TANDON SCHOOL
OF ENGINEERING

NYU

Drifuzz

Harvesting Bugs in Device Drivers from Golden Seeds

<

CENTER FOR
CYBER SECURITY

)

\

Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt

‘%” Attack Surface in Device Drivers

NYU

* Two major ways for attacker input
to reach a driver:

Hardware

External peripheral Userspace
* From userspace, via ioctl & & 2
| |) .7 1 DeviceDrivers | o @
* From the outside world,viaa * — * | ‘
compromised or malicious R mE L 0S5 ;
peripheral oo, : oo, 5
OS-peripheral System Call
Boundary Boundary

* [raditionally, developers trust
peripheral input

 Assumed peripherals are
“*honest” (but maybe flaky/buggy)

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

W

Importance of lTesting Drivers
NYU

* Device drivers are buggy: Chou et al. found error rates 3-7x higher than the rest of
the kernel [An empirical study of operating systems errors, SOSP’01]

* Malicious peripherals can be physically plugged in via USB, Thunderbolt, etc.
* Peripherals can be remotely exploited
 Modern peripherals are highly complex and run their own (vulnerable) firmware

» Attacks like Broadpwn compromise the WiFi SoC firmware and then exploit
bugs in drivers to take over the rest of the system

* Note: older systems gave PCI devices unrestricted access to RAM, making
attacks trivial — newer systems use IOMMU to restrict access

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

: 22 T) oy e A 1
' - R -9 I"a“’i ,..'.‘{SIJ 22 - /. . 3
)P
| @ e bt ..?O_ ; cc'z,-.
;‘.-‘ L e ’ TR

» | ots of different hardware, many
different drivers

e ~14.7 million SLoC
* ~4600 loadable device drivers

 Malicious peripherals can
pretend to be any of them to
target a vulnerable driver

"
..........
reig) -
’

* |mpractical to test with real
hardware In the loop

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

W

Emulation: Testing Drivers Without HW
NYU

» Solution: Create “dummy” emulated peripherals and then feed inputs to test
the device driver

e @Eemu

« Memory-mapped I/O

* Direct Memory Access (DMA)
* A limitation is that random initial seeds are usually not good enough

* | earn the good initial seeds, but without HW

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

W

Symbolic Execution

!
NYU

» Basic idea: make input symbolic
and track derived values as l
symbolic expressions

y = read()
* At a symbolic branch, fork the Y 2 %k Yy
execution and explore both true y*2¢17 y*2 =12 it (y == 12)

and false conditions fail()
print ("OK")

* The collection of path oK
constraints can be sent to a
constraint solver like Z3 to check OK=>(y*2212)=>y =6
satisfiability and compute FAIL =>(y"2=12) =>y =6

concrete values

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

‘%” Hard-to-Test Code Patterns
NYU Symbolic Execution

 Symbolic execution has been
previously used to test device
drivers (SymDirive, 2012)

int test 10() {
for (u32 1 = 0; 1 < 0x100; i++)
1owrite (OFFSET, 1);

1
2
3
- . 4 delay (10) ;
 But complex drivers (WiFi, Ethernet) |
. : 5 req = i1oread (OFFSET);
contain patterns that make life hard 8 f (reg I= i)
for symbolic execution 7 eturn —ETO;
3 }
* Repetitive checks with symbolic 9 return 0;
0

[

}

branches can cause path explosion

Listing 3: Atheros ath9k driver initialization test code snippet

* Aggressively pruning the forked
states can leave parts of the code
not tested.

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

W

Concolic Execution
NYU - 9

a Example of Program (Left) and Its Search Space (Right)
_ _ L with the Value of cnt at the End of Each Run
 Concolic execution explores
. void top(char input[4] {
one path from a concrete input e ene=0: ©
and collects path constraints 1 (input[l] — Ta7) cotit;
if (input[3] == ’'!'’) cnt++;

if (cnt >= 4) abort(); ?? error

 Use constraint solver to flip
iIndividual branches one at a
time

* Discover neighboring paths

* Figure Credit: SAGE: Whitebox goood golo! goldd gozd! galod gazo! gazdd ga3d! bolod b020! boldd bo3d! ba20d baBO! ba3dd b:d!
Fuzzing for Security Testing,
Godefroid et al. (2012)

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

W

2 Coverage-based Fuzzing
NYU

* Another popular technique for software testing in recent years is fuzzing

 Popularized by mutational fuzzers like American Fuzzy Lop (AFL)
e Starting with some seed inputs (corpus), loop:

* Apply random mutation to corpus input

R, \({
] R | 2 3
* Execute the program on each input S /A
..4:.51;\
 Measure coverage (usually edge coverage) e

* Add inputs that find new coverage

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

10

‘%” Hard-to-Test Code Patterns

NYU Fuzzing

1 |#define VNIC RES MAGIC 0x766E6963L

2 | #define VNIC_RES VERSION 0L

3 |1f (ioread32(&rh->magic) != VNIC_RES MAGIC ||

4 ioread32 (&rh->version) != VNIC RES VERSION) {
S5 return —EINVAL;

6 |}

] | return 0;

Listing 1: Magic value check in snic.

Problem: random mutations have a very hard time guessing magic values!

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

11

W

2 Golden Seed Generation
NYU

 Key Observations:

* Random seeds are usually stuck during driver initialization phase
* Blocking branches (e.g. status, version, magic value)
* Preferred conditions: always-true or always-false

 Coverage can increase when unblocked

 Approach: use concolic execution to greedily increase the number of symbolic branches
covered and learn preferred conditions for blocking branches

* o help with repetitive blocking branches, use forced execution to gather many
constraints at once

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

12

W

Optimization: Forced Execution

NYU

» Recall our problematic example from I} int test_io() {
before 2 for (u32 1 = 0; 1 < 0x100; 1i++)
3 iowrite (OFFSET, 1);
* Repetitive symbolic branch: line 6 4 delay (10);
5 reg = ioread(OFFSET);
 Always-true or always-false? 6 LE (reg != 1)
7 return -EIOQ;
» Normal concolic execution would need 3 }
9 return 0;
0

256 (0x100) iterations to test preferred
conditions

[

}

_ _ Listing 3: Atheros ath9k driver initialization test code snippet
* We can instead force the branch on line 6 5 PP

« Then collect all the path constraints & * NB: This can lead to infeasible
solve with two iterations path constraints! But works well
IN practice.

« Now we can compare coverage

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

13

1 |def greedy_search(input):
2 E"}5?:'é'fé'r"e'ﬁ'c'é's'"='"T'}"'#"f>'c":"23'<5'n'61 """"""""""""""""" ; 6 B raaNaraEsNarsrrsEsRarsrEsEsRsssarsssnassnas
3 : result = forced_execute (input, preferences) L E# No new branches found.
4 : new_branches = result.concolic_branches () : 3 ;1L len(preterred_results) ==
5 --- 9 . print ("Thel_lel’ld. ")
6 while True: 20 E break :
7 S T B Y- Tt AR - o S ;| 21 11 LTI e e e e e e e,
Q ' for br in new branches : = | 22 :# Prepare for next iteration
9 : # Test for the preference condition 23 Ebr’ cond, result =
10 for ¢ in [True, False]: 24 : select_best_preference (
11 if satisfy(result, {br, c}): : preterred_results) :
12 cont inue 25 :preferences = merge (preferences, {br:cond}):
13 test result = forced_execute(input,i 26 - new_pranches = new_branches (result)
: merge (preferences, {br: c})) : 27 L 1n_19ut=resultoutput
14 if has_new_branch (test_result): i | 28 1goiden seed T Lol
15 E preferred results|(br, c)] = Listing 2: Golden seed search algorithm
: test_result

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

14

W

Drifuzz System Design
NYU

]
Seed_ QEMU-KVM
Generation
lgori . .
Algorithm Global Virtual Device Kernel Space User Space
Input Model
Target
Golden Seed 1O DMA 6“”5“9‘1 Device kMMIO/DMA- Dri\?er
\ $ modprobe driver
y * interrupt
input i — - o \ Modified $ip link up
uzzing ommunication odifie
Fuzzer Core Controller MMIO/DM Device)4 Kernel
-«——coverage
1 —
new
+ import
|
Concolic) ‘ PANDA d Concolic
Server inpu = Recorder recor > Execution
A flipped inputs J

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

15

N Y U Component Lines
Linux Comm Driver and DMA Tracking 470+ 0
* Drifuzz implemented using PANDA dynamic PANDA Concolic Support 842 + 77
analysis platform PANDA Customization 2421 + 146
(https: // panda. re) Fuzzing Backend (adapted from kAFL) | 872 + 331
Fuzzing Scripts 374 + 0
» PANDA supports dynamic taint analysis by Concolic Scripts 2721+ 0

lifting binary code to LLVM (via S2E),
supports whole-system record/replay

* We added concolic execution support by
having taint system track Z3 symbolic exprs Lorootia

* Fuzzing component extends previous KVM-
based fuzzer, KAFL

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

https://panda.re

W
v

How do different components contribute?
NYU P

Evaluation: Ablation

Driver RandomSeed | RS+C | GoldenSeed | GS+C | Increase | Signif
ath9k 310.9 522.9 2070.9 27793.7 | 798.6% Gioko
ath10k_pci 462.8 657.2 785.6 793.4 71.4% ok
rtwpci 183.1 163.6 384.1 386 110.8% ok
8139¢cp 173.1 172.4 173.3 173.7 0.3% *
atlantic 372.1 1441.9 1033.7 1532.5 | 311.9% loko
stmmac_pci 798.9 749.5 818.5 812.9 1.8% n.S.
SNIC 4 81.7 33 83.7 35.0% ok

Table 3: Mean bitmap byte coverage when fuzzing PCI network drivers across 10 trials with coverage increase between the
baseline (RandomSeed) and our full system (GS+C). RS: random seed; GS: golden seed; +C: concolic-assisted. Asterisks indicate
the significance level as measured by the Mann-Whitney U test: *: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001.

* With golden seed & concolic fuzzing, we have 150% coverage increase
than fuzzing with random seed

* 5 of 7 targets show large coverage gain with statistical significance.

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

: : : : 17
‘?” Evaluation: Comparison with SymDrive
Driver SymDrive | Intf || Drifuzz | Intf | Bugs
athSk 13s X 65m v 1
ath9k 193s v 138m v X
atmel_pci 25 X 29m v X
Orinoco_pci ~420m X 64m v 1

* Evaluation somewhat limited — SymDirive is 10 years old, had to backport Drifuzz to
Linux 3.1.1 and add configs for some WiFi drivers

* Evaluation tests bugs found & whether network interface is initialized

* Result: SymDrive usually completes more quickly, but can get stuck due to path
explosion often does not successfully initialize interface

* Drifuzz also finds two bugs, one of which was still unfixed in current Linux

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

W

Evaluation: Comparison with Agamotto

18

Driver Agamotto | Drifuzz | Increase | Signif
ath9k 503.4 2782.5 | 452.7% gioi Driver | Agamotto | Drifuzz | Bug | Signif
ath10k_pci 412.9 389.9 115.5% etk ar5523 47 60.7 1 ok ok ok
rtwpci 163 394.2 141.8% etk mwifiex 66 1267 1 kok Rk
8139¢p 105.7 171.8 62.5% et ek rsi 76 2173 2 sk koK
atlantic 265.8 841 216.4% A
stmmac_pci 742.9 914.8 23.1% S Table 6: Mean block coverage for USB targets from 10 trials,
SniC 51 86.1 68.7% | *H** Agamotto vs Drifuzz, the number of newly discovered bugs

by Drifuzz, and statistical significance: *: p<0.03, **: p<0.01,

ek p<0.001 and ****: p<0.0001). GS: golden seed byte
coverage.

Table 5: Mean bitmap byte coverage from 10 trials for Ag-
amotto and Drifuzz with coverage increase and statistical
significance: *: p<0.05, **: p<0.01,***: p<0.001 and ****;
p<0.0001).

* 150% branch coverage increase in 7 PCI drivers
* 90% block coverage increase in 3 USB drivers
* Strong statistical significance

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

i - n 19
‘%” Evaluation: Bug-Finding
NYU

Summary Driver Type | Fixed Stage
KASAN: slab-out-of-bounds 1n ath10k_pci_hif_exchange bmi_msg ath 10k PCI v seed-gen
KASAN: slab-out-of-bounds 1in hw_atl_utils_fw_upload_dwords atlantic PCI v fuzzing
KASAN: double-free or invalid-free in consume_skb atlantic PCI v seed-gen
KASAN: use-after-free in stmmac_napi_poll_rx stmmac PCI v seed-gen
KASAN: use-after-free 1in ag_ring_rx_clean atlantic PCI v seed-gen
KASAN: slab-out-of-bounds 1n athSk_eeprom_read_pcal_info_5111 athSk PCI v seed-gen
KASAN: null-ptr-deref ar5523 USB v seed-gen
skbuff: skb_over_panic mwifiex | USB v seed-gen
KASAN: slab-out-of-bounds 1n ath9k hif usb rx cb ath9k htc | USB v seed-gen
KASAN: slab-out-of-bounds 1n rsi_read_pkt rsi USB v seed-gen
KASAN: use-after-free in rsi_rx done handler 1Sl USB v seed-gen
KASAN: use-after-free in rsi_read_pkt ISl USB fuzzing

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

20

W

, Vulnerabilities Found
NYU

* [wo of the bugs found by Drifuzz were considered serious enough to warrant
CVE identifiers

« CVE-2021-43975 is an out-of-bounds read followed by an out-of-bound write
with attacker-controlled length in the atlantic PCI Ethernet driver

» CVE-2021-43976 is a kernel panic (denial of service) in the Marvell mwifiex
USB driver

* Vulnerabilities + patches were reported via LKML, we worked with
downstream distro to help understand impact

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

T' Conclusions

ARTIFACT

ARTIFACT

21

N I U EVALUATED EVALUATED
suUusenix suUsenix
€ ¢

AVAILABLE

* Jesting device drivers is still difficult!

 |ack of “perfect inputs” from real hardware

We are currently working

* Slow execution speeds (whole-system VM) €= on this one :)

 Device drivers can have severe vulnerabllities
* Drifuzz’s golden seeds can make testing much more efficient and effective
e Can be applied for future driver fuzzers

* Check it out! https://github.com/messlabnyu/DrifuzzProject

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

https://github.com/messlabnyu/DrifuzzProject

