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Abstract

A large portion of the already deployed Internet of Things
(IoT) devices are bare-metal. In a bare-metal device, the
firmware executes directly on the hardware with no inter-
mediary OS. While bare-metal devices increase efficiency
and flexibility, they are also subject to memory corruption
vulnerabilities that are regularly uncovered. Fuzzing is an
effective and popular software testing method to discover vul-
nerabilities. The effectiveness of fuzzing approaches relies on
the fact that memory corruption faults, by violating existing
security mechanisms such as MMU, are observable, thus rela-
tively easy to debug. Unfortunately, bare-metal devices lack
such security mechanisms. Consequently, fuzzing approaches
encounter silent memory corruptions with no visible effects
making debugging extremely difficult. This paper tackles this
problem by proposing uSBS, a novel approach that, by stati-
cally instrumenting the binaries, makes memory corruptions
observable. In contrast to prior work, uSBS does not need
to reverse engineer the firmware. The approach is practical
as it does not require a modified compiler and can perform
policy-based instrumentation of firmware without access to
source code. Evaluation of uSBS shows that it reduces secu-
rity analyst effort, while discovering the same set of memory
error types as prior work.

1 Introduction

Recent years have witnessed the proliferation of Internet of
Things (IoT) devices into nearly every aspect of our lives.
According to a recent Gartner report [5], the number of con-
nected IoT devices is expected to exceed the total number of
humans by 2020. A large portion of these devices are bare-
metal with the firmware running directly on the hardware.
This approach can deliver energy-efficiency, extensible con-
nectivity, and adequate computing power. However, most of
these firmware are implemented in type-unsafe languages
such as C, C++, or Objective-C, that are prone to memory cor-
ruption vulnerabilities such as buffer overflows. This creates
a very large attack surface in the IoT ecosystem.
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Given the limited resources of bare-metal devices, tradi-
tional mitigation mechanisms for memory corruption vulnera-
bilities such as Control Flow Integrity (CFI) [24,44], Address
Space Layout Randomization (ASLR), and security policy
reinforcement [57] are typically infeasible [16]. More impor-
tantly, many IoT devices today work in a real-time environ-
ment and must remain responsive to external stimuli (e.g., a
health-care system, or a safety system in a car). These systems
cannot accommodate the high run-time overhead incurred by
most mitigation mechanisms. This highlights the importance
of performing a vulnerability discovery process before the
firmware is released, thus at testing time.

Fuzz-testing or Fuzzing is a testing solution for finding
bugs and vulnerabilities. Fuzzing methods execute the applica-
tion with randomly generated inputs and wait for vulnerability-
exposing behaviors such as crashing or hanging. This behav-
ior is the visible consequences of faulty states triggered by
deployed security mechanisms such as Memory Management
Unit (MMU). Unlike general purpose computers, bare-metal
devices often lack such mechanisms due to their cost sensitiv-
ity and resource constraints. Accordingly, fuzzing bare-metal
devices is extremely challenging to debug since memory cor-
ruptions may trigger no observable behaviors and thus cannot
be discovered through fuzzing.

To address this problem, Muench et al. [42] integrated the
black-box fuzzer Boofuzz [2] with a set of heuristics to recog-
nize faults due to memory corruptions', but experimental re-
sults show it has still false positives and false negatives. Even
more important, the proposed heuristics rely on information
extracted from applying reverse engineering techniques and
additional annotations provided manually by the analyst, all
activities that are challenging and time consuming. Further-
more, they need to be applied for each new firmware under
analysis.

Sanitizers [51], can be combined with fuzzing methods in
order to make faulty states observable. Sanitizers instrument
applications with memory check instructions to monitor all

!n the interests of brevity we refer to a faulty state caused by memory
corruption simply as a fault for the rest of the paper.

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 381



reads and writes during application execution. There are san-
itizers that operate at the source code or compilation level,
such as AddressSanitizer [46], while others, as Valgrind’s
Memcheck [48] that operate on machine code. Considering
that the majority of bare-metal firmware are not open-source,
source-based sanitizers are not the best choice in our context.
Binary sanitization could be done either statically or dynam-
ically. Dynamic binary sanitizers allow instrumentation of
an application at runtime. However, such techniques are not
widely deployable on the bare-metal devices mainly due to
the high performance penalties and special software/hard-
ware requirements. On the other hand, static binary sanitizers
introduces lower overhead by instrumenting application bi-
nary statically. Unfortunately, at the time of writing none of
the current binary sanitizers provides support for bare-metal
devices.

This paper presents uSBS, a novel approach that, by stat-
ically instrumenting bare-metal firmware binaries, makes
memory corruptions observable. uSBS provides a static bi-
nary instrumentation method and uses it for instrumenting
memory instructions (i.e., sanitization). uSBS allows to em-
bed a given memory safety policy and to monitor all memory
accesses, triggering observable warnings when a violation to
the policy occurs. In summary, the paper makes following
contributions:

We present uSBS, the first static binary sanitizer for bare-
metal firmware. It avoids the complex and tedious work
of reverse engineering firmware binaries.

Using uSBS, we make memory corruption faults observ-
able also on bare-metal devices, thus facilitating their
debugging.

L]

We developed a fully functional prototype of uSBS for
the ARM architecture which is the most widely used
architecture in IoT devices. To foster further research,
we make our uSBS prototype available open source.

We evaluated the effectiveness of uSBS in catching the
same classes of memory faults of prior work. We assess
the feasibility of uSBS by instrumenting 11 real-world
firmware binaries. Evaluation results show that uSBS
correctly instruments all of the firmware binaries with
reasonable execution over-head and size expansion.

2 Background and Motivation

In this section, we present a brief overview of memory cor-
ruption vulnerabilities and fuzzing as an approach to discover
them, and discuss some limitations related to the architecture
of bare-metal devices that motivate the need to extend and
refine faults observability on such architectures.

2.1 Memory Corruptions and Fuzzing

Low-level systems software such as firmware is typically
written in the C or C++ languages due to their efficiency
and capability to fully control the underlying hardware. In
such programming languages, developers must ensure that
every memory access is valid, that no situation leads to the
de-referencing of invalid pointers. However, in practice, devel-
opers frequently fail to meet these responsibilities and cause
memory bugs that can be exploited by an attacker to alter
the application behavior or even taking full control over the
software stack.

In testing the security of such application, security ana-
lysts hardly have access to the source code. Fuzzing is one of
the most effective testing methodologies to find memory cor-
ruption vulnerabilities in Commercial Off-The-Shelf (COTS)
applications. Fuzzing executes the application binary file with
random inputs to look for unexpected application behavior
such as crashes that are immediate consequences of faulty
states. The ability of observing such crashes is the prerequi-
site for fuzzing to work. In general purpose computer sys-
tems, equipped with OS security mechanisms and hardware
features such as stack canaries, Data Execution Prevention
(DEP), Memory Management Unit (MMU), and Memory Pro-
tection Unit (MPU), memory violations trigger a crash upon
a fault. Possible ways to observe such crashes are: (1) Ob-
serving exit status: the execution of the device or application
under test is terminated and an error message is generated
for tracing. (2) Catching the crashing exception: the crashing
signal can be caught by overwriting an exception handler. (3)
Leveraging mechanisms provided by the OS: the OS-level
debugging interfaces such as ptrace can be used in order to
observe application execution and detect crashes.

2.2 Bare-metal Embedded Devices

Among different classes of embedded devices, bare-metal de-
vices are designed for low cost and low power operation. Such
devices are deployed in many application areas ranging from
automotive and industrial control systems to medical devices.
Bare-metal devices execute a single statically linked binary
firmware providing a specific application logic as well as
system functionality without the use of an underlying abstrac-
tion such as an operating systems. However, it is challenging
for bare-metal devices to support security properties in prac-
tice, due to limited energy, memory and computing resources.
For example, this class of devices rarely provide a Memory
Management Unit (MMU) and firmware modules have ac-
cess to the entire shared memory space in a privileged mode.
Therefore, compromising one firmware module gives an at-
tacker arbitrary read/write access to the whole system with
no observable side-effects. Unrestricted read/write primitive
enables the attacker to redirect the control-flow of firmware
or directly overwrite sensitive data.
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Table 1: Hardware protection mechanisms supported by representative core families.

Core Family

Hardware Protection Mechanism

MPU

<
<
c

ARM 1 to ARM 7

ARM ARM 7EJ

ARM Cortex R

RS

ARM Cortex M

PIC PIC 10 to PIC 24

dsPIC

ATiny

AVR ATmega

ATxmega

Intel MCS-51

8051 Infineon XC88X-1

Infineon XC88X-A

MSP430 MSP430x1xx to MSP430x6xx

MSP430FRxx

xxxxxxxxxx\\xx%

x| 3| 3| X[ X X| X[ X| XXX X X X

< [ 3| | <] | 3| x| x| x|

V1 it is supported by all microcontrollers in the given family.
~: it is supported by some microcontrollers in the given family.

X: it is not supported by any of them.

As a more concrete investigation of the hardware security
feature support (i.e., MMU, MPU, and DEP), we conducted
an analysis of 29 SoC core families. Our selection aims to pro-
vide a representative sample of major architectures and ven-
dors in the embedded space across industry verticals including
unmanned aerial vehicle (UAV), unmanned ground vehicle
(UGV), remotely operated underwater vehicle (ROV), real-
time 3D printer controllers and real-time Internet of Things
(IoT) devices.

According to our analysis, none of the SoCs is designed
to employ MMU. A number of SoCs optionally provide ba-
sic memory protections using MPU. However, even with the
existence of MPU, configuring it from the application is not
a straightforward task, leading the developers to ignore us-
ing this functionality. Table | summarizes the results of our
analysis by mapping out core families architectural style and
hardware security functionalities.

2.3 Fault Observability in Bare-metal Devices

Contemporary general purpose computers have plenty of
mechanisms that makes faulty states observable (e.g., segmen-
tation faults caused by an MMU). Most bare-metal devices,
instead, do not have such mechanisms due to their limited I/O
capabilities and architecture. In fact, most memory corrup-
tions events are silent and do not lead to an immediate crash
of the firmware or any observable event. Thus the firmware
can continue the execution with no visible effect or it will
lead eventually to a crash (i.e., I/O error) that is however very
difficult to debug. It is challenging to infer if the crash was
due to an early memory violation or to an I/O error.

Motivating Example. To better understand the problem,
we use a popular bare-metal firmware, Broadcom Wi-Fi SoC
as a motivating example. This firmware is present in both
mobile devices and Wi-Fi routers for handling the lower layers
of Wi-Fi and Bluetooth protocols. The Broadcom Wi-Fi SoC
executes on ARM Cortex-R processor. As reported by Google
Project Zero [6] in CVE-2017-0561 [4], the firmware has a
remote code execution vulnerability that enables a remote
attacker to execute arbitrary code and escalate to control over
the entire system. In the code snippet shown in Listing 1,
SoC firmware performs a memcpy into the allocated memory
object buffer, using the ft_ie length field. Since the ft_ie length
field is not verified prior to the copy, this allows an attacker
to exceed the buffer and trigger a buffer overflow.

uint8_t* buffer = malloc (256);

uint8_t* linkid_ie = bcm_parse_tlvs(..., 101);
memcpy (buffer, linkid_ie, 0x14);

uint8_tx ft_ie = bcm_parse_tlvs (..., 55);
memcpy (buffer + 0x18, ft_ie, ft_ie[l] + 2);

Listing 1: A remote code execution vulnerability in the
Broadcom Wi-Fi firmware could enable a remote attacker
to execute arbitrary code within the context of the Wi-Fi SoC.

As a proof of concept we exploited this vulnerability simi-
larly to [6] and sent malicious inputs that triggered the buffer
overflow vulnerability. Nonetheless, the firmware did not
crash and continued to function normally with no observ-
able side-effects. This is mainly due to the fact that Broadcom
Wi-Fi SoC lacks all basic memory protection mechanisms
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Figure 1: Workflow of uSBS.

including access permission protection by means of either
MMU, MPU or more advance protections like stack canaries.

There exist several approaches to make faulty states ob-
servable. Sanitizers [51] monitor the actual execution of an
application in order to observe faulty states as they happen.
They enforce spatial memory safety by detecting dereferences
of pointers that do not target their intended referent, or en-
force temporal memory safety by detecting dereferences of
pointers that target a referent that is no longer valid. Sanitiz-
ers implement memory safety policies by embedding inlined
reference monitors (IRM) into the application through instru-
mentation. IRMs mediate and monitor every memory accesses
and memory object (de)allocations instructions. IRMs can be
embedded at either source code or binary level. Source-based
sanitizers [30, 33,46, 53, 60] are not widely deployable on
bare-metal devices due to the unavailability of their firmware
source code since they are often proprietary.

Binary images of bare-metal firmware are often available
to the analyst since they can be acquired by directly extracting
from the physical device using debugging port (e.g., JTAG
interface) or downloading and unpacking update packages
available on many vendors websites. Thus, binary sanitiza-
tion [23, 34, 48] is the only viable option for enforcing mem-
ory safety in bare-metal firmware. Dynamic binary sanitizers
read application code, instrument it, and translate it to ma-
chine code while the application executes. However, these
approaches do not generate a standalone instrumented bi-
nary and sanitization process has to be done again each time
the application executes. In addition, they have significant
run-time and space overhead which is a critical problem for
bare-metal devices which have limited processing power and
a small memory space. This overhead can essentially be at-
tributed to the dynamic translation process. This issue can
be addressed by instrumenting applications statically using a
binary sanitizer, which we believe is a promising solution for
our requirements.

Until now, there is no binary sanitizer for bare-metal
firmware. Based on this limitation of previous work, we pro-
pose a novel and tailored automated method for making faults
observable in bare-metal devices.

3 Static Binary Sanitization for Bare-metal
Devices

Figure 1 illustrates a high-level overview of our approach,
with the different components and their interactions. There
are three main phases: the static disassembling, the binary
instrumentation, and the reassembling.

The first step of our uSBS workflow is static disassembling
(§ 3.1). It disassembles the raw binary and decodes instruc-
tions using a linear disassembly method. The second phase is
binary instrumentation (§ 3.2) that instruments the firmware
binary based on the sanitization specification. Sanitization
specification (§ 3.3) contains instrumentation information
determining what instructions will be inserted or replaced
in order to embed IRMs and monitor every memory access.
In other words, uSBS statically instruments every memory
access with a runtime check to verify if it is an access to an
allowed address. If not, our fault handler raises a warning
close to the location of the bug to guide the follow-up security
analysis to find out the root cause of the fault. The last step is
the reassembling, that takes the instrumented assembly code
and reassembles it as a working binary using off-the-shelf
assemblers. In the following sections, we describe the most
important and challenging aspects of uSBS design.

3.1 Static Disassembling

Disassembly is referred as the process of parsing executable
region of binary file from beginning to the end and decoding
all encountered bytes into their raw textual representation.
There are two popular types of disassembly approaches: lin-
ear sweep and recursive traversal disassemblers [19,37,45].
Linear sweep decodes all encountered bytes as instructions
by sweeping the entire code section. Recursive traversal dis-
assembles instructions following control flow transfers (e.g.,
jumps and calls). It is challenging to correctly and completely
disassemble arbitrary code. This is mainly due to the fact that,
in hand-written assembly and modern compilers, code and
data can be interleaved and there is no syntactic distinction
whereby the disassembler may distinguish them. However,
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#include<stdio.h>

void printer_verl (float var) {
printf ("$.10f\n", var);

}

void printer_ver2 (float var) {

printf ("$.50f\n", var);

ioid (xprinters[2]) (float) = {printer_verl,
printer_ver2};

int main (void)

{ static float var = 4e-34;

static int (**ptr) (float)= &printers;
(¥ (ptr+l)) (var);
return 0;

0x804816c <printer_ver2>:

0x8048198:

bl 8048688 <printf>
0x80481b0 <main>:
0x80481bc: movw r3, #64668 ; Oxfc9c
0x80481c0: movt r3, #1
0x80481c4: 1ldr 3, [r3]
0x80481c8: add r3, r3, #4
0x80481cc: 1ldr r2, [r3]
0x80481d0: movw r3, #64672 ; Oxfcal
0x80481d4: movt r3, #1
0x80481d8: 1dr r3, [r3]
0x80481dc: mov r0, r3
0x80481e0: blx r2

(a) Source code of running example.

(b) Partial assembly code of running example.

Hex dump of section

.data:

0x0001£fc90 00000000 28810408 6c810408 94£fc0100
0x0001fca0 3dec0408 00000000 00000000 94££0100

(c) Hexdump of .data section.

Figure 2: A running example that covers three main challenges of binary instrumentation and illustrates four general classes of

references (C2C, C2D, D2D, D2C) in assembly code.

Andriesse et al. [18] noted that such cases are exceedingly
rare and disassemblers achieve close to 100% accuracy for
instruction disassembly from compiler-generated binaries.
Therefore, we applied a linear sweep disassembly algorithm
to our evaluation set.

3.2 Binary Instrumentation

The uSBS binary instrumentation component takes the dis-
assembled file and sanitization specification as inputs with
the aim of statically inserting a number of memory check
instructions to catch memory corruption vulnerabilities. How-
ever, binary instrumentation introduces challenges that are
not present when modifying source code. Specifically, when
instructions are inserted or removed at the source code level,
the compiler will redo the linking process to rearrange code
and data in memory. In binaries, inserting or removing in-
structions causes addresses to change and breaks the binary
file due to the lack of linkage information. The symbol and
relocation information, that is used in the linking process to
ensure that application elements can correctly refer to each
other, are discarded by the compiler once finished. In the
following, we provide the details of practical challenges in
designing uSBS binary instrumentation component and our
solutions tackling them.

The core process of instrumenting binaries is the ability
to relocate any binary code without any relocation and meta-
data information. There are three main challenges in reloca-

tion procedure to avoid breaking the binary file. To describe
these challenges clearly, Figure 2 shows a running applica-
tion alongside its disassembly and the hex dump of its data
section. This application declares a float variable var with an
initial value of 4e-34 and prints that with two different for-
mats (i.e., printer_verl and printer_ver2). The first challenge
is recognizing static addresses. There is no syntactic distinc-
tion to disambiguate between reference and scalar type for
immediate values and updating references to the new targeted
addresses. In our application, the compiler stores 3dec0408
in data section as the binary representation of var. Since our
application has a code section with memory addresses rang-
ing from 0x8000000 to 0x8100000, this immediate value can
be considered as a pointer (0x804ec3d) on little-endian ma-
chines; this will irremediably corrupt the image if we update
it after binary instrumentation.

The second challenge is relocating static addresses after
instrumentation. For example, as illustrated in our applica-
tion disassembly, the printer_ver2 function calls the printf
function with static address 0x8048688. It is clear that the
insertion of instructions into, or removal of instructions from
disassembly code can break this static address. The third
challenge is determining dynamically referenced memory ad-
dresses. Contrary to static memory addresses that are explicit,
the target addresses of some references are computed dynam-
ically at runtime and they can not be updated statically. As
shown in our application disassembly, the reference target r2
is computed dynamically.
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To tackle these challenges, we categorize all references
into four general classes: Code-to-Code (C2C), Code-to-Data
(C2D), Data-to-Code (D2C), and Data-to-Data (D2D). In our
application, the /dr r3, [r3] instruction accesses to the ad-
dress 0x0001fc9c in order to retrieve the printers array ad-
dress from data section (C2D). 94fc0100 hex value at address
0x0001fc9c is a pointer to the printers array in data section
(D2D). The second element (6¢810408) of the printers array
points to the printer_ver2 function in code section (D2C),
which calls the printf function at address 0x8048688 (C2C).

C2D and D2D references. Due to the fact that there is no
need to perform instrumentation on the original data space,
we can preserve the starting addresses of data sections intact.
By doing so, we may easily ignore and handle C2D and D2D
references.

C2C and D2C references. Since insertion of instructions
causes stretched code space, uSBS adds a new expanded code
section (.newsec) at a new entry point. As demonstrated in
Algorithm 1, uSBS iterates all disassembled instructions and
rewrites them intact in the .newsec section. Also, in the mean-
while, uSBS performs instrumentation and inserts new mem-
ory check instructions in the .newsec section.

uSBS adjusts all branch instructions target addresses while
rewriting them in the .newsec section. Each direct branch
instruction with an immediate operand can easily point to
the new address by changing its offset statically. However,
indirect branch instructions have multiple possible target ad-
dresses and therefore needs some sort of target-prediction
mechanism. Unlike many prior efforts [36, 54, 55], we ob-
serve that while it is challenging to statically identify targets
of indirect branch instructions, we can instead perform a dy-
namic lookup at runtime. It is mainly due to the fact that the
precise target addresses are known at runtime. Specifically, we
provide a mapping table from the old code section to .newsec.
By doing so, we can modify each indirect branch instruction
to search for the new target address in the mapping table after
the old target address has been computed at runtime.

To generate the mapping table, it is first required to know
each instruction size that is present in the .newsec section.
Therefore, we record any changes to instructions and sizes
while rewriting them in the .newsec section. More specifically,
we generate a mapping table from each address in the old code
section to the size of the corresponding rewritten bytes in the
.newsec section. Afterwards, we are able to adjust reference
targets by converting each size record in the mapping table to
the corresponding offset in the .newsec section. Essentially,
we add a level of indirection by replacing all indirect branch
instructions with a direct branch to the mapping routine and
consulting the mapping table for computing the new target
address.

For instance, in Figure 2, the runtime value of indirect
branch (blx r2) target address is 0x804816c. As shown in
Figure 3, uSBS rewrites instructions in the .newsec section
with base address 0x8200000. At runtime, the mapping rou-

Algorithm 1: Generating a new code section

newsecGenerator (Insts)

inputs :/nsts = inst| ...inst,

output : newsec section

foreach disassemled instruction inst; € Insts do

if inst;.type is a branch_instruction then

if inst;.ref is static then
inst.ref := Ad justTarget (inst;.ref);
Writelnst (newsec, inst;)

else

| Writelnst(newsec, mapping_instructions)

else if SanitizationSpecification(inst;) then

if inst;.type is a memory_allocation then
Writelnst (newsec, redzone);
Writelnst (newsec, inst;);
Writelnst (newsec, redzone);

else
Writelnst(newsec, metadata_check);

L Writelnst (newsec, inst;);

else
| Writelnst(newsec, inst;)

return newsec;

tine looks for 0x804816¢ entry in mapping table in order to
find the offset of new target address (0x81d0), and then re-
turns new translated target address (0x8200000 + 0x81d0 =
0x82081d0). Finally, firmware jumps (ldr pc, [sp, #-4]) to the
translated address.

3.3 Sanitization Specification

The sanitization specification determines which exact instruc-
tions should be instrumented by uSBS. AddressSanitizer [46]
and Valgrind’s Memcheck [48] are the most widely adopted
sanitizers for detecting memory safety violations in prac-
tice [52]. Inspired by these approaches, uSBS utilizes a meta-
data store that keeps the status of allocated memory bytes.
UuSBS surrounds every memory value with a so-called red-
zone representing out-of-bounds memory and marks it as
invalid memory in the metadata store. Then, uSBS instru-
ments every memory instruction (i.e., load and store) in order
to consult the metadata store whenever the firmware attempts
to access memory. Any access to a red-zone or to an unallo-
cated memory region is considered as a memory corruption
vulnerability and triggers a warning close to the location of
the bug.

The current version of uSBS sanitizer enables us to observe
faulty states caused by various types of spatial and temporal
memory corruptions including: (1) Overrunning and under-
running heap blocks. (2) Overrunning the top of the stack. (3)
Accessing memory after it has been freed. (4) Using memory
values that have not been initialized or that have been derived
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Original Code Section Rewritten Code Section

80481d4: movt r3, #1 82081d0:

80481d8: 1dr r3, [r3] Rewriting |. ..

80481dc: mov r0, r3

80481e0: blx r2 8208300: ldr r3, [r3]

e 8208304: mov r0, r3
8208308: str r0, [sp,#-64]
820830a: mov r0, r3
820830e: bl mapping

- 8208312: str r0, [sp,#-4]

| 8208314: 1dr r0, [sp,#-64]

+ 8208316: add 1lr, pc, #4
0x804816c: 0x81d0 8208318 ldr pe, [sp,#-d]

+ +
12 = 0x804816c |
Ibase = 0x8200000]!

Mapping Routine

Figure 3: Mapping procedure: all indirect branch instructions
(e.g., blx r2) are firstly redirected to the mapping routine
which looks for new offset (0x81d0) corresponding to the old
target address (0x804816¢) in mapping table.

from other uninitialized values. (5) Incorrect freeing of heap
memory, such as double-freeing heap blocks.

4 Implementation

We have implemented a proof-of-concept of uSBS for the
ARMV7-M architecture [1], which covers a large share of
microcontrollers (i.e., Cortex-M3/4/7) for embedded plat-
forms [35]. The following outlines the technical details of the
implementation based on the design described in the previous
section.

4.1 Binary Instrumentation

We implemented uSBS binary instrumentation component
with a total of 1609 LOC in Python language using the Cap-
stone framework [3] as our underlying linear disassembler
engine. We used the pyelftools [8] and pwntools [7] open
source frameworks for parsing the ELF files and reassem-
bling instrumented assembly code respectively.

As mentioned in § 3.2, uSBS generates a new stretched
code section (.newsec) and executes firmware from its new
entry point. uSBS rewrites all instructions of the old code
section together with new inserted instructions in .newsec.
However, inserting new instructions may push a target address
beyond the reach of the instruction referencing it. To resolve
this issue, uSBS replaces every referencing instruction by
its substitute which allows for larger offsets. For instance,
it replaces b branch instructions with b.w to generate a 32-
bit instead of 16-bit instruction. Furthermore, it is necessary
to rewrite all branch instructions to handle the challenges
mentioned in § 3.2.

To safely handle reference targets and adjust the binary
layout, uSBS rewrites all direct branch instructions by stati-
cally changing their offsets. Thereafter, it rewrites all indirect

branch instructions to deploy the dynamic mapping procedure.
To do so, every indirect jump instruction with target address
label must be rewritten by instructions shown in Listing 2.

str r0, [sp, #-64]
mov r0, label

bl mapping

str 0, [sp, #-4]
1dr 0, [sp, #-64]
ldr pc, [sp, #-4]

Listing 2: Rewritten instructions for every indirect jump
instruction with target address label.

Similarly, every indirect call instruction with target address
func must be rewritten by instructions shown in Listing 3. To
store the return address, uSBS loads into Link Register (LR)
the address of the instruction following the call to [sp, #-4].

str r0, [sp, #-64]
mov r0, func

bl mapping

str 0, [sp, #-4]
1dr 0, I[sp, #-64]
add 1lr, pc, #4

1dr pc, I[sp, #-4]

Listing 3: Rewritten instructions for every indirect call
instruction with target address func.

uSBS translates every indirect branch into the mov and
direct call instructions. The mov instruction puts the old target
address into register 70 and the direct call goes to the mapping
routine which searches for the offset corresponding to the
old target in the mapping table. If the search succeeds, it will
jump to the translated target address in .newsec.

Finally, uSBS uses LIEF framework [9] to add .newsec and
mapping routine to the original firmware ELF file. The LIEF
framework modifies the ELF header and creates a new code
segment containing the .newsec code section.

4.2 Sanitization

We implemented the process of generating a sanitization spec-
ification with 687 LOC in the Python language. Once the
firmware binary is disassembled, uSBS extracts all object
allocations and memory accesses (i.e., LDR and STR) and
stores them in the sanitization specification file. The binary in-
strumentation component interprets the sanitization specifica-
tion file for instrumenting all memory accesses with memory
check instructions to consult the metadata store. The memory
check instruction computes the address of the correspond-
ing metadata byte, loads that byte and checks whether it is
valid. For efficiency reasons, uSBS deploys a similar meta-
data management mechanism to AddressSanitizer by storing
1 byte of metadata for every 8 bytes of firmware memory.
In this case, the metadata mapping accords with Formula 1
where meta_base is the base address of the metadata store
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Table 2: Comparison of fault observability between uSBS and
the heuristic-based method proposed by Muench et al. [42].

Memory Corruptions H Muench et al. \ uSBS ‘

Null Pointer Dereference
Stack-based buffer overflow
Heap-based buffer overflow

Format String
Double Free

AN NANA Y
AN

and block_addr is the address of the memory block.

meta_addr = meta_base + (block_addr >> 3) ‘ (1)

5 Evaluation

We evaluated uSBS from three different angles: (1) Whether
it can make faulty states observable on binary firmware in
an automatic fashion. (2) Whether it can rewrite the code
section of binary firmware without breaking its functionality.
(3) Assessing the runtime performance and size expansion of
rewritten binaries in practice.

To that end, we investigated uSBS ability to catch the same
class of memory bugs of the state-of-the-art [42] based on
the WYCNINWYC vulnerable application [15,42] (§ 5.1).
We also conducted an evaluation on 11 real firmware images
to check the correctness of the rewritten binaries by using
the standard test suite that provided by the vendor of each
firmware (§ 5.2). Finally, we measure the runtime perfor-
mance of our rewritten and instrumented binaries (§ 5.3).

5.1 Effectiveness

We designed and performed this experiment to verify whether
uSBS can successfully make the same class of memory cor-
ruptions observable compared to state-of-the-art fault obser-
vation method proposed by Muench et al. [42].

Experiment Setup: We used WYCNINWYC application,
developed and used by Muench et al. as a testbench, in order
to obtain comparable results. The WYCNINWYC application
is a vulnerable implementation of an XML parser contain-
ing five different instances of spatial and temporal memory
corruptions. Experiments are performed on a same develop-
ment board, STM32-Nucleo L152RE [14] featuring an ARM
Cortex-M3 CPU.

Experiment Results: We instrumented the WYCNIN-
WYC application using the uSBS sanitizer and collected the
statistics and results, including the observability of faulty
states caused by memory corruptions. As shown in Table 2,
uSBS caught all faulty states without the need for reverse engi-
neering or advanced data-flow analysis techniques as required
by the method of Muench et al. [42].

5.2 Feasibility

We performed this experiment to verify the correctness of the
uSBS design and its application to large real-world bare-metal
firmware. We rewrote the code sections of 11 binary firmware
images without sanitization and observed whether all rewrit-
ten binaries executed correctly and produced identical output
to the original.

Experiment Setup: We selected 11 real bare-metal bi-
nary firmware images for different applications, ranging from
cameras to industrial control systems. These are full-fledged
firmware and demonstrate the use of a diverse set of peripher-
als including an LCD Display, Microphone, Camera, Serial
port, Ethernet and SD card. They collectively cover ARM
Cortex-M3 and Cortex-M4 microcontrollers. In what follows,
we provide a brief description of each firmware.

Audio-Playback firmware is developed for playing audio
files by reading data from USB and sending it to the audio
codec. LCD-Display is a firmware for reading and display-
ing a series of bitmaps from an SD card to the LCD. LCD-
Animate displays animated pictures saved on a microSD card
on the LCD. To create animated pictures, the firmware dis-
plays an images sequence with a determined frequency on
the LCD. Camera-USB uses the Digital Camera Interface
(DCMI) to connect with a camera module and display pic-
tures on an LCD in continuous mode while also saving these
pictures on the USB device. FatFs-uSD creates a FAT file
system on the microSD and uses FatFs APIs to access the
FAT volume in order to perform writing and reading of a
text file. TCP/UDP-Echo-Client/Server are four firmware for
running TCP/UDP echo client/server applications over Eth-
ernet based on LwIP, a popular TCP/IP stack for embedded
devices. mbed-TLS firmware runs an SSL client application
based on the mbed-TLS crypto library and the LwIP TCP/IP
stack for the STM32F4 family. PLC (Programmable Logic
Controller) is a family of embedded devices for controlling
critical processes in industrial environments. The ST-PLC
firmware implements a PLC that executes uploaded ladder
logic programs. The ladder logic program is uploaded to the
microcontroller from an Android application via WiFi (ladder
logic is a common PLC programming language).

All of these firmware images are provided with the de-
velopment boards and written by STMicroelectronics [10].
Experiments are performed on STM32-Nucleo F401RE [11],
STM32F4791-Eval [12], and STM32F4Discovery [13] de-
velopment boards featuring an ARM Cortex-M4 CPU and
STM32-Nucleo L152RE [14] featuring an ARM Cortex-M3
CPU.

Experiment Results: We executed both the rewritten ver-
sion and the original version of the firmware on the test suit
shipped with the firmware and compared their functional cor-
rectness. All of the rewritten firmware passed the functionality
test and ran correctly, producing the same result as the original
firmware.
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Table 3: Statistical metrics of uSBS binary rewriting when applying to bare-metal firmware.

Firmware MCU Dir. Inst. Ind. Inst. Code (KB) Rew. Code (KB) Size Inc. (%)
Audio-Playback STMF4791-Eval 1853 250 132 195 24
LCD_Display STMF4791-Eval 809 103 48 57 10
LCD_Animate STMF4791-Eval 803 103 48 56 10
FatFs_uSD STMF4Discovery 575 150 23 29 6
TCP_Echo_Client STMF4791-Eval 1407 132 79 91 14
TCP_Echo_Server STMF4791-Eval 1384 132 77 89 14
UDP_Echo_Client STMF4791-Eval 1341 132 76 88 14
UDP_Echo_Server STMF4791-Eval 1310 130 75 87 14
Camera-USB STMF4791-Eval 1003 163 70 81 13
mbed-TLS STMF401RE Nucleo 3218 338 171 215 20
ST-PLC STMF4791-Eval 2275 373 168 231 67

Table 3 presents the rewriting statistics and the modifica-
tions made by uSBS to the binary firmware images. The col-
umn under Dir. Inst. in the table represents the count of direct
branch instructions, including calls and jumps, that are stati-
cally rewritten by changing their offsets. The column under
Ind. Inst. represents the count of indirect branch instructions
redirected to the mapping routine by uSBS.

Additionally, columns Code and Rew. Code represent the
sizes of original code section and the rewritten code sec-
tion (.newsec) respectively. The code section size overhead
correlates positively with the number of indirect branch in-
structions due to the rewriting procedure that replaces each
indirect branch with 6/7 instructions (§ 4.1). Furthermore,
the fixed overhead of the mapping table and mapping routine
play a significant role in the size overhead of the binary file
(last column). In fact, the size overhead in percent will be less
for large firmware compared to small images. For example,
the original size of the ST-PLC firmware is 1.1MB and has
67% overhead, while mbed-TLS is 3.5MB and has only 20%
overhead.

5.3 Performance

uSBS with no sanitization slows down firmware execution for
two reasons. First, the firmware is statically instrumented and
there is an additional direct call added for each indirect branch
instruction to call the mapping routine. Second, uSBS dynam-
ically searches for the new target address of every indirect
branch instruction in the mapping table which incurs runtime
overhead. In this section, we evaluate the execution overhead
of rewritten binaries without sanitization. In addition, we also
measure the execution overhead incurred by our sanitization
procedure and the processing time of uSBS itself.

Each firmware in our benchmark was instrumented and ex-
ecuted twenty times. For example, we executed LCD_Display
original and instrumented firmware for displaying 5 images
twenty times. Figure 4 presents the runtime overhead results.
The average slowdown for our benchmark without sanitiza-

tion is 8.5%. The second bar in Figure 4 presents the ex-
ecution overhead of instrumented firmware with the uSBS
sanitizer. It increases the execution overhead to an average
of 32.5% compared to rewritten firmware without sanitiza-
tion. Audio-Playback, mbed-TLS, and ST-PLC are memory-
intensive firmware, and therefore we expected the high over-
head results arising from a large number of memory accesses
that are expensive after being instrumented and checked.
While, these overheads are not negligible, we believe that
they are reasonable as this overhead is only incurred on the
devices under security test and not the devices that are actually
deployed on the field.

Figure 5 presents how long it takes uSBS to rewrite and
sanitize firmware binaries. As expected, larger binaries take
more time to be processed. On average, uSBS spends 5.72
seconds on binaries in our benchmark. We regard this as a
promising result compared to state-of-the-art fault observation
method [42]. The efficiency of uSBS makes it a practical tool
for the large-scale sanitization of firmware binaries.

6 Related Work

This section provides an overview of the state-of-the-art. Re-
lated work can be categorised in works related to: (1) fault
observation and (2) binary rewriting.

6.1 Fault Observation

Muench et al. [42] proposed the only existing method for
fault observation in embedded systems by introducing six
heuristics such as heap object tracking. They implemented
these heuristics on top of a combination of the Avatar [61],
PANDA [29], and Boofuzz [2] frameworks. However, these
heuristics suffer from their reliance on a variety of informa-
tion such as: memory accesses, memory mappings, executed
instructions, register state and allocation and deallocation
functions. This information must be extracted from target bi-
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Figure 4: Performance impact of uSBS on 11 real firmware binaries with and without sanitization.
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Figure 5: uSBS processing time for 11 real firmware binaries.

nary through reverse engineering and advanced static analysis,
which adds both imprecision and complexity. Furthermore,
applying heuristics for fault observation results in false posi-
tives and false negatives. Instead, uSBS approach turns out
to be not only lightweight, avoiding heavyweight manual
firmware analysis, but also reliable, being capable of provid-
ing platform-agnostic fault observation.

6.2 Binary Rewriting

Binary rewriting refers to the process of modifying one binary
into another while one or more new instructions are optionally
inserted to provide new features or behaviors. Binary rewrit-
ing methods can be categorized into two main classes: dy-
namic and static methods. Approaches [22,40,43] that belong
to the first category transform stripped binaries that are loaded
into memory while they are executing. However, they are not
practical for fault observation on bare-metal devices due to the
high performance overhead and special software/hardware re-
quirements. HALucinator [26] is the state-of-the-art approach
for dynamic binary instrumentation of bare-metal devices. In
addition to the significant performance penalty, HALucinator
only supports a small number of microcontrollers. HALucina-
tor emulates firmware that use a Hardware Abstraction Layer

for instrumentation in large-scale stripped firmware binaries.
BinRec [17] is a dynamic binary rewriter that leverages mul-
tiple dynamic analysis techniques to lift binaries into LLVM
IR. BinRec is built on top of S2E [25] and QEMU virtual
machine [21] that do not support bare-metal firmware.

There are a number of static binary rewriting approaches
that transform binaries before execution. These approaches
differ from each other in how they transform binaries without
breaking their functionality and semantics. Solutions such as
Bistro [27] and STIR [56] redirect control flow from the orig-
inal location to trampoline code containing new instructions.
Trampoline-based rewriters are able to preserve application
semantics after instrumentation, at the cost of considerable
performance and memory penalties.

Uroboros [55] presents a set of heuristics for recognizing
references among integer values and converting them into
assembler labels in order to generate a relocatable assembly
code. Ramblr [54], built atop angr [49, 50], is a similar ap-
proach that improves Uroboros using a composition of static
analyses and heuristics. Unfortunately, heuristics-based ap-
proaches suffer from false positives and negatives that result in
broken reassembled binary. RetroWrite [28] and Egalito [59]
provide an instrumentation method that uses relocation in-
formation which is only available in position independent
codes. This is not a practical solution for firmware binaries
that are statically linked. Multiverse [20] leverages a super-
set disassembling technique [38,39, 58] and disassembles at
each offset of the binary code to produce a superset of in-
structions. Multiverse binary rewriter is built on top of the
disassembler to instrument all superset instructions. As noted
by Miller et el. [41], superset disassembly has a substantial
code size overhead (763% on SPECint 2006 benchmarks).
Furthermore, experimental results [59] show that Multiverse
does not support statically linked binaries.

All the above static approaches are designed and devel-
oped for the x86 architecture. RevARM [36] is the only static
binary rewriter proposed for instrumenting ARM-based mo-
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Table 4: A subjective comparison between uSBS and state-
of-the-art binary rewriting methods proposed for General
Purpose (GP) computers, Mobile (M), and Bare-metal (B)
devices. X and A denote x86 and ARM architectures respec-
tively.
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SE S
Target GP GP GP GP GP M| B
Architecture X X X X X A|A
w/o Heuristics | X X v v v X |/
w/o Relocation | v v X X v V|V
w/o IR Lifting | v v V VvV V X |/

bile applications. RevARM lifts binary code to a higher-level
intermediate representation (IR) and performs the instrumen-
tation procedure at that level. As pointed out by Dinesh et
al. [28] lifting a binary to an IR usually misses application
semantics and actual control flows since it is necessary to
precisely model instruction set architecture (ISA) and extract
type information from the binary file. Additionally, RevARM
uses the Uroboros technique for differentiating references and
integer values which is an impractical solution that is unable
to work on non-trivial application binaries. Table 4 presents
a subjective comparison of state-of-the-art binary rewriting
approaches and uSBS.

7 Discussion

In this section, we discuss the limitations in our system and
shed some light for future work.

Supported microcontrollers. This paper focuses on a spe-
cific subclass of embedded microcontrollers running a sin-
gle statically linked firmware—bare-metal firmware. Like all
other static binary instrumentation methods, we do not handle
any dynamically loaded code. Support for sanitizing such
code requires dynamic instrumentation since such code can
only be seen while the firmware is running.

Supported CPU architectures. The current implementa-
tion of uSBS supports ARMv7-M architecture as the most
widely used core for embedded systems [35]. Our platform-
independent approach can support bare-metal firmware devel-
oped for other architectures like x86 with a small extra engi-
neering effort since they are comparable or have more relaxed
requirements for the binary instrumentation purpose [36]. For
example, it is mainly required to change the assembly lan-
guage of the rewritten and inserted instructions and mapping
function in order to support x86 firmware.

Fuzzing. Although the current uSBS implementation has

focused on the observation of faulty states due to the memory
corruptions, it may be extended and integrated with fuzzing
methods to uncover new bugs in bare-metal firmware. To be
concrete, uSBS sanitizer can be leveraged to improve the bug-
finding ability of fuzzing methods [47,63]. More specifically,
we may guide the input generation process of the fuzzers
towards triggering uSBS sanitizer checks. Improvement on
10T fuzzing [31,32,62] is orthogonal to this paper, and we
will leave it for future work.

Sanitization. uSBS can potentially observe a wide array
of memory corruptions by applying memory safety policies.
The current implementation of uSBS sanitization process is
inspired by AddressSanitizer and Valgrind’s Memcheck poli-
cies. However, other sanitization techniques can be developed
on top of uSBS binary instrumentation component for observ-
ing faulty states caused by other types of memory corruption
vulnerabilities. We leave such improvements to future work.

8 Conclusion

Memory corruption vulnerabilities are common in [oT
firmware binaries and can lead to significant damage on bare-
metal embedded devices that are increasingly intertwined
with critical industrial and medical processes. In this paper,
we have presented a concrete investigation of hardware se-
curity feature (i.e., MMU, MPU, and DEP) in a represen-
tative selection of IoT SoC families. Our analysis shows
that the IoT fuzzing world lags behind the general-purpose
world. We have also developed and demonstrated uSBS, the
first fully automatic approach for observing faulty states
in bare-metal firmware. uSBS uses a novel combination
of static binary instrumentation and sanitization to validate
memory accesses in a firmware binary, allowing for an im-
proved fault observation mechanism. We evaluated uSBS
using a fault observation benchmark and 11 real firmware
binaries. Our approach correctly sanitized all the firmware
binaries with reasonable run-time over-head and size ex-
pansion while discovering the same set of vulnerabilities
as the state-of-the-art. To motivate further research in this
field and encourage reproducibility, we open-source uSBS at
https://github.com/pwnforce/usSBS.
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