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Code coverage guided fuzzing has limitations in fuzzing 
rich-state targets.



Motivation Example

Target Program

action('A', 0xff)
action('B', BUF_SIZE)
action('V', 0)

Testcase

New State:
state_A = 0xff;
state_B = BUF_SIZE;

Original State:
state_A = 0;
state_B = 0;
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Target Program

action('A', 0)

Testcase

New State:
state_A = 0;
state_B = 0;

Original State:
state_A = 0;
state_B = 0;



Motivation Example

Target Program

action('A', 0xff)

Testcase

Hit new code, save this testcase.

New State:
state_A = 0xff;
state_B = 0;

Original State:
state_A = 0;
state_B = 0;



Motivation Example

Target Program

action('B', 0)

Testcase

Hit new code, save this testcase.

New State:
state_A = 0xff;
state_B = 0;

Original State:
state_A = 0xff;
state_B = 0;



Motivation Example

Target Program

action('V', 0)

Testcase

Hit new code, save this testcase.

New State:
state_A = 0xff;
state_B = 0;

Original State:
state_A = 0xff;
state_B = 0;



Motivation Example

Target Program

action('A', 0x0)
action('B', BUF_SIZE),

Testcase

Hit no new code, discard this testcase.

New State:
state_A = 0;
state_B = BUF_SIZE;

Original State:
state_A = 0xff;
state_B = 0;
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Target Program

action('A', 0xff),
action('B', BUF_SIZE),
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Hit no new code, discard this testcase.

New State:
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Motivation Example

Target Program

action('A', 0),
action('V', 0),

Testcase

Hit no new code, discard this testcase.

New State:
state_A = 0;
state_B = BUF_SIZE;

Original State:
state_A = 0xff;
state_B = BUF_SIZE;



Motivation Example

Target Program

action('A', 0),
action('V', 0),

Testcase

It is difficult to trigger the bug. 

New State:
state_A = 0;
state_B = BUF_SIZE;

Original State:
state_A = 0xff;
state_B = BUF_SIZE;



Motivation Example

Target Program

action('A', 0),
action('V', 0),

Testcase

state_A = 0;
state_B = BUF_SIZE;

It is hard to trigger the bug. 

Code coverage-guided fuzzers will ignore testcases
that exercise the same code path, 
even though they have explored new states.



How to perform state-aware fuzzing

• Three questions to answer

• Q1: What are program states?

• Q2: How to recognize and track program states?

• Q3: How to utilize program states to guide fuzzing?



How to perform state-aware fuzzing

• Q1: What are program states?
• Values of all memory and registers

• the number of such states is overwhelmingly large
• hard to track in practice

• Manual annotation: 
• human efforts needed

• Protocol status code: 
• not always available

• Using variables to represent states is very common

We only focus on a subset of program states represented by variables.
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How to perform state-aware fuzzing

• Q1: What are program states?

• Q2: How to recognize and track program states?
• We only focus on a subset of program states represented by 

variables.
• The question is equivalent to how to recognize the state-variables 

(i.e., the variables that represent program states)?

  



Recognize State-Variables

• State-variables (i.e., the variables that represent program states)
• have a long lifetime
• can be updated (i.e., state transition) by users
• can affect the program’s control flow or memory access

• Observation
• rich-state programs always require multi-stage inputs.

• Each stage of input will trigger specific program actions.
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Recognize State-Variables

• State-variables (i.e., the variables that represent program states)
• have a long lifetime
• can be updated (i.e., state transition) by users
• can affect the program’s control flow or memory access

• Observation
• rich-state programs always require multi-stage inputs.

• Each stage of input will trigger specific program actions.
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Recognize State-Variables
• State-variables (i.e., the variables that represent program states)

• have a long lifetime
• can be updated (i.e., state transition) by users
• can affect the program’s control flow or memory access

• Observation
• rich-state programs always require multi-stage inputs.
• state-variables are usually shared by different program actions



How to perform state-aware fuzzing

• Q1: What are program states?

• Q2: How to recognize and track program states?
• We only focus on a subset of program states represented by 

variables.
• The question is equivalent to how to recognize the state-variables 

(i.e., the variables that represent program states)?

  We can recognize state-variables by extracting the variables that 
    have a long lifetime and shared by program actions. 
We track program states by monitoring the state-variables.



How to perform state-aware fuzzing
• Q1: What are program states?

• Q2: How to recognize and track program states?

• Q3: How to utilize program states to guide fuzzing?
• Use state coverage as feedback for fuzzing

• new value ---> new state?  
• too many values (e.g., 232 for a 32-bit variable), causing seed queue 

explosion
• merge values representing the same state
• divide each state-variable’s value space into several ranges

Instead of tracking values, we track special value ranges and 
extreme values of state-variables as feedback for fuzzing.



Our Approach: StateFuzz

• A prototype for Linux driver fuzzing



Program State Recognition

• Identify program actions
• handler functions that can be invoked 

via system calls
• inter-procedural and path-sensitive 

analysis based on DIFUZE[1]

• Recognize state-variables
• extract the variables that shared by 

program actions by static analysis.

• Infer state-variables’ value ranges
• inter-procedural and path-sensitive 

static symbolic execution 

[1] Corina, Jake, et al. "Difuze: Interface aware fuzzing for kernel drivers." CCS'17

if (devp->hd_hdwirq)

[INT_MIN, -1], 
[1, INT_MAX]

True False

[0, 0]

extract three 
value-ranges



Instrumentation

• Track the stored values for state-variables
• send the stored values as feedback for the fuzzer

• Use pointer-analysis to instrument alias of state-variables

• Code coverage instrumentation (kcov)



Fuzzing Loop

• Three-dimension feedback 
mechanism

• Code coverage dimension
• Value-range dimension
• Extreme value dimension

• 3-Tiered corpus
• seeds are saved based on feedback
• select seeds from 3 tiers for mutation
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Implementation

• State Recognition
• DIFUZE (for program action recognition)
• CRIX[2] (for building call graph)
• Clang Static Analyzer (for static symbolic exectuion)

• Instrumentation
• LLVM Sancov
• SVF

• Fuzzing loop
• Syzkaller

[2] Lu K, Pakki A, Wu Q. Detecting {Missing-Check} Bugs via Semantic-and {Context-Aware} Criticalness and 
     Constraints Inferences(USENIX Security 19)



Evaluation
• RQ1: Are the state representation expressive and meaningful?

• RQ2: Can StateFuzz achieve higher coverage?

• RQ3: Can StateFuzz discover vulnerabilities in Linux drivers?

• Conduct experiments for Linux drivers in two environments:
• Linux upstream kernel v4.19 on qemu-system-x86_64
• Qualcomm MSM v4.14 kernel on a Google Pixel-4 phone



Evaluation (1/3)
• RQ1: State Model Evaluation

• Statistics of state-variables
• ~3 value-ranges for every state-variable

• Semantic of state-variables
• by analyzing variable names in the AST

• False positives and false negatives
• recall of recognizing program actions: 99%
• recall of recognizing state-variables: 90%
• precision of recognizing state-variables: 40%



Evaluation (2/3)

• RQ2: Can StateFuzz achieve higher coverage?
• state coverage

• StateFuzz achieves 32% higher value-range coverage than Syzkaller in 
Linux-4.19

• code coverage
• StateFuzz achieves 19% higher code coverage than Syzkaller in Linux-

4.19



Evaluation (3/3)
• RQ3: Vulnerability Discovery

• StateFuzz found 20 vulnerabilities
• 14 CVEs + ~$20,000 bug bounty from Google and Qualcomm



Future Work

• Apply StateFuzz to network service fuzzing (NSFuzz)

• Apply StateFuzz to other Linux drivers (such as USB) that 
interact with users through multiple I/O channels rather than 
system calls.

• hard to find program actions with static analysis
• instead, we can trace the value-flow of inputs by lightweight 

instrumentation to dynamically find the program actions
• then we can recognize state-variables in the same way as shown in 

this paper



Conclusion

• A new fuzzing solution StateFuzz for rich-states programs.
• StateFuzz models program states with state-variables.
• StateFuzz uses a new three-dimension feedback mechanism to help the 

fuzzer efficiently explore program states.
• We implemented a prototype for fuzzing Linux drivers.
• Experiments show that StateFuzz has better performance than Syzkaller 

in fuzzing Linux drivers.
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