
StateFuzz: System Call-Based
State-Aware Linux Driver Fuzzing
Bodong Zhao1, Zheming Li1, Shisong Qin1, Zheyu Ma1,

Ming Yuan1, Wenyu Zhu2, Zhihong Tian3, Chao Zhang1,4

1Institute for Network Science and Cyberspace / BNRist, Tsinghua University
2Department of Electronic Engineering, Tsinghua University

3Guangzhou University
4Zhongguancun Lab

Code Coverage Guided Fuzzing

Inital Inputs Seed Corpus

Seed
Selection

Seed
Mutation

Target
Program Crash

New Code Coverage?

seeds

feedback

Code Coverage Guided Fuzzing

Inital Inputs Seed Corpus

Seed
Selection

Seed
Mutation

Target
Program Crash

New Code Coverage?

seeds

feedback
Code coverage guided fuzzing has limitations in fuzzing
rich-state targets.

Motivation Example

Target Program

action('A', 0xff)
action('B', BUF_SIZE)
action('V', 0)

Testcase

New State:
state_A = 0xff;
state_B = BUF_SIZE;

Original State:
state_A = 0;
state_B = 0;

Motivation Example

Target Program

action('A', 0)

Testcase

New State:
state_A = 0;
state_B = 0;

Original State:
state_A = 0;
state_B = 0;

Motivation Example

Target Program

action('A', 0xff)

Testcase

Hit new code, save this testcase.

New State:
state_A = 0xff;
state_B = 0;

Original State:
state_A = 0;
state_B = 0;

Motivation Example

Target Program

action('B', 0)

Testcase

Hit new code, save this testcase.

New State:
state_A = 0xff;
state_B = 0;

Original State:
state_A = 0xff;
state_B = 0;

Motivation Example

Target Program

action('V', 0)

Testcase

Hit new code, save this testcase.

New State:
state_A = 0xff;
state_B = 0;

Original State:
state_A = 0xff;
state_B = 0;

Motivation Example

Target Program

action('A', 0x0)
action('B', BUF_SIZE),

Testcase

Hit no new code, discard this testcase.

New State:
state_A = 0;
state_B = BUF_SIZE;

Original State:
state_A = 0xff;
state_B = 0;

Motivation Example

Target Program

action('A', 0xff),
action('B', BUF_SIZE),

Testcase

Hit no new code, discard this testcase.

New State:
state_A = 0xff;
state_B = BUF_SIZE;

Original State:
state_A = 0;
state_B = BUF_SIZE;

Motivation Example

Target Program

action('A', 0),
action('V', 0),

Testcase

Hit no new code, discard this testcase.

New State:
state_A = 0;
state_B = BUF_SIZE;

Original State:
state_A = 0xff;
state_B = BUF_SIZE;

Motivation Example

Target Program

action('A', 0),
action('V', 0),

Testcase

It is difficult to trigger the bug.

New State:
state_A = 0;
state_B = BUF_SIZE;

Original State:
state_A = 0xff;
state_B = BUF_SIZE;

Motivation Example

Target Program

action('A', 0),
action('V', 0),

Testcase

state_A = 0;
state_B = BUF_SIZE;

It is hard to trigger the bug.

Code coverage-guided fuzzers will ignore testcases
that exercise the same code path,
even though they have explored new states.

How to perform state-aware fuzzing

• Three questions to answer

• Q1: What are program states?

• Q2: How to recognize and track program states?

• Q3: How to utilize program states to guide fuzzing?

How to perform state-aware fuzzing

• Q1: What are program states?
• Values of all memory and registers

• the number of such states is overwhelmingly large
• hard to track in practice

• Manual annotation:
• human efforts needed

• Protocol status code:
• not always available

• Using variables to represent states is very common

We only focus on a subset of program states represented by variables.

HTTP

200 OK

How to perform state-aware fuzzing

• Q1: What are program states?

• Q2: How to recognize and track program states?
• We only focus on a subset of program states represented by

variables.
• The question is equivalent to how to recognize the state-variables

(i.e., the variables that represent program states)?

Recognize State-Variables

• State-variables (i.e., the variables that represent program states)
• have a long lifetime
• can be updated (i.e., state transition) by users
• can affect the program’s control flow or memory access

• Observation
• rich-state programs always require multi-stage inputs.

• Each stage of input will trigger specific program actions.

User
Packet

FTP Server

Pass
Packet

User

Recognize State-Variables

• State-variables (i.e., the variables that represent program states)
• have a long lifetime
• can be updated (i.e., state transition) by users
• can affect the program’s control flow or memory access

• Observation
• rich-state programs always require multi-stage inputs.

• Each stage of input will trigger specific program actions.

Open
Syscall

Read
Syscall

User Space Kernel

Recognize State-Variables
• State-variables (i.e., the variables that represent program states)

• have a long lifetime
• can be updated (i.e., state transition) by users
• can affect the program’s control flow or memory access

• Observation
• rich-state programs always require multi-stage inputs.
• state-variables are usually shared by different program actions

How to perform state-aware fuzzing

• Q1: What are program states?

• Q2: How to recognize and track program states?
• We only focus on a subset of program states represented by

variables.
• The question is equivalent to how to recognize the state-variables

(i.e., the variables that represent program states)?

 We can recognize state-variables by extracting the variables that
 have a long lifetime and shared by program actions.
We track program states by monitoring the state-variables.

How to perform state-aware fuzzing
• Q1: What are program states?

• Q2: How to recognize and track program states?

• Q3: How to utilize program states to guide fuzzing?
• Use state coverage as feedback for fuzzing

• new value ---> new state?
• too many values (e.g., 232 for a 32-bit variable), causing seed queue

explosion
• merge values representing the same state
• divide each state-variable’s value space into several ranges

Instead of tracking values, we track special value ranges and
extreme values of state-variables as feedback for fuzzing.

Our Approach: StateFuzz

• A prototype for Linux driver fuzzing

Program State Recognition

• Identify program actions
• handler functions that can be invoked

via system calls
• inter-procedural and path-sensitive

analysis based on DIFUZE[1]

• Recognize state-variables
• extract the variables that shared by

program actions by static analysis.

• Infer state-variables’ value ranges
• inter-procedural and path-sensitive

static symbolic execution

[1] Corina, Jake, et al. "Difuze: Interface aware fuzzing for kernel drivers." CCS'17

if (devp->hd_hdwirq)

[INT_MIN, -1],
[1, INT_MAX]

True False

[0, 0]

extract three
value-ranges

Instrumentation

• Track the stored values for state-variables
• send the stored values as feedback for the fuzzer

• Use pointer-analysis to instrument alias of state-variables

• Code coverage instrumentation (kcov)

Fuzzing Loop

• Three-dimension feedback
mechanism

• Code coverage dimension
• Value-range dimension
• Extreme value dimension

• 3-Tiered corpus
• seeds are saved based on feedback
• select seeds from 3 tiers for mutation

Corpus
Tier-1

Check Feedback

Testcase

new
 co

de

Corpus
Tier-2

Corpus
Tier-3

new extreme value

new
value-range

Implementation

• State Recognition
• DIFUZE (for program action recognition)
• CRIX[2] (for building call graph)
• Clang Static Analyzer (for static symbolic exectuion)

• Instrumentation
• LLVM Sancov
• SVF

• Fuzzing loop
• Syzkaller

[2] Lu K, Pakki A, Wu Q. Detecting {Missing-Check} Bugs via Semantic-and {Context-Aware} Criticalness and
 Constraints Inferences(USENIX Security 19)

Evaluation
• RQ1: Are the state representation expressive and meaningful?

• RQ2: Can StateFuzz achieve higher coverage?

• RQ3: Can StateFuzz discover vulnerabilities in Linux drivers?

• Conduct experiments for Linux drivers in two environments:
• Linux upstream kernel v4.19 on qemu-system-x86_64
• Qualcomm MSM v4.14 kernel on a Google Pixel-4 phone

Evaluation (1/3)
• RQ1: State Model Evaluation

• Statistics of state-variables
• ~3 value-ranges for every state-variable

• Semantic of state-variables
• by analyzing variable names in the AST

• False positives and false negatives
• recall of recognizing program actions: 99%
• recall of recognizing state-variables: 90%
• precision of recognizing state-variables: 40%

Evaluation (2/3)

• RQ2: Can StateFuzz achieve higher coverage?
• state coverage

• StateFuzz achieves 32% higher value-range coverage than Syzkaller in
Linux-4.19

• code coverage
• StateFuzz achieves 19% higher code coverage than Syzkaller in Linux-

4.19

Evaluation (3/3)
• RQ3: Vulnerability Discovery

• StateFuzz found 20 vulnerabilities
• 14 CVEs + ~$20,000 bug bounty from Google and Qualcomm

Future Work

• Apply StateFuzz to network service fuzzing (NSFuzz)

• Apply StateFuzz to other Linux drivers (such as USB) that
interact with users through multiple I/O channels rather than
system calls.

• hard to find program actions with static analysis
• instead, we can trace the value-flow of inputs by lightweight

instrumentation to dynamically find the program actions
• then we can recognize state-variables in the same way as shown in

this paper

Conclusion

• A new fuzzing solution StateFuzz for rich-states programs.
• StateFuzz models program states with state-variables.
• StateFuzz uses a new three-dimension feedback mechanism to help the

fuzzer efficiently explore program states.
• We implemented a prototype for fuzzing Linux drivers.
• Experiments show that StateFuzz has better performance than Syzkaller

in fuzzing Linux drivers.

Thanks!
Q&A

zbd17@mails.tsinghua.edu, chaoz@tsinghua.edu.cn

