,V for vectors of values.
x; denotes the i-th element in X. We use capital letters such
as A to represent arrays in algorithms, and A[i] denotes the

i-th element in the array. For a multivariate polynomial f, its
“variable-degree” is the maximum degree of f in any of its
variables. Let [k] denote the set of {0,1,...,k—1}.

Let F be a prime field. We use @°,...,0" ! to denote
N roots of unity on F such that @ = 1 in F. Let H =
{0°,...,@" "1} be a subset of F. We often rely on polyno-
mial arithmetics, which can be efficiently performed via fast
Fourier transforms (FFT) and their inverses (IFFT). In partic-
ular, polynomial evaluations and interpolations over H can
be performed in O(NlogN) field operations via the standard
FFT and IFFT algorithms [12].

Convolution of two vectors: Let A, B be two arrays of length
n. Their convolution, denoted as C = A * B, is defined as:
C[j] = XL, A[i]B[j —i], for j € [2n], assuming the values of
vectors A and B are zeros when the index is out of range (i.e.,
> n). It is known that the convolution is equivalent to the
multiplication of two polynomials, which can be computed
efficiently using FFT and inverse FFT. In particular, C =
IFFT(FFT(A) ® FFT(B)), where ® denotes the Hadamard
(element-wise) product, and the two FFTs evaluate A and B
on 2n points.

Merkle Tree. Merkle tree [29] has been widely used for
the vector commitment because of its simplicity and effi-
ciency. The prover time is linear in the size of the vector
while the verifier time and proof size are logarithmic in the
size of the vector. Given a vector of 7 = (ro,...,ry—1), it con-
sists of three algorithms:rt <~ MT.Commit(7), (r;, path;) +
MT.Open(i,7) and {1,0} < MT .Verify(rt,i,r;, path;).

We require not only the root to be hiding, but also open-
ing 7 at the index of i does not leak any information about
7 other than r;, which is treated as the privacy property
of Merkle tree. Formally speaking, for any vector 7 of
size N, any PPT algorithm 4, there exists a simulator Syt
such that rt <~ MT.Commit(¥), (r;, path;) < MT.Open(i,7),
rt’, path; «— Svt(ri,N),

| Pr[A(rt,r;, path;) = 1] — Pr[A(rt’, r;, path]) = 1]| < negl(A).

The privacy property can be achieved by concatenating a
random number on each leaf of Merkle tree when committing.

We define interactive proofs and VSS in Appendix A. We
also give the standard construction of VSS from polynomial
commitment in Appendix A.

2.1 Polynomial commitment

Univariate polynomial commitment. Let I be a finite field
and f be a polynomial on F with degree D. A univariate poly-
nomial commitment (PC) for f € FP[X] and a € F consists
of the following algorithms:

* pp + KeyGen(1*,D): Given the security parameter and
a bound on the degree of the polynomial, the algorithm
generates public parameter pp.



* comy < Commit(f,rr,pp): Given a polynomial f(x) =
Z,D:o c;ix', the prover commits f with the private randomness
ry and the public parameter pp. ry can be none.

* (»,m) < Open(f,rs,a,pp): For an evaluation point a, the
prover computes y = f(a) and the proof 7.

* {1,0} < Verify(comy,a,y,n, pp). Given the commitment
comy, the evaluation point a, the answer y and the proof T,
the verifier checks the correctness of the evaluation.

Definition 1. A PC scheme satisfies the following properties:

s Completeness. For any polynomial f € F°[X] and a € T,
the following probability is 1.

pp < KeyGen(]l,D)
Pr | comy <— Commit(f,ry,pp) :
(y,TC) «— Open(f,rf,a, pp)

Verify(comy,a,y, 7, pp) =1

* Proof of Knowledge. For any polynomial-sized circuit A4,
there exists a PPT extractor ‘E and a negligible function
negl(-), such that for any auxiliary string z and any L € N,
the following probability is negl(1).

pp < KeyGen(1*,D)
Pr | (x*,com®,y*,a") + A(1*,z,pp) :

I £ z,pp)

Verify(com*,a*,y*,n*, pp) =1
Aff(a®) # ¥

If a PC scheme satisfies an additional property of zero knowl-

edge, then it is a zero-knowledge univariate polynomial com-

mitment scheme (zkPC).

 Zero Knowledge. For security parameter A, polynomial f,
adversary A4, and simulator S, consider the following two
experiments:
Realq (1%):

Ideal .5 (1*):
- pp < KeyGen(1*,D) as(1%)

- (comy,pp,trap) < S 17‘,D
- comy < Commit(f,rs,pp) ( / ) ( )
- a< A(1*,comy, pp)
- a<—/‘4(17‘7comf,pp) ’
(»,7) <= Open(f,rs,a,pp)

- b« A(1*,comy,a,y,m,pp)

- T S(comy,a, f(a),pp,trap).

- b« ﬂl(l}“,comf,a,f(a),n:,pp)

Output b

— Output b
For any non-uniform polynomial-time adversary 4, there
exists a simulator S such that for all polynomial f € FP[X],

| Pr[Real 4 £ (1) = 1] — Pr[ldeal 4 s(1*) = 1]| < negl(}).

A polynomial commitment scheme is said to be transparent
if the public parameter pp is simply a uniform random string,
i.e., there is no secret state to generate pp.

Multivariate polynomial commitment. The polynomial
commitment could be extended for multivariate polynomials
f € F :F = F. The algorithms and definitions are similar
to those of the univariate polynomial, and we use MVPC and
zkMVPC to denote the multivariate schemes.

Protocol 1 (Sumcheck). It proceeds in ¢ rounds.

* In the first round, P sends a univariate polynomial

def
h(x1) = sz,....b;e{o,l}h(xl’b%'"7b4)7

V checks u= hy(0) 4+ hy(1). Then V sends a random chal-
lenge ry € Fto P.

In the i-th round, where 2 < i < /{—1, P sends a univariate
polynomial

def
hi(xi) = Zb[+1,444,b(‘6{0,1} h(rl yeeoa i1 axi7bi+1 PR 7b€)7

V checks hi—(ri—1) = h;i(0) + h;(1), and sends a random
challenge r; € TF to P.

In the (-th round, P sends a univariate polynomial

d
l’l[(Xé) ifl’l(l‘l,}"z,...,i’[_l,.x]),

V checks hy_1(ro—1) = hy(0) + hy(1). The verifier gener-
ates a random challenge ry € F. Given oracle access to an
evaluation h(ry,ry,...,rg) of h, V will accept if and only
if hy(r¢) = h(r1,r2,...,rg). The instantiation of the oracle
access depends on the application of the sumcheck protocol.

2.2 Interactive Proofs for Layered Circuits

We present the GKR protocol, an efficient interactive proof
for layered arithmetic circuits by Goldwasser et al. [19].

2.2.1 Sumcheck Protocol

The GKR protocol uses the sumcheck protocol as a ma-
jor building block. The problem is to sum a multivari-
ate polynomial 4 : F* — F on the Boolean hypercube:
requires an exponential time in £, as there are 2¢ combinations
of by,...,bs. Lund et al. [28] proposed a sumcheck protocol
that allows a verifier V to delegate the computation to a com-
putationally unbounded prover .We describe the sumcheck
protocol in Protocol 1. The proof size of the protocol is O(D?),
where D is the variable-degree of A, as in each round, P sends
a univariate polynomial of one variable in 4, which can be
uniquely defined by D + 1 points. The verifier time is O(D¥).
The prover time depends on the degree and the sparsity of
h, and we will give the complexity later in our scheme. The
sumcheck protocol is complete and sound with € = %.

Definition 2 (Multilinear Extension). LetV : {0,1} — F
be a function. The multilinear extension of V is the unique
polynomial V : F* — T s.t. V(x1,%2,...,x¢0) = V(x1,%2, ..., x¢)
forall x1,x,...,x; € {0,1}. V can be expressed as:

V (o1, 60,00030) = Y oy [T (1 =) (1 =bi) +xiby)) -V (



where b; is the i-th bit ofz;.

Definition 3 (Identity function). Lez3: {0,1}¢ x {0,1}¢ —
{0,1} be the identity function such that B(X,5) = 1 if ¥ =7,
and B(X,y) = 0 otherwise. Suppose B is the multilinear exten-
sion of P. Then B can be expressed as: B(%,¥) = [T_, (1 —
xi) (1 =yi) +xiyi)-

2.2.2 GKR Protocol

With the sumcheck protocol as a building block, Goldwasser
et al. [19] proposed an interactive proof for the evaluation
of layered arithmetic circuits. Let C be a layered arithmetic
circuit with depth d over a finite field F. Each gate in the
i-th layer takes inputs from two gates in the (i + 1)-th layer;
layer O is the output layer and layer d is the input layer. The
values in layer i of the circuit can be written as a sumcheck
equation of the values in layer i + 1. Following the conven-
tion in prior works of GKR protocols [13, 34, 39,41, 42],
we denote the number of gates in the i-th layer as S; and let
s; = [logS;]. We then define a function V; : {0,1}% — T that
takes a binary string b € {0,1}* and returns the output of
gate bin layer i, where b is called the gate label. With this
definition, V corresponds to the output of the circuit, and
V4 corresponds to the input layer. We also define two addi-
tional functions add;, mult; : {0,1}5-172% — {0, 1}, referred
to as wiring predicates in the literature. add; (mult;) takes
one gate label 7 € {0, 1}*-! in layer i — 1 and two gate labels
X,y € {0,1}* in layer i, and outputs 1 if and only if gate 7 is
an addition (multiplication) gate that takes the output of gates
X,y as input. By taking their multilinear extensions, for any
g e F¥, V; can be written as:

vi(g") :Zf,yE{O.I}SH—I £(3".%3)

:Zyc’yg{o_l}é‘iﬂ a;id,-H (g(l) 73?5) (‘7i+l (X) + ‘7i+1 (}7))
+multi 1 (80,%,5) Vi1 (R)Vig1 (). (D

With Equation 1, as add;,; and mult;,| are publicly
known, upon receiving the output, the verifier can reduce
a claim of Vp(g®) to a claim V;(g")) about layer 1, and
recursively to V;(g¢) through sumcheck protocols layer by
layer. With the optimal algorithms for the prover in the GKR
protocol proposed in [39], we have the following theorem:

Theorem 1. [39]. Let C : F" — F* be a depth-d layered arith-
metic circuit. There exists an interactive proof protocol for the
Sfunction computed by C with soundness O(dlog|C|/|F|). The
total communication is O(dlog|C|) and the running time of
the prover P is O(|C|). When C has regular wiring pattern®,
the running time of V is O(n+k+dlog|C)).

3“Regular” circuits is defined in [13, Theorem A.1]. Roughly speaking, it
means the mutilinear extension of its wiring predicates can be evaluated at a
random point in time O(log|C]).

Lifting GKR protocols to argument systems. The GKR
protocol is not an argument system supporting witness from
P, as in the last round, V' needs to evaluate V; defined by
the input of the circuit at a random point locally. To ad-
dress this problem, in [42], Zhang et al. first construct an
argument system by combining the polynomial commitments
with the GKR protocol. In their scheme, 2 first commits to
the multilinear extension of P’s witness by MVPC.Commit
before the GKR protocol. In the last random of the GKR
protocol, instead of evaluating locally, ¥V queries P the eval-
uation on P’s witness. P invokes MVPC.Open to prove
the correctness of the evaluation and ¥/ validates it using
MVPC.Verify. Combined with 9’s public input, V is able to
verify the last claim about V,; in the GKR protocol. Subse-
quent works [37,39,41,43] improve the efficiency and achieve
zero-knowledge based on the framework. We follow the same
framework in our scheme with a transparent setup, and we
present the protocol explicitly in Section 3.

3 Transparent Polynomial Commitment with
Prover Batching

We first present our transparent polynomial commitment
scheme with prover batching for multiple evaluations. There
are several candidates of transparent polynomial commitment
schemes recently [7,27,36,37,41] with the prover time of
O(t) for a single evaluation. However, in the application of
the VSS scheme in Protocol 4, if the dealer naively runs the
transparent polynomial commitment scheme on N evaluations
separately, the running time will be O(Nt).

In our scheme, we reduce the prover time of generating
all N proofs to O(NlogN) field operations, which is asymp-
totically the same as evaluating the polynomial at N points.
We propose the notion of one-fo-many zero knowledge ar-
guments, where each verifier receives one output out of the
entire output of a common computation represented by circuit
C. Instead of running a zero knowledge proof protocol with
each verifier separately, which may take O(N|C|) time for the
prover in the worst case, our scheme reduces the prover time
to O(|C| + NlogN).

When applied to the polynomial commitment for VSS,
we set the evaluations at powers of the N-th root of unity @
(i.e., " =1 mod p). In this way, we realize the polynomial
commitment with prover batching by instantiating the circuit
C in our one-to-many zero knowledge argument with the
classical butterfly circuit [38] for the FFT algorithm. The
circuit takes the coefficients of the polynomial f as input, and
outputs f(@°),..., f(0" 1), where each verifier 7V} receives
f(®/). With our one-to-many zero knowledge argument, the
prover is able to generate all proofs in time O(NlogN).

Below, we will first describe our one-to-many zero knowl-
edge argument scheme assuming that somehow, all verifiers
send the same challenge in every round (Protocol 2) — to



aid understanding, the reader may assume for the time be-
ing that all verifiers query a trusted random oracle in each
round to generate a common random challenge. Later, we
will describe a new Fiat-Shamir-style transformation (Pro-
tocol 3) to make Protocol 2 non-interactive, such that all
verifiers would effectively share the same challenges in this
non-interactive version. Finally, we will prove the soundness
of our new Fiat-Shamir transformation using the techniques in-
spired by Ben-Sasson, Chiesa, and Spooner [4]. For simplicity,
we first describe a simplified version of our protocol without
zero-knowledge. In full version, we will describe how to use
standard techniques to additionally achieve zero-knowledge.

3.1 One-to-Many Argument System Given
Shared Random Challenges

Following the notation of the GKR protocol in Section 2.2, we
denote the entire output of circuit C as Vp(¥) for X € {0, 1}108V,
Suppose the size of the output is N and each verifier 7/; re-
ceives one output Vo(f), where j is the binary representatioy

of j. Using its multilinear extension, we can write each Vo(j)
as a sumcheck of Vj(X) using the identity function [3:

Vo(7) = Lseqo1yoen BUT Vo (3).

 and ¥/ can run one sumcheck protocol to reduce the claim
about Vp(J) to the claim about ¥ (g(?)) for g € Flog¥  This
is equivalent to adding an additional layer of “selector” that
selects the j-th output for 7/;. Assuming all verifiers share the
same random challenge in every round, they will share the
random vector of g() during the sumcheck protocol and share
the last claim of Vp(g(?)). Then P invokes the GKR-based ar-
gument on the circuit C to prove to all verifiers the correctness
of V5(g'?)). Given the common randomness during the invo-
cation, the prover computes the same message for all verifiers
in every round. Thus in this step, the total computational cost
of P the same as that of proving to a single verifier, which is
O(|C|). We present the formal protocol in Protocol 2.

It remains to show that in Step 4 of Protocol 2, the prover
can generate all messages in the sumcheck protocols with
all the verifiers in O(NlogN) time. As there are N different
sumcheck protocols and the size of the polynomial in each
sumcheck is O(N), naively running Step 4 takes O(N?) time
using existing techniques. However, we observe that all the
sumcheck protocols with different /; share the same polyno-
mial V(X). The only difference is that the identity function
[3 takes different 2 By utilizing the special structure of the
identity function 3, we are able to come up with a new algo-
rithm to run all sumcheck protocols efficiently. The algorithm
initializes and updates a lookup table based on Vj once for
all verifiers in every round. Then using the lookup table, the
prover is able to generate the message for each sumcheck
protocol in every round in a constant time. Thus the prover
time is O(N) per round, and thus is O(NlogN) in total. We

Protocol 2. Batching prover computation for N verifiers that
share random challenges.

Let A be the security parameter. Let C: F" — FN be a d-depth
layered arithmetic circuit. For any j € [N), P needs to convince V;
that out; = [C(in)]; where [C(in)]; is the j-th output of the circuit
given input in, and out; is the the claimed result for V. Without
loss of generality, assume n and N are both powers of 2 and we can
pad them if not.

Here, we assume that all verifiers obtain their random challenge
Jfrom a common random oracle in each round.

1. Set pp < MVPC.KeyGen(lx).

2. P invokes MVPC.Commit(V,,pp) to generate comy, and
broadcasts comy, to all verifiers. Vy is the multilinear exten-
sion of input values, as defined in the GKR protocol.

-

3. Foreach j € [N), P sends Vo(j) as out; to V; separately.

4. For each j € [N], P and V; run a sumcheck protocol on

Vo(f) = [3(;56)% (), ]_"is the binary string of j
Fe{0,1}loeN

At the end of the protocol, Vj receives Vo(289) for the common
random vector of . V; computes B(7,28) and checks the
last statement of the sumcheck protocol.

5. For all verifiers P invokes the GKR protocol on the circuit C to
generate the proof given Vo (g().

6. For all verifiers, in the last round of the GKR protocol, they have
the claim about V(g9 . P and V; invoke MVPC.Open and
MVPC Verify on V(3D with comy, and pp. If it is equal to
V(89 sent by P, V; outputs 1, otherwise V; outputs 0.

present the formal algorithm in Algorithm 1. As shown in
Step 6 of Algorithm 1, in the i-th round of the sumcheck (see
Protocol 1 for the message in each round of sumcheck), the
messages defined by V} are shared among all verifiers and can
be computed by the prover in O(N/2%) time. In Step 7, the
lookup table is updated based on the randomness received in
this round in O(N/2/). Then in Step 9, the prover generates
the messages for each verifier 7/; utilizing the closed form of
the identity function as described in Section 2. Since the sum-
check protocol has log N rounds in total, the total prover time
is OIN+ % +...4+ 14+ NlogN) = O(NlogN). Using Algo-
rithm 1 for Step 4 in Protocol 2, and the transparent zk MVPC
scheme in [41] with O(nlogn) prover time, O(log” n) verifier
time and proof size, where n is the size of the input plus the
witness, we have the following theorem.

Theorem 2. For each ‘VJ and ‘P, Protocol 2 is an argu-
ment system for the function [out]; = [C(in)]; such that
out = C(in) with soundness O(dlog|C|/|F|). The proof size
is O(dlog |C| +1og®n) and the verifier time is O(dlog|C| +
log? n). If N verifiers have the common random challenge in
every round, the total prover time is O(|C|+NlogN +nlogn).



Algorithm 1 {61170, cer s AU N—T1;5 - AlogN,0s -+ ,alOgN,Nfl} —
. 0 0
SumCheck (V (X), gg ), ...,gl(oéN)

Input: V(%) for ¥ € {0,1}1°¢V random g<10>7 .. 7g1((()2N;
Output: For each j € [N], logN sumcheck messages

(@, ai0gn,;)  for V(j) = Y BU.®VW(®. Each
Xe{oJ}logN

message a; ; consists of 3 elements (ajo j,ai1,;,dp,j);
1: Initialize beta; = 1 for all j € [N].
2: Initialize an array V[B] = Vo (b) for all b € {0, 116N, /b is
the binary representation of integer B.

3: for Roundi=1,...,logN do

4: for Evaluation point r = 0,1,2do

5 for b € {0,1}1°¢N= do

6: To(gi”, .8l 1B) = VIB]- (1= r) + V[B+208V=1).

7 VIB] = VI[B]- (1 ")+ V[B+2eN 1] g0

8: for j=0,....N—1do

9: ajpj = betaj . [(1 — J,) . (1 — r) + Ji - r] .
& (0 0 . . . . .
Vo(g(l >7~~~785_)17r7Ji+l:~~~:JlogN) X j1ja--- Jlogn is the
binary representation of j.

. 0 . (0
10; beta; = beta - [(1— ji) - (1-g\*) + ji-g")]
11: return {alﬁ(), <o AIN=1,---,0logN,0; - - .,alOgNﬁN_l};

Proof. Completeness. For each 1 and P, the completeness
is straightforward.

Soundness. For each j, if Vo (j) # [C(in)], let ; (3(©)) be the
correct value corresponding to C. If Vp(g(¥)) # VJ (89), then
V; outputs 0 in Step 6 with the probability of O(dlog|C|/|F|)
by the soundness of the GKR protocol. If Vp(g(©)) =¥, (g?),
7 outputs 0 in Step 4 with probability of O(logN/|F|) by the
soundness of the sumcheck protocol. Thus, the total probabil-
ity is bounded by O(dlog|C|/|F|) by the union bound.

Efficiency. For each verifier ‘V] the proof size and the veri-
fication time in Step 4 are O(logN) while the proof size and
the verification time in Step 5 are O(dlog|C|). If Protocol 2
employs the transparent MVPC scheme in [41], the proof size
and the verification time are O(log”n) in Step 6. Thus the
verification time and the proof size are O(dlog |C| +1og® n)
for an individual verifier. The prover runs in O(NlogN) time
for N verifiers in Step 4 by Algorithm 1. 2 also invokes
the GKR protocol on C in Step 5. Given the same chal-
lenges, P costs O(|C|) time in Step 5 to generate the common
proof by Theorem 1. The prover time is O(nlogn) for the
zkMVPC scheme in [41]. Therefore, the total prover time is
O(|C| + NlogN + nlogn) asymptotically. O

It is not hard to see that our one-to-many zero knowledge ar-
gument scheme can be extended to support a subset of outputs
per verifier in a straightforward way, and we omit the details in
this paper. By instantiating the circuit C in Protocol 2 with the
FFT circuit of size |C| = O(NlogN) and depth d = O(logN),
and the input in with the coefficients of the polynomial f and
the N-th root of unity m, we are able to construct a polynomial

commitment scheme with prover batching. Each verifier 7/
receives Vo(j) = f(@/), and the prover generates all proofs
in O(NlogN) time. Suppose f(x) =co+cijx+...+cx" and

t = O(N), we have the following corollary:

Corollary 1. For prover P and N verifiers V; for j € [N|,
there exists an argument system for the function between
every P and V; that out; = f(&/) and out = FFT (cy,...,c;)
with soundness O(log> N/|F|). The proof size is O(log>N)
and the verifier time is O(log’N). If N verifiers have the
common random challenge in every round, the total prover
time is O(N1ogN) and communication is O(Nlog>N).

3.2 A New Fiat-Shamir Transformation for
Sharing Random Challenges

We now describe a new Fiat-Shamir-style transformation that
makes Protocol 2 non-interactive in the random-oracle model,
such that the N verifiers could effectively share the same
random challenge in every round. A strawman approach is to
use the standard Fiat-Shamir heuristic [16] for each verifier
'Vj and P, separately. In the Fiat-Shamir heuristic [16], P
generates V’s random challenge by querying a random oracle
on the entire transcript of messages with 1 so far. If we
directly apply the Fiat-Shamir heuristic on Protocol 2 for
each verifier separately, the random challenge will not be the
same in every round of the protocol since each verifier 7}
has the possibly different output Vo(f) at the beginning of the
protocol. Hence the previous transcript for V/; are divergent
in any round, and thus the random oracle will output different
challenges except with negligible probability.

Warmup: using a Merkle tree to merge random chal-
lenges into one. A better but still slightly inefficient approach
is to use a Merkle tree to merge the random challenges into
a single one. Precisely, in every round, the prover builds a
Merkle tree on N random points generated by Fiat-Shamir-
style transformation on N transcripts and uses the root as
the unique challenge for all verifiers. P also attaches the
corresponding Merkle path to convince each ¥/; of the cor-
rectness of the common randomness. Although the procedure
guarantees the common random challenges, the Merkle tree
approach will result in a multiplicative overhead of O(logN)
on the prover time, proof size, and the verifier time of the
whole protocol. Specifically, the log N blowup stems from the
need to build the Merkle tree of size N and send a log N-sized
Merkle branch to every verifier in every round.

Our approach. We suggest a more efficient approach that
achieves the same prover time as Protocol 2 and incurs only
an additive overhead of O(log> N) on the proof size. We have
the prover generate the verifier’s random challenge by query-
ing the random oracle at only the last round’s challenge and
message instead of the whole transcript. The advantage of
this new heuristic approach is that all verifiers share the same
challenge after Step 4 in Protocol 2 automatically without the



Merkle tree. As described in Protocol 2, as long as the ran-
dom vector of g‘(0> is identical in Step 4, all verifiers receive
the same claim about Vy(g(?)) with the same random chal-
lenge. Our heuristic transformation assures that the transcript
in Steps 5-6 will be the same for each verifier. Therefore, the
prover only needs to insert Merkle trees in every round of
Step 4 (i.e., the output layer). We provide the formal non-
interactive protocol in Protocol 3.

In a general setting, the standard Fiat-Shamir transforma-
tion usually applies only to constant-round protocols (assum-
ing only polynomial soundness loss in the security reduction).
By contrast, we are applying our new Fiat-Shamir-style trans-
formation to a non-constant-round protocol. Nonetheless, we
can still prove standard polynomial soundness loss using tech-
niques from Ben-Sasson, Chiesa, and Spooner [4]. We present
the formal proof in Appendix B, which implies the theorem:

Theorem 3. For each 'V, and P, Protocol 3 is a non-
interactive argument system for the function out; = [C(in)];
such that out = C(in). The proof size is O(dlog |C| +log?n +
log? N) and the verifier time is O(dlog |C| +log®n+log* N).
The total prover time is O(|C|+ NlogN +nlogn).

Efficiency. Compared to Protocol 2, the extra proof for each
verifier is log N authentication paths each being of length
log N. Hence the proof size for each 7/ has an extra term of
O(log?N). The extra computation for each ¥/ is validating
log N authentication paths contained in the proof by querying
the random oracle log? N times. Thus the verification time
for each verifier becomes O(dlog|C| 4 log?n +log? N). The
extra computation on the prover is building log N Merkle trees
of size N by querying the random oracle O(NlogN) times to
merge the randomness in Step 4. Therefore, the total prover
time is still O(|C| + nlogn+ NlogN) asymptotically.

Corollary 2. For prover P and N verifiers V; for j € [N],
there exists a non-interactive argument system for the func-
tion between every P and V; that out; = f(®') and out =
FFT(co,...,c;) with the proof size of O(log? N) and the veri-
fication time of O(log* N). The prover time is O(NlogN) and
the total communication cost is O(Nlog? N) givent = O(N).

4 KZG-Based Polynomial Commitment with
Prover Batching

In this section, we propose a new scheme based on the KZG
polynomial commitment with prover batching, such that gen-
erating all proofs only takes O(NlogN) time, without intro-
ducing any overhead on the proof size and the verifier time.
We first present the formal algorithms of the original KZG
polynomial commitment and then introduce our new scheme.

4.1 KZG Polynomial Commitment

The KZG polynomial commitment relies on the bilinear map,
which is defined below.

Bilinear map. Let G, G be two groups of prime order p and
let g € G be a generator. ¢ : G x G — Gr denotes a bilinear
map and we use bp = (p,G,Gr,e,g) + BilGen(1*) for the
generation of parameters for the bilinear map.

The KZG polynomial commitment is as follows.

* pp « KeyGen(1*,r): Given the security parame-
ter and a bound on the degree of the polyno-
mial, it runs (p,g,G,e,Gr) «+ BilGen(1*). Output

0 1
pp=[p,2,G,e,Gr,{g" &% ,....g" }].

* comy < Commit (f,pp): Given a polynomial f(x) =
I_,cix', it computes com = /() =TT,_ (g% ).

* {(y,m)} + Open (f,a,pp): For an evaluation point a, the
prover computes y = f(a) and polynomial g(x) = %
Let the coefficients of ¢ be (qo,q1,...,q:—1). The prover

computes 1t = g% = IT_} (g% )%

* {1,0} < Verify (com¢,a,y,, pp): Given the commitment
comy, the evaluation point a, the answer y and the proof T,

the verifier checks if e(com/g”, g) L e(m,g"/g"). It outputs
1 if the check passes, and O otherwise.

The scheme is computationally-hiding under the discrete

log assumption and computationally binding under the [-
SBDH assumption. The prover time of the KZG commitment
is O(t) modular exponentiations, the proof size is O(1), a sin-
gle element in the base group, and the verifier time is O(1),
one bilinear pairing.
FFT on group elements. As the FFT algorithm only in-
volves additions and scalar multiplications with the pow-
ers of the root of unity ®, the algorithm can be applied
to a vector of elements in the base group of the bilinear
map by replacing the additions with multiplications and the
multiplications with exponentiations in the base group. In
particular, let A = (ag,...,ay) and g* = (g%,...,g%), one
can evaluate FFT(g) = (¢/@"),...,¢"@" ™) for f(x) =
YN gaix' in time O(NlogN), without knowing (ao,...,ay).
Similarly, one can also compute the convolution with a pub-
lic vector B = (by,...,by) “on the exponent”, i.e., g =
IFFT(FFT(¢*) © FFT(B)), where ® denotes element-wise
exponentiation.

4.2 Our New Prover Batching Technique

In our new scheme, the public parameters pp, the commitment
com  and the proof 7 together with Keygen, Commit, Verify
are exactly the same as the KZG commitment. The main con-
tribution is that we present a new batched algorithm for the



Protocol 3. Making Protocol 2 non-interactive with a new Fiat-Shamir-style tranformation

Let \ be the security parameter. Let C: T — FN be a d-depth layered arithmetic circuit. For any j € [N], P needs to convince
V; that out; = [C(in)]; where [C(in)); is the j-th output of the circuit given input in, and out; is the the claimed result for V.
Without loss of generality, assume n and N are both powers of 2 and we can pad them if not. Let p be a random oracle.

1. Set pp + MVPC.KeyGen(1*).

2. P invokes MVPC.Commit(V,, pp) to generate comy, and broadcasts comy, 1o all verifiers. V, is the multilinear extension
of in, as defined in the GKR protocol.

3. Foreach j € [N], P sends Vy(j) as out; to V; separately.

4. For each j € [N], P runs the sumcheck protocol on the equation in Step 4 of Protocol 2. Fori=1,...,1ogN:

(a) Suppose M, j is the i-th univariate polynomial ‘P sends to ‘V; in the sumcheck. If i = 1, set r; j = p(code||Vo(j)HM17j).
. 0
Ifi> 1, setri ;= p(g) ||Mi ;).
© = MT.Commit(#?)). Then P assigns g<0) as the

(b) P builds a Merkle tree on the vector of?(i) = (ri0,...,rin—1). Let g ;
common random challenge in the i-th round.

(0)

(c) P attaches (ri j,path; ;) <~ MT.Open(j,g; ) in the proof.

In the last round of the sumcheck, P sends V; (§<0>) 1o each V; as they share the same random vector of g(‘)).

5. ‘P invokes the GKR protocol with V; (§<0)). In each round, P generates the random challenges by querying p on the last
round’s challenge and message. For all V;, the random challenges and the transcript would be exactly the same because they
share the same claim about V) (§(O)) and the same random vector §(°> from the first round of this step.

6. In the last round of the GKR protocol, all verifiers have the same claim about V;(\?). P invokes zkMVPC.Open(V;,g9), pp)
to generate the proof for the claim.

7. For each j € [N], V; checks the proof with random challenges provided by P and zkMVPC Verify. Then V; checks all
authenticated paths in the Merkle tree proof by MT Verify. In particular, given path; ; = (V1,...,Viggn), fork=1,...,logN:
if ji =0, Vj computes ri j = p(ri j||Vi||(i— 1) (logN + 1) + k); otherwise V; computes r; j = p(Vi||ri j||(i—1)(logN + 1) +k).

Vj checks that r; j = g§0>. Finally, V; queries p to check the generation process of random challenges.

prover to generate proofs for N different evaluation points.
The key idea of our scheme is to evaluate the polynomials at
different powers of the N-th root of unity ®, which enables
us to invoke the FFT algorithm to compute the proofs effi- g(t,y) = f(r) -

ciently — but observing how to leverage the FFT algorithm T—y

o',i € [N]. Let f(x) = ¥j_oc;x/, we have:

Eoeti—yi) ‘
o) _ Yi—o¢i(v =) =Y ¢ Ytk
=1 k=

(T—y)

is non-trivial. Recall that in the dealing round of the VSS

scheme, for each party i € [N] the dealer computes s; = f(u;)
F(O—f(ui)
and ; = g¥ ® = g T4 . By setting the public evaluation

point of party i as u; = @', the dealer can compute all s; in
O(NlogN) time using the FFT algorithm. However, comput-
ing the proofs m; is more challenging, as 7 is the secret key
and is not explicitly given to the dealer. The dealer only has

access to the public parameters g*, g‘z, ey gT'.
To solve this, we examine the structure of the polynomials
gi(x) for i € [N]. We define a bivariate polynomial ¢(x,y) as

fx) —f)
x—y

q(x,y) = (2)

Then, ¢;(t) = ¢(t,®') and the proofs are T; = g4(*») for y =

, (3)
ast/ —y/ = (1—y)-XJ_ Y 't/ *for j=1,...,N, and the
constant term cq cancels out for j = 0. By changing the order
of the summations, the equation above equals to
IR kY k—1

YT Y e =) ot )

k=1 Jj=k k=1
where hy, = th:k cjv/ —k. As shown by the equations above,
q(t,y) is a degree-(r — 1) polynomial of variable y. If we can
precompute all g fork=1...,t, we can evaluate gq“’y) at
y= ' fori € [N]in O(NlogN) time using the FFT algorithm
on the elements in the base group.
Precomputing g«. We observe that / is in the form of a
convolution, and we can precompute all g/« using FFT. Let



Algorithm 2 (my, ..., Ty_1) < multi_proof (f,®,N,pp)

Input: Polynomial f(x) = Y%, c;x', the number of parties N, the
N-th root of unity ® and the public parameter pp containing
g%,8%,...,¢" and (p,g,¢,G,Gr).
Output: Proofs of the KZG commitment 7; = g¢(%), for i € [N].
1: Setc = (617627""Ct)’gT = (g ’gﬂc1727"'7gro)’
2: Compute the convolution g = g7 = IFFT(FFT(g7) ®
FFT(C)), where ® denotes element-wise exponentiation.
3 ght = glimee/™ " = gHlk+1=2) for each k = 1,...1.
4 For  polynomial  h(y) = Xi_ ho* !,
(g"),gh@), .. g™ = FFT (gh gh,....gM).
5: Return m; = g%(?) = gh(®)

,cr—l

compute

C=(c1,c2,.0y¢),T= (1,772 ..1%), and let H=C*T
be their convolution. As described in Section 2, we have:

¢ ¢
H[)=Y CmT[t—m] =Y eyt "m0 (5)
m=0 m=0

By setting { =k+t—2 and j=m+1, ¢uy1 = ¢; and
gt 1=(t=m) — i~k in Equation 5. Moreover, ¢; is defined to
be nonzero for j € [1,¢], and /7% is defined to be nonzero
for j € [k,k+ ¢ — 1]. Therefore, H[(] = Y etk =
k€ 7T/ % = . Thus, the dealer can precompute all g/
fork=1,...,t using FFT and IFFT on g’ and C in O(tlogt)

time without knowing 7.

Complexity analysis. We present the formal algorithm in
Algorithm 2. Combining the two steps, the overall complexity
of the dealer is O(NlogN) modular exponentiations. The
proof size and the verifier time remain O(1) per evaluation.
In fact, our scheme is a more efficient algorithm to generate
multiple proofs, and each proof size and verification time
remain exactly the same as the original KZG polynomial
commitment. The security of our scheme follows directly
from the security proofs in [25].

Note that both our new scheme and the original KZG
scheme only achieve computationally-hiding and binding, but
not the stronger notion of proof of knowledge and zero knowl-
edge in Definition 1. However, they suffice to prove security
for the application of VSS and DKG as shown in [25], as the
secret and the polynomial are randomly generated. Follow-up
works such as [43] propose variants that achieve proof of
knowledge and zero knowledge using randomized commit-
ment and opening, and knowledge assumptions. Our scheme
with prover batching also works on these variants with min-
imal changes and achieves stronger notions. We sketch the
algorithms in the full version.

S Implementation and Evaluation

We fully implemented our proposed schemes with prover
batching and present the experimental results in this section.

Implementation. We implemented our proposed schemes in
C++ consisting of around 3000 lines of code. We used the
ate-pairing library [1] for bilinear maps in the scheme with
the trusted setup, and the GMP library [2] for large numbers
and arithmetic on a finite field. The implementation of our
transparent polynomial commitment was based on the open-
source codebase of the scheme in [41]. We used the same
extension field ¥ » for p = 261 _ 1, which provides 100+ bits
of security.

Configuration. We ran the experiments on an AWS
cS5a.24xlarge instance, which was equipped with an
AMD EYPC 7002 CPU with 96 cores, 187 GB RAM*. All
parties were executed on the same machine. We only report
the numbers for the optimistic case of the VSS and DKG
schemes where all the proofs are generated honestly. The
polynomial commitment takes the majority of the time in
this case, which is the main focus of this paper. In all the
experiments, we set the degree of the polynomial as t = N /2,
and the number of parties N ranges from 2!! to 22!,

Counterpart comparison. In the VSS setting, we compare
our KZG-based polynomial commitment scheme with two
schemes that also require a trusted setup (Section 5.1): (i)
naively running the KZG polynomial commitment for N ver-
ifiers, which incurs a prover time of O(Nz); and (ii) the au-
thenticated multipoint evaluation tree (AMT) scheme in [35].
We executed the open-source code of [35] on the same ma-
chine for a fair comparison. We then compare our transparent
polynomial commitment scheme with running a transparent
counterpart, named Virgo [41], N times to produce N proofs
(Section 5.2). Finally, we evaluate the performance of our
KZG-based and transparent schemes under DKG application,
compared with AMT-DKG instantiation [35] (Section 5.3).

5.1 VSS with Trusted Setup

As shown in Figure 1, the running time of the dealer in our
KZG-based scheme only grows quasi-linearly with the num-
ber of parties. It only takes 2.2s to generate the proofs for 2!
parties and takes 3,995s for 22! parties. This is significantly
faster than running the KZG commitment naively and the
speedup is 100-58,000x. We could not run the naive scheme
beyond N = 2'2 due to its long-running time. Therefore, we
ran up to 2! parties and extrapolated the result for the larger
number of parties. Comparing to the AMT scheme [35], the
prover time of our scheme is slightly worse. It is 2.2x slower
than AMT for N = 2!'! and 3x slower for N = 22!, This is
because our scheme involves 3 FFTs on the base group of the
bilinear map, and the constant in our asymptotic complexity
is slightly larger than that in AMT.

40ur KZG-based scheme only takes 2.8GB of memory in the largest
instance. In our transparent scheme, the memory usage can be reduced to
several gigabytes with proper pipelining by streaming the proof to each
verifier without affecting the prover time.
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The proof size and the verifier time in our scheme are much
smaller than AMT. They are always 192 bytes and 1.3ms
regardless of the number of parties, which are the same as
the original KZG scheme. By contrast, the proof size and the
verifier time grow logarithmically in AMT. Specifically, the
proof size is 20x larger than our scheme, and the verifier time
is 4.2-7.8x slower. This shows that our schemes achieve

5.2 VSS with Transparent Setup

Figure 2 presents the performance of the VSS scheme with
our scheme compared with Virgo. As shown in the figure,
the dealing time of our transparent scheme is very fast. It
only takes 0.3s to generate proofs for 2!! parties and 560s
for 221 parties. This is 700-260,000x faster than the naive
approach, which again takes a quadratic time and does not
scale in practice. One may observe an interesting result that
the dealing time of our transparent scheme is indeed an order
of magnitude (i.e., 7-10.5x) faster than the schemes with
trusted setup in Section 5.1. This is because our transparent
scheme only incurs cheap symmetric-key operations such as
hashing and field arithmetic instead of the costly modular
exponentiation. This performance gain is significant even
though it is generally not captured in the asymptotic cost.

The proof size and the verifier time of our transparent
scheme are comparable to Virgo, as we merely introduce an
additional sumcheck for each verifier. The proof size varies
from 200KiB to 390KiB, and the verifier time varies from
2.8ms to 8.7ms. The proof size is larger than the KZG-based
schemes because of the underlying techniques of interactive
proofs. However, notice that our transparent scheme removes
the trusted setup, which is critical in some applications.

5.3 Distributed Key Generation Experiment

We report the total computation time and communication for
each party of the DKG schemes using our polynomial com-



mitments in Figure 3, and compare it with AMT-DKG [35].

The overall computation time of our protocols grows quasi-
linearly with the number of parties. For example, it takes
15,400s for our transparent scheme to run a DKG of 22! par-
ticipants, and 6,700s for our KZG-based scheme. These are
1.5% and 3.3 x faster than the AMT scheme respectively. This
is because our transparent scheme only incurs cheap symmet-
ric operations, as discussed above, despite being asymptoti-
cally logarithmically slower than AMT. On the other hand,
our KZG-based scheme incurs a lower verification time for
each party to verify the proofs from the other parties. More-
over, our transparent scheme is slower than our KZG-based
scheme in the application of DKG. This is because although
the prover time of our transparent scheme is faster, its veri-
fier time is slower (O(log? N) vs. O(1)). In DKG, each party
verifies the proof of every other party, which becomes the
bottleneck of our transparent scheme.

The total communication of our KZG-based scheme is or-
ders of magnitude smaller than AMT. Specifically, it is always
192 - N bytes in our scheme, while the proof size of AMT-
DKG grows quasilinearly. Concretely our KZG-based scheme
achieves the communication of only 0.8GB for N = 221
which is 20x smaller than AMT. Due to techniques to re-
move the trusted setup, the communication in our transparent
scheme is 100 larger than AMT, which matches their asymp-
totic cost difference (i.e., O(Nlog® N) vs. O(NlogN)).
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A Additional Preliminaries

Interactive proofs. An interactive proof allows a prover P to
convince a verifier ¥ the validity of some statement through
several rounds of interaction. We say that an interactive proof
is public coin if ¥’s challenge in each round is independent
of P’s messages in the previous rounds. The proof system
is interesting when the running time of 7/ is less than the
time of directly computing the function F. We formalize the
interactive proofs in the following:

Definition 4. Let F be a function. A pair of interactive ma-
chines (P, V) is an interactive proof for F (x) =y with negli-
gible soundness if the following holds:

» Completeness. For F (x) =y it holds that Pr[(P, V) (x,y) =
1]=1

* Soundness. For F(x) # y and any P* it holds that
Pr((P*, V) (x,y) = 1] < negl(}).

Verifiable Secret Sharing. An (N,7 + 1) secret sharing
scheme [5,33] allows a dealer to split up a secret s among N
verifiers in such a way that only the subset of # + 1 or more



Protocol 4. (N,7+ 1) verifiable secret sharing scheme
Suppose P is the dealer with a secret s € F and W, ..., Vy_1
are N verifiers. Let pp <+ KeyGen(lx,t).

e Sh phase:

1. P picks f €g F[X] of degree t such that s = f(0), com-
putes sj = f(uj) for all j € [N].

2. P runs comy = Commit(f,pp) and broadcasts com to
all verifiers.

3. P runs (f(u;),m;) = Open(f,uj,pp) and sends
(f(uj),m;) to V; for all j € [N].

4. For each j € |[N], v, invokes b <«
Verify(comy,uj, f(u;),n;,pp). If b = 0, V; broadcasts
a complaint against the dealer.

5. If the size of the set S of complaining players is larger
than t, the dealer is disqualified. Otherwise, the dealer
reveals the correct shares with proofs by broadcast-
ing {f(uj,m;)} jes. If any one proof does not verify (or
dealer did not broadcast), the dealer is disqualified. Oth-
erwise, each V; now has her correct share f (u j).

* Rec phase: Given comy and shares (f(u;),T:)iercy]
such that |T| > t, the reconstructor runs bj <
Verify(comy,uj, f(u;),®;,pp) forall j€T. If bj =1 for
all j € T, the reconstructor recovers f with {f(u;)} jer by
Lagrange interpolation and obtains s = f(0).

participants can recover the secret s, and the subset of # or
fewer participants can not. An (N,7+ 1) VSS scheme can
be instantiated with a polynomial commitment scheme. It
consists of two phases: the sharing (Sh) phase and the recon-
struction (Rec) phase. In the sharing phase, the dealer 2 picks
a random polynomial f(x) of degree ¢ such that the secret
s = f(0), and then commits to f. Then 2 sends the shared se-
cret s; = f(u;) and the corresponding proof w; to the verifier
V; for all j € [N], where each u; is a unique value. ¥/; accepts
s by checking ;. In the reconstruction phase, each verifier
V; reveals s; and ; to the reconstructor. The reconstructor
uses Lagrange interpolation to recover s after receiving ¢ + 1
valid shares. The formal VSS protocol instantiated with the
polynomial commitment is presented in Protocol 4.

B Proving Soundness of Our New Fiat-
Shamir-Style Transformation

Below, we focus on Steps 3-6 of Protocol 3 on the circuit C
and formally prove that the protocol is complete and sound.
When combined with the MVPC in Steps 1,2 and 7, we are
able to obtain a non-interactive argument by Definition of
Zero-knowledge proofs.

There are two key differences between our transformation
in Protocol 3 and the standard Fiat-Shamir transformation:
(1) in every round, the randomness is generated by hash-

ing the random challenge and the message in the previous
round, instead of the entire transcript so far; (2) in Step 4 a
Merkle tree is constructed on the hash of each verifier and
the root is used as the common randomness in this round for
all verifiers. However, when viewed from the perspective of
a single verifier, e.g., V), the second difference is actually
very similar to the first one. This is because in each round,
7} receives log N messages from the prover (claimed to be
the validation path of a Merkle tree). To perform the Merkle
tree verification, as shown in Step 6 of Protocol 3, suppose
P sends the authentication path of (Vi,...,Viegn) to % and
r is 9)’s random challenge in the current round, % com-
putes rt = p(...p(p(r[[Vi)||V2)...|[Viogn) and use rt as her
random challenge in the next round. When proving soundness,
as the prover is malicious, there is no guarantee that these
messages are indeed from the same Merkle tree among all
verifiers. Therefore, it is equivalent to extending one round
of the interactive version of the sumcheck protocol in Step 4
of Protocol 2 to log N rounds. In these additional rounds, the
prover does nothing but sending a dummy message V; to the
verifier. The verifier ignores the dummy message and replies
with fresh randomness. Finally, the prover and the verifier
use the last randomness to proceed to the next round of the
original sumcheck protocol. We give this interactive protocol
with dummy messages for Step 4 of Protocol 2 in Protocol 5.

Observe that when we apply our Fiat-Shamir transforma-
tion of hashing only the previous random challenge and mes-
sage to Protocol 5, it becomes Protocol 3 from the perspective
of each verifier, if we model the hash function in the Merkle
tree as the random oracle. Moreover, intuitively Protocol 5 is
sound as long as the original interactive proof is sound, as the
verifier simply picks some additional randomness and ignores
some dummy messages from the prover. Therefore, our strat-
egy to prove the soundness of Protocol 3 is: (1) we first show
that as long as an interactive proof protocol is secure against
state restoration attacks defined in [4], the non-interactive
protocol by applying the transformation of hashing only the
previous message and the random challenge is sound; (2) ex-
tending one round of an interactive proof protocol to multiple
rounds with dummy messages as in Protocol 5 does not affect
the security against state restoration attacks.

Formally, let T be an interactive proof protocol with n
rounds for the statement of F (x) = y. Let (my,ry,...,my,r)
denote a complete transcript for T, where m; € F* is the
prover’s message in round i while r; € I is the verifier’s ran-
domness in round i. Let p : F* — F denote the random oracle.
In our new heuristic algorithm, the prover sets required ran-
dom points as r; = p(x||y||m1]|0) and r; = p(ri—1||mi||i — 1)
or rj = p(my||ri—1]]i— 1) for i € {2,...,m} to make T non-
interactive. We modify the transformation by taking the round
number in T as the extra input to the random oracle and ex-
changing the order of r;_; and m; in certain rounds. We show
that if T is sound against the prover with state restoration
attacks, then the non-interactive protocol is sound after the



Protocol 5. The interactive proof with dummy messages for
Step 4 of Protocol 2

Forroundi=1:...,logN of the sumcheck protocol:
Fork=1,...,logN:

o Psends Vi to V.
* YV responds with random number of Du; 4 € F.
0

0 _ P

i

(0)

e If ju =0, set r (rlgo) [[Vig): otherwise, set r;’ =
0
p(viallri®).
P and V; use rl@) as the random challenge in round i and continue
the sumcheck protocol.

Game 1. The game between a state-restoring prover P*(x,y)
and a verifier 7/(x,y).

1. Given x,y satisfying F(x) # y, the game initializes the set of
SeenStates to be {null}.

2. Repeat the following at most T times, where T = poly(L):

(a) P* chooses an element cvs in SeenStates. (cvs is short for
complete verifier’s state.)

(b) The game sets V’s state to cvs.

(c) Ifcvs = null: P* sends my to V. Then 'V returns a random
point ry to P*; P* adds m||r) into SeenStates.

(d) If cvs=my||r1||...|[mi—1]|riz1 for 1 <i<m: P* sets V’s
state to cvs, generates m; according to cvs and sends it to
V. After receiving r; randomly sampled by V. P* adds
cvs||m;||r; into SeenStates.

(e) If cvs = my||r1||...||mn||, the prover can choose to
set ‘V’s state to cvs. V' computes his decision b given
(x,y,my,r1,...,my, ). Then, the game halts and outputs
b.

3. The game halts and outputs O.

heuristic transformation.

Definition 5. An interactive protocol T for the statement
F(x') =y with | rounds is secure against state restoration
attacks if for every x and 'y such that F (x) # y, for every P*
and an honest V, Game I outputs 1 with the probability of
negl(A).

Theorem 4. If T is an interactive proof for F(x) =y withn
rounds and it is secure against state restoration attacks in
Definition 5, then after the transformation, the non-interactive
protocol T satisfies the soundness in interactive proofs.

Proof. We use PP and V to represent the prover and the
verifier in the non-interactive protocol separately. Suppose
P can query a random oracle p at most A times. Given

A = poly(A), we construct a prover P* with state restoration
attack ability against verifier 1/ in the original interactive
protocol.

Construction of P*. We use P* to simulate the random ora-
cle for PP and P* works as follows.

1. Let p be a table mapping F* — FF and let 8 be a table
mapping a random point in F to the verifier’s state. Both
tables are empty in the beginning and are filled with el-
ements as P* runs the protocol. Intuitively, we use p to
simulate PP access to a random oracle while we use J to
keep track of 1”’s states that P* has “seen in his mind”.
Given a verifier’s state cvs, let L(cvs) be the number of
rounds contained in the state, which can be simply treated
as the number of || in cvs by the format of cvs. Suppose
the vector & = (ey,...,en—1) € {0, 11" is public.

2. Begin simulating PP and, fori=1,...,A:

(a) Let 6; denote the i-th query by PP.

(b) If 6; has been inserted into the table p, P* responds
with p(6;). Go to next iteration for i.

(c) If i < j, P* draws a random number r € F, answers
the query with r, then sets p(6;) := r. Go to next
iteration for i.

(d) If i = j, P* splits 0; to x||y||m;]|0 (P* aborts if he
cannot split 0; to x||y||m;||0). P* starts the game with
V on f(x) =y. P* sets V’s state to (null), sends m;
to 7V, receives the first randomness of r| from V. P
sets p(x||y||m1]]|0) := ry and 8(r;) := my||ri. Go to
next iteration for i.

(e) Ifi > j, suppose the last element of 6; is k.

i. If0;=kork>mnork=0,P* draws a random
number r € F, answers the query with r, then
sets p(6;) := r. Go to next iteration for i.

ii. If ex =0, let r; € F be the first element of ;. P*
splits 0; to ry||myr1||k. If 8(ry) is defined and
L(3(ry)) =k—1,P* sets 1V state to cvs = 3(ry).
Then P* sends my | to V. After receiving ry 1
from V, P* answers PP with ry, 1, sets p(0;) :=
Fit1, and sets O(rg+1) := cvs||my]||ry1. If (rk)
is note defined or L(8(ry)) # k— 1, P* draws a
random number r € IF, answers the query with
r, then sets p(0;) := r. Go to next iteration for .

iii. Ife, =1, let r; € IF be the last element ahead of k.
P* splits ; to my1||r]|k. If 8(ry ) is defined and
L(8(ry)) =k—1, P* sets V” state to cvs = &(ry).
Then P* sends my.y| to V. After receiving ry. g
from V, P* answers PP with ri 1, sets p(8;) :=
Fit1, and sets 8(rgy1) := cvs||my||rep1- If (rk)
is not defined or L(8(ry)) # k— 1, P* draws a
random number r € [F, answers the query with
r, then sets p(0;) := r. Go to next iteration for i.



Our construction has two major differences from the con-
struction in [6]. In the construction above, P* guesses the
statement of f(x) =y that P would use in the proof by as-
suming that the j-th query to the random oracle is x||y||m||0,
instead of knowing it in advance. This only introduces a poly-
nomial loss on the probability. Moreover, the query to the
random oracle contains the round number. This is because
in our non-interactive argument in Protocol 3, to verify the
Merkle tree path, the prover’s message is sometimes on the
left and sometimes on the right of the input of the hash. Our
construction of P* tracks this information by the round num-
ber in order to determine the ordering of the queries to the
random oracle. In particular, P* use k to detect which round
is relevant to the query. For each k, with the public indicator
e, P* knows that P’s message is in the head or the tail of the
string.

Analysis of P*. We now analyze P*’s ability to cheat given
P’s ability to cheat.

Let U(A) denote the uniform distribution over all functions
on p : F* — F. If p is uniformly sampled from (), then
we write p < U(A) and say that p is a random oracle. We
claim that P* simulates a p € U(A) uniformly at random.
That is because, given any new input, P* responds either
with a uniformly random point generated by himself, or a
uniformly random point provided by . It is equivalent to
draw p uniformly at random in the beginning of the non-
interactive protocol.

We claim that if PP outputs the proof of
(x,y,my,r1,...,my,ry) that makes V accept with probability
nonegl(A), then P* will have cvs = my||ri||...||my]||ry for

F(x) =y to win the game with probability nonegl(A). The
formal proof is provided in the following.

Without loss of generality, we suppose e =0 for 1 <k <.
We define some events as follows.

1. E; represents that PP outputs (x,y,mi,r1,...,my,rm) that
makes V accept. Then it satisfies r; = p(x||y||m1]|0) and
ri = p(r,;lﬂmiHif 1) forl <i< n.

2. B represents  that PP queries P* at
Iyl []0. 7 flmal 1, .ot lmg 0 — 1 i order
and P* does not return the same value for different queries
during the entire query process.

3. E; represents that P* predicts that PP queries x||y||m;||0
for the first time in the j-th query accurately.

4. E4 represents that cvs = my||r1||...||my||rm for F(x) =y
is in P*’s SeenStates set and P* wins the game.

First, we prove Pr[E; A —E] < negl(A). Let ro denote x||y.
There are three cases covering £ A —E»: (i) E; happens but P
does not query ri_i||m;||i — 1 for some i € {1,...,n—1};
(ii) E; happens but P queries r;||m;.||i before querying
ri—1||mi||i — 1 for some i € {1,...,m— 1}; (iii) E; happens
but P* returns the same value for different queries. The

probability of case (i) and the probability of case (ii) are
both negl(X) as PP can not correctly guess the output of p
for any input except with negl(A). The probability of case
(i) is also negl(A) as PP can not find a collision of p ex-
cept with negl(A). By union bound, Pr[E; A =E3] < negl(A).
Suppose Pr[Ej] = p = nonegl(L), Pr[E| A E;] = Pr[E|] —
Pr[E| A —=E>] = nonegl(A) — negl(X) = nonegl(A). Then we
have Pr[E| A E, A E3] = Pr[E3|E| AE,)] - Pr{E) AEa] > £ -
nonegl(A) = nonegl(}).

Next, we show Pr[E4|E| A Ex A E3] = 1. We prove that if
E\ NE> NEs happens, 8(r;) =my||r1]]...||mi||ri for 1 <i<m
by induction. For each i, 8(r;) was included in & only once as
there is no collision during the query phase. For i = 1, when P
queries x||y||m1]|0 in the j-th query, P* sets &(r1) := my||r.
For i = k, suppose P* sets 8(ry) :=my||r1]|. .. ||my||ry when P
queries ry_1||m||k — 1, when P queries rg||my 1 ||k hereafter,
P* sets 8(ri1) = 8(re) [|mel[ricer = mu|ra ]|y || Fiesr.
Hence cvs = my||ry]|...||my||rm for F(x) =y will be in P*’s
SeenStates set and P* will win the game. Pr[E4] > Pr[E| A
E> NE3] = nonegl(A). O

Theorem 5. If the interactive proof T for F(x) =y withn
rounds is secure against state restoration attacks, after insert-
ing ¢ = poly(\)-round interaction in the i-th round of T as
in Protocol 5, the new interactive protocol Ty, is also secure
against state restoration attacks for F (x) = y.

Proof. (sketch) Let P be the prover in T and %y, be the prover
in Tq,. Suppose Ty, inserts c-round interaction with arbitrary
messages of (duy,Vy,...,du.,V,) in the i-th round of T. If
P4y can win the game described in Definition 5 with prob-
ability p for x,y satisfying F(x) # y by generating a cvs of
(mi,ri, .. midug, vy oo, due, Ve, 1y, Mig 1, Tig 1, - oo g, ),
then P can invoke %y, to generate the cvs of (my,ry, ...,
M, i, Mg, Tigl, - My, ) to win Game 1 with probability
at least p. O

Replacing T with Ty, and applying the non-interactive
transformation to Ty, indicate that we can integrate an au-
thenticated path in the Merkle tree into such a protocol T
at the cost of extra log N rounds, where N is the size of the
Merkle tree. Therefore, for each verifier 'Vj, Protocol 5 inte-
grate log N Merkle paths into Protocol 2 at the cost of extra
log? N rounds.

In Protocol 3, the statement P wants to convince V; is equiv-
alent to Fj(comy, ) = [C(in)];, where comy, is the commit-
ment of V; and P broadcasts to all verifiers at the beginning.
Fj represents that there exists a degree-¢ univariate polyno-
mial f(x) =co+cix+...+ ¢ such that (@) = [C(in)];
and comy, = MVPC.Commit(¢, pp), where ¢ the multilin-
ear extension of (co,...,¢;). For each 4V, Protocol 3 prac-
tises our new heuristic transformation on Protocol 5 for
Fj(comy, ) = [C(in)]; to make the proof non-interactive. The
protocol will be sound after the transformation.
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