
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

ReDoSHunter: A Combined Static and Dynamic
Approach for Regular Expression DoS Detection
Yeting Li and Zixuan Chen, SKLCS, ISCAS, UCAS; Jialun Cao, HKUST; Zhiwu Xu,

Shenzhen University; Qiancheng Peng, SKLCS, ISCAS, UCAS; Haiming Chen,
SKLCS, ISCAS; Liyuan Chen, Tencent; Shing-Chi Cheung, HKUST

https://www.usenix.org/conference/usenixsecurity21/presentation/li-yeting

ReDoSHunter: A Combined Static and Dynamic Approach for Regular

Expression DoS Detection

Yeting Li

SKLCS, ISCAS

UCAS

Zixuan Chen

SKLCS, ISCAS

UCAS

Jialun Cao

HKUST

Zhiwu Xu

Shenzhen University

Qiancheng Peng

SKLCS, ISCAS

UCAS

Haiming Chen �
SKLCS, ISCAS

Liyuan Chen

Tencent

Shing-Chi Cheung

HKUST

Abstract

Regular expression Denial of Service (ReDoS) is a class of

algorithmic complexity attacks using the regular expressions

(regexes) that cause the typical backtracking-based match-

ing algorithms to run super-linear time. Due to the wide

adoption of regexes in computation, ReDoS poses a perva-

sive and serious security threat. Early detection of ReDoS-

vulnerable regexes in software is thus vital. Existing detection

approaches mainly fall into two categories: static and dynamic

analysis. However, they all suffer from either poor precision

or poor recall in the detection of vulnerable regexes. The

problem of accurately detecting vulnerable regexes at high

precision and high recall remains unsolved. Furthermore, we

observed that many ReDoS-vulnerable regex contain more

than one vulnerability in reality. Another problem with exist-

ing approaches is that they are incapable of detecting multiple

vulnerabilities in one regex.

To address these two problems, we propose ReDoSHunter,

a ReDoS-vulnerable regex detection framework that can ef-

fectively pinpoint the multiple vulnerabilities in a vulnerable

regex, and generate examples of attack-triggering strings. Re-

DoSHunter is driven by five vulnerability patterns derived

from massive vulnerable regexes. Besides pinpointing vulner-

abilities, ReDoSHunter can assess the degree (i.e., exponential

or polynomial) of the vulnerabilities detected. Our experi-

ment results show that ReDoSHunter achieves 100% preci-

sion and 100% recall in the detection of ReDoS-vulnerable

regexes in three large-scale datasets with 37,651 regexes. It

significantly outperforms seven state-of-the-art techniques.

ReDoSHunter uncovered 28 new ReDoS-vulnerabilities in

26 well-maintained popular projects, resulting in 26 assigned

CVEs and 2 fixes.

1 Introduction

Regular expressions (regexes) have wide applications in pro-

gramming languages, string processing, database query lan-

guages and so on [1, 9, 14, 15, 20, 37]. Therefore, regexes are

commonly used by online and offline services/projects for

essential operations such as data validation, parsing, scraping

and syntax highlighting [37, 44]. Earlier studies [8, 14] have

reported that about 40% Java, JavaScript and Python projects

use regexes. While regexes are popular, their computation can

be complex and not easy to reason about. As a result, users

or even experts often write regexes in super-linear worst-case

time complexity (e.g., matching a string in quadratic or expo-

nential time with the length of the input string). For example,

(\w|\d)+$ is a problematic regex commonly used to match

strings ending with words or numeric characters. To deter-

mine whether a string w matches the regex, O(2|w|) time may

be needed due to backtracking. Furthermore, according to the

recent investigations [14, 20], more than 10% of regexes used

in software projects exhibit super-linear worst-case behavior.

More seriously, such regexes are subject to the Reg-

ular expression Denial of Service (abbrev., ReDoS, a.k.a.

catastrophic backtracking) attacks. The threat of ReDoS

is widespread and serious [14, 20, 40], and has a growing

trend in recent years1. For instance, Stack Overflow [41]

had a global outage in 2016 caused by a single super-linear

regex. Similarly, in 2019, ReDoS took down Cloudflare’s ser-

vices [4]. Thus, early detection of ReDoS-vulnerable regexes

in software projects is vital. Similar concerns are raised

by Staicu and Pradel [40]: “better tools and approaches

should be created to help maintainers reason about ReDoS-

vulnerabilities”.

Existing approaches for ReDoS-vulnerable regex identifi-

cation are mainly either static or dynamic. However, existing

detection approaches mostly involve a trade-off between pre-

cision and recall — a higher precision is often accompanied

by a lower recall and vice versa. According to our investi-

gation, the existing static work [14] with the highest recall

(36.70%) turns out to result in only 57.96% precision. While

the dynamic work [37] with 100% precision, results in only

1.82% recall. The huge trade-off on precision and recall limits

1Snyk’s Security Research Team [39] found that there were a growing

number of ReDoS-vulnerabilities disclosed, with a spike of 143% in 2018

alone.

USENIX Association 30th USENIX Security Symposium 3847

the usefulness of these approaches. How to reach both high

precision and high recall is still an open problem. Further-

more, the existing works can hardly locate the root cause of

a ReDoS-vulnerability. Even the root cause of the vulnera-

bility can be located, they can only detect one vulnerability.

Nevertheless, according to our statistics (see §4.2), there are

53.7% of ReDoS-vulnerable regexes containing more than

one vulnerability. This motivates the need for a ReDoS de-

tection approach that can detect multiple vulnerabilities in a

regex.

To achieve the end, we propose ReDoSHunter, a ReDoS-

vulnerable regex detection framework, which can pinpoint

multiple root causes of vulnerabilities in a regex and gen-

erate attack-triggering strings accordingly. Specifically, Re-

DoSHunter first adopts static analysis to identify potential

vulnerabilities and generate attack strings that trigger the tar-

geting vulnerabilities. The analysis leverages the five vul-

nerability patterns that we conclude by close examination of

massive ReDoS-vulnerable regexes. These patterns prescribe

the time complexity (exponential or polynomial), triggering

conditions and possible attack strings (see §3.3 for details).

Then, ReDoSHunter verifies whether the identified candi-

dates are real vulnerabilities by dynamic analysis. Finally,

ReDoSHunter outputs all the detected vulnerabilities with

the degree (exponential or polynomial) and attack-triggering

strings if any.

Empowered by the combination of static and dynamic anal-

ysis, and especially by the effectiveness of the patterns of

the ReDoS-vulnerabilities, ReDoSHunter achieves high pre-

cision and recall at the same time. Our experiments show that

ReDoSHunter achieves 100% precision and 100% recall on

three large-scale datasets with 37,651 regexes. Furthermore,

to validate the effectiveness of ReDoSHunter in the wild,

we utilized ReDoSHunter to detect the publicly-confirmed

real vulnerabilities in Common Vulnerabilities and Expo-

sure (CVE) [12]. The experiment result shows ReDoSHunter

can detect 100% of them, compared with the highest 60.00%

achieved by the existing works. We applied ReDoSHunter to

26 well-maintained libraries (such as the popular JavaScript

utility library lodash2 which has more than 40 million weekly

downloads), disclosing 28 new vulnerabilities among which

26 were assigned CVE IDs and 2 were fixed by developers.

The main contributions of this work are summarized as

follows.

• We propose ReDoSHunter, a ReDoS-vulnerable regex

detection framework which can pinpoint multiple root

causes of vulnerabilities and generate attack-triggering

strings. Combining both static and dynamic analyses,

ReDoSHunter achieved remarkable precision and recall,

reaching both 100% over three large-scale datasets, over-

coming the dilemma as to which metric should be priori-

tized faced by the existing works.

2 https://www.npmjs.com/package/lodash

• We identify five patterns of ReDoS-vulnerabilities based

on extensive examination of massive vulnerable regexes.

These patterns are characterized by detailed descrip-

tions, degree of the vulnerability (the time complexity

is exponential or polynomial), and the triggering con-

ditions. They can help maintainers to locate ReDoS-

vulnerabilities, shedding light on preventing and repair-

ing vulnerable regexes.

• The experiment results demonstrate the practicality of

ReDoSHunter. ReDoSHunter can detect 100% con-

firmed ReDoS-related CVEs, compared with the high-

est 60.00% achieved by the state-of-the-art works,

and further identified 28 more unrevealed ReDoS-

vulnerabilities across 26 intensively-tested projects, with

26 of them assigned CVEs and 2 of them fixed.

2 Preliminaries

Let Σ be an alphabet of all printable symbols except that each

of the following symbols is written with an escape character \

in front of it: (,), {, }, [,], ^, $, |, \, ., ?, *, and +. Meanwhile,

Σ also includes some special characters such as \t (denotes a

tab character) and \n (denotes a newline character). The set

of all words over Σ is denoted by Σ∗. The empty word and the

empty set are denoted by ε and ∅, respectively.

Definition 1. Standard Regular Expression. ε, ∅, and a ∈
Σ are standard regular expressions; a standard regular expres-

sion is also formed using the operators: r1|r2,r1r2,r1{m,n},

where m ∈ N, n ∈ N∪ {∞}, and m ≤ n. Besides, r?, r*, r+

and r{i} where i ∈ N are abbreviations of r{0,1}, r{0,∞},

r{1,∞} and r{i,i}, respectively. r{m,∞} is often simplified

as r{m,}.

The language L(r) of a standard regular expression r

is defined inductively as follows: L(∅) = ∅; L(ε) = {ε};
L(a) = {a}; L(r1|r2) =L(r1)∪L(r2); L(r1r2) = {vw | v∈
L(r1),w ∈ L(r2)}; L(r{m,n}) =

⋃
m6i6nL(r)i.

In practice, real-world regular expressions (regexes) are

commonly found.

Definition 2. Real-world Regular Expression (regex). A

regex over Σ is a well-formed parenthesized formula, con-

sisting of operands in Σ∗ ∪ {\i | i ≥ 1}3. Besides the

common rules governing standard regular expressions (e.g.

r1|r2,r1r2,r1{m,n} defined in Definition 1), a regex also has

the following constructs: (i) capturing group (r); (ii) non-

capturing group (?:r); (iii) lookarounds: positive lookahead

r1(?=r2), negative lookahead r1(?!r2), positive lookbehind

(?<=r2)r1, and negative lookbehind (?<!r2)r1; (iv) anchors:

Start-of-line anchor ^, End-of-line anchor $, word boundary

\b, and non-word boundary \B; (v) lazy quantifiers: r??, r*?,

r+?, and r{m,n}?; and (vi) backreference \i.

3In some environments, variables are used instead of \i.

3848 30th USENIX Security Symposium USENIX Association

A regex follows the syntactic rule that every control charac-

ter \i is found to the right of the i-th capturing group, where

capturing groups are indexed according to the occurrence

sequence of their left parenthesis4. The same backreference

can occur multiple times in a regex. In addition, the semantics

of the constructs are explained in §3.2.

Regex matching is conducted with the support of a regex

engine. Regex engines differ, but most (e.g., the built-in regex

engines in Java and Python) will adopt backtracking search

algorithms. Backtracking search algorithms can better support

various grammatical extensions (e.g., lookarounds and back-

references). At the same time, they can also lead to potential

Regular expression Denial of Service (ReDoS) attacks.

A regex r is ReDoS-vulnerable iff there exists a string

w such that the regex on a backtracking regex engine has

a super-linear behavior. Such strings are often called attack

strings.

Ψ!Ψ" Ψ#
ReDoS-vulnerable Regex 𝐫 = 𝚿𝟏𝚿𝟐𝚿𝟑

Construct Attack String𝒘 = 𝒙𝒚𝒏𝒛 𝒏 > 𝟎

where 𝒙 ∈ 𝓛 𝚿𝟏 , 𝒚𝒏 ∈ 𝓛 𝚿𝟐 and𝒘 ∉ 𝓛 𝐫

repeats 𝒏 times

𝑦𝑥 𝑧𝑦 𝑦⋯ ⋯

Figure 1: The Components of the Attack String and the Re-

lation Between the ReDoS-vulnerable Regex and the Attack

string.

In our algorithms we find the position in the regex r that

causes ReDoS, and locate a sub-regex containing this position,

which is called the infix or attackable sub-regex of r. The sub-

regexes before and after the infix sub-regex in r are called

prefix and suffix sub-regexes, respectively. We use Ψ1, Ψ2,

Ψ3 to denote the prefix sub-regex, infix sub-regex, and suffix

sub-regex respectively. Note that sub-regexes Ψ1 and Ψ3 can

be ε. The components of the attack string w = xynz5 and the

relation between the ReDoS-vulnerable regex and the attack

string is provided in Figure 1, which shows w = xynz /∈L(r),
n > 0, x ∈ L(Ψ1), and yn ∈ L(Ψ2). In addition, if Ψ1 = ε,

then x = ε.

For example, the regex Ξ = ([0-9]*)+(\.[0-9]+)+ is

ReDoS-vulnerable because the matching time of the regex Ξ
on the Java-8 regex engine against a malicious string ‘0’ × n

grows rapidly with input size. (Figure 2)

For a standard regular expression r, the following sets are

needed to analyze the ambiguity of r.

r.first = {a|au ∈ L(r),a ∈ Σ,u ∈ Σ∗};

r.last = {a|ua ∈ L(r),a ∈ Σ,u ∈ Σ∗};

r.followlast = {a|uav ∈ L(r),u ∈ L(r),u 6= ε,a ∈ Σ,v ∈
Σ∗}.

Consider the above regex Ξ, Ξ.first = Ξ.followlast = {0,1,
2,3,4,5,6,7,8,9,\.} and Ξ.last = {0,1,2,3,4,5,6,7,8,9}.

4Parentheses that are part of other syntax such as non-capturing groups

should be skipped.
5It can also be denoted as w = x+ y×n+ z,

5 10 15 20 25 30
0

20

40

60

80

100

120

Size of String

M
at

ch
in

g
T

im
e

(s
)

Figure 2: Matching Time against Malicious String Size for

ReDoS-vulnerable Regex Ξ on the Java-8 Regex Engine.

We say r satisfies the nullable property if it accepts ε. We

define r.nullable to represent this property as: r.nullable =
true if ε ∈ L(r) or false otherwise.

3 The ReDoSHunter Algorithm

In this section, we elaborate on the key ideas and techniques

of our approach ReDoSHunter to analyze and identify the

ReDoS-vulnerable regexes. Figure 3 shows the workflow of

ReDoSHunter, which consists of three key components. The

first component regex standardization (§3.2) transforms the

original real-world regular expression (regex) into a simplified

form which can then be manipulated by the second compo-

nent. It takes a given regex as input and converts the regex into

a standard regular expression with constraints using our de-

signed transformation rules. The second component static di-

agnosis (§3.3) diagnoses the potential ReDoS-vulnerabilities

of the given regex via the standard regular expression and the

constraints obtained from the first component. In particular,

it takes the standard regular expression and the constraints

as input and diagnoses the potential backtracking locations,

and then assesses the vulnerability degrees (exponential or

polynomial) and generates the corresponding attack strings.

The last component dynamic validation (§3.4) determines

whether the candidate vulnerabilities diagnosed by the second

component are real ones by testing and verifying these attack

strings generated from the second component.

3.1 The Main Algorithm

Our algorithm ReDoSHunter is shown in Algorithm 1. Re-

DoSHunter first leverages the transformation rules that we

design to rewrite the given regex α to a standard regular ex-

USENIX Association 30th USENIX Security Symposium 3849

Standard
Regular

Expression

Attack	String

Regex Standardization❶ Dynamic Validation❸

Constraint
Memorizer

Vulnerability
Source

Vulnerability
Degree

Vulnerability
Position

Real-world
Regular

Expression

Attack	String
Validation

Static	Diagnosis❷

Figure 3: An Overview of ReDoSHunter for ReDoS Detection.

Table 1: The Vulnerability Type (Vuln. Type), Vulnerability Description (Vuln. Description), and Example Regex (including

Attack String) of the Five ReDoS Patterns.

No. ReDoS Pattern Vuln. Type Vuln. Description Example Regex Attack String

#1 Nested Quantifiers (NQ) Exponential Optional nested quantifiers result in two choices

for each pump string

(CVE-2015-9239) \[(\d+;)? (\d+)*m ‘[’ + ‘ 0’ × 20 + ‘!’

#2 Exponential Overlapping

Disjunction (EOD)

Exponential A disjunction with a common outer quantifier

whose multiple nodes overlap

(CVE-2020-7662)

"((?:\\[\x00-\x7f]|[^\x00-\x08

\x0a-\x1f\x7f"])*)"

‘"’ + ‘ \\\x7e’ × 30 + ‘!’

#3 Exponential Overlapping

Adjacency (EOA)

Exponential Two overlapping nodes with a common outer

quantifier {m,n} (n> 1) are either adjacent or

can reach each other by skipping some optional

nodes

(CVE-2018-3738)

^(?:\.?[a-zA-Z_][a-zA-Z_0-9]*)+$

‘a’ × 30 + ‘!’

#4 Polynomial Overlapping

Adjacency (POA)

Polynomial Two overlapping nodes with an optional com-

mon outer quantifier {0,1} are either adjacent

or can reach each other by skipping some op-

tional nodes

(CVE-2018-3737)

^([a-z0-9-]+)[\t]+([a-zA-Z0-9+

\/]+[=]*)([\n \t]+([^\n]+))?$

‘0\t0’ + ‘\t’× 10000 + ‘\n’

#5 Starting with Large Quan-

tifier (SLQ)

Polynomial The regex engine keeps moving the regex start-

ing with a large quantifier across the string to

find a match

(CVE-2019-1010266)

[a-z][A-Z]|[A-Z]{2,}[a-z]|[0-9]

[a-zA-Z]|[a-zA-Z][0-9]|[^a-zA-Z

0-9]

‘A’ × 10000 + ‘!’

Algorithm 1: ReDoSHunter

Input: a regex α
Output: true, a diagnostic information list Γ if α is

ReDoS-vulnerable or false otherwise

1 β, M ← TransRE(α);
2 ΓN Q ← CheckNQ(β, M);

3 ΓEOD ← CheckEOD(β, M);
4 ΓEOA ← CheckEOA(β, M);
5 ΓPOA ← CheckPOA(β, M);
6 ΓSLQ ← CheckSLQ(β, M);
7 Γ← ΓN Q ∪ΓEOD ∪ΓEOA ∪ΓPOA ∪ΓSLQ ;

8 if |Γ|= 0 then return false;

9 foreach info (vulDeg,vulSrc,vulPos,atkStr) ∈ Γ do

10 if verifyAtk(α, atkStr, vulDeg) = false then

11 delete info (vulDeg, vulSrc, vulPos, atkStr) from

Γ;

12 if |Γ|> 0 then return true, Γ;

13 else return false;

pression β with a constraint memorizer M , which contains

the constraints to generate attack strings that also belong to

the original regex α (line 1). Next, according to β and M ,

ReDoSHunter deduces the diagnostic information (i.e., vul-

nerability degree, vulnerability source, vulnerability location,

and attack string) list Γ by statically detecting whether any

of the five patterns (i.e., NQ, EOD, EOA, POA, and SLQ, as

illustrated in Table 1), is triggered (lines 2-7). If Γ is empty,

ReDoSHunter returns false (line 8), otherwise it dynamically

verifies whether the attack strings in Γ are successful and the

failed attack strings with their information are removed from

Γ (lines 9-11). Finally, ReDoSHunter returns true and Γ if Γ
is not empty (line 12), or returns false otherwise (line 13).

3.2 Regex Standardization

3.2.1 Extensions

As shown in §2, regexes support several useful extensions.

We briefly explain them below.

3850 30th USENIX Security Symposium USENIX Association

A lazy quantifier is in the form of r??, r*?, r+? or

r{m,n}?, which will match the shortest possible string. Match

as few as possible, repeat as few times (i.e., the minimal num-

ber of times) as possible. Anchors do not match any characters,

but still restrict the accepted words. The Start-of-line anchor

^ (resp. End-of-line anchor $) matches the position before

the first (resp. after the last) character in the string. The word-

boundary anchor \b can match the position where one side

is a word and the other side is not a word. The anchor \B

(non-word boundary) is a dual form of the word boundary

\b. Lookarounds are useful to match something depending on

the context before/after it. Specifically, a positive lookahead

r1(?=r2) (resp. negative lookahead r1(?!r2)) denotes look-

ing for r1, but matching only if (resp. not) followed by r2.

A positive lookbehind (?<=r2)r1 (resp. negative lookbehind

(?<!r2)r1) means matching r1, but only if there’s (resp. no)

r2 before it. Backreference \i matches the exact same text

that was matched by the i-th capturing group. A capturing

group is enclosed in parentheses (r). It enables us to get a

portion of the match as a separate item in the result array. If

we do not want a group to capture its match, we can optimize

this group into (?:r) (i.e., non-capturing group).

3.2.2 Transformations

The high expressiveness of regexes makes many decision

problems intractable or undecidable. To analyze ReDoS-

vulnerabilities directly for regexes, we first convert a given

regex into a standard regular expression with some constraints.

The purpose is not to give an equivalent transformation, but

instead trying to give a transformation with the same effect

on ReDoS so that a source regex α has ReDoS-vulnerabilities

iff the transformed target expression β has the same ReDoS-

vulnerabilities. In case the “same effect” is hard to achieve,

we seek a relaxed condition that allows the target expression

to generate more ReDoS-vulnerabilities than the source regex.

The dynamic validation guarantees reporting only true vulner-

abilities. In the following, we introduce the transformations.

First, all the extensions are removed or changed. Specifi-

cally, the lazy quantifiers are changed to their eager forms by

removing the ‘?’. This is based on our observation that if a

regex with lazy quantifiers is ReDoS-vulnerable, the regex

after removing lazy quantifiers is still ReDoS-vulnerable, and

the two can be triggered by the same attack strings; while if

the former is not ReDoS-vulnerable, the latter is neither. For

similar reasons, we remove the non-capturing group sign ‘?:’.

We also remove the Start-of-line anchor ^ (resp. End-of-line

anchor $) to form a (possibly) relaxed regex as explained

above.

For the regex r1\br2 with the word-boundary anchor \b,

we convert the regex into an over-approximated expression

r1r2, and use the Constraint #1 in Table 2 to represent the

regex r1\br2 equivalently. Similar conversions are made for

\B and lookarounds.

Table 2: Constraint Generation.

No. Extension Constraints of Match String www

#1 r1\br2 w = w1w2, where w1 ∈ L(r1) ∧ w2 ∈ L(r2) ∧

(

(

(

w1 ∈

L(.*\W)∨w1 = ε
)

∧w2 ∈ L(\w.*)
)

∨
(

w1 ∈ L(.*\w)∧
(

w2 ∈

L(\W.*)∨w2 = ε
)

)

)

#2 r1\Br2 w = w1w2, where w1 ∈ L(r1) ∧ w2 ∈ L(r2) ∧

(

(

(

w1 /∈

L(.*\W)∧w1 6= ε
)

∨w2 /∈ L(\w.*)
)

∧
(

w1 /∈ L(.*\w)∨
(

w2 /∈

L(\W.*)∧w2 6= ε
)

)

)

#3 r1(?=r2)r3 w = w1w2, where w1 ∈ L(r1)∧w2 ∈ L(r2.*)∧w2 ∈ L(r3)

#4 r1(?!r2)r3 w = w1w2, where w1 ∈ L(r1)∧w2 /∈ L(r2.*)∧w2 ∈ L(r3)

#5 r1(?<=r2)r3 w = w1w2, where w1 ∈ L(r1)∧w1 ∈ L(.*r2)∧w2 ∈ L(r3)

#6 r1(?<!r2)r3 w = w1w2, where w1 ∈ L(r1)∧w1 /∈ L(.*r2)∧w2 ∈ L(r3)

For backreference \i, we first shape the regex with backref-

erences into an over-approximated backreference-free regex

by adding an identifier ♦i after the referenced i-th capturing

group, and replacing each backreference \i with the i-th cap-

turing group with an identifier �i after it. We then memorize

each identifier pair {♦i: �i} into the constraint memorizer,

which requires the corresponding sub-regexes to match the

same text. Note that the order of transforming the extensions

is important. For example, transforming non-capturing groups

should be made after transforming backreference.

Furthermore, several extensions need additional constraints

as given in Table 2. Note that the constraints for backreference

are given in the above. We use a constraint memorizer to

record such information. After the above transformations, we

obtain the target expression with a constraint memorizer. Note

that for a regex without word-boundary anchors, lookarounds

and backreferences, we do not return the constraint memorizer.

No changes are made for regexes without any extension.

Figure 4: The Transformations from Regex α to Regex β.

USENIX Association 30th USENIX Security Symposium 3851

“a”

“b”

white space white space

“a”

“b”

white space

tab (0x09)

“a” “b” “a” “d”digit

POASLQ NQ EOD EOA

Figure 5: The Railroad Diagram of the ReDoS-vulnerable Regex β.

Now we use an example to illustrate the transformations,

shown in Figure 4. Given a source regex α, TransRE first

converts the regex α to the regex α1 (see Figure 4) by chang-

ing the lazy quantifier a+? to a+. Then TransRE obtains the

regex α2 (shown in Figure 4) through deleting the anchor $

directly. Next, TransRE first transforms the regex α2 into the

lookaround-free regex α3 (given in Figure 4) via rewriting

\s+(?=\t)\s+ into \s+\s+, and puts the string constraint

ϑ1 (i.e., w1 ∈ L(\s+)∧w2 ∈ L(\t.*)∧w2 ∈ L(\s+)) into

the memorizer M . After that, TransRE adds an identifier ♦1

after the 1st capture group (i.e., the sub-regex (a+|b), called

parent sub-regex) and rewrites the sub-regex \1 (called child

sub-regex) to the parent sub-regex with an identifier �1 after it,

which forms an over-approximate backreference-free regex

α4 (see Figure 4). And the identifier pair ϑ2 = {♦1: �1} is

recorded into the memorizer M . Finally, TransRE gets the

target expression β (Figure 4) by removing the non-capturing

group sign ‘?:’. Note that identifiers ♦1 and �1 only represent

the marks of the 1st capture group and the backreference \1,

and subsequent algorithms will not detect them as characters.

3.3 Static Diagnosis

In this section, we introduce five ReDoS patterns (i.e.,

NQ, EOD, EOA, POA, and SLQ) that are identified from

our massive investigation and analysis. Among them, NQ,

EOD and EOA have an exponential worst-case behavior

on a mismatch (a.k.a. attack string), while POA and SLQ

have a polynomial worst-case behavior. To identify these

five patterns, we propose five static diagnosis algorithms,

namely, CheckNQ, CheckEOD, CheckEOA, CheckPOA, and

CheckSLQ. To leverage the performance and efficiency, these

algorithms detect the necessary (but not necessarily sufficient)

conditions to trigger the patterns. The vulnerability candidates

detected are then dynamically validated such that only the

true vulnerabilities are reported.

3.3.1 Pattern NQ: Nested Quantifiers

The first pattern concerns the expressions that have Nested

Quantifiers (NQ). When matching a pump string, there are

multiple possible choices among the nested quantifiers, lead-

ing to an exponential behavior in worst case on a mismatch.

For example, the key portion (\d+)* in the real-world regex

\[(\d+;)?(\d+)*m from CVE-2015-9239 meets the pattern

NQ. And a pump string of a digit can be consumed by either

the inner quantifier (+) or the outer one (*).

In order to diagnose the NQ pattern, we propose the algo-

rithm CheckNQ. As shown above, the notable characteristic

of the NQ pattern is the nested quantifiers. So CheckNQ first

identifies all the NQ patterns in a transformed regex β by

recursively checking whether each sub-regex β1 has nested

quantifiers.

Next, for each NQ pattern, based on the pattern and the

constraints generated by the regex standardization, CheckNQ

constructs a possible attack string, which is a candidate for

dynamic validation. To be more precise, let us consider an NQ

pattern β1 in β, whose prefix and suffix sub-regexes are Ψ1

and Ψ3, respectively. Based on Ψ1, β1, and β, CheckNQ gener-

ates three strings x, y, and z such that (i) x∈L(Ψ1), y∈L(β1),
xyz /∈ L(β); and (ii) x, y, z satisfy the corresponding con-

straints in the memorizer M if exist (e.g., if Ψ1 is transformed

from r1\br2, then x should satisfy Constraint #1 in Table 2).

CheckNQ then derives an attack string w = x+ y×NE + z,

where NE is a pre-defined number of repetitions for exponen-

tial patterns. Condition (i) guarantees the pump string w is a

mismatch for the transformed expression, and NE is to trigger

an exponential behavior that can result in a lot of matching

time. According to Condition (ii), w is a mismatch probably

leading to an exponential behavior for the original regex α
(suppose β is transformed from α).

CheckNQ also pinpoints the position of the NQ pattern

in the original regex α according to the position of the NQ

pattern in the regex β.

Let us consider the transformed expression in §3.2, that is

β = (a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d.

First, CheckNQ diagnoses that the sub-regex β1 = (\d+)+

has nested quantifiers and thus is an NQ pattern, as illus-

trated in Figure 5. Then, CheckNQ extracts the prefix regex

Ψ1 =(a+|b)♦1\s+\s+(a+|b)�1 and tries to construct a prefix

string x for it such that x ∈ L(Ψ1). Moreover, x should also

satisfy the corresponding constraints (i.e., ϑ1 and ϑ2 in §3.2)

in the memorizer M . So CheckNQ splits x into x1x2x3x4

such that x1 ∈ L((a+|b)♦1), x2 ∈ L(\s+), x3 ∈ L(\s+), and

x4 ∈ L((a+|b)�1). Note that the constraint ϑ2 = {♦1: �1} re-

quires the two sub-regexes (a+|b)♦1 and (a+|b)�1 should

match the same text (i.e., x1 = x4), and the constraint ϑ1 re-

quires x3 ∈ L(\t.*). So CheckNQ generates ‘a’, ‘\n’, ‘\t’,

‘a’ for x1, x2, x3, x4, respectively. Similarly, CheckNQ con-

structs an infix string y = ‘1’ and a suffix string z = ‘!’

such that y ∈ L((\d+)+) and xyz /∈ L(β). Based on x,y,z,

CheckNQ deduces an attack string x + y×NE + z, where

3852 30th USENIX Security Symposium USENIX Association

the repetition number NE is set to 30. Finally, as the regex

standardization does not change the relative positions of the

sub-regexes in the given regex, CheckNQ can precisely locate

the NQ pattern (?:\d+)+ in the original regex α according

to the relative position of (\d+)+ in the transformed regex β.

3.3.2 Pattern EOD: Exponential Overlapping Disjunc-

tion

The second pattern is a disjunction with a common outer

quantifier whose multiple disjuncts overlap, which is called

Exponential Overlapping Disjunction pattern (EOD). When

matching on a pump string, there are multiple possible choices

among the overlapping disjuncts, leading to an exponential

behavior in the worst case on a mismatch. Consider the ex-

pression (\w|\d)+$ shown in §1. As two disjuncts \w and

\d overlap in the digits, when matching on a pump string of

a digit, either \w or \d could be selected. Formally, an EOD

is of the form β = (. . .(β1|β2| . . . |βk). . .){mβ,nβ} with nβ>1,

satisfying one of the following conditions in Table 3. Intu-

itively, there is a string with multiple matching paths through

alternation constructs in the pattern EOD.

Table 3: Conditions for Triggering Pattern EOD.

No. Condition

#1 βp.first ∩ βq.first 6=∅, where 1≤ p,q≤ k and p 6= q

#2 βp.first ∩ βq.followlast 6=∅, where 1≤ p,q≤ k and p 6= q

We propose the algorithm CheckEOD to diagnose the EOD

pattern. Like CheckNQ, CheckEOD consists of three steps:

(i) identifying EOD patterns by the characteristics, (ii) con-

structing an attack string based on the pattern and the con-

straint memorizer M , wherein the infix string y belongs to the

overlapping part (i.e., a string with multiple matching paths),

and (iii) locating the original source according to the relative

positions of corresponding sub-regexes.

Consider the example mentioned in §3.2 again, β =
(a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d.

First, as \s.first ∩ \t.first = {\t} 6= ∅, CheckEOD iden-

tifies the EOD pattern (\s|\t)+ (shown in Figure 5) and

its prefix sub-regex Ψ1 = (a+|b)♦1\s+\s+(a+|b)�1(\d+)+.

Similar to §3.3.1, CheckEOD synthesizes the prefix

string x = x1x2x3x4x5 = ‘a\n\ta1’, the infix string y =
‘\t’, and the suffix string z = ‘!’ such that x ∈ L(Ψ1),
y ∈ (L((\s+)∩ L((\t+))\{ε}, xyz /∈ L(β), and x satisfies

the corresponding constraints (i.e., ϑ1 and ϑ2 in §3.2) in

the memorizer M . Next, based on x, y, z, an attack string

x+ y×NE + z is constructed, where the repetition number

NE is set to 30.

3.3.3 Pattern EOA: Exponential Overlapping Adjacent

The third pattern is an expression consisting of two adja-

cent overlapping components with a common outer quantifier

{m,n}, where n> 1. We call it the Exponential Overlapping

Adjacent pattern (EOA) as it could lead to an exponential

behavior in the worst case on a mismatch. Specifically, there

are two possible overlapping cases. First, the characters fol-

lowed by the tail of the first component and the head ones of

the second component overlap. For example, considering the

regex (ab*b*)+, the characters following the tail (i.e., {b})
of the first component ab* and the head ones (i.e., {b}) of the

second component b* overlap. When matching on the pump

string of ‘b’, different components or paths can be selected.

The common outer quantifier could make the matching an

exponential behavior in the worst case. Second, the head char-

acters of the first component and the ones following the tail of

the second component overlap. Take the regex (a+b+a+)+ as

an example. The head characters (i.e., {a}) of the first com-

ponent a+ and the ones followed by the tail (i.e., {a}) of the

second component b+a+ overlap. Due to the common outer

quantifier +, the second component can reach the first compo-

nent as well. Like the first case, matching on the pump string

of ‘b’ could lead to an exponential behavior in the worse case.

Formally, the pattern EOA is of the form β =
(. . .(β1β2). . .){mβ,nβ} with nβ > 1, satisfying one of the con-

ditions in Table 4. Following the cases of CheckNQ and

CheckEOD, we propose the algorithm CheckEOA to detect

the pattern EOA. Note that there may be more than one condi-

tion that are triggered by a regex (e.g., (a*a*)* triggers both

of the above conditions). This has no effect on the detection

of EOA, because we are concerned about whether the regex

belongs to EOA, rather than about which form of EOA.

Table 4: Conditions for Triggering Pattern EOA.

No. Condition

#1 (β1.followlast ∪ β1.last) ∩ β2.first 6=∅

#2 β1.first ∩ (β2.followlast ∪ β2.last) 6=∅

To illustrate CheckEOA, consider the example β again,

β =(a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d.

CheckEOA identifies the sub-regex (a*b+a*)+ (Figure 5),

as it triggers the second condition a*b+.first ∩ (a*.followlast

∪ a*.last) = {a} 6=∅, as well as its prefix sub-regex Ψ1 =
(a+|b)♦1\s+\s+(a+|b)�1(\d+)+(\s|\t)+. Then, similar to

§3.3.2, CheckEOA synthesizes the prefix string x = x1x2x3x4

x5x6 = ‘a\n\ta1\t’, the infix string y = y1y2 = ‘ba’, and the

suffix string z = ‘!’ such that x∈L(Ψ1), y ∈ L((a*b+a*)+),
xyz /∈L(β), y2 ∈ a*b+.first ∩ (a*.followlast ∪ a*.last), and x

satisfies the corresponding constraints (i.e., ϑ1 and ϑ2 in §3.2)

in the memorizer M . Next, based on x, y, z, an attack string

x+ y×NE + z is constructed, where the repetition number

USENIX Association 30th USENIX Security Symposium 3853

NE is set to 30.

3.3.4 Pattern POA: Polynomial Overlapping Adjacent

The fourth pattern is an expression consisting of two adjacent

components such that the characters followed by the tail of the

first component and the head ones of the second component

overlap. Similar to the first case of the pattern EOA, matching

on the overlapping string could select either of the compo-

nents. But different from the pattern EOA, the pattern POA

has with an optional common outer quantifier {0,1}. The

ambiguity of the pattern POA could lead to a polynomial be-

havior in the worse case. So we call this pattern as Polynomial

Overlapping Adjacent pattern (POA). For example, consider

the regex \d+\.?\d+$. The characters followed by the tail

of the first component \d+$ are the digits, which also appear

in the head of the second component \.?\d+$. Due to the

quantifier +, the first component \d+ can reach itself. When

matching on the pump string of a digit, different components

can be selected.

Formally, the pattern POA is of the form β = β1β2 such

that β1.followlast ∩ β2.first 6= ∅. Likewise, the algorithm

CheckPOA is proposed to detect the pattern POA.

Likewise, let us consider the example β =(a+|b)♦1\s+\s+

(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d to illustrate algo-

rithm CheckPOA. CheckPOA diagnoses that the sub-regex

\s+\s+ belongs to the pattern POA as it satisfies the condition

\s+.followlast ∩ \s+.first = { ,\t,\n,\r, . . .} 6=∅ (symbol

presents a space character) for the two adjacent \s+, as illus-

trated in Figure 5. And its prefix sub-regex Ψ1 =(a+|b)♦1 is

also identified. Next, CheckPOA constructs the prefix string

x= ‘a’, the infix string y= y1y2 =‘ \t\t’, and the suffix string

z = ‘!’ such that x ∈ L(Ψ1), y ∈ L(\s+\s+), xyz /∈ L(β),
y1 = y2 ∈ \s+.followlast ∩ \s+.first, and y2 ∈ L(\t.*) (i.e.,

the constraint ϑ1 in the memorizer M). After that, CheckPOA

crafts an attack string such that it does not match the regex:

x+y×NP + z, where the repetition number NP , a pre-defined

number of repetitions for polynomial patterns, is set to 10000

here.

3.3.5 Pattern SLQ: Starting with Large Quantifier

The above four patterns are all due to some ambiguity during

the matching. Yet, some unambiguous regexes can be vul-

nerable when they cause the regex engine to keep moving

the matching regex across the malicious string that does not

have a match for the regex. For example, consider a simplified

version \s+$ of the regex that causes the outage of Stack Over-

flow mentioned in §1 and an attack string ‘\t’ × 10000 + ‘!’.

The matching starts with the first ‘\t’ and fails after 10,000

steps, and then continues on the second ‘\t’ and so on. Finally,

it would take 10,000 + 9,999 + 9,998 + . . .+ 3 + 2 + 1 =
50,005,000 steps to reject the attack string, that is, a poly-

nomial behavior in the worst case on a mismatch. There are

several possible forms that can cause this vulnerability, and

we find that the vulnerable parts are all at the beginning of the

regex and with a large quantifier (the repetitions are greater

than a minimal number). So we group them in a pattern called

Starting with Large Quantifier (SLQ).

Next, we describe four possible triggering conditions for

the pattern SLQ, as shown in Table 5, where nβ ≥ nmin, 1≤
p,q ≤ k, p 6= q, 1 ≤ ℓ, and nmin is a pre-defined number for

the minimal repetitions. We present algorithm CheckSLQ to

detect the pattern SLQ based on these four conditions.

Table 5: Conditions for Triggering Pattern SLQ.

No. Condition

#1 starting with β1{mβ,nβ}

#2 starting with β1β2{mβ,nβ} such that (L(β1) ∩
L(β2{mβ,nβ}))\{ε} 6=∅

#3 starting with β1(γ1|γ2| . . . |γk){mβ,nβ} such that there ex-

ists a word w = w0w1 . . .wℓ ∈ L(γp{mβ,nβ}), w1 . . .wℓw0 ∈
L(γq{mβ,nβ}), and w0 ∈ L(β1)

#4 starting with β1(γ1γ2 . . .γk){mβ,nβ} such that all the γ1,γ2, . . . ,γk

are nullable, and there exists a word w = w0w1 . . .wℓ ∈
L(γp{mβ,nβ}), w1 . . .wℓw0 ∈ L(γq{mβ,nβ}), and w0 ∈ L(β1)

Let us further examine the above example β= (a+|b)♦1\s+

\s+(a+|b)�1(\d+)+(\s|\t)+(a*b+a*)+d to illustrate algo-

rithm CheckSLQ. CheckSLQ detects that β starts with the

sub-regex a+, as shown in Figure 5, which triggers the first

condition, and constructs the prefix string x = ε, the infix

string y = ‘a’, and the suffix string z = ‘!’ such that x ∈ L(ε),
y ∈ L(a+), and xyz /∈ L(β). After that, CheckSLQ generates

the attack string x+ y×NP + z, where the repetition number

NP is set to 10000.

3.4 Dynamic Validation

The principles of dynamic validation6 (i.e., the algorithm

verifyAtk) are: (i) to measure the time t for the source regex

α to match the attack string atkStr, (ii) to check whether the

corresponding threshold TP (for polynomial vulnerability)

or TE (for exponential vulnerability) is triggered according

to the vulnerability degree vulDeg, that is, if t >TP (or cor-

responding t>TE) is satisfied7, then verifyAtk returns true,

otherwise returns false.

The step of dynamic validation is to address two issues.

First, the static analysis can produce false positives. Note that

the five patterns (i.e., NQ, EOD, EOA, POA, and SLQ) pro-

posed in §3.3 are necessary but not necessarily sufficient con-

ditions for judging whether a regex α is ReDoS-vulnerable,

6Our dynamic validation phase supports testing on the built-in regex

engines in Python 2/3, Java 7-15, Node.js 6-14. Here we choose to test on

the built-in regex engine in Java-8.
7For more sufficient validation, verifyAtk stops when the threshold is

reached.

3854 30th USENIX Security Symposium USENIX Association

and dynamic validation is required as a supplement. Second,

the transformed expressions may have been relaxed, detecting

more ReDoS-vulnerabilities than the source regexes. So if

dynamic validation is missing, false positives may occur. In

other words, our dynamic validation phase can guarantee that

the verified regexes must be actually vulnerable. For example,

the regex α = ab*bc triggers the POA pattern, thus static

diagnosis will judge that α is a polynomial vulnerability of

ReDoS, and generate an attack string atkStr = ‘a’ + ‘b’× NP

+ ‘!’. However, the attack string atkStr does not cause catas-

trophic backtracking, so α is not a real ReDoS-vulnerable

regex. The time consumption of dynamic validation for failed

attacking is acceptable. For the example α = ab*bc, it takes

only 0.278ms for α to match atkStr = ‘a’ + ‘b’ × NP + ‘!’.

The time consumed is highly acceptable.

Coming back to the example in §3.2 and §3.3, at last,

verifyAtk tests and verifies that the matching time of the five

attack strings exceeds the corresponding thresholds. There-

fore, ReDoSHunter diagnoses that the regex α is ReDoS-

vulnerable, and then return the corresponding diagnosis infor-

mation list Γ, as shown in Table 6.

Table 6: The Diagnostic Information List Γ Reported by Re-

DoSHunter.

No. Pattern Vuln. Degree Vuln. Position Attack String

#1 NQ Exponential (?:\d+)+ ‘a\n\ta’ + ‘1’ × 30 + ‘!’

#2 EOD Exponential (\s|\t)+ ‘a\n\ta1’ + ‘\t’ × 30 + ‘!’

#3 EOA Exponential (a*b+a*)+ ‘a\n\ta1\t’ + ‘ba’ × 30 + ‘!’

#4 POA Polynomial \s+(?=\t)\s+ ‘a’ + ‘\t\t’ × 10000 + ‘!’

#5 SLQ Polynomial a+? ‘a’ × 10000 + ‘!’

4 Experiments

In the experiments, we evaluate ReDoSHunter by studying

three research questions:

RQ1. How is the effectiveness and efficiency of Re-

DoSHunter on large-scale regex sets? A good Re-

DoS detection tool should be able to efficiently distin-

guish ReDoS-vulnerable regexes from ReDoS-free ones

over a large amount of regexes. Thus, we compared Re-

DoSHunter with seven state-of-the-art baselines on three

real-world datasets in terms of precision and recall. We

show the impact of different regex engines on the effec-

tiveness of ReDoS detection. We also show the preva-

lence of multiple ReDoS-vulnerabilities in real-world

regexes. Furthermore, we evaluate the effectiveness of

generated attack strings by means of their attack success

rates. (§4.2)

RQ2. How is the effectiveness of ReDoSHunter on identi-

fying known vulnerabilities? The Common Vulnera-

bilities and Exposures (CVE) system is a database re-

lated to information security, publishing the confirmed

vulnerabilities on open-source projects and the found

ReDoS-vulnerabilities. Thus we conducted experiment

on the confirmed ReDoS-related CVEs to compare the

capabilities of existing works and ReDoSHunter. (§4.3)

RQ3. How is the effectiveness of ReDoSHunter on explor-

ing unknown vulnerabilities? On top of RQ2, we fur-

ther explore the capability of ReDoSHunter on disclos-

ing unknown ReDoS-vulnerable regexes in intensively-

tested projects, and submitted the detected vulnerabilities

to CVEs. (§4.4)

4.1 Experiment Setup

4.1.1 Benchmark Datasets

We evaluate ReDoSHunter on three types of datasets (i.e.,

regex sets, known ReDoS-vulnerabilities, and intensively-

tested projects). For the regex sets, we collected 37,651

regexes from three widely-used libraries (i.e., Corpus [8],

RegExLib8, and Snort9) of regexes. The details can be found

in Table 7. For the known ReDoS-vulnerabilities, we col-

lected vulnerabilities from widely-used libraries with Com-

mon Vulnerabilities and Exposures (CVE) [12] identifiers. We

extracted CVEs with keywords “ReDoS”, or “regular expres-

sion denial of service” (48 records), then manually filtered

out those without clear descriptions or sources, resulting in

35 CVEs in total. Table 10 shows the details, including their

CVE IDs, source projects, and detection results by all detec-

tors. For intensively-tested projects, we selected 26 popular

projects on GitHub/npm/PyPI with millions of downloads,

applicable in various daily scenarios such as parsing and val-

idating color, URL, HTML, email and so on. Table 11 lists

the details, including source projects, disclosure status, and

detection results by all detectors.

Table 7: The Regex Sets for Evaluation.

Name Number Avg Len Description

Corpus 13,597 33.97 Regexes from scraped Python

projects

RegExLib 8,699 69.75 Online regex examples from re

gexlib.com

Snort 15,355 92.28 Regexes extracted from the Snort

NIDS for inspecting IP packets

Total: 37,651

8 https://regexlib.com
9 https://www.snort.org

USENIX Association 30th USENIX Security Symposium 3855

Table 8: Comparison of the Overall Effectiveness over Four Popular Regex Engines on the Benchmarks with 37,651

Regexes. Columns in each sub-tables denote the number of true positives (TP), the number of false positives (FP), the number

of false negatives (FP), precision (Prec), and recall (Rec). The Real Vulnerabilities entries give the number of regexes that can

trigger ReDoS attacks on various engines. The number of vulnerabilities reported by each technique is given by the sum of its TP

and FP.

Regex Engine Java-8 Java-13 Python-3.7 Node.js-14

Technique TP FP FN
Prec Rec

TP FP FN
Prec Rec

TP FP FN
Prec Rec

TP FP FN
Prec Rec

(%) (%) (%) (%) (%) (%) (%) (%)

RXXR2 224 5 10,121 97.82 2.17 216 13 10,032 94.32 2.11 213 16 9,594 93.01 2.17 219 10 9,427 95.63 2.27

Rexploiter 2,052 288 8,293 87.69 19.84 2,041 299 8,207 87.22 19.92 1,955 385 7,852 83.55 19.93 1,915 425 7,731 81.84 19.85

NFAA 975 13 9,370 98.68 9.42 968 20 9,280 97.98 9.45 857 131 8,950 86.74 8.74 842 146 8,804 85.22 8.73

safe-regex 3,760 2,348 6,585 61.56 36.35 3,715 2,393 6,533 60.82 36.25 3,586 2,522 6,221 58.71 36.57 3,540 2,568 6,106 57.96 36.70

Regexploit 1,051 2 9,294 99.81 10.16 1,051 2 9,197 99.81 10.26 1,044 9 8,763 99.15 10.65 1,032 21 8,614 98.01 10.70

SDL 112 0 10,233 100 1.08 108 4 10,140 96.43 1.05 98 14 9,709 87.50 1.00 102 10 9,544 91.07 1.06

ReScue 188 0 10,157 100 1.82 183 5 10,065 97.34 1.79 175 13 9,632 93.09 1.78 179 9 9,467 95.21 1.86

ReDoSHunter 10,345 0 0 100 100 10,248 0 0 100 100 9,807 0 0 100 100 9,646 0 0 100 100

Real Vulnerabilities 10,345 10,248 9,807 9,646

4.1.2 Baselines

To evaluate the effectiveness and efficiency of ReDoSHunter,

we selected seven approaches, falling into two paradigms, i.e.,

static analysis (RXXR2 [22, 36], Rexploiter [49], NFAA [47],

safe-regex [14] and Regexploit [26]) and dynamic analy-

sis (SDL [43] and ReScue [37]). These approaches were

among the state-of-the-art approaches used in recent works

for ReDoS-specific detection. These two paradigms have their

own pros and cons. So we compared ReDoSHunter with both

of them.

4.1.3 Evaluation Metrics

We measure effectiveness using the precision and recall of

reported vulnerabilities.

• Precision: the proportion of true positives (TPs, real

vulnerabilities) over the reported vulnerabilities (the sum

of true positives and false positives (FPs)).

• Recall: the proportion of the true positives over all the

real vulnerabilities (the sum of true positives and false

negatives (FNs)).

4.1.4 Configuration

We implemented the prototype of ReDoSHunter in Java-8,

which supports the regex engines of Python 2/3, Java 7-15,

Node.js 6-14. Our experiments were run on a machine with

2.20 GHz Intel Xeon(R) Silver processor and 128G RAM,

running Windows 10. We used the parameter configuration

NP = 30,000, NE = 100, TP = 1s, TE = 0.1s, and nmin =
100 in our algorithms for all experiments. All baselines were

configured in the same settings as reported in their original

papers.

4.2 Results on Regex Benchmarks

In this section, we present the experiment results compar-

ing the performance between ReDoSHunter and the seven

baselines on the three benchmark datasets.

Since it is labor intensive to manually identify and con-

firmed the vulnerable ones from the 37,651 regexes, we em-

ployed ReDoSHunter and the seven baselines to do the first-

round filtering, resulting in a set of candidates labeled by any

of eight techniques as vulnerable10. Then three experts ana-

lyzed the candidates and identified the real vulnerable ones

manually. For manual analysis, three experts were involved

and checked the candidate regexes independently. Then they

cross-checked and discussed the results until reaching an

agreement. Besides, the dynamic tools also validated the la-

beled results to some degree. Table 8 gives the overall evalua-

tion results on the three benchmark datasets.

4.2.1 Effectiveness

We evaluate the effectiveness in terms of TP, FP, FN, precision,

and recall in the reported vulnerabilities by each technique.

The result is shown in Table 8. The comparison is based on

four regex engines (i.e., Java-8, Java-13, Python-3.7, Node.js-

14). The results given by these four engines are largely similar.

To avoid repetition, we discuss the results mainly based on

the Java-8 engine below.

10Here, whether a tool detects multiple vulnerabilities or a single vulnera-

bility in a regex, this regex will be recorded as a vulnerable one.

3856 30th USENIX Security Symposium USENIX Association

According to Table 8, ReDoSHunter outperforms all base-

line techniques in precision and recall. It successfully reports

all ReDoS-vulnerable regexes without any false positives. In

comparison, safe-regex achieves the highest recall 36.35%

among all baselines with 61.56% precision. While achieving

100% precision, SDL and ReScue sacrifice recall, with only

1.08% to 1.82%. The experiment results show that the seven

baselines suffer from either low TPs or high FPs and FNs.

Specifically, the most TP achieved by others (3,760 achieved

by safe-regex) is at most one third of that of ReDoSHunter

(10,345), while the number of FNs of all existing works are

relatively high, up to 10,233, as compared with the no FN

achieved by ReDoSHunter. In terms of FP, the number of FPs

of baselines range from 0 to 2,348, with an average of 379.42

((5 + 288 + 13 + 2348 + 2 + 0 + 0) / 7 = 379.42). Some

baselines have no FP at the cost of many FNs, resulting in

poor recall (e.g., 1.08% achieved by SDL). The experiment

result shows that ReDoSHunter can precisely detect far more

vulnerabilities than any baselines.

In addition, we analyze the vulnerabilities commonly de-

tected by each tool to further evaluate the effectiveness of Re-

DoSHunter. As shown in Figure 6 (Venn diagram), the amount

of vulnerabilities detected by all baselines is still less than that

of ReDoSHunter (in yellow). Besides, there are 4,487 ReDoS-

vulnerabilities uniquely detected by ReDoSHunter, whereas

no vulnerabilities can be uniquely detected by any baselines.

These experiment results demonstrate that ReDosHunter is

significantly more effective than all baselines in the detection

of ReDoS vulnerabilities.

1000

2000

3000

4000

5000

In
te

rs
e
c
ti
o
n
 #

V
ul

n.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Rexploiter

ReScue

SDL

10345

3760

2052

1051

975

224

188

112

02500500075001000012500

#Vuln.

labels

NFAA

ReDoSHunter

Regexploit

ReScue

Rexploiter

RXXR2

safe−regex

SDL

ReDoSHunter

safe−regex

Regexploit

NFAA

RXXR2

0

Figure 6: An Illustration of Effectiveness of ReDoSHunter

in Java-8. The bar chart in the left-hand side shows the total

number of ReDoS-vulnerabilities detected by each tool. The

Venn diagrams illustrates the intersection of detected vulnera-

bilities of each tool. The two vertical bar charts together show

the number of ReDoS-vulnerabilities (the upper vertical bar

chart) that can be detected uniquely by the corresponding

tools (the lower vertical bar chart with lined dots to represent

the use of the corresponding tools).

4.2.2 Evaluation on Different Regex Engines

Some regexes may not be ReDoS-vulnerable on spe-

cific engines with particular implementation optimiza-

tions. Let us consider the regex mentioned in §2 again

([0-9]*)+(\.[0-9]+)+, it is ReDoS-vulnerable in Python

2/3, Java-8 and Node.js 4-16, but not in Java-13. Therefore,

we use multiple regex engines for TP, FP, FN, precision, and

recall evaluation as shown in Table 8.

The precision and recall of baselines vary across regex

engines. For example, NFAA achieves a 98.68% precision

on the Java-8 engine but 85.22% precision on the Node.js-14

engine. In constrast, ReDoSHunter uniformly achieves 100%

precision and 100% recall across the engines. The result

demonstrates that ReDoSHunter’s dynamic validation step

can work well across different popular regex engines (Python

2/3, Java 7-15, Node.js 6-14). Furthermore, the numbers of

vulnerabilities in different regex engines also indicate the

performance difference of these engines varies. The more is

the number of vulnerabilities detected, the less is the regex

engine optimized. In our experiments, all eight techniques

detected the most vulnerabilities on Java-8 (compared to Java-

13, Python-3.7 and Node.js-14). In other words, the Java-8

regex engine is the least optimized, whose behavior resembles

the Java-13/Python-3.7/Node.js-14 regex engine.

Corpus RegExLib Snort

#Vuln. = 1 #Vuln. = 2 #Vuln. = 3 #Vuln. = 4 #Vuln. ≥ 5

54.7%

18.2%

13.6%

7.2%
6.3%

33.6%

21.8%
16.9%

14.7%

13.0%

39.6%

14.7%
17.3%

17.7%

10.7%

Figure 7: The Distribution Pie Charts of the Number of

ReDoS-Vulnerabilities in Regexes Detected by ReDoSHunter

in Java-8.

4.2.3 Multiple Vulnerabilities in One Regex

According to our observation, in one ReDoS-vulnerable regex,

it has a high probability of containing more than one vulnera-

bility. Figure 7 summarizes the percentage of different number

of vulnerabilities (denoted as #Vuln.) in ReDoS-vulnerable

regexes which were detected by ReDoSHunter. As we can

see from Figure 7, there are more than a half (i.e., 66.4%

and 60.4%) vulnerable regexes from RegExLib and Snort

datasets containing more than one ReDoS-vulnerabilities —

the amount of such regexes is non-negligible. However, the

existing tools neglect this situation and thus are inapplicable

to detect the multi-vulnerabilities in one regex, making it very

likely to have serious consequences by reporting only one

USENIX Association 30th USENIX Security Symposium 3857

vulnerability. The result indicates a urgent need for effective

tools that can identify multiple ReDoS-vulnerabilities from a

vulnerable regex, reflecting the usefulness of ReDoSHunter.

4.2.4 Efficiency

The efficiency of different tools is illustrated in Figure 8.

The left-hand side of the figure shows the average time of

processing a regex, and right-hand side shows the number

of ReDoS-vulnerable regexes detected within the runtime

showed in the left-hand side. Overall, the static methods are

much faster than dynamic methods, with less than one second

per regex and about one minute per regex, respectively. And

on average, ReDoSHunter has a comparable running time

with static-based methods, taking around one second (1.06

seconds) to process one regex, and apparently outperforms the

dynamic methods (up to 54.15 seconds). Considering the far

more vulnerabilities detected by ReDoSHunter than existing

methods, it is clear that ReDoSHunter is quite efficient.

RXXR2

Rexploiter

NFAA

safe-regex

Regexploit

SDL

ReScue

ReDoSHunter 10,345

188

112

1,051

3,760

975

2,052

224

of ReDoS-vulnerable regexes

1.06

54.15

0.6

1.39 ·10−2

2 ·10−4

0.89

2.73 ·10−2

1.91 ·10−2

Runtime (s)

Figure 8: Comparison on the Running Time and the Number

of ReDoS-vulnerable Regexes Detected.

4.2.5 Effectiveness of Generated Attack Strings

We further evaluate the effectiveness of attack strings gen-

erated by each tool in terms of the success attack rate (the

number of strings that launch ReDoS attack successfully over

the number of corresponding TPs). The result is shown in

Table 9. Taking Java-8 as an example, we can see that the

attack strings generated by the existing works are not al-

ways effective — the success attack rate ranges from 56.25%

to 96.81%, none of them achieve 100%. The lowest suc-

cess rate (56.25% achieved by SDL) is about half of Re-

DoSHunter (100%). For example, for the ReDoS-vulnerable

regex ^("(\\["\\]|[^"])*"|[^\n])*$ from RegExLib,

the tool RXXR2 generated a failed attack string ‘""’ × n

(i.e., the matching time of the attack string is very fast, e.g.,

when n = 30,000, it only took 0.002s). Similar situation hap-

pens using different regex engines. Note that comparing with

the unstable success rates achieved by other works (the most

Table 9: The Effectiveness of Generated Attack Strings.

The division formula represents the number of strings that suc-

cessfully launch the ReDoS attack divided by the correspond-

ing TPs. The symbol “–” indicates that the corresponding

tools do not generate attack strings.

Technique Java-8 Java-13 Python-3.7 Node.js-14

152 / 224 114 / 216 129 / 213 142 / 219
RXXR2

(67.86%) (52.78%) (60.56%) (64.84%)

Reploiter — — — —

724 / 975 731 / 968 519 / 857 496 / 842
NFAA

(74.26%) (75.52%) (60.56%) (58.91%)

safe-regex — — — —

989 / 1,051 949 / 1,051 984 / 1,044 944 / 1,032
Regexploit

(94.10%) (90.29%) (94.25%) (91.47%)

63 / 112 13 / 108 54 / 98 46 / 102
SDL

(56.25%) (12.04%) (55.10%) (45.10%)

182 / 188 62 / 183 162 / 175 150 / 179
ReScue

(96.81%) (33.88%) (92.57%) (83.80%)

10,345 / 10,345 10,248 / 10,248 9,807 / 9,807 9,646 / 9,646
ReDoSHunter

(100.00%) (100.00%) (100.00%) (100.00%)

appearant difference is a decrease from 96.81% to 33.88%

when changing regex engines from Java-8 to Java-13), Re-

DoSHunter provides attack strings with a stable 100% success

rate, indicating the attack strings generated by ReDoSHunter

are more effective than existing works.

Summary to RQ1: ReDoSHunter can achieve 100% pre-

cision and 100% recall against four tested regex engines,

compared with the best dynamic approach reaching 100%

precision yet only 1.82% recall, and the highest recall of

static methods is only 36.35%. Also, the regexes with more

than one ReDoS-vulnerabilities are prevalent, taking up to

more than 60% in the collected datasets. Besides, all the at-

tack strings generated by ReDoSHunter can launch ReDoS

attack successfully, while none of existing works achieve

100% success rate. To sum up, ReDoSHunter achieved a

remarkable balance between effectiveness and efficiency

empowered by the advantages of both static and dynamic

methods.

4.3 Results on Known Vulnerabilities

In this section, we exercise the existing approaches as well

as ReDoSHunter against the confirmed ReDoS-related CVEs

to show the effectiveness on identifying the real-world vul-

nerabilities. The result is shown in Table 10. The columns

denote the source projects where the CVEs from (Project),

the CVE index (CVE ID) and whether the approaches suc-

cessfully identify the corresponding CVEs. We can see that

3858 30th USENIX Security Symposium USENIX Association

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35

NQ

EOD

EOA

POA

SLQ

4

6

13

23

17

Figure 9: The Percentage of Five Patterns on Real-world ReDoS-vulnerabilities.

Table 10: The Overall Evaluation Results on Real-world

ReDoS-vulnerabilities. The abbreviations RXR, RER, NAA,

SAX, RET, SDL, RSE and RHR represent RXXR2, Rex-

ploiter, NFAA, safe–regex, Regexploit, SDL, ReScue and Re-

DoSHunter, respectively.! and% denote whether the corre-

sponding method can successfully detect the vulnerability or

not.

No. Project CVE ID RXR RER NAA SAX RET SDL RSE RHR

#1 jquery-validation CVE-2021-21252 % % % ! % % ! !

#2 CairoSVG CVE-2021-21236 % ! ! % ! % % !

#3 date-and-time CVE-2020-26289 % % % ! % % ! !

#4 fast-csv CVE-2020-26256 ! % ! ! % % ! !

#5 Python CVE-2020-8492 ! ! % ! ! % % !

#6 websocket-extensions CVE-2020-7663 ! % % % % % ! !

#7 websocket-extensions CVE-2020-7662 ! % % % % % ! !

#8 url-regex CVE-2020-7661 % ! % ! % % ! !

#9 uap-core CVE-2020-5243 % % % % ! % % !

#10 waitress CVE-2020-5236 % % % ! ! % % !

#11 Cisco IOS CVE-2020-3408 ! ! ! ! ! ! ! !

#12 lodash CVE-2019-1010266 % % % % % % % !

#13 remarkable CVE-2019-12041 ! % ! ! ! ! ! !

#14 owasp-modsecurity-crs CVE-2019-11391 % % % ! ! % % !

#15 owasp-modsecurity-crs CVE-2019-11390 % % % ! ! % % !

#16 owasp-modsecurity-crs CVE-2019-11389 % % % ! ! % % !

#17 owasp-modsecurity-crs CVE-2019-11388 % % % ! % % % !

#18 owasp-modsecurity-crs CVE-2019-11387 % % % % % % % !

#19 highcharts CVE-2018-20801 % % % % % % % !

#20 uap-core CVE-2018-20164 % ! % ! ! % ! !

#21 js-bson CVE-2018-13863 % % % ! % % % !

#22 nodejs CVE-2018-7158 % % % % % % % !

#23 protobuf.js CVE-2018-3738 ! ! % ! ! ! % !

#24 node-sshpk CVE-2018-3737 % ! % ! % % % !

#25 Python CVE-2018-1061 % ! ! % % % % !

#26 Python CVE-2018-1060 % % ! % % % % !

#27 brace-expansion CVE-2017-18077 % % % ! % % % !

#28 parsejson CVE-2017-16113 % % % % % % % !

#29 charset CVE-2017-16098 % % % % % % % !

#30 tough-cookie CVE-2017-15010 % ! % % % % % !

#31 jshamcrest CVE-2016-10521 ! % ! ! % % ! !

#32 jadedown CVE-2016-10520 ! % ! ! % ! ! !

#33 moment CVE-2016-4055 % % ! ! % % % !

#34 ansi2html CVE-2015-9239 ! % ! ! ! ! ! !

#35 marked CVE-2015-8854 % % % % % % % !

Total 10 9 10 21 12 5 12 35

% 28.57 25.71 28.57 60.00 34.29 14.29 34.29 100

among all methods, only our ReDoSHunter (RHR) can iden-

tify all 35 ReDoS-vulnerabilities, while the best existing

works (i.e., SAX) can only identify around half of them (21 /

35 = 60.00%). While identification rate of other works range

from 14.3% (5 / 35) to 34.4% (12 / 35). In addition, it is

noteworthy that there are 7 / 35 (20.00%) unique CVEs (#12,

#18, #19, #22, #28, #29, and #35) that can only be identified

by ReDoSHunter, indicating the limitation of existing works

and reflecting the effectiveness of ReDoSHunter.

To get more insights, we illustrate the presence of patterns

on all 35 ReDoS-related CVEs, as depicted in Figure 9. The

solid circle denotes the pattern that has been identified in

the corresponding CVE. We can see that every one of 35

CVEs involves at least one pattern, indicating the effective-

ness of our five patterns and reasoning about the high recall

of ReDoSHunter.

Furthermore, to demonstrate the usefulness of Re-

DoSHunter, we present the case of CVE #35 (i.e., CVE-2015-

8854, given in Figure 10) in detail. ReDoSHunter success-

fully detected two vulnerabilities in the regex. Specifically,

ReDoSHunter not only generated two attack strings (‘_’ +

‘__’ × 100 + ‘!’, and ‘*’ + ‘**’ × 100 + ‘!’), but also diag-

nosed corresponding two EOD patterns ((?:__|[\s\S])+

and (?:**|[\s\S])+) that lead to the two ReDoS-

vulnerabilities. In comparison, the other seven detectors all

failed to detect any vulnerability. Furthermore, the vulnerabil-

ity discloser only found one vulnerability11 (correspondingly,

the project maintainers only fixed one vulnerability12). This

reveals the capability of ReDoSHunter to find real-world vul-

nerabilities.

Summary to RQ2: ReDoSHunter can identify all 35

ReDoS-related CVEs, compared with the best work identi-

fying only over 60.00% of them. Besides, there are 20.00%

CVEs (7 over 35) can only be identified by ReDoSHunter,

indicating the effectiveness of the patterns we concluded.

Therefore, to answer RQ2, ReDoSHunter significantly out-

performs other seven state-of-the-art methods in finding

real-world known ReDoS-vulnerabilities.

11 https://github.com/markedjs/marked/issues/497
12 https://github.com/markedjs/marked/commit/a37bd643f05b

f95ff18cafa2b06e7d741d2e2157

USENIX Association 30th USENIX Security Symposium 3859

var inline = {

// sub-regex (?:__|[\s\S])+

// vulnerable to '_' + '__' × 100 + '!' trigger EOD

// sub-regex (?:**|[\s\S])+

// vulnerable to '*' + '*' × 100 + '!' trigger EOD

...

em:/^\b_((?:__|[\s\S])+?)_\b|^*((?:**|[\s\S])+?)*(?!*)/,

...

};

Figure 10: The npm package marked (25.1k stars) is a mark-

down parser and compiler. The marked package before 0.3.4

allows attackers to cause a denial of service (CPU consump-

tion) via unspecified vectors that trigger a ReDoS issue for

the em inline rule.

Table 11: The Overall Evaluation Results on Unknown

ReDoS-vulnerabilities. The abbreviations RXR, RER, NAA,

SAX, RET, SDL, RSE and RHR represent RXXR2, Rex-

ploiter, NFAA, safe–regex, Regexploit, SDL, ReScue and Re-

DoSHunter, respectively.! and% denote whether the corre-

sponding method can successfully detect the vulnerability or

not.

No. Project Status RXR RER NAA SAX RET SDL RSE RHR

#1 ua-parser-js CVE-2020-7733 % % % % % % % !

#2 trim CVE-2020-7753 % % % % % % % !

#3 npm-user-validate CVE-2020-7754 % % % % % % % !

#4 dat.gui CVE-2020-7755 % ! % % ! % % !

#5 codemirror-js CVE-2020-7760 ! % ! ! % % % !

#6 @absolunet/kafe CVE-2020-7761 ! ! ! ! ! ! ! !

#7 express-validators CVE-2020-7767 ! % % ! ! % % !

#8 djvalidator CVE-2020-7779 ! ! ! ! ! ! ! !

#9 ua-parser-js CVE-2020-7793 % % % % % % % !

#10 glob-parent CVE-2020-28469 % % % % ! % % !

#11 jinja2 CVE-2020-28493 % ! ! % % % % !

#12 three CVE-2020-28496 % ! ! % % % % !

#13 lodash CVE-2020-28500 % % % % % % % !

#14 py CVE-2020-29651 % % % % % % % !

#15 uap-core CVE-2021-21317 % % % % % % % !

#16 CKEditor 5 CVE-2021-21391 % ! ! % % % % !

#17 prism CVE-2021-23341 % % % % % % % !

#18 path-parse CVE-2021-23343 % % % % % % % !

#19 html-parse-stringify CVE-2021-23346 ! ! % ! ! ! % !

#20 jspdf CVE-2021-23353 ! % ! ! % % % !

#21 printf CVE-2021-23354 % % % ! % % % !

#22 hosted-git-info CVE-2021-23362 % % % ! % % % !

#23 browserslist CVE-2021-23364 % ! ! % % % % !

#24 postcss CVE-2021-23368 % % ! % % % ! !

#25 postcss CVE-2021-23382 % % % % % % % !

#26 ssri CVE-2021-27290 ! % ! ! ! % ! !

#27 Python Fixed % % % % % % ! !

#28 validator Fixed % % % % % % ! !

Total 7 8 10 9 7 3 6 28

% 25.00 28.57 35.71 32.14 25.00 10.71 21.43 100

4.4 Results on Unknown Vulnerabilities

On top of the remarkable result of ReDoSHunter of identify-

ing known vulnerabilities, we then explore the effectiveness

of ReDoSHunter in the wild and compare it with other works.

Specifically, for 26 popular-used projects on GitHub, npm

and PyPI, we apply ReDoSHunter to identify whether there

are possible ReDoS-vulnerable regexes. Once ReDoSHunter

detected a vulnerable regex, we then reported to the maintain-

ers and submit to CVE to get confirmation. To speed up the

disclosure and report process, we cooperated with Snyk [39],

a security research team, who helped us to verify the repro-

ducibility and severeness of the ReDoS-vulnerable regexes,

contact the maintainers of corresponding projects and assign

CVE IDs once confirmed by the maintainers.

The results are shown in Table 11. In total, ReDoSHunter

detected 28 ReDoS-vulnerable regexes in these 26 projects,

26 of them were assigned CVE IDs, and 2 of them were fixed

by the maintainers. We also applied other methods to explore

these projects as well, the results were unsatisfactory, with at

most 35.71% ReDoS-vulnerabilities (an average of 25.51%)

can be detected, leaving about 64% vulnerabilities unrevealed.

The results are in line with the previous findings in §4.2 and

§4.3, revealing the effectiveness of ReDoSHunter in exploring

unrevealed vulnerabilities.

Summary to RQ3: ReDoSHunter is capable to be applied

to exploring unknown ReDoS-vulnerabilities in the wild.

Among 28 identified vulnerabilities, 26 of them were as-

signed CVEs or 2 of them were fixed by maintainers. Com-

pared with existing works among which the best method

can only detect 35.71%, ReDoSHunter is more effective in

finding unknown ReDoS-vulnerabilities in the real-world

projects.

5 Related Work

Recently, there has been significant interests in automated

techniques for detecting the algorithmic complexity vulner-

abilities (ACV) [3, 5–7, 13, 23, 27, 28, 31, 33, 38, 46]. In this

paper, we focus on automatic detection on Regular expression

Denial of Service (ReDoS) [18, 21, 48], which is a class of

ACV. In the following, we present the most related work in

the detection and defending of ReDoS attacks.

5.1 ReDoS Detection

There are several works [22, 35–37, 42, 43, 47, 49] targeting

at detecting potential ReDoS-vulnerabilities, which can be

mainly classified into two paradigms: static analysis [22, 35,

36, 47, 49] and dynamic analysis [37, 42, 43], as we discuss

below.

Static Analysis. Approaches [22, 35, 36, 47, 49] falling

into this paradigm mainly detect ReDoS-vulnerabilities by

3860 30th USENIX Security Symposium USENIX Association

transforming the regexes into their self-defined models, and

identifying ReDoS-vulnerable constructs from the models

statically. These approaches are known for high efficiency.

RXXR2 [35, 36] is a static analysis tool extended from

RXXR [22]. It transforms the given regex into their proposed

power DFA, and searches the attack string on top of the power

DFA. However, most of extensions (e.g., lookarounds, and

backreferences) are not supported by RXXR2. Also regexes

with polynomial ReDoS-vulnerabilities are beyond its scope,

while most of the ReDoS-vulnerable regexes are polynomial

in the wild [14]. These limitations make it less effective. An-

other approach, Rexploiter [49], detects ReDoS-vulnerable

regexes by combining complexity analysis of NFAs with

sanitization-aware taint analysis. Though it provides an extra

function (i.e., excluding user-input uncontrolled regexes), it

does not supports most of the extensions (e.g., lookarounds,

backreferences, and non-capturing groups). The tool safe-

regex [14] conducts detection by identifying whether the pat-

tern NQ is triggered, or the number of Kleene-Star is greater

than a preset threshold. Though such pattern matching ap-

proach runs efficiently, there are more ReDoS patterns which

fall beyond its capability. On the other hand, NFAA [47]

can support extensions like lookarounds and non-capturing

groups, yet it fails to support backreferences.

Dynamic Analysis. Dynamic-based approaches [37, 42,

43] detect ReDoS-vulnerabilities at run time, usually known

for high precision compared with static analysis. Most dy-

namic analysis tools use dynamic fuzzing, which constantly

search time-consuming strings with an actual regex engine,

and from these to infer the regex’s worst-case time complexity.

SDL [42, 43] detects ReDoS by testing the matching time of

regexes against a range of randomly-generated strings. Yet

it does not support most extensions (e.g., anchors \b and \B,

lazy quantifiers, lookarounds, backreferences, etc), making

it less capable. Instead of generating random strings, Res-

cue [37] is designed for searching time-consuming strings.

Due to the enormous string search space, it can only identify

exponential or higher polynomial ReDoS-vulnerabilities, but

is unable to detect lower polynomial ReDoS-vulnerabilities

or deeply hided ReDoS-vulnerabilities. On the other hand, the

effectiveness of genetic searching is also affected by the ini-

tialization, making result unstable at each run. Moreover, these

dynamic-based approaches output a random attack string that

does not provide any insight into the root causes of the ReDoS-

vulnerability.

5.2 ReDoS Prevention or Alleviation

Various techniques [2, 10, 11, 16, 17, 19, 24, 25, 29, 30, 32, 34,

44, 45, 50] have been proposed to prevent or alleviate ReDoS

attacks either by equivalent/approximate regex transformation

or regex matching speedup.

Equivalent/Approximate Regex Transformation. This

series of works [10, 11, 24, 45] try to find equivalent/approx-

imate ReDoS-invulnerable regexes to replace the ReDoS-

vulnerable ones. Among them, Van der Merwe et al. [45]

and Cody-Kenny et al. [11] devote to finding equivalent

ReDoS-invulnerable regexes to replace the original ones.

However, their use of exact equivalence is too strong in prac-

tice [14, 37], which limits their deployment to real-world ap-

plications. Chida and Terauchi [10], and Li et al. [24] ad-

dress this problem by deducing anti-ReDoS regexes adopting

programming-by-example algorithms. Yet the quality of anti-

ReDoS regex deduced by them highly depends on the quality

of user-provided examples.

Regex Matching Speedup. ReDoS attacks can also be

alleviated by regex matching speedup, which is an alterna-

tive solution in some special cases, e.g., by parallel algo-

rithms [25], GPU-based algorithms [50], state-merging algo-

rithms [2], Parsing Expression Grammars (PEGs) [17,19,29],

counting automata matching algorithm [44], memoization-

based optimization [16] and recursion-limit/backtracking-

limit/time-limit [30,32,34]. These works can alleviate ReDoS-

vulnerability issues, yet they do not resolve the ReDoS-

vulnerable regexes themselves, leaving them still subjecting

to ReDoS attacks.

6 Discussion

Despite the remarkable effectiveness of ReDoSHunter, we no-

tice there are still room for improvement. First, Supports for

more extensions. ReDoSHunter can support most commonly-

used extensions, while for those that are not commonly used

such as conditional statements, ReDoSHunter does not con-

sider them currently. However, they can be supported with

suitable preprocessing. For example, for the regex with con-

ditional statement (r1)?(?(1)r2|r3), it can be transformed

to an over-approximate conditional statement-free regex and

some external constraints so that ReDoSHunter can handle

it. Second, Supports for more characters. Currently, Re-

DoSHunter supports common characters including unicode

characters ranging from U+0000—U+FFFF, which can cover

the most characters used in practice. While for characters

falling beyond this range, ReDoSHunter may not detect them.

This limitation can also be solved by an appropriate prepro-

cess.

7 Conclusion

In this paper, we proposed ReDoSHunter, a ReDoS-vulnerable

regex detection framework that can pinpoint multiple root

causes of vulnerabilities and generate attack-triggering strings.

It takes advantages of static and dynamic analysis, achieving

a remarkable balance between precision and recall, reach-

ing 100% precision and 100% recall over three large-scale

datasets in the experiments. It successfully identified all the

confirmed CVEs that are caused by ReDoS, and exposed 28

USENIX Association 30th USENIX Security Symposium 3861

new ReDoS-vulnerabilities in popular open-source projects

with 26 assigned CVEs and 2 fixed by the maintainers. We

hope our work may provide insights of reasoning about the

ReDoS-vulnerabilities, and shed lights on the automatic or

semi-automatic ReDoS-vulnerable regex repair.

Acknowledgment

The authors would like to thank Adam Goldschmidt, Asaf

Biton, Assaf Ben Josef, Benji Kalman, Colin Ife, George Gkit-

sas, Gur Shafriri, Hadas Bloom, Leeya Shaltiel, Sam Sanoop

from Snyk Security Research Group for their great efforts

on confirming and assigning CVEs. Also, the authors would

like to thanks the anonymous reviewers for their helpful feed-

back. This work is supported in part by National Natural

Science Foundation of China (Grants #61872339, #61472405,

#61932021, #61972260, #61772347, #61836005), National

Key Research and Development Program of China under

Grant #2019YFE0198100, Guangdong Basic and Applied

Basic Research Foundation under Grant #2019A1515011577,

Huawei PhD Fellowship, and MSRA Collaborative Research

Grant.

References

[1] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and

Fabiano Tarlao. Inference of Regular Expressions for

Text Extraction from Examples. IEEE Trans. Knowl.

Data Eng., 28(5):1217–1230, 2016.

[2] Michela Becchi and Srihari Cadambi. Memory-Efficient

Regular Expression Search Using State Merging. In

INFOCOM 2007. 26th IEEE International Conference

on Computer Communications, Joint Conference of the

IEEE Computer and Communications Societies, 6-12

May 2007, Anchorage, Alaska, USA, pages 1064–1072.

IEEE, 2007.

[3] William Blair, Andrea Mambretti, Sajjad Arshad,

Michael Weissbacher, William Robertson, Engin Kirda,

and Manuel Egele. HotFuzz: Discovering Algorith-

mic Denial-of-Service Vulnerabilities Through Guided

Micro-Fuzzing. In 27th Annual Network and Distributed

System Security Symposium, NDSS 2020, San Diego,

California, USA, February 23-26, 2020. The Internet

Society, 2020.

[4] The Cloudflare Blog. Details of the Cloud-

flare outage on July 2, 2019, 2020. https:

//blog.cloudflare.com/details-of-the-cloud

flare-outage-on-july-2-2019/.

[5] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. WISE:

Automated test generation for worst-case complexity. In

31st International Conference on Software Engineer-

ing, ICSE 2009, May 16-24, 2009, Vancouver, Canada,

Proceedings, pages 463–473, 2009.

[6] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting

Unix File-System Races via Algorithmic Complexity

Attacks. In 30th IEEE Symposium on Security and Pri-

vacy (S&P 2009), 17-20 May 2009, Oakland, California,

USA, pages 27–41, 2009.

[7] Richard M. Chang, Guofei Jiang, Franjo Ivancic, Sri-

ram Sankaranarayanan, and Vitaly Shmatikov. Inputs

of Coma: Static Detection of Denial-of-Service Vulner-

abilities. In Proceedings of the 22nd IEEE Computer

Security Foundations Symposium, CSF 2009, Port Jef-

ferson, New York, USA, July 8-10, 2009, pages 186–199,

2009.

[8] Carl Chapman and Kathryn T. Stolee. Exploring Regular

Expression Usage and Context in Python. In Proceed-

ings of the 25th International Symposium on Software

Testing and Analysis, ISSTA 2016, Saarbrücken, Ger-

many, July 18-20, 2016, pages 282–293, 2016.

[9] Carl Chapman, Peipei Wang, and Kathryn T. Stolee. Ex-

ploring Regular Expression Comprehension. In Proceed-

ings of the 32nd IEEE/ACM International Conference

on Automated Software Engineering, ASE 2017, Urbana,

IL, USA, October 30 - November 03, 2017, pages 405–

416, 2017.

[10] Nariyoshi Chida and Tachio Terauchi. Automatic

Repair of Vulnerable Regular Expressions. CoRR,

abs/2010.12450, 2020.

[11] Brendan Cody-Kenny, Michael Fenton, Adrian Ron-

ayne, Eoghan Considine, Thomas McGuire, and Michael

O’Neill. A Search for Improved Performance in Reg-

ular Expressions. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO 2017,

Berlin, Germany, July 15-19, 2017, pages 1280–1287,

2017.

[12] The MITRE Corporation. Common Vulnerabilities and

Exposures (CVE), 2020. https://cve.mitre.org/

index.html.

[13] Scott A. Crosby and Dan S. Wallach. Denial of Service

via Algorithmic Complexity Attacks. In Proceedings

of the 12th USENIX Security Symposium, Washington,

D.C., USA, August 4-8, 2003, 2003.

[14] James C. Davis, Christy A. Coghlan, Francisco Servant,

and Dongyoon Lee. The Impact of Regular Expression

Denial of Service (ReDoS) in Practice: An Empirical

Study at the Ecosystem Scale. In Proceedings of the

2018 ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations

3862 30th USENIX Security Symposium USENIX Association

of Software Engineering, ESEC/SIGSOFT FSE 2018,

Lake Buena Vista, FL, USA, November 04-09, 2018,

pages 246–256, 2018.

[15] James C. Davis, Louis G. Michael IV, Christy A. Cogh-

lan, Francisco Servant, and Dongyoon Lee. Why Aren’t

Regular Expressions a Lingua Franca? An Empirical

Study on the Re-use and Portability of Regular Expres-

sions. In Proceedings of the ACM Joint Meeting on

European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-

30, 2019, pages 443–454, 2019.

[16] James C. Davis, Francisco Servant, and Dongyoon Lee.

Using Selective Memoization to Defeat Regular Expres-

sion Denial of Service (ReDoS). In 2021 IEEE Sympo-

sium on Security and Privacy, SP 2021, San Francisco,

CA, USA, May 23-27, 2021, page To appear, 2021.

[17] Bryan Ford. Parsing Expression Grammars: A

Recognition-Based Syntactic Foundation. In Proceed-

ings of the 31st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2004,

Venice, Italy, January 14-16, 2004, pages 111–122, 2004.

[18] Jan Goyvaerts. Runaway Regular Expressions: Catas-

trophic Backtracking, 2020. https://www.regula

r-expressions.info/catastrophic.html.

[19] IBM. Rosie Pattern Language (RPL), 2020. https:

//rosie-lang.org/.

[20] Louis G. Michael IV, James Donohue, James C. Davis,

Dongyoon Lee, and Francisco Servant. Regexes are

Hard: Decision-Making, Difficulties, and Risks in Pro-

gramming Regular Expressions. In 34th IEEE/ACM

International Conference on Automated Software En-

gineering, ASE 2019, San Diego, CA, USA, November

11-15, 2019, pages 415–426, 2019.

[21] Tim Kadlec. Regular Expression Denial of

Service (ReDoS) and Catastrophic Backtracking,

2017. https://snyk.io/blog/redos-and-catas

trophic-backtracking/.

[22] James Kirrage, Asiri Rathnayake, and Hayo Thielecke.

Static Analysis for Regular Expression Denial-of-

Service Attacks. In Network and System Security -

7th International Conference, NSS 2013, Madrid, Spain,

June 3-4, 2013. Proceedings, pages 135–148, 2013.

[23] Caroline Lemieux, Rohan Padhye, Koushik Sen, and

Dawn Song. PerfFuzz: Automatically Generating Patho-

logical Inputs. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and

Analysis, ISSTA 2018, Amsterdam, The Netherlands, July

16-21, 2018, pages 254–265, 2018.

[24] Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen,

Tingjian Ge, Shing-Chi Cheung, and Haoren Zhao.

FlashRegex: Deducing Anti-ReDoS Regexes from Ex-

amples. In 35th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2020, Melbourne,

Australia, September 21-25, 2020, pages 659–671, 2020.

[25] Cheng-Hung Lin, Chen-Hsiung Liu, and Shih-Chieh

Chang. Accelerating Regular Expression Matching Us-

ing Hierarchical Parallel Machines On GPU. In Pro-

ceedings of the Global Communications Conference,

GLOBECOM 2011, 5-9 December 2011, Houston, Texas,

USA, pages 1–5. IEEE, 2011.

[26] Doyensec LLC. Regexploit: DoS-able Regular Expres-

sions, 2021. https://github.com/doyensec/rege

xploit.

[27] Kasper Søe Luckow, Rody Kersten, and Corina S.

Pasareanu. Symbolic Complexity Analysis Using

Context-Preserving Histories. In 2017 IEEE Interna-

tional Conference on Software Testing, Verification and

Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017,

pages 58–68, 2017.

[28] Kasper Søe Luckow, Rody Kersten, and Corina S.

Pasareanu. Complexity Vulnerability Analysis Using

Symbolic Execution. Softw. Test. Verification Reliab.,

30(7-8), 2020.

[29] Sérgio Medeiros, Fabio Mascarenhas, and Roberto

Ierusalimschy. From Regexes to Parsing Expression

Grammars. Sci. Comput. Program., 93:3–18, 2014.

[30] Microsoft. Regex class - C#, 2020. https://docs.m

icrosoft.com/en-us/dotnet/api/system.text

.regularexpressions.regex?view=net-5.0.

[31] Yannic Noller, Rody Kersten, and Corina S. Pasareanu.

Badger: Complexity Analysis with Fuzzing and Sym-

bolic Execution. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and

Analysis, ISSTA 2018, Amsterdam, The Netherlands, July

16-21, 2018, pages 322–332, 2018.

[32] PCRE. PCRE - Perl Compatible Regular Expressions,

2020. https://pcre.org/.

[33] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis,

and Suman Jana. SlowFuzz: Automated Domain-

Independent Detection Of Algorithmic Complexity Vul-

nerabilities. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03,

2017, pages 2155–2168, 2017.

[34] PHP. PHP: preg_match - Manual, 2020. https://www.

php.net/manual/en/function.preg-match.php.

USENIX Association 30th USENIX Security Symposium 3863

[35] Asiri Rathnayake. Semantics, Analysis And Security Of

Backtracking Regular Expression Matchers. PhD thesis,

University of Birmingham, UK, 2015.

[36] Asiri Rathnayake and Hayo Thielecke. Static Analysis

for Regular Expression Exponential Runtime via Sub-

structural Logics. CoRR, abs/1405.7058, 2014.

[37] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing

Ma, and Jian Lu. ReScue: Crafting Regular Expression

DoS Attacks. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engi-

neering, ASE 2018, Montpellier, France, September 3-7,

2018, pages 225–235, 2018.

[38] Randy Smith, Cristian Estan, and Somesh Jha. Back-

tracking Algorithmic Complexity Attacks against a

NIDS. In 22nd Annual Computer Security Applica-

tions Conference (ACSAC 2006), 11-15 December 2006,

Miami Beach, Florida, USA, pages 89–98, 2006.

[39] Snyk. The state of open-source security, 2020. https:

//snyk.io/.

[40] Cristian-Alexandru Staicu and Michael Pradel. Freez-

ing the Web: A Study of ReDoS Vulnerabilities in

JavaScript-based Web Servers. In 27th USENIX Se-

curity Symposium, USENIX Security 2018, Baltimore,

MD, USA, August 15-17, 2018, pages 361–376, 2018.

[41] Stack Exchange Network Status. Out-

age Postmortem - July 20, 2016, 2020.

https://stackstatus.net/post/147710624694/

outage-postmortem-july-20-2016.

[42] Bryan Sullivan. New Tool: SDL Regex Fuzzer, 2010.

http://cloudblogs.microsoft.com/microsoftse

cure/2010/10/12/new-tool-sdl-regex-fuzzer.

[43] Bryan Sullivan. Regular Expression Denial of Service

Attacks and Defenses, 2010. https://docs.micro

soft.com/en-us/archive/msdn-magazine/2010/

may/security-briefs-regular-expression-den

ial-of-service-attacks-and-defenses.

[44] Lenka Turonová, Lukás Holík, Ondrej Lengál, Olli

Saarikivi, Margus Veanes, and Tomás Vojnar. Regex

Matching with Counting-Set Automata. Proc. ACM

Program. Lang., 4(OOPSLA):218:1–218:30, 2020.

[45] Brink van der Merwe, Nicolaas Weideman, and Martin

Berglund. Turning Evil Regexes Harmless. In Proceed-

ings of the South African Institute of Computer Scientists

and Information Technologists, SAICSIT 2017, Thaba

Nchu, South Africa, September 26-28, 2017, pages 38:1–

38:10, 2017.

[46] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil

Dillig. Singularity: Pattern Fuzzing for Worst Case

Complexity. In Proceedings of the 2018 ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engi-

neering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,

FL, USA, November 04-09, 2018, pages 213–223, 2018.

[47] Nicolaas Weideman, Brink van der Merwe, Martin

Berglund, and Bruce W. Watson. Analyzing Match-

ing Time Behavior of Backtracking Regular Expression

Matchers by Using Ambiguity of NFA. In Implementa-

tion and Application of Automata - 21st International

Conference, CIAA 2016, Seoul, South Korea, July 19-22,

2016, Proceedings, pages 322–334, 2016.

[48] Adar Weidman. Regular Expression De-

nial of Service - ReDoS, 2017. https:

//owasp.org/www-community/attacks/Regul

ar_expression_Denial_of_Service_-_ReDoS.

[49] Valentin Wüstholz, Oswaldo Olivo, Marijn J. H. Heule,

and Isil Dillig. Static Detection of DoS Vulnerabilities

in Programs that Use Regular Expressions. In Tools

and Algorithms for the Construction and Analysis of

Systems - 23rd International Conference, TACAS 2017,

Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2017, Uppsala,

Sweden, April 22-29, 2017, Proceedings, Part II, pages

3–20, 2017.

[50] Xiaodong Yu and Michela Becchi. GPU Acceleration Of

Regular Expression Matching For Large Datasets: Ex-

ploring The Implementation Space. In Hubertus Franke,

Alexander Heinecke, Krishna V. Palem, and Eli Upfal,

editors, Computing Frontiers Conference, CF’13, Ischia,

Italy, May 14 - 16, 2013, pages 18:1–18:10. ACM, 2013.

3864 30th USENIX Security Symposium USENIX Association

	Introduction
	Preliminaries
	The ReDoSHunter Algorithm
	The Main Algorithm
	Regex Standardization
	Extensions
	Transformations

	Static Diagnosis
	Pattern NQ: Nested Quantifiers
	Pattern EOD: Exponential Overlapping Disjunction
	Pattern EOA: Exponential Overlapping Adjacent
	Pattern POA: Polynomial Overlapping Adjacent
	Pattern SLQ: Starting with Large Quantifier

	Dynamic Validation

	Experiments
	Experiment Setup
	Benchmark Datasets
	Baselines
	Evaluation Metrics
	Configuration

	Results on Regex Benchmarks
	Effectiveness
	Evaluation on Different Regex Engines
	Multiple Vulnerabilities in One Regex
	Efficiency
	Effectiveness of Generated Attack Strings

	Results on Known Vulnerabilities
	Results on Unknown Vulnerabilities

	Related Work
	ReDoS Detection
	ReDoS Prevention or Alleviation

	Discussion
	Conclusion

