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Abstract
The increasing complexity of modern processors poses many
challenges to existing hardware verification tools and method-
ologies for detecting security-critical bugs. Recent attacks on
processors have shown the fatal consequences of uncovering
and exploiting hardware vulnerabilities.

Fuzzing has emerged as a promising technique for detecting
software vulnerabilities. Recently, a few hardware fuzzing
techniques have been proposed. However, they suffer from
several limitations, including non-applicability to commonly-
used hardware description languages (HDLs) like Verilog
and VHDL, the need for significant human intervention, and
inability to capture many intrinsic hardware behaviors, such
as signal transitions and floating wires.

In this paper, we present the design and implementation of
a novel hardware fuzzer, TheHuzz, that overcomes the afore-
mentioned limitations and significantly improves the state of
the art. We analyze the intrinsic behaviors of hardware designs
in HDLs and then measure the coverage metrics that model
such behaviors. TheHuzz generates assembly-level instruc-
tions to increase the desired coverage values, thereby finding
many hardware bugs exploitable from software. We evaluate
TheHuzz on four popular open-source processors and achieve
1.98× and 3.33× the speed compared to the industry-standard
random regression approach and the state-of-the-art hardware
fuzzer, DifuzzRTL, respectively. Using TheHuzz, we detected
11 bugs in these processors, including 8 new bugs, and we
demonstrate exploits using the detected bugs. We also show
that TheHuzz overcomes the limitations of formal verifica-
tion tools from the semiconductor industry by comparing its
findings to those discovered by the Cadence JasperGold tool.

1 Introduction

Modern processors are becoming increasingly complex with
sophisticated functional and security mechanisms and exten-
sions. This development, however, increases the chance of
introducing vulnerabilities into the hardware design and im-

plementation which can lead to errors and exploitation at-
tacks with fatal consequences. Hardware vulnerabilities range
from functional bugs (e.g., [37]) to emerging security-critical
vulnerabilities that have been uncovered and exploited (e.g.,
[36],[45]), and both affect commodity processors and their
dedicated security extensions (e.g., [11], [81]). The hardware
common weakness enumeration (CWE) lists numerous hard-
ware vulnerabilities whose impact spans not only the hard-
ware but also software [48]. It is crucial to discover hardware
vulnerabilities in the early stages of the design cycle.

Various hardware vulnerability detection techniques and
tools have been proposed or developed by both academia and
industry, such as formal verification [10, 74, 68, 6, 55, 85,
14, 13, 61], run-time detection [27, 64, 84], information flow
tracking [78, 2, 43, 42, 92], and the recent efforts towards
fuzzing hardware [51, 79, 39, 30], which is our focus.

While formal verification tools can efficiently find bugs in
smaller designs, they are unable to cope with the increasing
complexity of modern, large designs and are becoming less
efficient in detecting bugs, especially security vulnerabilities
[14, 47, 89, 12, 17]. One particular reason is that these tools
rely heavily on human expertise to engineer or specify “attack
scenarios” for verification. For instance, the popular industrial
formal verification tool, Cadence’s JasperGold [10], has been
evaluated against a crowd-sourced vulnerability detection ef-
fort from 54 competing teams participating in a hardware
capture-the-flag competition [14]. The results were based
on security bugs mimicking real-world common vulnerabili-
ties and exposures (CVEs) [49]. While JasperGold detected
48% of the bugs, manual inspection with simulation detected
61% of the bugs, highlighting issues like state explosion and
scalability of the existing techniques, amongst others.

Another approach to find hardware security bugs is run-
time detection techniques, which hardcode assertions in hard-
ware to check security violations at runtime [27, 64, 84]. How-
ever, these techniques detect bugs only post-fabrication and
unlike software, hardware is not easily patchable.

Information-flow tracking (IFT) techniques analyze the
hardware to detect security vulnerabilities by labeling all the
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input signals and propagating this label throughout the de-
sign to identify information leakage or tampering of critical
data [78, 2, 43, 42, 92]. Although IFT can analyze designs
with several thousand lines of code, the labels often get pol-
luted with unwanted signals, resulting in many false positives.
The initial labels have to be assigned manually, which can be
error-prone, and require expert knowledge of the design.

Hence, there is an increasing need for methodologies and
tools to detect hardware vulnerabilities that are scalable to
large and complex designs, highly automatic, effective and
efficient in detecting security-critical vulnerabilities that are
exploitable (and not just only functional bugs), compatible
with existing chip design and verification flows, applicable
to different hardware models (register-transfer level, gate-
level, transistor-level, taped-out chip), and account for dif-
ferent hardware behaviors (signal transitions, finite-state ma-
chines (FSMs), and floating wires).

A promising technique extensively used for software vul-
nerability detection is fuzzing. Fuzzing uses random gener-
ation of test cases to detect invalid states in the target[46].
While it seems natural to apply or extend a software fuzzer to
detect security bugs in hardware [79, 51], such approaches do
not capture hardware-intrinsic behaviors, for instance, signal
transitions of wires, FSMs, and floating wires, defined in hard-
ware description languages (HDLs) like Verilog and VHDL.
We will discuss these challenges in Section 3.

So far, there have been a few proposals towards fuzzing
hardware [39, 51, 79, 30]. However, as we elaborate in Sec-
tion 7, they suffer from various limitations: lack of support
for commonly-used HDLs such as VHDL and Verilog [39] or
only partially supporting their constructs [79], strong reliance
on human intervention [51], and the inherent inability of
capturing many hardware behaviors, including transitioning
of logical values in wires and of floating wires [30].
Our goals and contributions. We present the design and im-
plementation of a novel hardware fuzzer, TheHuzz. It tackles
the challenges of building a hardware fuzzer (cf. Section 3)
and addresses the aforementioned shortcomings of the current
hardware fuzzing proposals (cf. Section 4). We analyze the
intrinsic behaviors of hardware designs and describe appro-
priate coverage metrics of the HDL to capture such behaviors.
Given the importance of software-exploitable hardware vul-
nerabilities [14, 47, 89, 12, 17], TheHuzz fuzzes the target
hardware by testing instruction sequences, thereby discover-
ing security bugs that are exploitable by the software code
which executes such instruction sequences. Through a built-
in optimizer, TheHuzz can select the best instructions and
mutation techniques to achieve the best coverage.

TheHuzz (i) supports commonly-used HDLs like Verilog
and VHDL, (ii) is compatible with conventional industry-
standard IC design and verification flow, (iii) detects software-
exploitable hardware vulnerabilities, (iv) accounts for differ-
ent hardware behaviors, (v) does not require knowledge of the
design, (vi) is scalable to large-scale designs, and (vii) does

not need human intervention.
In summary, our main contributions are:

• We present a novel hardware fuzzer, TheHuzz, (Section 4),
which uses coverage metrics that capture a wide variety of
hardware behaviors, including signal transitions, floating
wires, multiplexers, along with combinational and sequen-
tial logic. TheHuzz optimizes the selection of the best in-
structions and mutation techniques and can achieve high
coverage rates (cf. Section 4.4). Our fuzzer achieves 1.98×
and 3.33× the speed compared to the industry-standard ran-
dom regression approach and the state-of-the-art hardware
fuzzer, DifuzzRTL, respectively (cf. Section 6.4).

• We extensively evaluate our fuzzer, TheHuzz, on four well-
known and complex real-world open-source processor de-
signs from two different open-source instruction set ar-
chitectures (ISAs): (i) or1200 processor (OpenRISC ISA),
(ii) mor1kx processor (OpenRISC ISA), (iii) Ariane proces-
sor (RISC-V ISA), and (iv) Rocket Core (RISC-V ISA). All
these processors can run Linux-based operating systems
and are used in multiple hardware verification research
studies [14, 27, 94, 93].

• TheHuzz found 11 bugs that are software exploitable in four
different processors; eight of them are new bugs. We also
showcase two attacks from unprivileged software exploiting
vulnerabilities found by TheHuzz (cf. Section 6.2).

• We perform an investigation of the bugs detected by The-
Huzz using a leading formal verification tool, Cadence’s
JasperGold [10] (cf. Section 6.5). TheHuzz overcomes
the limitations of JasperGold: state explosion, intensive
resource consumption, reliance upon error-prone human ex-
pertise, and a requirement of prior knowledge of hardware
vulnerabilities or security properties.

• To foster research in the area of hardware fuzzing, we plan
to open-source the code of TheHuzz to provide the commu-
nity a framework to build upon.

2 Background

The growing number of attacks that exploit hardware vulnera-
bilities from software [37, 36, 45, 59, 52, 82, 76, 60, 34, 11,
81] call for new and effective hardware vulnerability detection
techniques that address the limitations of existing methods
and tools, such as state-space explosion, modeling hardware-
software interactions, and the need for manual analysis.

2.1 Fuzzing
Fuzzing techniques are shown to be highly effective in detect-
ing software vulnerabilities [75, 40, 46, 67, 23, 16, 22, 87].
Fuzzing generates test inputs and simulates the target design
to detect vulnerabilities in it. The inputs are generated by
mutating the previous inputs, which are generated from seeds.
Mutation techniques modify the input by performing pre-
defined operations, including bit-flip, clone, and swap. The
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mutation process also generates invalid inputs, testing the
design outside the specification. In the past, fuzzers were cre-
ated specifically to target different kinds of software: binary
targets [40], JIT compilers [23], web applications [16], and
operating systems [22]. Thus, specialized fuzzers conform
to the needs of each target type. Fuzzers have seen use from
both independent researchers and organizations as an addi-
tional verification step, most notably that of Google’s OSS
Fuzz [67], which actively fuzzes a plethora of software on
their ClusterFuzz platform [20]. Fuzzers are highly successful
in detecting software vulnerabilities as they are automated,
are scalable to large codebases, do not require the knowledge
of the underlying system, and are highly efficient in detecting
many security vulnerabilities.

Unfortunately, comparable approaches for hardware
fuzzing are still in their infancy. Hardware-specific behav-
iors pose several challenges to the design of hardware fuzzers,
which we present in this section. However, before we consider
the natural question of why one cannot trivially adopt the ad-
vances of software fuzzers for hardware, we briefly explain
the typical hardware (security) development life cycle.

2.2 Hardware Development Lifecycle
The hardware development lifecycle [26, 7, 83, 50] typically
begins with a design exploration driven by the market segment
served by the product. Architects then engineer the optimal
architecture while trading off among performance, area, and
power, and the associated microarchitectural features. De-
signers implement all the microarchitectural modules using
hardware description languages (HDLs), which are usually
written at the register-transfer level (RTL). To this end, popu-
lar HDLs like Verilog and VHDL are used to describe com-
plex hardware structures such as buses, controllers as finite
state machines (FSMs), queues, and datapath units like adders,
multipliers, etc. Electronic design automation (EDA) tools
synthesize the RTL models into gate-level designs, which
realize the hardware using Boolean gates, multiplexers, wires,
and state elements like flip-flops. EDA tools then synthesize
the gate-level design into transistor-level and eventually to
layout, which is then sent to the foundry for manufacturing.

Most of the design effort and time spent by designers goes
into manually writing HDLs at the RTL as the rest of the steps
are highly automated. Unfortunately, writing HDL at the RTL
is error-prone [7, 83, 50] . Thus, the verification team checks
if the design at its various stages meets the required specifi-
cation or not using functional, formal, and simulation-based
tools; if the design does not meet the specification, the de-
signers patch the bugs, and the process is repeated until the
design passes the verification tests. To this end, companies
typically develop a golden reference model (GRM)* for in-
dustry designs to be used with the conventional verification

*The GRM for hardware is similar to a test oracle in software which
helps verify the result of a program’s execution [28].

flows. GRMs are often written at a higher abstraction level
(e.g., for RTL, the GRM is a software model of the hardware).
Verification techniques usually compare the outputs of RTL
and the GRM to find any mismatches, which will reveal the
bugs. The accuracy of these techniques is further increased
by comparing not only the final outputs but also the values of
intermediate registers and by performing comparisons after
every clock cycle. They perform similar tests on the gate-
level design and the fabricated chip; for these models, the
adjacent abstraction level acts as the GRM. Similarly, post-
manufacturing, testing of the fabricated chips is performed to
weed out the faulty chips.

When the architecture of the chip is designed, the security
team concurrently identifies the threat model, security fea-
tures, and assets. During the design phase, the security team
performs security testing, starting with the RTL model via
simulation and emulation, formal verification, and manual
review of RTL code. Post-deployment, the security engineers
provide support and patch any bugs, if possible.

3 Challenges of Hardware Fuzzing

In this section, we outline the challenges that arise when an-
alyzing hardware using fuzzing. We first elaborate on the
problems that one encounters when deploying existing soft-
ware fuzzers to analyze hardware. Then we discuss challenges
that need to be tackled when designing and implementing a
dedicated hardware fuzzer.

3.1 Fuzzing Hardware with Software Fuzzers

There are two ways to fuzz hardware with software fuzzers:
(i) using software fuzzers directly on the hardware, and
(ii) fuzzing hardware as software. However, both approaches
face several limitations.
Problems with using software fuzzers directly on hard-
ware. First, software fuzzers rely on a different behavior in
vulnerability detection. They rely on software abstractions
to find a bug by using the operating system or instrumenting
software to monitor failure detection [54, 66]. Most soft-
ware fuzzers use crashes to detect bugs, but hardware does
not crash [79]. Thus, hardware fuzzers need to find their
equivalent of crashes and memory leaks. Second, hardware
simulations are slow. Typically, given a function, executing
its software equivalent is faster than simulating its hardware
model. Parallelization of hardware simulation is difficult due
to the complex interdependencies in the hardware design [12].
Third, many software fuzzers rely on instrumentation of the
software program to obtain feedback (e.g., AFL [40]) and
use custom compilers (e.g., afl-gcc) to instrument the code
[29, 19, 44, 40], but these compilers will not be able to in-
strument the hardware designs since they do not support
HDLs such as Verilog and VHDL. One of the prior works,
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RFUZZ [39] made the first attempt towards solving this chal-
lenge: it uses hardware simulators to compile the hardware
and applies a modified version of software fuzzer, AFL [40]
to fuzz the hardware. However, this fuzzer is limited in terms
of the scalability [30] and coverage (cf. Appendix B).
Problems with fuzzing hardware as software. Another strat-
egy of fuzzing hardware using software fuzzers is to convert a
HDL model into an equivalent software model using tools like
Verilator [70], and then apply software fuzzers to the resultant
software code [79]. Unfortunately, converting hardware into
software models poses its own set of challenges.

First, applying existing software fuzzers on software mod-
els of hardware designs is, in general, inefficient. The software
models of hardware designs need to account for properties
unique to the working of the hardware, like computing all
the register values for every clock cycle and bit manipula-
tion operations, and components such as controllers, system
bus, and queues—which makes the model computationally
expensive. Moreover, software fuzzers use program crashes
and instrumented memory safety checks to detect bugs in an
application; these concepts cannot be trivially applied to hard-
ware [79]. Instead, a well-defined specification to compare
against is needed to detect incorrect logic implementations,
timing violations, and unintended data flow or control flow.

Second, inferring actual hardware coverage from the gener-
ated software model is difficult. While software and hardware
line and edge/block coverage are comparable in some in-
stances [79], other forms of coverage may not be. A relatively
simple operation in a HDL, like bit manipulation, may be
significantly more complex in software. Conversely, a more
complex component in HDL, such as a multiplexer, could be
represented by a simple switch statement in software. Thus,
one has to account for the effects of conversion.

Third, the hardware community has developed its own stan-
dards, processes, and flows for using verification methodolo-
gies and tools over several decades of research [50, 7, 83].
Any new approach has to be compatible with the hardware
verification flow, as these methodologies have specialized data
structures and algorithms geared towards hardware models
and behaviors.

An open-source approach to solve the many challenges of
fuzzing the software model of hardware is performed in [79].
This technique derives equivalences between the coverage
metrics (e.g., line and FSM) used in hardware to that of soft-
ware (e.g., line and edge). While this approach is promising, it
does not scale to complex designs such as processors, which
is the focus of this work (cf. Section 7).

3.2 Creating a Hardware Fuzzer

A hardware fuzzer needs to take into account the nature and
requirements of hardware to improve efficiency. For example,
Syzkaller [22], which specializes in kernel-fuzzing, incorpo-
rates system call signatures to generate better test cases. A

hardware design fundamentally differs from any software pro-
gram in terms of inputs, language used, feedback information
available, and design complexity. Also, designing a hardware
fuzzer has its own set of unique challenges, which are pre-
sented below. Multiple attempts have been made in the recent
past towards building hardware fuzzers [39, 30, 51, 79] where
each of these challenges are approached differently.
Input generation. For a hardware fuzzer to be efficient and
effective, it should generate inputs in the format expected by
the target processor. Directly applying the input-generation
techniques used in software fuzzing is impossible as the in-
put formats differ: while many software fuzzers take input
files or a set of values assigned to a variable, the input to
hardware is mostly continuous without a defined length [79].
Further, inputs to hardware can be generated at various hard-
ware abstraction levels: architecture level, register-transfer
level (RTL), gate level, and transistor level. Each level also has
its own input representation, ranging from transaction packets,
over continuous-time digital signals, to continuous-time ana-
log signals. Hence, the major challenges in input generation
are to determine the suitable abstraction level to fuzz and the
input representation that maximizes the efficiency in finding
vulnerabilities [12, 50, 51, 39, 30, 79] .

Another important aspect is the continuous nature of the
hardware since it changes its state with every input (and/or
time). Also, multiple FSMs can run in parallel, and one or
more of them could enter in deadlock states, preventing the
hardware from receiving inputs from the fuzzer [12]. For
instance, a password checking module could be designed to
lock itself forever after one incorrect password entry unless
the system is reset. Hence, another crucial challenge is to
identify situations where the hardware simulation should be
stopped or reset before applying new inputs.

Finally, similar to how software fuzzers like syzkaller [22]
encode functional dependencies (e.g., of system calls), hard-
ware modules often need to be initialized to enable the fuzzer
to test further functionality, e.g., an AES encryption mod-
ule needs to be initialized with the key size and encryption
mode before testing the actual encryption with plaintext and
key. Inferring these functional dependencies is highly chal-
lenging, as such information is usually only available with a
well-defined formal specification [51, 79].
Feedback mechanism. Exploring complex targets, espe-
cially hardware, often forces fuzzers to generate tremendous
amounts of inputs, while making decisions like which muta-
tion technique to use, when to stop mutating an input, and how
to generate the seed inputs repeatedly. Rather than relying on
randomly-generated inputs alone, a more efficient way is to
analyze the impact of these parameters on the target processor
and adapt input generation accordingly as done in feedback-
guided fuzzing [65, 41]. Prior works [39, 30] addressed this
challenge using hardware-friendly coverage metrics but fail
to capture many hardware behaviors (cf. Appendix B).

Adapting software feedback mechanisms to hardware is
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Figure 1: Framework of TheHuzz.

difficult due to the differences in execution/simulation for soft-
ware and hardware [39, 30, 51, 79]. Instrumentation needs
to be added to the hardware design such that the activities
of different combinational and sequential structures, which
are critical to the functionality of the hardware, can be traced.
Although feedback-guided fuzzers have more potential to ex-
plore complex targets, capturing, analyzing, and processing
the feedback data is challenging [65, 41]. This issue will be-
come more profound in hardware since hardware designs are
slower to simulate. One way to speedup hardware fuzzing is to
use FPGA emulation, but instrumenting a design on an FPGA
is challenging [39, 30]. Hence, the feedback mechanism needs
to capture the complex characteristics of hardware.

Lastly, the performance of a fuzzer needs to be evaluated
on hardware designs comparable to what is used in practice.
However, unlike with software, commercial hardware designs
like Intel’s x86 processors do not have their source code
available. Hence, a key challenge is to find openly-available
designs that are reasonably modern and complex.

4 Design of Our Fuzzer, TheHuzz

TheHuzz is a novel hardware fuzzer that overcomes the chal-
lenges identified in Section 3.2. We directly fuzz the hardware
design instead of the software model, thereby eliminating the
need for hardware-to-software conversions and the associated
equivalency checks. To overcome the slowness of hardware
simulation, TheHuzz selects the optimal instructions and mu-
tation techniques to use. TheHuzz is easily integratable with
existing hardware design and verification methodologies—
thereby, easily adaptable by companies—as our approach
does not require any modification to the target processor and
utilizes existing hardware simulation tools and techniques. We
refer to the target processor as the design under test (DUT).
Our fuzzer generates instructions as inputs to the DUT since
we focus on software-exploitable processor vulnerabilities.

TheHuzz comprises three modules, as shown in Figure 1.
First, the seed generator starts the fuzzing process by gener-
ating an initial sequence of instructions (seeds or seed inputs).
Then, the stimulus generator generates new instruction se-
quences by mutating them, beginning with the seeds. These
inputs are passed to the simulated RTL design of the DUT,

Listing 1: Chisel code of the case study.
36 // combinational logic for vld register
37 vld :=debug_en |(flush |en) // Bug b2
38
39 // select signal for mux
40 val sel1 =Wire(Bool())
41 sel1 :=((pass ===ipass) |debug_en) // Bug b1
42
43 // flush logic
44 val state_f =Wire(UInt(3.W))
45 when (flush &en){
46 state_f :=FLUSH
47 } otherwise {
48 state_f :=state
49 }
50
51 state :=(!sel1 &state_f) |(sel1 &D_READ)

which returns coverage feedback to the stimulus generator
and trace information for bug detection. Finally, the bug de-
tection mechanism compares the RTL simulation trace with
that of a golden reference model (GRM) to find differences
in execution, and hence, find bugs.

In the following, before we explain the modules of The-
Huzz, we first analyze the intrinsic behaviors of designs at
the RTL, as TheHuzz targets such behaviors, and describe the
coverage metrics that capture those behaviors. Then, we de-
scribe the seed generator and stimulus generator of our fuzzer
in detail and how they interact. Finally, we detail how we
optimize the mutation engine and how the bugs are detected.

4.1 Hardware Design and Coverage Metrics

Hardware designs at RTL consist of combinational and se-
quential logic. Combinational logic is a time-independent
circuit with boolean logic gates (e.g., AND, OR, XOR) and
wires connecting them. Apart from building datapath units
like adders and multipliers, these logic gates are used to build
basic combinational structures like multiplexers (MUXes),
demultiplexers, encoders, and decoders, which are in turn
used in building complex blocks. Apart from combinational
gates, sequential logic also uses registers, which are usually
implemented using D flip-flops (DFFs). In the following, we
explain the effectiveness of our fuzzer in capturing hardware
behaviors over existing hardware fuzzers using a case study.
Case study. We now present a case study using a design with
two bugs inspired by CVEs. First, we explain the intended be-
havior and then the bugs. Then, we detail TheHuzz’s coverage
metrics and describe how they detect these bugs.

Consider a cache controller module—similar to the instruc-
tion cache controller of the Ariane processor [91]—shown in
Listing 1. As shown in Figure 3, the D_READ and the FLUSH
states determine the read operation during the debug mode
and the flush operation during the normal mode, respectively,
as listed in Lines 39–51†. The controller enters the FLUSH
state when there is a flush command and if the cache is en-
abled. The intended behavior of the FSM is that the read
operations in the debug mode are permitted only if the user

†For succinctness, we ignore the other states of the cache controller.

USENIX Association 31st USENIX Security Symposium    3223



state

0

1

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

=

sel1

D
Q

D
Q

D
Q

➃

D
Q

D
Q

D
Q

n

 

0

1

➀
FLUSH_i FLUSH

D_READD_READ_i

flush_i flush

pass_i
pass

ipass_i
ipass

debug_en_i
debug_en

en_i
en vld

33
3

3

3

3

3

sel2➁

➂

o 

p 

p 

Figure 2: Hardware design for Listing 1.

has inputted the correct password (Line 41). This protection
mechanism allows only authorized users to read the cache in
the debug mode. The cache controller sets the valid signal
(vld) based on the flush and debug requests issued to the
controller (Line 37 of Listing 1).

The electronic design automation (EDA) tools synthesize
this RTL code into an equivalent gate-level design shown in
Figure 2. The MUXes 1 and 3 select the next state. The
combinational logic 2 and 4 controls the state transitions.
The DFFs in 5 hold the current state. The EDA tools im-
plement Line 37 as combinational logic 6 . The DFFs in 7
register the inputs and outputs.

This design has two bugs: b1 and b2. Bug b1 (Line 41 in
Listing 1) is from HardFails [14], which has been used for the
Hack@DAC competitions, and is similar to CVE-2017-18293.
This bug is in the combinational logic 4 , where the debug
read operation is access-protected but the bug allows one to
perform the debug read operation illegally. This compromises
the security of the read operations as it allows users without
the correct password to read the cache. Bug b2 is similar to
CVE-2019-19602 and is in the combinational logic 6 that
drives the vld register (Line 37), allowing one to flush the
cache even when it is not enabled.

In 1 , all the inputs of the MUX and their correspond-
ing values on the select lines must be tested for correctness.
For this purpose, we use branch coverage, which tests each
branching construct (the when block of Line 45) for both
“when” and “otherwise” conditions.

In 2 , one should check that every input combination pro-
duces the correct output value. To this end, we use condition
coverage, which requires the condition block (i.e., the condi-

FLUSH D_READ

!sel1
sel1

OR !(flush AND en) 
sel1

flush AND en
AND !sel1

here, sel1 = (pass == ipass) | debug_en

Figure 3: Finite state machine (FSM) of the design in Figure 2.

tion (flush & en) in the when block of Line 45) to be tested
for all possible input values and not only a subset of values.

In 5 , the value of the 3-bit register can be one of the eight
possible values. We use FSM coverage of the state register
to check for all the eight values. This coverage captures the
different FSM states and also their transitions.

In 6 , all the input signals generating vld should be tested
for all possible values, similar to 2 . We use expression
coverage for this purpose which requires the combinational
block (i.e., the expression debug_en|(flush|en) in Line
37) to be tested for all possible input values. Furthermore,
expression coverage covers the select line of MUX 3 and
the combinational logic 4 that drives it as they are defined
using an expression in Line 51, unlike MUX 1 which is
defined as branch in Lines 45–49.

In 5 and 7 , the value of each DFF can be 1, 0, or float-
ing‡. We use toggle coverage of these DFFs to check for
toggling of their values among these three possibilities. Un-
like FSM coverage, toggle coverage covers all the DFFs in the
design. In addition, we also use statement coverage to ensure
every line of the RTL code is executed during simulation.

TheHuzz uses commercial industrial-standard tools—
Synopsys [74], ModelSim [68], Cadence [10]—to compile
the hardware and extract these coverage values. The semi-
conductor industry has been using these tools for the last few
decades, and its verification flow is built on these tools, thus
providing a promising way to obtain coverage [50].

TheHuzz detects both b1 and b2 using the expression cover-
age of 4 and 6 , respectively. The expression coverage veri-
fies that all the signals involved in the combinational logics
4 and 6 cover all possible values. One such combination

will trigger the bugs b1 and b2, resulting in an incorrect out-
put, which will be flagged as a mismatch. Thus, TheHuzz’s
coverage metrics aid in detecting bugs b1 and b2.

In contrast to TheHuzz, existing hardware fuzzers lose
hardware intrinsic behaviors (e.g., floating wires, signal tran-
sitions) while converting the target hardware into a soft-
ware model [79], operate only on the select signals of the
MUXes [39], operate only on the DFFs that determine the

‡Referred to as a high-impedance state or tristate and denoted as z. Such
floating wire-related bugs (CWE-1189) have compromised systems [14].
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select signals of the MUXes [30], or operate at the protocol
level [51]. Hence, the coverage used by existing fuzzers will
not be able to cover the bugs in 4 , 6 , and some DFFs in 7
including the bugs we inserted, b1 and b2 (cf. Appendix B).

4.2 Seed Generator
Given that we have discussed the various coverage metrics
to capture hardware behaviors, we now describe the seed
generation in more detail. The seed generator generates seed
inputs that run on the DUT and are used to generate further
inputs through mutation.
Seed inputs. TheHuzz’s goal is to detect software-exploitable
vulnerabilities in the RTL model of the processors. Proces-
sors execute instructions using the data from the instruction
memory. Hence, our fuzzer provides inputs at the instruction
set architecture (ISA) abstraction level by generating proces-
sor instructions. The seed inputs are data files containing a
sequence of instructions, which are loaded onto the memory.
Instruction generator generates the instructions for the seed
inputs from a set of valid instructions of the processor.
Input format. Each input consists of two types of instructions:
configuration instructions (CIs) and test instructions (TIs).
The CIs are needed to setup the baremetal environment, e.g.,
setting up the stack, exception handler table, and clearing the
general-purpose registers. This baremetal environment allows
TheHuzz to run instructions directly on the processor without
the need for an operating system. The TIs are generated by
the instruction generator, which are the actual instructions
used to fuzz the processor.

4.3 Stimulus Generator
The stimulus generator is responsible for mutating the current
inputs, generating new inputs, and discarding the underper-
forming inputs. Seed inputs are used to generate the first set
of new inputs. We mutate the instructions directly as binary
data instead of at a higher abstraction level such as assembly.
This allows us to mutate all the bits of the instruction based
on the mutation technique used. Thereby, we can test the pro-
cessor with out-of-spec inputs like illegal instructions (i.e.,
instructions not specified in the ISA) generated through mu-
tation of the opcode bits of the instruction. This allows us to
detect issues that other verification techniques may not have
detected, like the bug B3 in the Ariane and B8 in the or1200
processors, which cannot be detected with legal instructions.
Mutation engine performs the mutation operations on the
instructions. We mutate only the TIs since these are the in-
structions used to fuzz the processor. The CIs are not mutated
to ensure the correct initialization of the processor for fuzzing.
The mutation techniques used by our fuzzer can be classi-
fied into two types. The first type only mutates the data bits
keeping the opcode unchanged. These mutations increase the
coverage on different data paths that are close to each other.
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Figure 4: Optimization process used for TheHuzz.

To generate bug-triggering out-of-spec inputs, the second type
of mutation techniques mutates both the data and the opcode
bits. Mutating the opcode bits will create inputs with new
instruction sequences and help uncover different control paths
in the DUT. This will help generate illegal instructions to test
the processor with out-of-spec inputs. We employ AFL-style
mutation techniques as listed in Appendix A.

Every time new inputs are generated by the stimulus gener-
ator, the code coverage data of these inputs is used to discard
the underperforming inputs, thereby only retaining the inputs
that trigger new coverage points. This helps steer the fuzzer
towards discovering new coverage points quickly.

4.4 Optimization

We now propose an optimization for improving the efficiency
of a processor fuzzer, as shown in Figure 4. Instead of using
all the instructions and mutations, we optimally select the ones
that achieve the best coverage. To this end, we first profile
the individual instructions and mutations and formulate an
optimization problem, which returns the optimal weights for
each instruction-mutation (IM) pair.
Profiler characterizes the control and data flow paths explored
by each IM pair. TheHuzz generates the coverage values spe-
cific to each IM pair via hardware simulation.
Optimizer aims to minimize the number of IM pairs while
achieving the same amount of coverage as using all the IM
pairs. Let I and M be the sets of instructions and mutations,
respectively. Let P = I×M. C denotes the union of coverage
metrics such as statement, branch, expression, toggle, FSM,
and condition. The coverage from the profiling phase for each
IM pair is denoted by the indicator function D : P ×C 7→
{0,1}. Cd ⊆ C denotes the coverage points hit by an IM pair
during the profiling phase. The optimization problem is to
find the smallest subset of P , denoted as Q, that covers all the
coverage points identified during the profiling stage, Cd . The
optimizer returns the set Q that contains the optimal IM pairs.
TheHuzz uses this information to generate the weights for each
instruction-mutation pair w(I,M)(i,m) = I{i,m}∈Q, ∀ (i,m) ∈
P, where I is an indicator function. The seed generator uses the
weights, wI , to select instructions, and the stimulus generator
uses the weights, wM to select the mutation techniques for
each instruction and thereby, eliminating underperforming
instructions and mutations.
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4.5 Bug Detection

Software programs indicate bug triggers through crashes,
memory leaks, and exit status codes. However, hardware in-
trinsically cannot provide such feedback because it does not
crash or have memory leaks. Thus, as performed in traditional
hardware verification, we compare the outputs of GRMs and
the DUT for the inputs generated by the fuzzer. Any mismatch
event indicates the presence of a bug, which is then manually
analyzed to identify its cause.

5 Implementation

We implemented TheHuzz such that it is compatible with
traditional IC design and verification flow, while effectively
detecting security vulnerabilities. All the components are
implemented in Python unless specified otherwise. We used
CPLEX [31] for optimization.
Register-Transfer-Level simulation. We simulate the target
hardware using a leading industry tool, Synopsys VCS [74].
This tool supports a wide variety of hardware description
languages (HDLs) and different hardware models: RTL, gate
level, and transistor level. We wrote custom Python scripts
to process the logs of VCS to extract the coverage metrics—
statement, branch, toggle, expression, and condition. It also
generates instruction traces, which contain the sequence of
instructions executed along with the register or memory loca-
tions modified by each instruction and their updated values.
Thus, TheHuzz leverages existing hardware simulation tools
to instrument the HDLs.
Seed generator generates C programs that consist of config-
uration instructions (CIs) and test instructions (TIs). The CIs
configure a baremetal C environment on the processors; we
extract these CIs from the baremetal libraries of the corre-
sponding ISAs, e.g., the RISC-V tests repository [62]. The
TIs are the actual instructions used to fuzz the processor from
the initial state. Each seed input has 20 TIs; this number is
selected based on empirical observations before a random TI
leads to a deadlock. Events like exceptions or instructions like
branch, jump, system calls, and atomic instructions can cause
the control flow of the processor to jump to a different location
or even freeze for a large number of clock cycles, waiting for
resources (in the case of atomic instructions). The first half of
the TIs are generated uniformly from the instructions that are
less likely to trigger such events (e.g., arithmetic and logical
instructions). This maximizes the number of TIs executed by
the TheHuzz in each simulation. The other half of the TIs are
generated uniformly from all the instructions returned by the
optimizer. Thus, the processor is reset after the execution of
every 20 instructions and is simulated with new input. This
results in periodical initialization of the processor control flow
back to the location of the TIs. The GCC toolchain compiles
these C programs to generate the executable files which are
loaded onto the processor RAM and used as seeds.

Stimulus generator consists of the mutation and the feedback
engines. The mutation engine mutates the TIs using the AFL-
like mutations listed in Appendix A. The feedback engine uses
coverage logs for each mutated TI from the RTL simulation.
It retains the best performing instruction-mutation pairs and
discards the ones that do not improve the coverage.
Golden Reference Models (GRMs). We used spike ISA
emulator [62] as the GRM for Ariane and Rocket Core, and
or1ksim [57] as the GRM for mor1kx and or1200 processors.

6 Evaluation

We now describe the four open-source processors—Ariane,
mor1kx, or1200, and Rocket Core—used to evaluate our
fuzzer TheHuzz and present the evaluation results, along with
bugs detected (cf. Table 1) and the coverage. We compare The-
Huzz with another fuzzer DifuzzRTL [30] and two traditional
hardware verification techniques: random regression testing
and formal verification. The experiments are conducted on a
32-core Intel Xeon processor running at 2.6Ghz with 512GB
of RAM with CentOS Linux release 7.3.1611.

6.1 Evaluation Setup
With rich hardware-software interactions and complex hard-
ware components, processor designs provide a challenging
target for evaluating the potential of hardware fuzzers. While
testing commercial processors is appealing, their closed-
source nature makes register-transfer level (RTL) analysis
impossible. This is a challenge hardware researchers face, and
hence, most papers which evaluate their tool’s effectiveness
on processors use open-source designs. We have selected four
processors from two widely used open-source ISAs, Open-
RISC [57] and RISC-V [63]. All these processors can run a
modern Linux-based operating system.

Ariane (a.k.a. cva6 core) is a RISC-V based, 64-bit, 6-
stage, in-order processor, and supports a Unix-like operating
system [91]. mor1kx is a 32-bit OpenRISC based proces-
sor. From the three possible configurations, we selected the
6-stage Cappuccino configuration, as it is the most complex
design. Developers and the open-source community have eval-
uated this design for more than seven years. or1200 is a 32-bit
OpenRISC based processor. It is one of the first open-source
processors and is used for more than two decades [57]. Rocket
Core is a RISC-V based, 64-bit, 5-stage, in-order scalar proces-
sor, and supports a Unix-like operating system [5]. RISC-V
open-source processors are widely used in prior work in hard-
ware verification and security, as shown in Table 1, and have
proven to be effective replacements for commercial designs.

6.2 Bugs Detected
We now detail the vulnerabilities detected by TheHuzz. We
found eight new bugs. We map each bug to the relevant hard-
ware common weakness enumerations (CWEs), as listed in
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Table 1: Bugs detected by TheHuzz.

Processor Prior work
using the

design

Design size Bug description Location Coverage types CWE New
bug?

# instructions
to detect the bugLOC Coverage

points

Ariane [91]
ISA: RISC-V [63]
Design year: 2018
64-bit, 6-stage pipeline

[86, 69],
[18, 14],
[58]

2.07 ×104 3.42 ×105

B1: Incorrect implementation of logic to detect
the FENCE.I instruction. Decoder Branch CWE-440 ✓ 1.36 ×104

B2: Incorrect propagation of exception type in
instruction queue Frontend Toggle CWE-1202 ✗ 4.02 ×104

B3: Some illegal instructions can be executed Decode Condition CWE-1242 ✓ 1.81 ×106

B4: Failure to detect cache coherency violation Cache controller FSM CWE-1202 ✓ 1.72 ×105

mor1kx [57]
ISA: OpenRISC [57]
Design year: 2013
32-bit, 6-stage pipeline

[15, 93],
[38, 30] 2.21 ×104 4 ×104

B5: Incorrect implementation of the logic to
generate the carry flag ALU Expression CWE-1201 ✓ 20

B6: Read/write access checking not implemented
for privileged register Register file Condition CWE-1262 ✓ 4.46 ×105

B7: Incomplete implementation of EEAR
register write logic Register file Condition CWE-1199 ✓ 1.12 ×105

or1200 [57]
ISA: OpenRISC [57]
Design year: 2000
32-bit, 5-stage pipeline

[94, 24],
[27, 25],
[35, 88, 8]

3.16 ×104 3.90 ×104
B8: Incorrect forwarding logic for the GPR0 Register forwarding

Condition
and expression CWE-1281 ✗ 174

B9: Incomplete update logic of overflow bit for
MSB & MAC instructions ALU Toggle CWE-1201 ✓ 3.35 ×103

B10: Incorrect implementation of the logic to
generate the overflow flag ALU Expression CWE-1201 ✓ 2.21 ×104

Rocket Core [5]
ISA: RISC-V [63]
Design year:2016
32-bit, 5-stage pipeline

[30] 1.06 ×104 6.65 ×105 B11: Instruction retired count not increased
when EBREAK

Register file Condition CWE-1201 ✗ 776

Listing 2: Verilog code snippet for B1 in Ariane.
1 // Memory ordering instructions
2 riscv::OpcodeMiscMem: begin
3 instruction_o.fu =CSR;
4 instruction_o.rs1 ='0;
5 instruction_o.rs2 ='0;
6 instruction_o.rd ='0;
7 case (instr.stype.funct3)
8 // FENCE: Currently implemented as a whole DCache flush

↪→ boldly ignoring other things
9 3'b000: instruction_o.op =ariane_pkg::FENCE;

10 // FENCE.I
11 3'b001: begin
12 if (instr.instr[31:20] !='0)
13 illegal_instr =1'b1;
14 instruction_o.op =ariane_pkg::FENCE_I;
15 end
16 default: illegal_instr =1'b1;
17 endcase
18 if (instr.stype.rs1 !='0 ||instr.stype.imm0 !='0 ||instr.

↪→ instr[31:28] !='0)
19 illegal_instr =1'b1;
20 end

Table 1. We present bugs B1, B4, and B6 in detail as we ex-
ploit them in Section 6.3 and briefly describe the other bugs;
arXiv version [80] details the other bugs.

6.2.1 Bugs in Ariane Processor

Bug B1 is located in the decode stage of Ariane. According
to the RISC-V specification [63], the decoder should ignore
certain fields in a FENCE.I instruction, which enforces cache
coherence in the processor (e.g., by flushing the instruction
cache and instruction pipeline). It also ensures that the correct
instruction memory is used for execution when performing
memory sensitive operations (e.g., updating the instruction
memory). The bug is that the decoder does not ignore the
imm and rs1 fields and expects a value of 0 in these fields,
as seen in Lines 12 and 18 of Listing 2. This Ariane imple-
mentation declares valid instructions as illegal (Lines 13 and
19) due to this additional constraint on the imm and rs1 fields,
thus violating the specification. We detected this bug when

the fuzzer generated a FENCE.I instruction with a non-zero
value in the imm field. Ariane raised an exception saying that
the instruction is illegal, whereas spike successfully executed
the instruction, resulting in a mismatch§. Due to this bug,
failing-FENCE.I will not be executed, resulting in a poten-
tial violation of cache coherence. This bug is similar to the
expected behavior violation vulnerability, CWE-440 [48].

Bug B2 is in the instruction queue of the frontend stage of
Ariane. The bug is that a fixed exception is forwarded instead
of the actual exception. We detected this bug as a mismatch
in the value of a register that loads the exception type when
an exception occurs. Operating systems that assume that in-
struction access-faults are raised correctly will not behave
as expected, and triggering this bug may lead to undefined
(and possibly exploitable) behavior. Also, an incorrect excep-
tion handling might be executed, resulting in a memory and
storage vulnerability, CWE-1202 [48].

Bug B3 is that the decode stage does not correctly check
for certain illegal instructions. It was detected as a mismatch
when the fuzzer generated one such illegal instruction. Due
to this, any undocumented instruction of a certain value can
be executed on Ariane, resulting in an undocumented feature
vulnerability, CWE-1242 [48].

Bug B4 As per the RISC-V specification [63], when the in-
struction memory is modified, the software should handle
cache coherency using FENCE.I instruction. Failure to handle
cache coherency results in undefined behavior, wherein pro-
cessors may use stale data and incorrect execution of instruc-
tions [71]. When the fuzzer generated an input program that
modified the instruction memory but did not use a FENCE.I
instruction, TheHuzz detected a mismatch in the trace logs
of Ariane and spike. This mismatch could have been avoided

§We refer to these FENCE.I instructions that Ariane fails to detect as
failing-FENCE.I and the rest as the working-FENCE.I.
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if the RISC-V specification or the Ariane processor detected
violations of cache coherency in hardware. Due to this bug,
software running on Ariane could run into cache coherency
issues and remain undetected if the FENCE.I instruction is
used incorrectly, resulting in a memory and storage vulnera-
bility, CWE-1202 [48]. In Section 6.3.1 we use this bug and
bug B1 to successfully exploit a theoretically safe program.

6.2.2 Bugs in mor1kx Processor

Bug B5 is the inaccurate implementation of the carry flag
logic for subtract operations. The fuzzer generated inputs
that triggered this bug by mutating the data bits of subtract
instructions. This caused a mismatch in the value of the carry
flag between the RTL and golden reference model (GRM).
This bug can cause incorrect computations, including those
used in cryptographic functions, resulting in corruption and
compromise of the processor security (CWE-1201 [48]).

Bug B6 The register file stores, updates, and shares the value
of all the architectural registers. These registers include the
general- and special-purpose registers (GPRs and SPRs, re-
spectively). Read and write operations to the SPRs are re-
stricted based on the privilege mode of the processor, as per
the OpenRISC specification [57]. The Exception Program
Counter Register (EPCR) is an SPR that stores the address to
which the processor should return after handling an exception.
A user-level program should not be able to access this register.
The bug in mor1kx is that the register file does not check
for privilege mode access permissions when performing read
and write operations on EPCR. This bug was detected when
our fuzzer generated an instruction that tried to write into
EPCR from user privilege mode. Due to this bug, an attacker
can write into EPCR from user privilege mode and control the
return address of the processor after handling an exception
(CWE-1262 [48]). This bug can have severe security con-
sequences like privilege escalation, as demonstrated in our
mor1kx exploit in Section 6.3.2.

Bug B7. The register file in mor1kx does not allow one to
write into the Exception Effective Address Register (EEAR),
even for supervisor privilege mode. This bug is detected when
our fuzzer generated an instruction that tried to write into
EEAR from the supervisor privilege mode. This bug prevents
programs from updating EEAR, resulting in incorrect execu-
tions. Thus, it prevents software from correctly performing
exception handling. This bug is similar to CWE-1199 [48].

6.2.3 Bugs in or1200 Processor

Bug B8 is that the register forwarding logic forwards a non-
zero value for GPR0 if a previous instruction in the pipeline
writes to GPR0. We found this bug as a mismatch when the
fuzzer applied an ADD instruction to create a data hazard
for GPR0. This bug can result in incorrect computations since
GPR0 is frequently used by software to check for conditions.

An attacker can cause data hazards to obfuscate the behav-
ior of malware, e.g., by jumping to an offset computed by
an instruction that uses GPR0. This bug is similar to CWE-
1281 [48], where a sequence of processor instructions result
in unexpected behavior.

Bug B9 is that the overflow flag is not correctly calculated
for the multiply and subtract (MSB) and the multiply and
accumulate (MAC) instructions. This bug results in the failure
of the software programs to detect the overflow events. Thus
this bug is a core and compute issue vulnerability, CWE-
1201 [48], resulting in more software vulnerabilities.

Bug B10 is the incorrect overflow logic for the subtract in-
struction. The bug was detected when the fuzzer was mutating
data bits of subtract instruction. This bug also compromises
the security mechanisms relying on the overflow flag and is a
core and compute issue vulnerability, CWE-1201 [48].

6.2.4 Bugs in Rocket Core Processor

Bug B11 is that the instruction retired count does not increase
on an EBREAK instruction. It was detected when the fuzzer
executed the EBREAK instruction. TheHuzz was able to detect
the only bug, B11 reported by DifuzzRTL using only 776
instructions and is 6.7× faster than DifuzzRTL.

All the bugs except for B2, B8, and B11 are new bugs
detected by TheHuzz. B2 is fixed in the latest version of
Ariane. B8 is first reported in [93].

6.3 Case Study: Exploitability
We now present the two exploits we crafted to demonstrate
the security implications of the bugs found by TheHuzz. Both
attacks can be mounted from unprivileged software.

6.3.1 Ariane FENCE.I Exploit

The Ariane exploit leverages B1 and B4 to cause incoherence
in the instruction cache. As a result, in the contrived “safe”
just-in-time (JIT) compiler we developed to demonstrate this
bug, an attacker can generate inputs that selectively invalidate
cache lines containing old instructions. This program uses
an extension of the FENCE.I instruction (from the failing-
FENCE.I instructions) which should fall back to standard
fence behavior and flush the entire instruction cache as the
extension is not understood by spike or Ariane. For our threat
model, we assume that the attacker is aware of the use of an
extended FENCE.I instruction present in a target and is capa-
ble of loading and executing “safe” programs in the target’s
JIT compiler. An attacker first loads a region of executable
code (which does not contain a vulnerability) into the cache
by executing it. The attacker then overwrites the same region
of executable code with new instructions (which also does not
contain a vulnerability), then executes separate code which
jumps to instructions which align to cache lines the attacker
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Figure 5: Coverage analysis of random regression testing,
DifuzzRTL [30], and TheHuzz for the Rocket Core processor.

wishes to invalidate. After, they execute the original region
of executable code, at which point the behavior of spike and
Ariane diverge. In spike, the new instructions will be present
and will execute as expected with no vulnerabilities present.
This is because spike successfully identified the FENCE.I
instruction, but did not recognise its extension, and fell back
to flushing the entire cache. In Ariane, the old instructions
will be present; Ariane fails to recognise the FENCE.I in-
struction as it instead marks it as an illegal instruction, an
implementation which is non-compliant with the RISC-V
ISA. Because the cache lines were only invalidated in regions
selected by the attacker, the attacker is able to successfully re-
place bounds checks in the original program with effectively
nops, leading to a vulnerability which was neither present in
the old or the new JIT code. As a result, the attacker is able to
inject a stack overflow vulnerability and gain arbitrary code
execution. A more detailed description of the vulnerability,
exploit, ramifications, and threat model are presented in the
arXiv version [80].

6.3.2 mor1kx EPCR Register Exploit

The mor1kx exploit leverages the B6 to set the EPCR to point
to an attacker-controlled exploit function. An exception return
instruction is executed to mimic the return from an exception
event, causing the processor to update the program counter
(PC) and status register (SR) values with EPCR and exception
status register (ESR) values, respectively. The SR stores the
privilege level. By performing the exploit when the ESR stores
a higher-privilege level, execution jumps to the exploit func-
tion while overwriting the privilege level stored in SR. For
our threat model, we assume that the attacker already has
“foothold” access to a target machine and has the ability to
execute arbitrary instructions as a low-privilege user. In this
scenario, an attacker can perform privilege escalation in the
mor1kx processor. The arXiv version [80] explains this ex-
ploit in detail.

6.4 Coverage Analysis
Figure 5 shows the coverage achieved by random regression
testing, DifuzzRTL, and TheHuzz for the Rocket Core pro-

cessor. Each experiment is repeated 10 times. Even after 1M
instructions, both random regression testing and DifuzzRTL
did not improve their coverage beyond 2.5% than what they
collected after applying 300K instructions; on the other hand
TheHuzz’s coverage kept increasing. TheHuzz is slower in the
beginning than random regression testing as the fuzzer uses a
set of instructions until it cannot reach new coverage points;
in that case, it discards and selects new a set of instructions.
TheHuzz achieved the 404.1K coverage points achieved by
DifuzzRTL at 3.33× the speed of DifuzzRTL. TheHuzz and
random regression testing outperformed DifuzzRTL because
DifuzzRTL is guided by the control-register coverage, which
does not capture many hardware behaviors (cf. Appendix B).
The p-value from the Mann-Whitney U test [53] shows that
the result is statistically significant (p < 0.05) with a p-value
of 1.4e-4 for both random regression testing and DifuzzRTL.
The Vargha-Delaney A12 measure returned TheHuzz as the
best performing technique when compared with random re-
gression testing and DifuzzRTL.

The instrumentation overhead of DifuzzRTL is 18% in
terms of lines of Verilog code. TheHuzz does not instrument
Verilog code explicitly and instead relies on the commer-
cial tools which do not produce the overhead information.
Hence, the instrumentation overheads of these two fuzzers are
not comparable. The runtime overhead for TheHuzz (71%)
is greater than DifuzzRTL (6.9%) since TheHuzz requires
accessing multiple files to collect all the coverage, whereas
DifuzzRTL only needs to collect control-register coverage.

6.5 Comparison with Formal Verification

We also compared our fuzzer with another standard approach
used by the semiconductor industry—formal verification. For
this purpose, we used the industry-leading formal verifica-
tion tool, Cadence JasperGold [10]. However, there are two
challenges in performing this comparison. First, there is no
industry-standard formal tool that can produce a set of instruc-
tions that can trigger a hardware bug in RTL, even if the bug
is known apriori. Second, these industry tools require one to
write assertions targeting each vulnerability manually. Thus,
the usage of formal tools in this scenario requires one to know
of these vulnerabilities apriori—unlike TheHuzz, which does
not make any such assumptions.

To manually write these assertions, one has to know the
entire design, identify the signals and specific conditions that
trigger the security vulnerability. This step is highly cumber-
some given the vast number of modules, signals, and states in
processors, as shown in Table 2. Many bugs are cross-modular,
and hence, they require one to load multiple modules, which
only makes writing assertions difficult as they now need to
consider signals across modules and their interactions. These
tools only produce Boolean assignments to the inputs of these
modules and not a set of instructions that violate these asser-
tions. As shown Table 2, the number of inputs range in few
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Table 2: Hardware complexity encountered while using industry-standard JasperGold [10] to detect the bugs.

Processor Ariane mor1kx or1200 Rocket Core

Statistics
Bug B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

No. of modules 1 9 1 655 1 4 4 6 1 1 1
No. of inputs 518 627 518 3 298 752 752 703 123 123 284
No. of states 2.51e+58 2.16e+68 2.16e+68 2.01e+59 4.72e+10 1.55e+11 1.55e+11 3.83e+11 1.29e+10 1.29e+10 2.23e+20

hundreds, thereby increasing the number of states that need
to be checked, leading to state-space explosion. Some bugs
like B4 require one to load the entire system-on-chip into the
formal tool, which is not always feasible due to state-space
explosion. Thus, in contrast to TheHuzz, existing formal tools
are resource intense, error-prone, and not scalable to complex
bugs and larger designs, apart from relying heavily on human
expertise and prior knowledge of hardware vulnerabilities.

7 Related Work

We now describe the limitations of the existing attempts to
fuzz hardware and how TheHuzz is different from them, as
summarized in Table 3.
RFUZZ is a mux-coverage-guided fuzzer for hardware de-
signs [39]. Although this technique can fuzz designs on FP-
GAs, it is computationally intensive and does not scale to
large designs [30]. Additionally, its coverage metric does not
capture many hardware behaviors (cf. Appendix B). It is also
ineffective in finding any bugs.
HyperFuzzing proposes a new grammar to represent the se-
curity specification rules for hardware, converts the hardware
design into equivalent software models, and fuzzes them using
AFL fuzzer [51]. It is inapplicable to general hardware de-
signs like finite state machines (FSMs) or combinational logic
and requires a lot of human intervention, including writing
security specifications manually. It did not report any bugs.
Fuzzing hardware like software translates the hardware
design to software models and fuzzes them using a software
fuzzer [79]. While this is a promising approach, it is limited by
the strength of existing open-source tools (i.e., Verilator [70]):
they currently do not support many constructs of HDLs such
as latches, floating wires, etc. It did not report any bugs. The
largest benchmark used by this technique has 4,585 lines of
code (LOC). It also does not scale to real-world designs like
processors. For instance, while fuzzing Google’s OpenTitan
SoC [21], this work could only fuzz the peripheral modules
but not the iBex processor in it.
DifuzzRTL, a recent work, uses a custom-developed control-
register coverage as feedback for the fuzzer by instrumenting
the HDL [30]. The technique only focuses on the coverage
of registers generating the select signals of MUXes and does
not check for toggle, expression, and FSM coverage points,
thereby missing the bugs in 3 , 4 , and floating wires in
5 in Figure 2 (cf. Appendix B for more details). None of

the bugs found by this fuzzer are shown to be exploitable, as
most bugs are triggered by physically controlling the interrupt
signals with precise timing; such interrupt signals are not
usually exposed to unprivileged software [56]. The fuzzer is
also slower in detecting the bugs as it compares the processor
state after the entire program is executed, while our fuzzer
performs comparison after each instruction is executed.

In contrast, TheHuzz: (i) is compatible with traditional
IC design verification flow allowing for seamless integra-
tion by using coverage metrics already widely used in the
semiconductor industry; (ii) is scalable to large, complicated,
industrial-designs with several tens of thousands of code, and
not just small FSM designs; (iii) captures many intrinsic hard-
ware behaviors, such as signal transitions and floating wires,
using multiple coverage metrics: statement, toggle, branch,
expression, condition, and FSM; (iv) does not require the de-
signer to specify security rules; and (v) detects several bugs
that lead to severe security exploits. Instead, we compare how
the software views the hardware (i.e., ISA emulator) and how
the hardware actually behaves (i.e., Verilog), leading to an
effective hardware fuzzer.

8 Discussion and Limitations

Requirement of Golden Reference Models (GRMs). The-
Huzz and other hardware fuzzers [30, 51] depend on GRMs
to find vulnerabilities. Such GRMs are widely available in
the semiconductor industry. Verification of many commer-
cial (proprietary and open-source) CPUs critically depend on
the availability of GRMs, including many industrial, large-
scale designs, e.g. Intel x86 Archsim [33], AMD x86 Simnow
[1], ARM Cortex Neoverse [3], and ARM Fast Models [4].
Thus, the reliance on GRM is not a limiting factor for The-
Huzz. Sometimes, the GRM itself can be buggy, thereby
causing false positives. This situation is highly unlikely be-
cause GRMs are carefully curated and versioned with legacy
code, and rigorously tested. Verifying a GRM is easier as it is
written at a higher abstraction level and is thus less complex
than a RTL model.
Requirement of Register-Transfer Level (RTL) source
code. TheHuzz depends on RTL access, similar to previous
works such as DifuzzRTL [30], RFUZZ [39], and Hyper-
fuzzing [51]. As mentioned in Section 2.2, verification teams
already have access to RTL. An attacker can also buy RTL
models of the target design, as many companies like Imagi-
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Table 3: Comparison with the prior work on hardware fuzzers.

Methodology Fuzzer used HDL Simulator Target
design

Design
knowledge

Largest
design

(Lines of code)
Metrics used

Comparison
against random

regression testing

Bugs
reported

Exploitable
from

software

Exploits
presented

RFUZZ
[39] H/W fuzzer FIRRTL Any

RTL
designs Not required

5-stage Sodor
core (4,088) mux-coverage ∼5% increase in

mux coverage 0 N/A 0

Hyperfuzzing
[51]

S/W AFL
fuzzer Any Verilator

SoC
designs

Need
security rules

SHA crypto
engine (1,196) None N/A 0 N/A 0

Trippel et al.
[79]

S/W AFL
fuzzer Any Verilator

RTL
designs Not required KMAC (4,585)

FSM , line, edge, toggle,
and functional coverage

Two orders magnitude
faster for datapath FSMs 0 N/A 0

DifuzzRTL
[30] H/W fuzzer Any Any

CPU
designs Not required

Boom
(12,956 in Scala)

Control-register
coverage

∼10% increase in
control-register coverage 16 Not reported 0

TheHuzz H/W fuzzer Any
Commercial,
industry-standard
HDL simulator

CPU
designs Not required Ariane (20,698)

statement, toggle, branch,
expression, condition,
and FSM coverage

2.86% increase
in coverage metrics 10 Yes 2*

*In theory, the bugs discovered can be used to build more than two exploits, but we show only two due to page limitations.

nation Tech. Limited [32], Cadence [9], and Synopsys [73]
sell proprietary hardware designs, and run TheHuzz on them
as these designs are compatible with industry-standard tools.
While companies like Intel and ARM do not reveal the RTL
model of their processors, attackers can use reverse engineer-
ing services from companies like TechInsights [77] on the
target chip and use gate-level to RTL reverse engineering
techniques [72] to obtain the RTL model.
FPGA emulations. DifuzzRTL and RFUZZ can fuzz pro-
cessors faster through FPGA emulation than RTL simula-
tions [30, 39]. TheHuzz uses the coverage metrics imple-
mented by EDA simulation tools like Modelsim [68] and
Synopsys VCS [74]. These coverage metrics are not readily
available for FPGA emulations, thereby limiting TheHuzz’s
applicability to fuzz FPGA-emulated designs.
Fuzzing non-processor designs. Currently, TheHuzz, similar
to DifuzzRTL [30], is limited to fuzzing processor designs
since it generates processor specific inputs. These fuzzers
cannot fuzz standalone hardware components like SoC pe-
ripherals, memory modules, and other hardware accelerators,
which are targeted by RFUZZ and Tripple et al. [79]. The-
Huzz could be extended to fuzz non-processor designs by
fuzzing the individual input signals of the design. The seeds
would be assignments to individual input signal values rather
than instructions. The coverage metrics and the bug detection
mechanism used by TheHuzz will still be applicable.
Fuzzing parametric properties of hardware. TheHuzz cur-
rently fuzzes only processors for functional behavior but not
for parametric behavior (e.g., cache timing behavior) and
thereby cannot detect side-channel vulnerabilities. One can
extend TheHuzz to cover such vulnerabilities by developing
timing-related coverage properties and targeting them.

9 Conclusion

Bugs in hardware are increasingly exposed and exploited.
Current techniques fall short of detecting bugs, as our results
demonstrated by finding bugs in a 20-year old processor and
others. This calls for a revamp of security evaluation method-
ologies for hardware designs.

We presented an instruction fuzzer, TheHuzz, for processor-
based hardware designs. The effectiveness of TheHuzz is
shown by fuzzing three popular open-sourced processor de-
signs. TheHuzz has detected eight new bugs in the three de-
signs tested and three previously detected bugs. These bugs,
when used individually or in tandem, resulted in ROP and
privilege escalation exploits that could compromise both hard-
ware and software, as shown in the two exploits we presented.
Our fuzzer achieved 1.98× and 3.33× the speed compared
to the industry-standard random regression approach and the
state-of-the-art hardware fuzzer, DifuzzRTL, respectively. Fi-
nally, compared to the industry-standard formal verification
tool, JasperGold, TheHuzz does not need human intervention
and overcomes its other limitations.
Responsible disclosure. The bugs have been responsibly
disclosed through the legal department of our institution(s).

Acknowledgement

Our research work was partially funded by the US Office of
Naval Research (ONR Award #N00014-18-1-2058), by Intel’s
Scalable Assurance Program, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—SFB
1119—236615297 within project S2, and by the German Fed-
eral Ministry of Education and Research and the Hessian
State Ministry for Higher Education, Research and the Arts
within ATHENE. We thank Kevin Laeufer (UC Berkeley),
Jaewon Hur (Seoul National University), and TAMU HRPC
for their support. And, we thank anonymous reviewers for
their comments. Any opinions, findings, conclusions, or rec-
ommendations expressed herein are those of the authors, and
do not necessarily reflect those of the US Government.

References

[1] AMD. AMD SimNow. https://developer.amd.
com/simnow-simulator, 2021. Last accessed on
10/09/2021.

USENIX Association 31st USENIX Security Symposium    3231

https://developer.amd.com/simnow-simulator
https://developer.amd.com/simnow-simulator


[2] A. Ardeshiricham, W. Hu, et al. Clepsydra: Modeling
Timing Flows in Hardware Designs. IEEE/ACM ICCAD,
pages 147–154, 2017.

[3] ARM. ARM Cortex Neoverse. https:
//www.arm.com/products/silicon-ip-cpu/
neoverse/neoverse-n1, 2021. Last accessed on
10/09/2021.

[4] ARM. ARM Fast Models. https://developer.arm.
com/tools-and-software/simulation-models/
fast-models, 2021. Last accessed on 10/09/2021.

[5] K. Asanovic, R. Avizienis, et al. The Rocket Chip Gen-
erator. EECS Department, UCB, Tech. Rep., 2016.

[6] Averant. Averant Solidify. http://www.averant.
com/storage/documents/Solidify.pdf, 2015. Last
accessed on 04/08/2021.

[7] W. Badawy and G. A. Julien. System-on-chip for Real-
time Applications, volume 711. Springer Science &
Business Media, 2012.

[8] J. Bai, L. Wu, et al. A 10Gbps In-line Network Security
Processor With a 32-bit Embedded CPU. IEEE WOCC,
pages 616–619, 2013.

[9] Cadence. Cadence Design IP Portfolio.
https://ip.cadence.com/ipportfolio/
ip-portfolio-overview, 2021. Last accessed
on 10/09/2021.

[10] Cadence. Cadence Webpage. https://www.cadence.
com/en_US/home.html, 2021. Last accessed on
04/08/2021.

[11] G. Chen, S. Chen, et al. SgxPectre: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. IEEE
S&P, pages 142–157, 2019.

[12] W. Chen, S. Ray, et al. Challenges and Trends in Modern
SoC Design Verification. IEEE D&T, 34(5):7–22, 2017.

[13] E. M. Clarke, W. Klieber, et al. Model Checking and
the State Explosion Problem. LASER Summer School
on Software Engineering, pages 1–30, 2011.

[14] G. Dessouky, D. Gens, et al. Hardfails: Insights into
Software-Exploitable Hardware Bugs. USENIX Security
Symposium, pages 213–230, 2019.

[15] C. Deutschbein and C. Sturton. Mining Security Critical
Linear Temporal Logic Specifications for Processors.
IEEE MTV, pages 18–23, 2018.

[16] L. Dukes, X. Yuan, et al. A Case Study on Web Appli-
cation Security Testing with Tools and Manual Testing.
IEEE Southeastcon, pages 1–6, 2013.

[17] F. Farahmandi, Y. Huang, et al. System-on-Chip Security:
Validation and Verification. Springer Nature, 2019.

[18] M. Fischer, F. Langer, et al. Hardware Penetration Test-
ing Knocks Your SoCs Off. IEEE D&T, 2020.

[19] S. Gan, C. Zhang, et al. CollAFL: Path Sensitive
Fuzzing. IEEE S&P, pages 679–696, 2018.

[20] Google. ClusterFuzz. https://google.github.io/
clusterfuzz/, 2021. Last accessed on 04/08/2021.

[21] Google. Opentitan SoC. https://opentitan.org/,
2021. Last accessed on 04/08/2021.

[22] Google. Syzkaller. https://github.com/google/
syzkaller, 2021. Last accessed on 04/08/2021.

[23] S. Groß. FuzzIL: Coverage Guided Fuzzing for
JavaScript Engines. https://saelo.github.io/
papers/thesis.pdf. Last accessed on 04/08/2021.

[24] S. Gurumurthy, S. Vasudevan, et al. Automatic Genera-
tion of Instruction Sequences Targeting Hard-to-detect
Structural Faults in a Processor. IEEE ITC, pages 1–9,
2006.

[25] S. Gurumurthy, R. Vemu, et al. Automatic Generation
of Instructions to Robustly Test Delay Defects in Pro-
cessors. IEEE ETS, pages 173–178, 2007.

[26] S. L. He, N. H. Roe, et al. Model of the Product Devel-
opment Lifecycle. Sandia Report (2015), pages 1–49,
2015.

[27] M. Hicks, C. Sturton, et al. Specs: A Lightweight Run-
time Mechanism for Protecting Software From Security-
critical Processor Bugs. ACM ASPLOS, pages 517–529,
2015.

[28] W. E. Howden. Theoretical and Empirical Studies of
Program Testing. IEEE TSE, SE-4(4):293–298, 1978.

[29] C.-C. Hsu, C.-Y. Wu, et al. Instrim: Lightweight Instru-
mentation for Coverage-guided Fuzzing. NDSS, Work-
shop on Binary Analysis Research, 2018.

[30] J. Hur, S. Song, et al. DifuzzRTL: Differential Fuzz
Testing to Find CPU Bugs. IEEE S&P, pages 1286–
1303, 2021.

[31] IBM. CPLEX. https://pypi.org/project/cplex/,
2021. Last accessed on 04/08/2021.

[32] Imagination. Imagination Technologies. https://
www.imaginationtech.com/products, 2021. Last
accessed on 10/08/2021.

3232    31st USENIX Security Symposium USENIX Association

https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
http://www.averant.com/storage/documents/Solidify.pdf
http://www.averant.com/storage/documents/Solidify.pdf
https://ip.cadence.com/ipportfolio/ip-portfolio-overview
https://ip.cadence.com/ipportfolio/ip-portfolio-overview
https://www.cadence.com/en_US/home.html
https://www.cadence.com/en_US/home.html
https://google.github.io/clusterfuzz/
https://google.github.io/clusterfuzz/
https://opentitan.org/ 
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://saelo.github.io/papers/thesis.pdf
https://saelo.github.io/papers/thesis.pdf
https://pypi.org/project/cplex/
https://www.imaginationtech.com/products
https://www.imaginationtech.com/products


[33] Intel. Intel Archsim. https://course.ece.cmu.edu/
~ece742/2011spring/lib/exe/fetch.php?media=
marr_hyperthread02.pdf, 2021. Last accessed on
10/09/2021.

[34] Z. Kenjar, T. Frassetto, et al. V0LTpwn: Attacking x86
Processor Integrity from Software. USENIX Security
Symposium, pages 1445–1461, 2020.

[35] A. R. Khatri. Implementation, Verification and Vali-
dation of an OpenRISC-1200 Soft-core Processor on
FPGA. IJACSA, 10(1):480–487, 2019.

[36] P. Kocher, J. Horn, et al. Spectre Attacks: Exploiting
Speculative Execution. IEEE S&P, pages 1–19, 2019.

[37] D. Koncaliev. Pentium FDIV bug. https://www.cs.
earlham.edu/~dusko/cs63/fdiv.html, 2001. Last
accessed on 04/08/2021.

[38] G. Krishnakumar and C. Rebeiro. MSMPX: Microar-
chitectural Extensions for Meltdown Safe Memory Pro-
tection. IEEE SOCC, pages 432–437, 2019.

[39] K. Laeufer, J. Koenig, et al. RFUZZ: Coverage-directed
Fuzz Testing of RTL on FPGAs. IEEE/ACM ICCAD,
pages 1–8, 2018.

[40] lcamtuf. American Fuzzy Lop (AFL) Fuzzer.
http://lcamtuf.coredump.cx/afl/technical_
details.txt. Last accessed on 04/08/2021.

[41] J. Li, B. Zhao, et al. Fuzzing: a survey. Cybersecurity,
1(1):1–13, 2018.

[42] X. Li, V. Kashyap, et al. Sapper: A Language for
Hardware-level Security Policy Enforcement. ACM
ASPLOS, pages 97–112, 2014.

[43] X. Li, M. Tiwari, et al. Caisson: A Hardware Description
Language for Secure Information Flow. ACM PLDI,
46(6):109–120, 2011.

[44] Y. Li, B. Chen, et al. Steelix: Program-State Based
Binary Fuzzing. ESEC/FSE, pages 627–637, 2017.

[45] M. Lipp, M. Schwarz, et al. Meltdown: Reading Kernel
Memory from User Space. USENIX Security Sympo-
sium, pages 973–990, 2018.

[46] V. J. M. Manès, H. Han, et al. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE TSE, pages
1–1, 2019.

[47] B. Marshall. Hardware Verification in an Open Source
Context. ODSA, 2019.

[48] MITRE. Hardware Design CWEs. https:
//cwe.mitre.org/data/definitions/1194.html,
2019. Last accessed on 04/08/2021.

[49] MITRE. CVE Database. https://cveform.mitre.
org/, 2021. Last accessed on 04/08/2021.

[50] A. Molina and O. Cadenas. Functional Verification:
Approaches and Challenges. Latin American applied
research, 37(1):65–69, 2007.

[51] S. K. Muduli, G. Takhar, et al. Hyperfuzzing for SoC
Security Validation. IEEE/ACM ICCAD, pages 1–9,
2020.

[52] O. Mutlu. The RowHammer Problem and Other Issues
We May Face as Memory Becomes Denser. IEEE DATE,
pages 1116–1121, 2017.

[53] W. C. Navidi. Statistics for engineers and scientists.
McGraw-Hill Higher Education New York, NY, USA,
2008. Last accessed on 04/08/2021.

[54] N. Nethercote and J. Seward. Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation.
ACM SIGPLAN Notices, 42(6):89–100, June 2007.

[55] Onespin. Onespin Website. https://www.onespin.
com/, 2021. Last accessed on 04/08/2021.

[56] OpenHW Group. Ariane Source Code. https://
github.com/lowRISC/ariane, 2020. Last accessed
on 04/08/2021.

[57] OpenRISC. OpenRISC Homepage. https://
openrisc.io/, 2020. Last accessed on 04/08/2021.

[58] Princeton. OpenPiton. https://parallel.
princeton.edu/openpiton/index.html, 2018. Last
accessed on 04/08/2021.

[59] R. Qiao and M. Seaborn. A New Approach for Rowham-
mer Attacks. IEEE HOST, pages 161–166, 2016.

[60] P. Qiu, D. Wang, et al. VoltJockey: Breaching Trust-
Zone by Software-Controlled Voltage Manipulation over
Multi-Core Frequencies. ACM CCS, pages 195–209,
2019.

[61] J. Rajendran, V. Vedula, et al. Detecting Malicious Mod-
ifications of Data in Third-Party Intellectual Property
cores. IEEE/ACM DAC, pages 1–6, 2015.

[62] RISC-V. RISC-V Github Repositories. https:
//github.com/riscv, 2021. Last accessed on
04/08/2021.

[63] RISC-V. RISC-V Webpage. https://riscv.org/,
2021. Last accessed on 04/08/2021.

[64] S. R. Sarangi, A. Tiwari, et al. Phoenix: Detecting
and Recovering from Permanent Processor Design Bugs
with Programmable Hardware. IEEE/ACM MICRO,
pages 26–37, 2006.

USENIX Association 31st USENIX Security Symposium    3233

https://course.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=marr_hyperthread02.pdf
https://course.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=marr_hyperthread02.pdf
https://course.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=marr_hyperthread02.pdf
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html 
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html 
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://cwe.mitre.org/data/definitions/1194.html 
https://cwe.mitre.org/data/definitions/1194.html 
https://cveform.mitre.org/ 
https://cveform.mitre.org/ 
https://www.onespin.com/
https://www.onespin.com/
https://github.com/lowRISC/ariane
https://github.com/lowRISC/ariane
https://openrisc.io/ 
https://openrisc.io/ 
https://parallel.princeton.edu/openpiton/index.html 
https://parallel.princeton.edu/openpiton/index.html 
https://github.com/riscv
https://github.com/riscv
https://riscv.org/ 


[65] S. Schumilo, C. Aschermann, et al. kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels. USENIX
Security Symposium, pages 167–182, August 2017.

[66] K. Serebryany, D. Bruening, et al. AddressSanitizer: A
Fast Address Sanity Checker. USENIX ATC, page 28,
2012.

[67] K. Serebryany. OSS-Fuzz - Google’s Continuous
Fuzzing Service for Open Source Software. USENIX
Association, August 2017.

[68] Siemens. Modelsim. https://eda.sw.siemens.
com/en-US/ic/modelsim/, 2021. Last accessed on
04/08/2021.
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Appendix

A Mutation Techniques

We use 12 distinct mutation techniques inspired by the popular
binary manipulation fuzzer, AFL [90], as indicated in Table 4
and also detailed in the arXiv version [80].

Table 4: Mutation techniques used by TheHuzz.
# Name Description
M0 Bitflip 1/1 Flip single bit
M1 Bitflip 2/1 Flip two adjacent bits
M2 Bitflip 4/1 Flip four adjacent bits
M3 Bitflip 8/8 Flip single byte
M4 Bitflip 16/8 Flip two adjacent bytes
M5 Arith 8/8 Treat single byte as 8-bit integer, +/- value from 0 to 35
M6 Arith 16/8 Treat 2 adjacent bytes as 16-bit integer, +/- value from 0 to 35
M7 Arith 32/8 Treat 4 adjacent bytes as 32-bit integer, +/- value from 0 to 35
M8 Random 8 Overwrite random byte with random value
M9 Delete Delete an instruction
M10 Clone Clone an instruction
M11 Opcode Overwrite opcode bits

B Coverage Metrics Of Prior Work

We now demonstrate why the coverage metrics of DifuzzRTL
and RFUZZ cannot cover the bugs in Figure 2.

B.1 DifuzzRTL’s coverage metric: control-
register coverage

The control-register coverage metric of DifuzzRTL defines
all the registers that drive the select signals of the MUXes as
control registers. These registers in each module are concate-
nated into a single module_state register; all possible values
of these module_state registers are defined as coverage points.

When applied to the example in Figure 2, DifuzzRTL
should concatenate all the registers that drive the select signals
of the two MUXes 1 and 3 : flush, en, pass, ipass, and
debug_en. Since there are five 1-bit registers, there are 25 =
32 possible values; DifuzzRTL considers each of them as
coverage points, resulting in 32 coverage points. We now
discuss in detail why the control-register coverage metric
does not cover the two bugs in Figure 2.
Limitation 1. DifuzzRTL detects only certain implementa-
tions of MUXes in the RTL code. When a MUX is imple-
mented differently (e.g., as a combination of NOT, AND, or
OR gates), DifuzzRTL fails to detect the MUX and ignores
the corresponding control registers. Therefore, it fails to ac-
count for certain control registers driving the select signals

Listing 3: Verilog code of the hardware design in Figure 2
instrumented by DifuzzRTL.

61 assign _T =flush |en; // @[cmd3.sc 37:30]
62 assign _T_2 =pass ==ipass; // @[cmd3.sc 41:20]
63 assign sel1 = _T_2 |debug_en; // @[cmd3.sc 41:31]
64 assign _T_4 =flush &en; // @[cmd3.sc 46:17]
65 assign state_f = _T_4 ?FLUSH :state; // @[cmd3.sc 46:22]
66 assign _GEN_1 ={{2'd0}, ∼sel1}; // @[cmd3.sc 52:21]
67 assign _T_6 = _GEN_1 &state_f; // @[cmd3.sc 52:21]
68 assign _GEN_2 ={{2'd0}, sel1}; // @[cmd3.sc 52:40]
69 assign _T_7 = _GEN_2 &D_READ; // @[cmd3.sc 52:40]
... ...

78 assign en_shl =en;
79 assign en_pad ={1'h0,en_shl};
80 assign flush_shl ={flush, 1'h0};
81 assign flush_pad =flush_shl;
82 assign cache_controller_xor0 =en_pad \xor flush_pad;
... ...

168 always @(posedge clock) begin
... ...

207 state <= _T_6 | _T_7;
... ...

212 vld <=debug_en | _T;
213 end
214 cache_controller_state <=cache_controller_xor0;

... ...
218 end

of such MUX implementations. Consequently, it does not
produce coverage points for these control registers.

In the controller example in Figure 2, the combina-
tional logic 4 generates the select signal sel1 of MUX
3 . DifuzzRTL cannot detect this MUX because its RTL

code is described using combinational logic (Line 51
of Listing 1: state := ((!sel1 & state_f) | (sel1 &
D_READ))) instead of control flow constructs (like when
block at Lines 45–49 of Listing 1), thereby failing to detect
the bug b1 in 4 .

To demonstrate this limitation, we compiled the Chisel
code (Listing 1) of the controller, generated the correspond-
ing FIRRTL code, and ran DifuzzRTL on it. The instrumented
Verilog code and output of DifuzzRTL instrumentation are
shown in Listing 3 and Listing 4, respectively. It can be seen
from the Lines 28 and 32 of DifuzzRTL’s report (Listing 4)
that DifuzzRTL detected only one MUX and two control
registers; Lines 78–82 of the instrumented Verilog code (List-
ing 3) show that these control registers are flush and en.
The control registers (pass, ipass, debug_en) generating
the signal sel1 of MUX 3 are not included. Consequently,
DifuzzRTL does not have any coverage point in 4 , thereby
failing to detect b1.
Limitation 2. DifuzzRTL focuses only on the control-
registers that drive the select signals of MUXes. Thus, Di-
fuzzRTL will not cover any combinational logic that does
not drive the select signals of the MUXes. In the controller
example in Figure 2, the bug b2 is in the combinational logic
6 . DifuzzRTL cannot detect this bug since it does not cover

the registers, flush and en, generating vld in 6 as these
registers are not generating the select signals of any MUX.

We demonstrate this limitation of DifuzzRTL using the
same instrumented Verilog code (Listing 3) and the output
of DifuzzRTL instrumentation (Listing 4) . DifuzzRTL only
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Listing 4: DifuzzRTL’s output of the hardware design in
Figure 2. MUX2 is undetected.
1 ============Finding Control Registers =========
5 numRegs: 9, numCtrlRegs: 2, numMuxes: 1
8 ============Instrumenting Coverage ============

12 regStateSize: 2, totBitWidth: 2, numRegs: 2
13 numOptRegs: 2
25 ============Instrumentation Summary ===========
26 Total number of registers: 9
27 Total number of control registers: 2
28 Total number of muxes: 1
29 Total number of optimized registers: 2
30 Total bit width of registers: 15
31 Total bit width of control registers: 2
32 Optimized total bit width of control registers: 2
33 Total bit width of muxes: 1

reports the two control registers: flush and en generating
the select signal sel2 of MUX 1 (Lines 78–82 of the instru-
mented Verilog code in Listing 3). However, DifuzzRTL does
not have any coverage points for the signals in the combina-
tional logic 6 , where the bug resides. Combinational logic
constitutes a significant portion of the hardware design, and
thus these bugs cannot be overlooked as rare corner cases.

B.2 RFUZZ’s coverage metric: Mux-coverage
RFUZZ uses a coverage metric called mux-coverage. It treats
the select signal of each 2:1 MUX as a coverage point. When
applied to the controller design in Figure 2, sel1 and sel2
signals are selected as the mux-coverage points. Since both
are 1-bit wide, the total number of mux-coverage points is
21+21 = 4 coverage points. We now discuss in detail why the
mux-coverage metric does not cover the two bugs in Figure 2.
Limitation 1. RFUZZ detects only certain implementations
of MUXes in the RTL code. When a MUX is implemented
differently (e.g., as a combination of NOT, AND, or OR gates),
RFUZZ fails to detect the MUX and ignores the correspond-
ing select signals. Therefore, it fails to account for select
signals of such MUX implementations. Consequently, it does
not produce coverage point for these MUXes.

In the controller example in Figure 2, the combina-
tional logic 4 generates the select signal sel1 of MUX
3 . RFUZZ cannot detect this MUX because its RTL

code is described using combinational logic (Line 51
of Listing 1: state := ((!sel1 & state_f) | (sel1 &
D_READ))) instead of control flow constructs (like when
block at Lines 45–49 of Listing 1), thereby failing to detect
the bug b1 in 4 .

To demonstrate this limitation, we compiled the Chisel
code (Listing 1) of the controller, generated the correspond-
ing FIRRTL code, and ran RFUZZ on it. The instrumented

Listing 5: Verilog code of the hardware design in Figure 2
instrumented by RFUZZ.

37 wire _T =flush |en; // @[cmd3.sc 37:30]
38 wire _T_2 =pass ==ipass; // @[cmd3.sc 41:20]
39 wire sel1 = _T_2 |debug_en; // @[cmd3.sc 41:31]
40 wire [2:0] state_f =profilePin ?FLUSH :state; // @[cmd3.sc

↪→ 46:22]
41 wire _T_5 =∼sel1; // @[cmd3.sc 52:15]
42 wire [2:0] _GEN_1 ={{2'd0}, _T_5}; // @[cmd3.sc 52:21]
43 wire [2:0] _T_6 = _GEN_1 &state_f; // @[cmd3.sc 52:21]
44 wire [2:0] _GEN_2 ={{2'd0}, sel1}; // @[cmd3.sc 52:40]
45 wire [2:0] _T_7 = _GEN_2 &D_READ; // @[cmd3.sc 52:40]
... ...

48 assign auto_cover_out =flush &en;
... ...

109 always @(posedge clock) begin
... ...

148 state <= _T_6 | _T_7;
... ...

153 vld <=debug_en | _T;
154 end
155 end

Listing 6: RFUZZ’s output for the hardware design in Fig-
ure 2. MUX2 is undetected.

51 [[coverage]]
52 port ="auto_cover_out"
... ...

58 human ="(flush and en)"

Verilog code and output of RFUZZ instrumentation are shown
in Listing 5 and Listing 6, respectively. It can be seen from the
Lines 49 and 58 of RFUZZ’s report (Listing 6) that RFUZZ
detected only one select signal of the MUX 1 ; Line 48 of
the instrumented Verilog code (Listing 5) shows the same.
The select signal sel1 of MUX 3 is not included. Conse-
quently, RFUZZ does not have any coverage point in 4 ,
thereby failing to detect b1.

Limitation 2. RFUZZ focuses only on the select signals of
the MUXes. Thus, RFUZZ will not cover any combinational
logic that does not drive the select signals of the MUXes. In
the controller example in Figure 2, the second bug b2 is in the
combinational logic 6 . RFUZZ cannot detect this bug since
it does not cover the registers, flush and en, generating vld
in 6 as these registers are not the select signals of any MUX.

We demonstrate this limitation of RFUZZ using the same
instrumented Verilog code (Listing 5) and the output of
RFUZZ instrumentation (Listing 6) . RFUZZ only reports
the one signal: the select signal sel2 of the MUX 1 (Line
58 of the RFUZZ’s output). However, RFUZZ does not have
any coverage points for the signals in the combinational logic
6 , where the bug resides. Combinational logic constitutes

a significant portion of the hardware design, and thus these
bugs cannot be overlooked as rare corner cases.
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