
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

SanRazor: Reducing Redundant Sanitizer
Checks in C/C++ Programs

Jiang Zhang, University of Southern California; Shuai Wang, HKUST;
Manuel Rigger, Pinjia He, and Zhendong Su, ETH Zurich
https://www.usenix.org/conference/osdi21/presentation/zhang

https://www.usenix.org/conference/osdi21/presentation/zhang

SANRAZOR: Reducing Redundant Sanitizer Checks in C/C++ Programs

Jiang Zhang1 Shuai Wang2∗ Manuel Rigger3 Pingjia He3 Zhendong Su3

University of Southern California1 HKUST2 ETH Zurich3

Abstract
Sanitizers detect unsafe actions such as invalid memory ac-
cesses by inserting checks that are validated during a pro-
gram’s execution. Despite their extensive use for debugging
and vulnerability discovery, sanitizer checks often induce a
high runtime cost. One important reason for the high cost is,
as we observe in this paper, that many sanitizer checks are
redundant — the same safety property is repeatedly checked
— leading to unnecessarily wasted computing resources.

To help more profitably utilize sanitizers, we introduce
SANRAZOR, a practical tool aiming to effectively detect and
remove redundant sanitizer checks. SANRAZOR adopts a
novel hybrid approach — it captures both dynamic code cov-
erage and static data dependencies of checks, and uses the
extracted information to perform a redundant check analysis.
Our evaluation on the SPEC benchmarks shows that SANRA-
ZOR can reduce the overhead of sanitizers significantly, from
73.8% to 28.0–62.0% for AddressSanitizer, and from 160.1%
to 36.6–124.4% for UndefinedBehaviorSanitizer (depending
on the applied reduction scheme). Our further evaluation on
38 CVEs from 10 commonly-used programs shows that SAN-
RAZOR-reduced checks suffice to detect at least 33 out of
the 38 CVEs. Furthermore, by combining SANRAZOR with
an existing sanitizer reduction tool ASAP, we show synergis-
tic effect by reducing the runtime cost to only 7.0% with a
reasonable tradeoff of security.

1 Introduction

Software sanitizers are designed to detect software bugs
and vulnerabilities in code written in unsafe languages like
C/C++ [33]. A sanitizer typically inserts additional checks
into the program during compilation; at run time, the sani-
tizer check terminates the program if it detects unsafe actions
or states (e.g., a buffer overflow). To date, various sanitizers
have been designed to help detect vulnerabilities in C/C++
programs [4, 8, 24, 32, 35].

∗Corresponding author.

Sanitizers are commonly used by developers to find bugs
before software deployment. In principle, they could also be
used in deployed software, where they terminate program
executions to prevent vulnerabilities from being exploited.
In practice, however, the high runtime overhead of sanitizers
inhibits their adoption in this application scenario [33, 40].
For example, our study on SPEC CPU2006 benchmarks [34]
shows that the geometric mean overheads induced by Ad-
dressSanitizer (ASan) [32] and UndefinedBehaviorSanitizer
(UBSan) [8] are, respectively, 73.8% and 160.1% (cf. Sec. 6).

It is difficult to reduce the overhead of sanitizer checks and
therefore accelerate the execution of sanitization-enabled pro-
grams. To date, a number of approaches have been proposed
aiming at finding unnecessary sanitizer checks with static
analysis [6,9,11,12,15,25,37,39,44,45]. For example, some
approaches remove array bound checks by checking whether
the value range of an index falls within the array size. They
usually perform heavyweight, specialized program analyses
to reduce specific sanitizer checks. In contrast, ASAP [40],
the most closely related work to ours, elides sanitizer checks
deemed the most costly based on a user-provided overhead
budget. Despite being general and supporting sanitizers of dif-
ferent implementations, ASAP removes checks irrespective
of their importance and may overoptimisitcally remove them,
resulting in missed vulnerabilities. Thus, prior approaches for
reducing sanitizer checks use either sanitizer-specific static
analyses (e.g., [9,37]) to remove only semantically redundant
checks, or general heuristics [40] to remove costly sanitizer
checks irrespective of their semantics.

This work explores a new, novel design point — it intro-
duces a general framework, SANRAZOR, for effectively re-
moving likely redundant checks. SANRAZOR is designed as
a hybrid approach. First, it gathers coverage statistics during
a profiling phase (e.g., based on a program’s test suite). It
then performs a correlation analysis, employing both the pro-
filed coverage patterns as well as static data dependencies,
to pinpoint and remove checks identified as likely redundant.
Like ASAP [40], SANRAZOR is general and orthogonal to
existing sanitizer reduction approaches that focus on specific

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 479

sanitizer check implementations [9, 37, 44]. Distinct from
ASAP, SANRAZOR identifies and removes sanitizer checks
that repeatedly check the same program property, while ASAP
removes sanitizer checks of high cost and may miss vulnera-
bilities. Although, like ASAP, SANRAZOR is unsound, i.e., it
may remove checks even when they are unique, in practice,
our evaluation results show that it accurately maintains the
sanitizer’s effectiveness in discovering defects and provides
significantly reduced runtime overhead.

We evaluate the performance gain of SANRAZOR on the
SPEC CPU2006 benchmark. The results show that SANRA-
ZOR reduces geometric mean runtime overhead caused by
ASan from 73.8% to 28.0–62.0% (depending on the differ-
ent reduction schemes in SANRAZOR). Similarly, geometric
mean overhead incurred by UBSan on SPEC programs is re-
duced from 160.1% to 36.6–124.4%. To measure the accuracy
of SANRAZOR, we evaluate 10 popular programs with a total
of 38 known CVEs. Results show that after removing redun-
dant sanitizer checks, at least 33 CVEs can still be discovered.
Compared with ASAP, SANRAZOR significantly outperforms
ASAP by discovering more CVEs when achieving the same
amount of cost reduction. We also explored practical methods
to combine SANRAZOR and ASAP and reduce runtime cost
to only 7.0% with a reasonable tradeoff of security. These
promising results suggest that SANRAZOR could help pro-
mote the adoption of sanitizers in production usage. In sum,
we make the following main contributions:
• At the conceptual level, we introduce the novel approach

to reducing performance overhead incurred by sanitizers
by identifying and removing likely redundant checks. By
reducing sanitizer cost, sanitization-enabled programs can
be executed faster, making sanitizer adoption in production
use more practical.

• At the technical level, we design and implement a practical
tool, SANRAZOR, to reduce sanitizer checks. SANRAZOR
performs a hybrid analysis by leveraging both coverage
patterns and static data dependency features to identify
sanitizer checks as likely redundant.

• At the empirical level, our evaluation on the SPEC bench-
marks shows that SANRAZOR can significantly reduce
runtime overhead caused by ASan and UBSan. Moreover,
our evaluation on real-world software with known CVEs
shows that after applying SANRAZOR to reduce sanitizer
checks, almost all CVEs can still be discovered.
We have publicly released SANRAZOR on GitHub at

https://github.com/SanRazor-repo/SanRazor.

2 Preliminaries
Sanitizers are dynamic tools for finding software defects [33].
Sanitizers insert sanitizer checks, which are statements for
monitoring program behaviors and validating whether they
violate certain properties. We now introduce two sanitizers
provided by the LLVM framework, ASan and UBSan, which
have helped to detect many vulnerabilities [33].

ASan. Memory access errors like buffer overflow and use-
after-free are severe vulnerabilities in C/C++ programs. ASan
is designed to detect memory errors [32], and consists of an
instrumentation module and a runtime library. The instru-
mentation module allocates shadow memory regions for each
memory address used by the program. It also instruments each
memory load and store operation such that before a memory
address a is used to access memory, a will be mapped to its
corresponding shadow memory address sa; the value stored
in sa is then loaded and checked to decide whether the access
via a is safe. The instrumentation module also allocates a
“bad” region for each shadow memory region; directly using
a shadow memory address sa in the application code will be
redirected to the “bad” region, which is inaccessible via page
protection. The runtime library hooks the malloc function
to create poisoned “redzones” next to allocated memories to
detect memory access errors. Similarly, the free function is
instrumented to put the entire deallocated memory region into
“redzones.” This ensures that the recently-freed region will
not be used by malloc for reallocation.
UBSan. Undefined behaviors can incur severe software vul-
nerabilities [41]. UBSan [8] detects a large set of common
undefined behaviors in C/C++ code, such as out-of-bounds
access, divided by zero, and invalid shift. We briefly introduce
one undefined behavior that UBSan can detect:
Out-of-bounds Array Access Unlike ASan, which relies on
shadow memory, UBSan detects out-of-bounds array accesses
by comparing each array index with the array size. Consider
the sample code below:

1 UChar buf[32]; // buf size is 32
2 for(i = 0; i < nBuf; i++)
3 out[i] = buf[nBuf -i-1];

where buf has 32 elements. When nBuf is greater than 32,
executing buf[nBuf-i-1] may trigger an out-of-bounds ac-
cess (e.g. when i is 0). UBSan identifies this by placing an
extra if condition to compare the array index nBuf-i-1 with
the array size 32 before executing the loop body.

3 Problem Formulation
Conceptually, a sanitizer check c(v) (v is the input parameter)
can be defined as follows:

if(P(v) does not hold) abort_or_alert();

where c checks whether a property P holds w.r.t. parameter
v. Usually, v denotes critical program information (e.g., code
pointers), and by violating property P, e.g., a null pointer
dereference, c either aborts program execution or alerts the
user. Considering a program p with N sanitizer checks in-
serted, we use ci.v and ci.P to denote the parameter of the ith
check ci and its checked property throughout this section.

As introduced in Sec. 2, computation overhead can be intro-
duced by each ci, since ci performs complex safety property
checking, and may require extra memory to store metadata.

480 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SanRazor-repo/SanRazor

LLVM IR
with sanitizer

checks
Static

Patterns

Instrument each
identified check

Workload

Identify
checks

Check List Profile instrumented
code

Instrumented
LLVM IR

Construct data
dependency graph

Check List
Check redundancy

analysis
Check

reduction

Dynamic
Patterns Redundant

Check List

LLVM IR with
reduced sanitizer

checks

SanRazor

Figure 1: Workflow of SANRAZOR.

Nevertheless, a large portion of sanitizer checks repeatedly as-
sert identical properties, thus wasting computing resources on
properties deemed safe. We aim to remove redundant checks
to reduce cost, thus making the production adoption of san-
itizer checks more practically feasible. Next, we present a
motivating example, and then formulate the notion of “redun-
dant sanitizer checks” from a functionality perspective.

3.1 Sample Redundant Checks in bzip2
We show an example of checks in bzip2 that repeatedly vali-
date the same array index as follows:

for(i=0; i < nblock; i++) {
j = eclass8[i]; //ASan1
k = ftab[j] - 1; //ASan2;
ftab[j] = k; //ASan3; ASan2 and ASan3 identical?
fmap[k] = i; //ASan4; k < fmap_size always hold?

When ASan is enabled, four sanitizer checks are inserted
to detect out-of-bound array access. Existing research could
remove ASan4, by asserting k always falls within the size
of fmap. In contrast, SANRAZOR advocates a new and or-
thogonal focus by deciding that ASan2 and ASan3 validate
the same index, and therefore, ASan3 can be removed without
missing potential defects.1 Indeed, our study shows that check
redundancy is a general concern in real-world software (see
Sec. 6), motivating a strong need for optimization. Also, to
the best of our knowledge, standard compiler optimizations
and previous research in this field (e.g., [6,9,11,12,15,28]) do
not strive to use “similarity analysis” to reveal the equalivance
of ASan2 and ASan3 and shave ASan3 accordingly. In fact,
our study shows that, when full optimizations (-O3) of clang
are enabled, no sanitizers can be shaved for this case. This
observation underlies the key novelty of SANRAZOR, whose
design will be introduced in Sec. 4.

3.2 Redundant Sanitizer Checks
We start by giving a general definition of what a redundant
check is, before refining the notion in an operational way:

Definition 1. Assume that a sanitizer check ci that could
detect a hypothetical bug B in program p is removed. If B can

1We scope SANRAZOR to single threaded programs. See Sec. 4 for further
discussion of application scope.

still be detected, either by another sanitizer check c j or by a
user-defined check, then ci is a redundant sanitizer check.

More formally, given a nontrivial, single-threaded program
p with a set of checks c ∈C, two checks ci and c j are deemed
identical, when the following condition holds:

(ci ∈ dom(c j)∨c j ∈ dom(ci))∧ [[ci.v]] = [[c j.v]]∧ci.P = c j.P

where ci ∈ dom(c j) and c j ∈ dom(ci) denote that ci dominates
c j in the control flow graph or vice versa. Therefore, every
execution from the program entry point to c j goes through
ci or vice versa [5]. [[ci.v]] = [[c j.v]] represents that ci.v and
c j.v are semantically equivalent. ci.P = c j.P means that ci
and c j are the same kind of checks (e.g., they are both ASan
checks, which can be recognized with pattern matching; cf.
Sec. 4.1). When ci and c j satisfy the given condition and
ci ∈ dom(c j), c j can be removed because if c j is executed,
ci must be executed and they check the same property. The
given condition specifies the functional equivalence of ci and
c j. However, computability theory (e.g., Rice’s theorem [29])
suggests that it could be very difficult, if possible at all, to
assert [[ci.v]] = [[c j.v]] for nontrivial programs. Moreover, per-
forming control flow analysis to recover the dominator tree
(e.g., dom(c j)) information can be challenging and lead to
false alarms, especially for cases where points-to analyses are
extensively used in performing control flow analysis.

Given the theoretical challenge of identifying redundant
sanitizer checks, we instead propose a practical approxima-
tion to identify likely redundant checks. Our approximation
extracts both code coverage patterns and static input depen-
dency patterns of checks (cf. Sec. 4); two checks are deemed
“redundant” when they yield identical dynamic and static pat-
terns. Specifically, we search for a pair of checks ci and c j and
flag them as redundant if all the following conditions hold:
• ci and c j have correlated dynamic code coverage patterns,

when executing the software with a nontrivial amount of
workload inputs. Here, coverage patterns are checked re-
garding their “correlation”, such that they can be identical,
or one check’s coverage pattern can subsume the other’s
pattern (see Sec. 4.4 for details).

• ci.P(ci.v) and c j.P(c j.v) are approximately equivalent w.r.t.
static data dependency patterns deduced by our technique:
[[ci.P(ci.v)]]≈ [[c j.P(c j.v)]].

The first condition can be determined by instrumenting
and profiling the program, and for the second, we assert

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 481

[[ci.P(ci.v)]]≈ [[c j.P(c j.v)]] by checking the data dependency
of two check inputs (see Sec. 4.4 for technical details).

4 Design

Fig. 1 depicts the workflow of SANRAZOR. SANRAZOR
starts by identifying both user-defined checks and sanitizer
checks (Sec. 4.1). It then instruments each check to record
code coverage patterns (Sec. 4.2). We select a suitable work-
load (Workload in Fig. 1) and run the instrumented program
with this workload to gather code coverage for each check.
SANRAZOR then performs static analysis to construct data
dependency graphs per check input and extract static patterns
(Sec. 4.3). After obtaining static and dynamic characteris-
tics for each check, SANRAZOR conducts an unsound check
redundancy analysis (Sec. 4.4). The dynamic and static pat-
terns are both analyzed, and checks with identical patterns
will be marked as redundant and removed. The program with
remaining checks will be compiled into an executable.
Application Scope. We implement SANRAZOR to analyze
LLVM intermediate representation (IR) [17] and remove re-
dundant ASan and UBSan checks. While the current imple-
mentation focuses on C/C++ programs, SANRAZOR does not
rely on any specific features of C/C++. Therefore, programs
written in any programming language can be analyzed, as long
as they can be compiled to LLVM IR. Static and dynamic
patterns leveraged by SANRAZOR are orthogonal to particular
sanitizer implementations; hence, in principle SANRAZOR
can reduce checks of different sanitizers. Contrarily, existing
work often aims to flag useless checks with dedicated pro-
gram analysis, while our approach generally circumvents this
limitation. See Sec. 8 for comparisons with existing research.
Application Scenario. The focus and typical application sce-
nario of SANRAZOR are to practically accelerate sanitization-
enabled programs in production usage. When a production
software cannot afford all the sanitizer checks, SANRAZOR
can help effectively remove those checks that are least useful
in terms of discovering unique problems. As will be shown in
Sec. 6, SANRAZOR can reduce the overhead of ASan and UB-
San significantly without primarily undermining vulnerability
detectability. Moreover, SANRAZOR may be combined with
complementary approaches to further reduce the overhead
of sanitizer checks. For example, by combining SANRAZOR
with ASAP, it is plausible to run these sanitizers in production
(at 7% overhead) for their security benefits and vulnerability
detectability. Thus, we believe users should generally incline
to accept a low overhead (e.g., less than 10% when combining
ASAP and SANRAZOR) for improved security and vulner-
ability detectability compared to running without sanitizer
checks. In contrast, enabling full ASan can incur much higher
cost (e.g., around 73.8%, as reported in Sec. 6) and is thus un-
realistic in production. In practice, we would encourage users
to explore combining SANRAZOR with other sanitization op-
timization tools [9, 37, 44] which share generally orthogonal

focuses with SANRAZOR. We give further discussion and
comparison with contemporary research works in Sec. 8.

4.1 Check Identification
We start by discussing how ASan and UBSan checks are iden-
tified. As aforementioned, each check can be represented as
a comparison instruction followed by a control-flow transfer
instruction in LLVM IR statements:

1 %o = icmp cond %a, %b
2 br i1 %o, label %bb1, label %bb2

where %a and %b are two LLVM IR identifiers, and icmp com-
pares %a and %b w.r.t. the condition specified by cond (equal,
greater than, etc.). A one-bit comparison output will be stored
in %o, which is subsequently consumed by the control-flow
instruction br. In case %o equals to one (i.e., the condition
evaluates to “True”), the control flow will be transferred to
the basic block pointed by %bb1; otherwise the basic block
pointed by %bb2 will be executed.

To distinguish sanitizer checks from user checks (i.e.,
branches in the source code), we search for calls to specific
functions that are used by sanitizers. Specifically, a condition
represents an ASan check, if a call to _ASan_report can be
found in blocks pointed by label %bb1 or %bb2. Similarly, a
call to the _UBSan_handle_XXX function indicates the corre-
sponding condition represents a UBSan check. Note that XXX
denotes the name of an undefined behavior that this partic-
ular UBSan check detects. Overall, while ASan checks are
designed to capture memory access errors, UBSan subsumes
a much broader set of defects. The type of checked unde-
fined behaviors can be seen from the handler name above, and
indeed, the corresponding icmp statements can have differ-
ent constant operands, characterizing the checked undefined
behavior types.

4.2 Dynamic Check Pattern Capturing
SANRAZOR captures the dynamic patterns of checks by in-
strumenting the LLVM IR and inserting a counter statement
before the br statement of identified checks (see the sample
code in Sec. 4.1). We count how many times the control-flow
statements are executed. We also record how many times
the true and false branches are taken, by checking the one-
bit operand of the control-flow statement. Sanitizer checks
can be configured to abort the process or output an alert. To
smoothly collect dynamic coverage patterns, we configure
sanitizer checks to “alert users” instead of aborting the pro-
cess. The collected coverage patterns will be used to identify
redundant checks (cf. Sec. 4.4).
Workload Selection. Ideally, the more execution traces the
selected workload can cover, the more comprehensive the
dynamic patterns could become. SANRAZOR uses default
test cases shipped with software to record dynamic patterns.

482 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Our observation shows that the runtime overhead is primar-
ily caused by sanitizer checks on hot paths. The shipped test
cases typically suffice covering hot paths and derive nontrivial
coverage patterns of most sanitizer checks. If one sanitizer
check is never covered, it is not removed, since no dynamic
pattern analysis is available. Sec. 7.4 presents further empiri-
cal evidences and discussions regarding workload selection.

4.3 Static Check Pattern Capturing
A user check or sanitizer check asserts certain program prop-
erties with a comparison statement (i.e., icmp in Sec. 4.1).
For the static phase, we extract data-flow information from
operands of each icmp statement. The extracted data flow
facts constitute the static feature of a check.

To this end, SANRAZOR performs backward-dependency
analysis to construct the data dependency graph for the branch
condition operand. The analysis starts from the checked con-
dition in the control-flow statement (the br instruction in
Sec. 4.1; recall that br takes a LLVM identifier of one bit as
its input). The checked condition register has a data depen-
dency on two operands of the comparison statement. The con-
structed dependency tree will be used to constitute the static
patterns of each check (see Sec. 4.3.1). The backward traver-
sal will be stopped when we encounter terminal operands,
including constants, phi [46] nodes, global variables, and
function parameters. Also, when encountering function calls
during the traversal (e.g., malloc), instead of performing
heavyweight inter-procedural analysis, we take all function
parameters as the dependency of the function return value.

4.3.1 Extracting Static Features with Three Schemes

After constructing the value dependency tree for the operand
of the control-flow instruction br, the next step is to extract
static features from the dependency tree. At this step, we
design three schemes (L0, L1, and L2) by calibrating the ex-
tracted static features. Three schemes are designed as follows:
• L0, which gathers all the leaf nodes on the dependency tree

into a set.
• L1, which canonicalizes the collected set of leaf nodes,

by eliminating all constants from the set except constant
operands from the comparison statement (icmp instruction)
associated with each sanitizer or user check.

• L2, which canonicalizes the collected set of leaf nodes, by
eliminating all constants from the set.
L0 collects all the leaf nodes into a set while L1 and L2

further canonicalize the constructed set by removing constant
leaf nodes. In other words, we might treat checks for the
following two pointer dereferences as “redundant”, although
they check different program properties:

1 int a = *ptr; // ASan check on ptr
2 int b = *(ptr + 4); // ASan check on (ptr+4)

123: ; preds = %114
......
%ftab3 = getelementptr inbounds %struct.EState,

%struct.EState* %s, i64 0, i32 6
%125 = ptrtoint i32** %ftab3 to i64
%126 = lshr i64 %125, 3
%127 = add i64 %126, 2147450880
%128 = inttoptr i64 %127 to i8*
%129 = load i8, i8* %128
%130 = icmp ne i8 %129, 0
br i1 %130, label %131, label %132

131: ; preds = %123
call void @__ASan_report_load8(i64 %125)
call void asm sideeffect "", ""()
unreachable

132: ; preds = %123
%133 = load i32*, i32** %ftab3, align 8
......

%130 icmp

%129 load 0

%128 inttoptr

%127 add 21247450880

%126 lshr 0

%125 ptrtoint 0

%ftab getelementptr

%s 0 6

Value

dependency

1

2
3
4
5
6
7
8

9
10
11

12

UInt32* ftab = s->ftab;

LLVM
IR

Figure 2: Tracing static data flow dependency.

With ASan enabled, the first and second ASan checks
would take ptr and ptr+4 as the inputs. Since both L1 and L2
schemes would eliminate constants (i.e., 4 for this case) from
the leaf node set, these two checks are treated as redundant
by L1 and L2. Nonetheless, L1 and L2 schemes would un-
likely miss discovering bugs derived from pointer arithmetics,
in the sense that if an expression using pointer arithmetic
(e.g., ptr+4) can provoke sanitizer check alerts, the pointer in
the expression (i.e., ptr) is presumably invalid and provokes
sanitizer check alerts as well. We present further discussion
regarding security considerations in Sec. 4.3.2.

Overall, scheme L1 and L2 relax the notion of check “equiv-
alence” by distilling pointer arithmetic expressions while still
preserving rich information of the built dependency tree. Also,
L1 is designed to retain the constant operand of icmp state-
ment associated with each check. As aforementioned, UBSan
uses constant operands in the icmp statement to assert differ-
ent program properties, keeping these specific constants can
help to distinguish UBSan checks of different types. Sec. 6
further presents empirical results regarding each strategy; con-
sistent with our intuition, evaluation results (Sec. 6.1) show
that the relatively more aggressive scheme L2 can help to
identify more redundant checks and reduce runtime overhead.
Moreover, Sec. 6.2 shows that even L2 can still help to dis-
cover 33 (out of in total 38) CVEs from complex software.
SANRAZOR provides all three schemes to extract static pat-
terns, and we leave it to users to decide which one to use.

Fig. 2 illustrates feature extraction with an example. Once
a path condition statement (line 8; the call statement on line
9 indicates this condition belongs to an ASan check) is iden-
tified, we trace the data dependency on the condition (%130)
and construct a dependency tree. The dependency recovery
forms a depth-first search, and we stop the search when en-
countering terminal nodes (e.g., the constants in Fig. 2). The
recovered dependency tree will be used for comparison, fol-
lowing one of the schemes noted above.

4.3.2 Security Consideration

As previously mentioned, we deem that the L1 and L2
schemes would unlikely miss discovering bugs derived from

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 483

pointer arithmetics, given that if ptr+4 is invalid, checking
ptr is presumably sufficient to reveal the issue in practice.
However, there are few corner cases, i.e., if ptr points to the
end of an allocated memory, then *ptr is safe while *(ptr+4)
corrupts. Similarly, ptr may point before the start of an allo-
cated memory chunk: *ptr thus corrupts whereas *(ptr+4)
is safe. As clarified in Application Scenario in Sec. 4, we fo-
cus on practically accelerating sanitization-enabled programs.
Users concerned about “sophisticated attackers” can use L0
or resort to full sanitization. When facing active attackers,
another optimization opportunity is to first identify program
attack interface, and then shave sanitizer checks out side those
security sensitive code fragments. To do so, users can first
employ information flow analysis techniques (e.g., taint anal-
ysis [31]). We leave it as future work to explore this direction.

4.3.3 Extension Using Static Analysis

As discussed in Sec. 3.2, computability theory suggests that
it is difficult, and in general theoretically impossible, to rig-
orously establish the equivalence of two arbitrary nontrivial
code fragments. Nevertheless, in practice, it is feasible to
use static analysis to identify (likely) equivalent checks. In
particular, we envision that symbolic techniques, e.g., (under-
constrained) symbolic execution [27] and constraint solving,
can be used to prove the equivalence of sanitizer checks.

We have observed a line of research seeking to perform
code equivalence checking, by first collecting program input-
output relations using symbolic execution [10, 19, 21]. Then,
given symbolic constraints representing input-output relations
of two code fragments, constraint solver can prove that these
two code fragments are equivalent (suppose side effects are
not considered). Moreover, constraint solvers can also be used
to prove the inclusion of two symbolic constraints, i.e., de-
ciding whether the satisfiability of one symbolic constraint
will always induce the satisfiability of the other constraint.
As a result, a potential extension of SANRAZOR is to decide
whether check ci validates a weaker property that can be in-
ferred by a stronger property validated in another check c j. If
so, ci could be redundant and removed. Overall, using such
symbolic techniques could be the follow-up work of SAN-
RAZOR to provide more principled guarantees; the tradeoff
would be cost and scalability, given most symbolic execution-
based code equivalent checking analyzes only basic blocks or
execution traces [10, 20, 21].

In Sec. 7.2, we will show that the proposed technique can
induce a number of false positive cases, i.e., treating distinct
sanitizer checks as equivalent. However, most false positives
discussed in Sec. 7.2 could be solved through intra-procedural
static analysis, e.g., differentiating accesses to different fields
in the same structure. We leave it as one future work to explore
using field-sensitive point-to analysis (e.g., SVF [36, 38]) to
alleviate false positives of SANRAZOR. Also, SANRAZOR
currently omits to perform inter-procedural analysis, and as a

result, sanitizer checks inside two procedures would be treated
as different. This design decision may potentially lead to
false negative cases (i.e., missing a pair of redundant checks).
However, we find that in practice, false negative cases are
primarily due to other reasons; see discussion in Sec. 7.3.

4.4 Sanitizer Check Reduction
For each pair of checks, SANRAZOR decides whether one
check is redundant to the other, by comparing their static and
dynamic patterns. In case two checks are identical w.r.t. both
static and dynamic patterns, only one check will be retained.
Comparing Dynamic Coverage Patterns. Let the coverage
pattern of sanitizer check sci be a tuple 〈sbi,stbi,s f bi〉, where
sbi denotes the total coverage times of sci, stbi and s f bi rep-
resent that sci executes its true branch stbi times and its false
branch s f bi times. Similarly, the dynamic pattern of a user-
defined check uci can be denoted as a tuple 〈ubi,utbi,u f bi〉,
where ubi denotes the total coverage times of uci, utbi and
u f bi represent that uci executes its true branch utbi times
and its false branch u f bi times. Then, for dynamic coverage
patterns extracted from sanitizer check sci and user-defined
check uci, if they satisfy one of the following conditions, we
consider sci and uci having identical coverage patterns:

(a) (sbi = ubi)∧
(
(stbi = utbi)∨ (stbi = u f bi)

)
(b) (sbi = utbi)∧

(
(stbi = sbi)∨ (s f bi = sbi)

)
(c) (sbi = u f bi)∧

(
(stbi = sbi)∨ (s f bi = sbi)

) (1)

The first condition implies that two checks have the same
dynamic pattern. This can happen when they reside on the
same path and the sanitizer check sci’s false branch has the
same coverage times as the user check uci’s true or false
branch. As illustrated in Fig. 3(a), suppose sci and uci check
the same program property, then the predicates of sci and uci
shall be satisfied and failed for the same numbers of times.
The latter two conditions are satisfied when sci is guarded by
one branch of uci and one branch of sci is never executed. For
instance, to understand the second condition (suppose sci and
uci check the same property; see Fig. 3(b)), whenever uci is
true, sci within its true branch (i.e., sbi = utbi) should always
be evaluated to the same direction, as implied by (stbi =
sbi)∨ (s f bi = sbi).

Similarly, for two sanitizer checks sci and sc j, if they sat-
isfy the following condition, we assume that sci has identical
dynamic patterns with sc j (one case shown in Fig. 3(c)):

(sbi = sb j)∧
(
(stbi = stb j)∨ (stbi = s f b j)

)
(2)

As mentioned in Sec. 4.2, when collecting the dynamic cov-
erage pattern, we configure sanitizer checks to “alert” users
(not abort programs) and collect the coverage patterns for
comparison. Depending on the implementation details, the
program aborting/alerting routine could be found in either the
true branch or the false branch of a sanitizer check. Hence, we

484 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

uci

Branch

......

sci

Branch’

......

True False

Alert
True False

sci

......

scjAlert

......

True

False

Alert
True

False

......

(a) (c)

uci

Branch

......

Branch’

......

True False

sci

......
Alert

True False

(b)

Figure 3: Coverage patterns. Sanitizer checks can be configured to
abort programs or alert users. As noted in Sec. 4.2, we configure
sanitizer checks to “alert” users (not abort programs) and collect the
coverage patterns for comparison.

define a set of general conditions in Formulas 1 and 2, which
shall take both cases (i.e., the “aborting” routine resides in
true or false branches) into account.

We also note that we did not observe any alerts yielded
by sanitizer checks in our experiments. In general, the alert
branch of a sanitizer check is much less likely to execute, if
at all, than the non-alert branch. The consequence is that a
subset of the conditions in Formulas 1 and 2 are in fact used
in our experiments. For instance, when the sanitizer check
sci is within the true branch of uci, the second condition in
Formula 1 must be satisfied. Nevertheless, in practice, this
rarely affects the correctness of our redundancy judgement.
Comparing Static Dependency Patterns. As discussed in
Sec. 4.3.1, we provide three schemes to extract static patterns
(into sets) from dependency trees of operands in control trans-
fer statements. Given two sets Si and S j formed by analyzing
two checks ci and c j, ci and c j are considered to have identical
static patterns, in case Si and S j are identical.
Removing Sanitizer Checks. SANRAZOR does not remove
user-defined checks; we prune sanitizer checks in case they
are redundant w.r.t. user or other sanitizer checks. Given a
pair of likely redundant sanitizer checks ci and c j, we remove
the check c j if it was dominated by ci. Users can also config-
ure SANRAZOR to decide which one to remove. To remove
a check, we set the condition of its control-flow statement
(see Sec. 4.1) as false such that the branch for alerting/abort-
ing will never be executed. This would let the dead-code-
elimination of LLVM remove the redundant code.
Extension by Considering Dominating Cases. The afore-
mentioned coverage pattern reasonably flags redundant
checks and achieves high effectiveness of reducing overhead
incurred by sanitizer checks. Nevertheless, we point that that
Formula 2 only considers the equality cases; the dominating
cases are not considered, which introduces false positives and
the primary false negatives, as will be shown in Sec. 7.2 and
Sec. 7.3. An improvement at this step is to maintain the po-
tential dominating checks (denoted as Di) for sanitizer check
ci. Check ci can be removed in case its dominating check
ck ∈ Di manifests identical data dependency features with ci.
This extension primarily eliminates false negatives presented
in Sec. 7.3.

5 Implementation

SANRAZOR [3] is written primarily in C++ with approxi-
mately 2,000 lines of code. We integrate SANRAZOR into
the LLVM framework [17] by providing a wrapper of clang,
namely SanRazor-clang. Users can replace clang in their
building scripts with SanRazor-clang. SanRazor-clang in-
serts sanitizer checks to a C/C++ program, and then invokes
our follow-up passes to reduce redundant checks. To use SAN-
RAZOR, users need to prepare a reasonable amount of inputs.
We note that standard test inputs would usually suffice remov-
ing a large amount of sanitizer checks; see our empirical study
of workload selection in Sec. 7.4.

6 Evaluation

We give the cost evaluation of SANRAZOR in Sec. 6.1. We
measure the reduction accuracy (in terms of vulnerability de-
tectability) in Sec. 6.2 and compare it with ASAP in Sec. 6.3.

6.1 Cost Study
We start by measuring how well SANRAZOR can reduce the
performance penalty of sanitizer checks. To this end, we
leverage the industry-standard CPU-intensive benchmark
suite, SPEC CPU2006, for the evaluation. SPEC CPU2006
contains 19 C/C++ programs. We are able to compile
11 SPEC benchmarks with the Clang compiler (version
9.0.0) and with ASan or UBSan enabled. These 11 test
cases are 401.bzip2, 429.mcf, 445.gobmk, 456.hmmer,
458.sjeng, 462.libquantum, 433.milc, 444.namd,
470.lbm, 482.sphinx3, and 453.povray. We encountered
compatibility issues for the other benchmarks.2

Each SPEC benchmark is shipped with a training workload,
a testing workload, and a reference workload. Following the
convention, we use the training workload to profile these
programs and obtain the dynamic patterns of sanitizer checks
(see Sec. 4.2). After redundant sanitizer checks are removed
by SANRAZOR, the reference workload is used to measure
the performance of the optimized programs. We do not use
test workload since it leads to much shorter execution time
compared with the reference and training workload.

To evaluate the effectiveness of SANRAZOR, we mea-
sure the execution time reduction after eliminating redundant
checks (referred to as M0 metrics). We also count the number
of removed sanitizer checks (referred to as M1 metrics), and
the execution cost (in terms of CPU cycles) saved by reducing
sanitizer checks (referred to as M2 metrics). M0 is determined
by measuring the execution CPU time. To calculate M1, we
record the total number of sanitizer checks inserted by the
compiler and the number of sanitizer checks reduced by SAN-
RAZOR. The calculation of M2 is consistent with ASAP [40]

2Similar compatibility issues were also reported by ASAP [40]. We
provide error messages in our artifact [3] for reference.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 485

401.bzip2
429.m

cf
433.m

ilc
444.nam

d
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum

470.lbm
482.sphinx3

0

20

40

60

80

100

120

140
R

u
n

ti
m

e
o

v
er

h
ea

d
/%

ABSan

ABSan+SanRazor+L0

ABSan+SanRazor+L1

ABSan+SanRazor+L2

453.povray

0

50

100

150

200

250

Figure 4: Comparison results w.r.t. M0 metrics (execution time re-
duction) on ASan.

401.bzip2
429.m

cf
433.m

ilc
444.nam

d
445.gobm

k
453.povray
458.sjeng
462.libquantum

470.lbm
482.sphinx3

0

50

100

150

200

250

R
u

n
ti

m
e

o
v

er
h

ea
d

/%

UBSan

UBSan+SanRazor+L0

UBSan+SanRazor+L1

UBSan+SanRazor+L2

456.hm
m

er

0

200

400

600

800

Figure 5: Comparison results w.r.t. M0 metrics (execution time re-
duction) on UBSan.

(see comparison with ASAP in Sec. 6.3). In general, each
sanitizer check performs a sequence of operations to assert
a program property, and for each operation oi (e.g., loading
shadow memory), ASAP predefines a constant fi denoting
how many CPU cycles oi takes. Suppose a sanitizer check is
executed for c times and each execution requires in total F
CPU cycles (F = ∑i=1 fi), its execution cost is calculated as
c×F . We reuse fi defined in ASAP to compute M2.
Processing Time. All experiments are conducted on a work-
station with an Intel i7-8700 CPU and 16GB memory. We
use scripts provided by SPEC to profile programs and collect
coverage patterns. It takes on average 323 CPU seconds to
profile one SPEC program. The static dependency analysis
phase of SANRAZOR takes on average 27 seconds per case.

Cost Evaluation Results

Fig. 4 reports the execution cost that is induced by ASan
checks with, and without applying SANRAZOR. The geo-
metric mean runtime overhead increase with full ASan en-

abled (the blue line) is 73.8%. After reducing redundant
ASan checks, performance overhead is reduced by 12.1%
(L0), 35.2% (L1), and 53.5% (L2), with the geometric mean
remaining overhead being 62.0% (L0; the orange line), 35.8%
(L1; the yellow line), and 28.0% (L2; the purple line). The
reduced runtime overhead with the L2 scheme can be up to
91.7% (for 470.lbm), and the smallest reduction (445.sjeng,
which exhibits the highest overhead with ASan enabled) still
reduces the runtime cost by 30.8%.

Fig. 5 also illustrates the performance overhead for UBSan.
In general, the runtime overhead caused by UBSan (geometric
mean 154.3%; see the blue line) is much higher than ASan. By
reducing redundant checks, the performance overhead can be
reduced by 13.7% (L0), 35.5% (L1), and 75.5% (L2), with the
geometric mean remaining overhead being 124.4% (L0; the
orange line), 94.7% (L1; the yellow line), and 36.6% (L2; the
purple line). The reduced runtime overhead of L2 strategies
is up to 97.5% (470.lbm), and at least 62.1% (401.bzip2).

We measure how many sanitizer checks are reduced by
SANRAZOR and the saved CPU cycles. Table 1 reports the
portion of reduced checks w.r.t. the total number of checks
(M1). Similarly, it also reports the portion of saved CPU cycles
during run time w.r.t. the total CPU cycles taken by sanitizer
checks (M2). SANRAZOR can eliminate on geometric mean
up to 29.5% of the ASan checks for the SPEC programs
(with L2 applied), which leads to 41.0% less CPU cycle cost
of ASan checks during run time. We also observed a simi-
larly promising trend for the UBSan evaluation. As shown in
Table 1, SANRAZOR can eliminate up to 39.3% of UBSan
checks for the SPEC programs on geometric mean (with L2
applied), corresponding to 77.0% less cost during run time.

Sanitizer checks contribute differently to the total execution
cost (i.e., some checks are executed far more often than oth-
ers). For instance, SANRAZOR (with L2 enabled; see Table 1)
eliminates 13.1% of ASan checks in 456.hmmer. However,
the M2 metrics is reduced by up to 70.4%, indicating that the
removed checks are on the program’s hot paths. Our manual
investigation confirms this intuition; more than 99.3% of the
runtime overhead caused by ASan stems from one function
P7Viterbi in module fast_algorithms.c, which contains
intensive memory access checks within a loop. SANRAZOR
successfully identifies many redundant sanitizer checks within
this loop, inducing effective check reduction for 456.hmmer.

We also find some reduced sanitizer checks on the cold
path of the benchmarks. For instance, while 22.6% of the
UBSan checks are removed from 462.libquantum, these
checks have low runtime coverage and therefore remov-
ing them does not significantly improve performance. An
aligned trend can be seen from the performance evaluation of
462.libquantum in Fig. 5. Our manual study indicates that
for 462.libquantum, sanitizer checks in gates.c (on the
hot path) contribute more than 99.2% of the total runtime cost.
However, these checks assert different undefined behaviors
and cannot be flagged as “redundant” by SANRAZOR.

486 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Evaluation results w.r.t. M1 (number of removed sanitizer checks) and M2 (saved CPU cycles by reducing sanitizer checks). Note
that “empty cells” for imageworsener, zziplib, libzip, graphicsmagick, jasper, potrace, and mp3gsin are not due to setup errors; they
indicate those CVEs are not discovered by the corresponding ASan (or UBSan) checks.

Benchmark ASan-M1 ASan-M2 UBSan-M1 UBSan-M2
L0 L1 L2 L0 L1 L2 L0 L1 L2 L0 L1 L2

401.bzip2 22.4% 54.4% 58.1% 4.3% 30.3% 34.2% 38.7% 54.8% 66.0% 27.3% 37.9% 68.1%
429.mcf 10.2% 53.0% 60.9% 3.0% 46.6% 60.1% 35.0% 51.8% 76.2% 37.8% 47.6% 86.0%

445.gobmk 5.2% 23.4% 26.6% 7.2% 33.7% 41.0% 12.6% 21.6% 51.3% 21.4% 23.3% 73.9%
456.hmmer 5.9% 11.7% 13.1% 14.4% 70.3% 70.4% 8.2% 11.0% 14.8% 49.2% 60.7% 78.3%
458.sjeng 5.9% 12.6% 13.4% 4.4% 34.4% 36.7% 12.1% 18.3% 51.0% 20.7% 25.2% 79.2%

462.libquantum 7.4% 16.3% 22.6% 0.8% 1.4% 2.4% 12.7% 15.6% 26.9% 0.8% 0.8% 58.8%
433.milc 23.5% 32.5% 33.5% 35.8% 80.9% 82.7% 27.6% 42.2% 54.6% 51.0% 60.6% 83.6%
444.namd 6.4% 18.9% 24.0% 10.2% 29.8% 57.7% 8.7% 16.0% 26.2% 40.4% 54.1% 84.8%
470.lbm 1.6% 68.5% 72.1% 0.0% 88.7% 92.5% 17.7% 48.2% 51.3% 46.0% 92.5% 97.6%

482.sphinx3 10.7% 27.1% 32.5% 2.5% 56.9% 58.3% 18.2% 23.7% 40.0% 11.9% 45.3% 67.2%
453.povray 7.2% 9.5% 21.2% 2.3% 12.1% 69.1% 11.1% 11.9% 22.6% 22.6% 24.0% 75.5%
autotrace 12.2% 27.6% 35.7% 22.4% 65.4% 73.1% 20.6% 25.2% 39.0% 48.6% 57.5% 78.3%

imageworsener - - - - - - 26.8% 37.1% 53.3% 17.8% 21.6% 64.0%
lame 9.5% 38.5% 40.8% 11.0% 57.5% 74.9% 23.3% 34.1% 47.5% 17.0% 46.6% 71.4%

zziplib 3.8% 20.4% 23.9% 12.9% 80.2% 90.3% - - - - - -
libzip 6.2% 19.9% 27.8% 1.0% 3.9% 44.9% - - - - - -

graphicsmagick 1.2% 4.5% 5.8% 20.1% 49.4% 63.3% - - - - - -
tiff 7.8% 21.7% 29.8% 0.2% 2.1% 2.6% 12.3% 15.8% 21.7% 7.6% 10.5% 65.6%

jasper - - - - - - 12.8% 17.3% 25.9% 19.6% 20.6% 69.6%
potrace 13.0% 31.2% 38.8% 5.4% 41.9% 48.7% - - - - - -
mp3gsin 11.6% 43.6% 46.0% 4.8% 74.8% 78.4% - - - - - -

6.2 Vulnerability Detectability Study

This section explores whether sanitizer checks marked as re-
dundant are true positive w.r.t. Definition 1 given in Sec. 3.2.
This study reflects the accuracy of SANRAZOR. We select
a number of programs with CVE vulnerabilities from an
actively-maintained CVE list [22, 23], which documents pro-
cedures to compile each program and reproduce its CVEs.
We select programs based on whether it can be successfully
compiled and whether their documented CVEs can be trig-
gered by the shipped inputs, and whether those CVEs can be
detected by ASan/UBSan.

Ten programs (with in total 38 CVEs) are used for this
evaluation. These ten programs are not cherry-picked; when
selecting these ten programs, we checked each program in the
CVE program list from the beginning [22, 23] and skipped
only those that could not be properly set up for our study.
For the evaluation setup, we start by compiling the provided
source code with ASan or UBSan enabled. We report that
those 38 CVEs can all be triggered by at least one input
provided by the CVE list [22, 23], and after enabling ASan
or UBSan, all the CVE-triggering inputs can be captured by
either ASan or UBSan (i.e., all CVEs can be discovered). We
then use SANRAZOR to perform check reduction with three
schemes (L0, L1, and L2) and check whether after pruning, the
CVE-triggering inputs can still be captured. Table 2 reports
the evaluation results in terms of which CVE vulnerabilities
can still be discovered by the pruned checks.

The static analysis phase of SANRAZOR takes on average
17.5 CPU seconds to process one program. Programs in the
CVE list are typically shipped with a small number of inputs,

including both regular and bug-triggering inputs. At this step,
we use regular inputs to generate dynamic coverage patterns
and shave sanitizer checks. We then test if bugger-triggering
inputs can still be captured by the remaining sanitizer checks.
The execution of most programs takes negligible amount of
time (on average 1.5 CPU seconds). Overall, their shipped
inputs are used for asserting functionality, not for benchmark-
ing. Regarding M0 metrics, we report that SANRAZOR re-
duces geometric mean runtime overhead caused by ASan
from 24.9% to 15.8–22.4% (depending on the different reduc-
tion schemes). Similarly, geometric mean overhead incurred
by UBSan on these CVE programs is reduced from 7.0% to
1.5–5.0%. We also report that we observed significant hot-path
vs. cold-path distinction of these CVE programs, given their
inputs of relatively low comprehensiveness. Nevertheless, we
note that in case a sanitizer check is not covered by a shipped
regular input, we will not even have its dynamic coverage
pattern, and thus will not remove it. This way, vulnerabilities
relevant to this check can be protected.

We then evaluate these programs w.r.t. the M1 and M2
metrics. As shown in Table 1, there is no significant gap com-
paring the number of checks removed from the CVE and
SPEC programs, e.g., 9.9% vs. 8.2% with ASan-M1&L0 and
19.1% vs. 19.2% with UBSan-M2&L0. Therefore, Table 2
shows, even if approximate reduction is achieved, almost all
CVEs can still be discovered. The rest of this section elab-
orates on each case. We discuss all false positive cases (i.e.,
missed CVEs due to incorrectly removed checks) exposed in
Table 2 in Sec. 7.
autotrace is an open-source software written in C, trans-
forming bitmap images into vector images. We reproduce

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 487

19 CVEs in six modules of autotrace-0.31.1. The UBSan
checks avert nine CVEs, including eight signed integer over-
flows (CVE-2017-9161∼9163, CVE-2017-9183∼9187), and
one left shift of negative value (CVE-2017-9188). The rest
are heap buffer overflows detected by ASan checks (CVE-
2017-9167∼9173, CVE-2017-9164∼9166). As reported in
Table 2, all of these CVEs can still be detected, after eliminat-
ing redundant sanitizer checks with the L0 and L1 schemes.
Nevertheless, L2 generates two false positives for the UBSan
cases (see Sec. 7.2).

imageworsener is a C/C++ library supporting scal-
ing and processing images with multiple formats. We
evaluate the performance of SANRAZOR with five CVEs
found in imageworsener-1.3.1, including two divide-
by-zero CVEs (CVE-2017-9201∼9202) in imagew-cmd.c,
two null pointer dereferences (CVE-2017-9204∼9205) in
imagew-util.c, and one out-of-bounds access (CVE-2017-
9203) in imagew-main.c. As reported in Table 2, both L0
and L1 strategies in SANRAZOR can detect all these CVEs,
while the L2 strategy generates one false positive in CVE-
2017-9203. As for the performance gain, Table 1 shows en-
couraging results by saving up to 64.0% w.r.t. M2 metrics.

lame is a MP3 encoder written in C. We reproduce two CVEs
in two C files of lame-3.99.5, where one is a division by
zero vulnerability detected by UBSan in get_audio.c (CVE-
2017-11720), and the other is a heap buffer overflow detected
by ASan in util.c (CVE-2015-9101). Table 2 shows that
both UBSan and ASan can still discover these two CVEs
for all three settings. For the inserted ASan checks, Table 1
reports that up to 74.9% cost can be saved. Similar trends (up
to 71.4%) can be observed for UBSan.

zziplib is a lightweight C library for extracting data
from a zip file. Two CVEs (CVE-2017-5976∼5977) in
zziplib-0.13.62 are evaluated, and both of them are caused
by heap buffer overflow in memdisk.c. Our evaluation shows
that after check reduction with all three settings, both CVEs
can still be discovered by ASan.

libzip is a C library for processing zip files. There is a
use-after-free CVE (CVE-2017-12858) in libzip-1.2.0,
whose triggering-inputs can be captured by ASan. As shown
in Table 2, only the L2 scheme mistakenly eliminates the
corresponding ASan check and missed one CVE.

graphicsmagick is a tool for viewing and editing
commonly-used file formats including PDF, PNG, and JPEG.
We evaluate SANRAZOR on CVE-2017-12937, a heap use-
after-free vulnerability in sun.c. Table 2 shows that this CVE
can be detected by ASan checks for all three settings.

libtiff is a library for viewing and editing tiff images.
Four CVEs, including two heap buffer overflows (CVE-2016-
10270, CVE-2016-10271), one stack buffer overflow (CVE-
2016-10095) and one division-by-zero (CVE-2017-7598), are
used to evaluate SANRAZOR. Experimental results show that
SANRAZOR can detect all CVEs in all three settings.

jasper is also a complex image processing tool (with over
40K LOC). We evaluate SANRAZOR on CVE-2017-5502, a
left shift of a value less than zero that can be detected when
UBSan checks are fully enabled. Our evaluation shows that
after check reduction, this CVE can still be discovered by the
remaining UBSan checks.
potrace is a commonly-used C tool for converting bitmaps
into smooth and scalable images. We evaluate SANRAZOR
on CVE-2017-7263, a heap buffer overflow in bitmap.c of
potrace-1.2. Table 2 shows that ASan can still discover this
CVE after redundant checks are removed in all three settings.
mp3gain is a C library for analyzing MP3 files. We re-
produce five CVEs in mp3gain-1.5.2, including one null
pointer dereference (CVE-2017-14406) in interface.c, one
buffer overflow (CVE-2017-14407) in gain_analysis.c,
and two buffer overflows (CVE-2017-14408∼14409) in
layer3.c. As reported in Table 2, one false positive is found,
where both the L1 and L2 schemes over-aggressively remove
the sanitizer check for detecting CVE-2017-14406.

The evaluation has demonstrated the promising and prac-
tical accuracy of SANRAZOR: vulnerability detectability is
unlikely impacted even if we reduce sanitizer cost. Also, read-
ers may suspect that if during the profiling phase software is
not “stressed enough”, SANRAZOR will elide a small set of
checks and, as expected, catch the respective CVEs. However,
we again note that all sanitizer checks detecting the 38 CVEs
are covered during the profiling phase. That is, our observa-
tion — at least 33 CVEs are discovered by the remaining
checks — is not due to “under-stressed profiling”, rather, the
corresponding checks are not incorrectly deemed redundant.

6.3 Comparison Study

We compare SANRAZOR with the closely related work,
ASAP [40]. ASAP reduces sanitizer checks with high cost
in order to satisfy an overhead budget specified by users. In
contrast to SANRAZOR, ASAP does not identify “likely iden-
tical checks”. Given an overhead budget T , ASAP first esti-
mates the performance cost that a sanitizer check c can incur.
Sanitizer checks will then be ranked by cost and iteratively
removed starting from the most expensive one until the esti-
mated cost is lower than the budget T . We compare SANRA-
ZOR with ASAP by running ASAP on our CVE cases with
different overhead budgets, and reports whether the known
CVEs can still be discovered (i.e., evaluation conducted in
Sec. 6.2). Contrarily, we do not evaluate ASAP on the san-
itizer overhead it can save. ASAP reduces sanitizer checks
to meet a fixed cost budget; it is easy to see that comparing
ASAP and SANRAZOR on this matter (i.e., SPEC evaluation
in Sec. 6.1) is not reasonable.

In this evaluation, we start by using the default budget of
ASAP, 5%, to measure the check reduction. As shown in Ta-
ble 2, setting the overhead budget to 5% (i.e., Budget0) prunes
23 out of 38 checks that can detect CVEs. Furthermore, to

488 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: CVE case study. N denotes the number of CVEs. The “SANRAZOR” and “ASAP” columns report the number of remaining CVEs that
can be discovered by sanitizer checks after reduction. ASAP allows to configure arbitrary overhead budget. We evaluate ASAP by using its
default budget (Budget0), and with the same overhead as SANRAZOR (i.e., Budget1, Budget2, Budget3 correspond to L0, L1, L2, respectively).
See Sec. 6.3 for the setup.

Software CVE SANRAZOR ASAP
Type Sanitizer N L0 L1 L2 Budget0 Budget1 Budget2 Budget3

autotrace
signed integer overflow UBSan 8 8 8 6 6 8 8 8
left shift of 128 by 24 UBSan 1 1 1 1 1 1 1 1
heap buffer overflow ASan 10 10 10 10 0 8 2 2

imageworsener
divide-by-zero UBSan 2 2 2 2 2 2 2 2

index out of bounds UBSan 1 1 1 0 1 1 1 1

lame
divide-by-zero UBSan 1 1 1 1 1 1 1 1

heap buffer overflow ASan 1 1 1 1 0 1 0 0
zziplib heap buffer overflow ASan 2 2 2 2 0 0 0 0
libzip user after free ASan 1 1 1 0 0 1 1 1

graphicsmagick heap use after free ASan 1 1 1 1 0 1 1 1

libtiff
heap buffer overflow ASan 2 2 2 2 0 2 2 2
stack buffer overflow ASan 1 1 1 1 1 1 1 1

divide-by-zero UBSan 1 1 1 1 1 1 1 1
jasper left shift of negative value UBSan 1 1 1 1 1 1 1 1
potrace heap buffer overflow ASan 1 1 1 1 0 1 1 0

mp3gain
stack buffer overflow ASan 2 2 2 2 0 2 0 0
global buffer overflow ASan 1 1 1 1 0 0 0 0

null pointer dereference ASan 1 1 0 0 1 1 1 1
In total 38 38 37 33 15 33 24 23

present a fair comparison with SANRAZOR, we iterate each
tested program and put their CVEs into different types (the
second column of Table 2). We then use the M2 metrics of
SANRAZOR in terms of each CVE type as three different over-
head budgets of ASAP (i.e., budget1, budget2, budget3). For
instance, the “divide-by-zero” CVE of imageworsener can
be captured by UBSan checks. After applying SANRAZOR
(with L0, L1, and L2 schemes) on imageworsener with full
UBSan checks enabled, we report that the remaining M2 over-
head is 82.2%, 78.4%, and 36.0%, respectively. Then, ASAP
is configured to take these three remaining M2 overhead as its
overhead budget and performs sanitizer check reduction. As
shown in Table 2, two CVEs of imageworsener (the “divide-
by-zero” row) can still be discovered for all three budgets.
Overall, ASAP is configured to achieve the same amount of
performance cost as SANRAZOR, and we record how many
CVEs can still be discovered in this “apple-to-apple” setting.

We record the remaining M2 overhead (geometric mean
89.2%) for each CVE type after using SANRAZOR with the
L0 scheme enabled. As shown in Table 2, five CVEs cannot be
detected when assuming this budget for ASAP. The L1 and L2
schemes perform a relatively more tolerant reduction (73.5%
and 45.7% geometric mean remaining M2 overhead), and ac-
cordingly, ASAP removes 14 and 15 checks, respectively. We
find that considerable critical CVEs are not discovered after
using ASAP, since the corresponding checks are in the “hot
paths” of test cases, incurring high cost, and therefore are
removed. Overall, we interpret the comparison as encourag-
ing, showing that ASAP neglects the important observation
of sanitizer redundancy, causing it to fail discovering CVEs
on hot paths. Contrarily, Table 2 shows that SANRAZOR can
help discover more CVEs after reducing identical cost.

6.4 Combining SANRAZOR with ASAP

We also conduct a case study on autotrace to explore how
we could achieve potential synergistic effects by combining
SANRAZOR with ASAP and reduce the M2 overhead for pro-
duction usage. To this end, we explore whether, after applying
ASAP, SANRAZOR can find further opportunities for elimi-
nating redundancy that ASAP may have missed.

Specifically, we first set the overhead budget of ASAP
to the reasonable, but arbitrary threshold of 30% and run
it on autotrace with full ASan enabled to remove high-cost
checks. ASAP aggressively reduces ASan checks; after re-
ducing the M2 overhead to 30%, six out of in total 10 CVEs
are missed. We then leverage SANRAZOR to identify redun-
dant checks. We report that when applying SANRAZOR with
the L0 scheme, we observe that the M2 overhead can be fur-
ther reduced to 7.0%, without missing any additional CVEs.
In contrast, using ASAP with this aggressive budget (7.0%),
would reduce too many ASan checks and miss all 10 CVEs
(cf. Table 2).
SANRAZOR Extension and Future Directions. Note that
ASAP primarily focuses on shaving costly checks on the
hot paths, which indicates promising potential of fine-tuning
SANRAZOR’s schemes to be more adaptive by taking cost
into consideration. SANRAZOR can thus be extended to apply
L0/L1 schemes to shave checks with low costs and L1/L2
schemes to shave checks with high costs. This should better
balance performance and safety, rather than using the same
scheme to all checks.

Our study in this section sheds light on the significant
potential in combining SANRAZOR with previous works
(e.g., [14,37,44]) and exploring their synergistic effects, since
the strategies for which checks to remove are generally orthog-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 489

Table 3: Quantitative analysis of the removed sanitizer checks.

Software Sanitizer #Reduced #Identical #Correlated
Type Checks Checks Checks

401.bzip2 UBSan 11,406 6,562 4,844
autotrace ASan 2,434 460 1,974

onal. Also, in addition to the combination strategy demon-
strated above, we envision using other feasible schemes to
combine SANRAZOR and ASAP. For instance, given a user-
specified budget, we first use SANRAZOR to remove all the
likely redundant checks, and if the budget is still not met, we
use ASAP to remove further checks. We leave it as future
work to explore other practical methods to combine SANRA-
ZOR with existing sanitizer reduction tools.

This section demonstrates combining SANRAZOR with
ASAP to reveal more debloating opportunities. In addition,
we also expect that by using SANRAZOR to shave likely equiv-
alent checks, sanitizer-guided security applications can be
boosted. For instance, by shaving redundant checks, sanitizer-
guided fuzz testing tool, ParmeSan [26], may have a higher
throughput and likely find more bugs within a given time
budget. We leave this as one future work to explore using
SANRAZOR to boost ParmeSan.

7 Discussion

7.1 Characteristics of Removed Checks

This section further explains the characteristics of the checks
that are removed. Given the observation that thousands of san-
itizer checks are inserted into each program, we deem investi-
gating all test cases infeasible. Rather, we manually checked
SPEC program 401.bzip2 (with UBSan) and CVE program
autotrace (with ASan) and analyzed check reduction pat-
terns (Table 3). The two programs contain in total 24,132
checks (17,272 in 401.bzip2 and 6,860 in autotrace).
SANRAZOR with the L2 scheme enabled removes 66.0% san-
itizer checks from bzip2 and 35.7% checks from autotrace.
We studied each removed check to identify two common pat-
terns that we refer to as “identical checks” and “correlated
checks”. Below, we present typical cases for each category.
Checks that are identical with other checks. Sanitizer
checks of this class have the same functionality as other
checks. Consider the code snippet in bzip2.c as follows:

1 void BZ_blockSort(EState* s){
2 UInt32* ptr = s→ ptr;
3 UChar* block = s→ block;

where two UBSan checks are inserted to check whether s
is a null pointer. However, these two checks indeed assert
the same property and are therefore identical with each other.
Removing one of them can still ensure that the null pointer
is detected. SANRAZOR will remove one of them since their
coverage patterns are exactly the same and their control-flow

statements (i.e., the br statement in LLVM IR) have condition
operands of identical dependency trees.
Checks that are correlated with other checks. SANRAZOR
removes this class of checks since they have the same dynamic
and static patterns with other checks, indicating strong corre-
lation with each other, as, for instance, for different pointer
arithmetic expressions over the same pointer (as discussed in
Sec. 4.3.1). Consider CVE-2017-9169 as an example:

1 *(temp++)= buffer[xpos * 3 + 2]; //line 353
2 *(temp++)= buffer[xpos * 3 + 1]; //line 354
3 *(temp++)= buffer[xpos * 3]; //line 355

which is a heap buffer overflow in line 353 of file input_-
bmp.c (temp in above code). When enabling ASan, three sani-
tizer checks (sc1,sc2,sc3) are inserted for this case to check the
shadow memory of pointer temp (in line 1-3 above). When us-
ing SANRAZOR (with L1 or L2 enabled) to analyze this case,
all three checks exhibit identical dynamic and static patterns.
Thus, two checks will be removed. Although the heap buffer
overflow in CVE-2017-9169 roots in the invalid memory ac-
cess of pointer temp in line 353, ASan can presumably detect
the vulnerability when using any of the other two checks.

7.2 False Positive Analysis
SANRAZOR can also induce false positives (i.e., unique
checks that are removed), since the captured dynamic pat-
terns only provide statistical information of sanitizer checks
and the static pattern sets used for the redundancy analysis
could be optimistic as well. Below, we provide detailed anal-
ysis of all five false positive cases caused by the L2 scheme
of SANRAZOR (the false positive case of using L1 scheme is
also subsumed).
CVE-2017-9203 is an index out of bounds vulnerability in
imagew-main.c of imageworsener-1.3.0 as follows:

1 int_ci = &ctx→ intermed_ci[intermed_channel];
2 output_channel = int_ci→

corresponding_output_channel; // CVE
3 out_ci = &ctx→ img2_ci[output_channel];

Specifically, ctx is an input argument of the enclosing func-
tion (line 2), which has a struct iw_context* type. When
compiling this module with UBSan, three sanitizer checks
will be inserted to detect index out of bounds, type check, and
pointer overflow vulnerabilities on line 2. Recall as introduced
in Sec. 4.1, these three UBSan checks can be differentiated
by the constant operands of their associated icmp statement.
Nevertheless, since all these checks take the memory address
of ctx as its inputs, they have the same value dependency
on ctx when using the L2 scheme (recall L2 eliminates all
constants). Therefore, SANRAZOR will identify two of them
as redundant sanitizer checks and remove them, causing UB-
San to fail reporting the index out of bounds vulnerability
in this CVE. However, if SANRAZOR is configured with L1,
these checks can be kept since the constant parameter used to
differentiate these three UBSan checks are preserved.

490 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CVE-2017-12858 is a use-after-free vulnerability detected
by ASan in zip_buffer.c of libzip-1.2.0. As shown be-
low, variable buffer of zip_buffer_t* type attempts to
access its element free_data in the if condition (line 5):

1 void _zip_buffer_free(zip_buffer_t *buffer){
2 if (buffer == NULL) return;
3 if(buffer→ free_data){ // CVE
4 free(buffer→ data);

When ASan is enabled, a check is inserted to assert whether
the memory pointed by buffer has been freed before access-
ing its element free_data. SANRAZOR with the L2 scheme
enabled eliminates this check since it has the same dynamic
coverage pattern with two user checks (two if conditions on
line 2 and line 3), which also share the same data dependency
pattern (since variable buffer is used for all three user and
sanitizer checks). However, the check inserted by ASan per-
forms shadow memory calculation, which indeed depends
on different constant values with two user checks. Therefore,
SANRAZOR with L1 scheme can retain this check.
CVE-2017-9184 is a signed integer overflow in
autotrace=0.31.1 reported by UBSan. It is derived
from a heap memory allocation in input-bmp.c as follows:

1 XMALLOC(image , width * height
2 * 1 * sizeof(unsigned char)); // CVE
3 ypos = height - 1;
4 switch (...) {
5 case 1: {
6 while (ypos >= 0 && xpos <= width) { ...

XMALLOC allocates memory buffers on the heap by taking
the second parameter as the buffer length, where a UBSan
check is inserted in line 1 to detect the signed integer overflow
when multiplying height with width. Moreover, we find
a user check in the while loop condition (line 6), which
shares the same value dependency with this critical sanitizer
check (ypos derives from height and xpos is a constant).
Therefore, SANRAZOR with L2 enabled removes this check.
Nevertheless, the inserted UBsan check and while condition
assert different program properties, exposing a false positive.
In contrast, this false positive can be avoided when using the
L1 scheme, since the user check also depends on constant
value 0, exhibiting different value dependency patterns with
the inserted sanitizer check by UBSan.
CVE-2017-9187 is a signed integer overflow vulnerability
found from autotrace=0.31.1. Consider the following code
snippet showing the CVE in input-bmp.c:

1 unsigned char *temp2 , *temp3;
2 XMALLOC(image , width * height
3 * 3 * sizeof(unsigned char)); // CVE
4 temp3 = image; //another UBSan check

When compiling this code snippet with UBSan enabled,
a sanitizer check is inserted to check whether the second
parameter of XMALLOC can incur an integer overflow. Also,
another check is added to detect whether the pointer temp3

is null. Since temp3 points to image and the value of image
is assigned by XMALLOC, the parameter of the second UBSan
check depends on variable width and height (recall as men-
tioned in Sec. 4.3, for interprocedural analysis the function
call output, image for this case, conservatively depends on
all function parameters). Therefore, SANRAZOR with L2 en-
abled will consider this sanitizer check to be redundant with
the assertion, while the L1 scheme would not, as these two
checks can be differentiated by their constant parameters.
CVE-2017-14406 is a null pointer dereference found in
interface.c of mp3gain-1.5.2. Consider the code below:

1 int sync_buffer(PMPSTR mp,int free_match) {
2 for (i=0; i<mp→ bsize; i++) // CVE
3 { ... }
4 struct frame *fr = &mp→ fr;
5 h = head_check(head ,fr→ lay);

Two ASan checks are used to check mp and fr when ac-
cessing their struct elements bsize (line 2) and lay (line 5),
respectively. fr is initialized with mp->fr (line 4), which de-
pends on the function parameter mp (line 1). That is, the two
ASan checks have identical data dependencies w.r.t. the L1
and L2 schemes. SANRAZOR eliminates the first ASan check
and becomes incapable of detecting the CVE vulnerability on
line 2. However, SANRAZOR with L0 enabled can differenti-
ate these two checks, since they depend on different constant
offsets when accessing the struct elements.

7.3 False Negative Analysis
SANRAZOR could also have false negatives (i.e., redundant
checks are not removed). Take the following piece of code
in 462.libquantum for example, where ASan inserts two
checks to detect a buffer overflow in reg->node[i]. Let the
inserted check in line 2 and line 3 as sc1 and sc2, respectively.
Although sc2 is redundant with sc1 for this specific case, SAN-
RAZOR does not recognize sc2 as a redundant sanitizer check
during our experiment, because the dynamic pattern of sc2
differs from that of sc1. Such cases are the primary cause
for generating false negatives, according to our observations.
Nevertheless, Sec. 4.4 has discussed that these false negative
cases can be primarily eliminated by considering dominating
relations in comparing dynamic coverage patterns.

1 for(i=0; i<reg→ size; i++) {
2 if(reg→ node[i].state & ...) {
3 if(reg→ node[i].state & ...) {

7.4 Effects of Workload Selection
As mentioned in Sec. 4.2, SANRAZOR relies on dynamic
coverage patterns to pinpoint potentially redundant checks.
Therefore, in this section, we present study and discussion on
the efficiency of check reduction w.r.t. the size of workload.
To do so, we incrementally enlarge the workload for profiling
bzip2 record both the number of reduced sanitizer checks

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 491

0 5 10 15 20 25 30 35 40

Number of inputs for profiling

30

40

50

60

70
P

er
ce

n
ta

g
e/

%

Reduced checks

Reduced run-time overhead

Figure 6: Effects of workload selection evaluation on ASan.

and the runtime overhead caused by ASan. For this study, we
configure SANRAZOR with the L2 scheme for check reduc-
tion. We download a bzip2 testsuite with 38 different inputs
from [2] and conduct experiments on bzip2 (a single-file
version from [1]).

As illustrated in Fig. 6, the percentage of reduced sanitizer
checks will increase when more inputs are fed to the test case.
However, when the number of test inputs are more than eight,
the number of reduced checks reach the saturation point at
58.0%. Similarly, the percentage of reduced runtime cost can
also become stable when the number of inputs is larger than
12. Also, notice that the blue line will first increase (when
the input is less than five), and then decrease until reaching
the saturation point (when input is 13). The reason is that
with insufficient amount of inputs in the workload, irrelevant
checks may exhibit identical dynamic coverage patterns and
be treated as “redundant.” In other words, SANRAZOR may re-
port false positives when the available inputs are insufficient,
and aggressively flag too many “redundant” checks (Sec. 7
discusses false positives and false negatives of this research).
In general, when adopting SANRAZOR in real-world scenar-
ios, sufficient inputs are needed for achieving good reduction
results and reducing false alarms, but they may not need to
be too many.

8 Related Work

Static Check Reduction. Existing research has proposed
heavyweight program analyses to elide redundant bounds
check by inferring the value ranges of certain variables. For
example, some approaches deem checks unnecessary if the
value range of an index is below the size of its accessed ar-
ray [6, 11, 12, 15, 25, 37, 39, 44, 45]. SIMBER [7, 45] uses
statistical inference to identify redundant bounds checks from
past executions. RedCard [9] flags unnecessary race condition
checks by scoping specific “release-free” code region where
it is proved that only one race check is needed for each region.
BigFoot [28] coalesces race checks on arrays and C structs.
Overall, the extensive existing work on this topic focuses on
specific types of checks, and cannot be easily generalized
to other checks. For instance, [9] identifies a “release-free”
region by checking if no lock release synchronization oper-

ations (e.g., wait, fork) can be found in that region. Hence,
race checks only need to be done once within each region.
Scoping such a “safe region” could be very difficult for other
checks: to decide such a safe region for ASan, we anticipate
to perform expensive alias analysis for every pointer within
that region to confirm a checked pointer is never modified. In
contrast, SANRAZOR analyze the equivalence of checks in a
general and practical way to eliminate duplications.

The most closely related work is ASAP [40], which, like
SANRAZOR, is unsound but general. ASAP is designed based
on the observation that a few “hot” sanitizer checks account
for most of the overhead and that most CVEs are located in
the “cold” parts of a program. ASAP removes sanitizer checks
with high runtime overhead until the overall overhead meets a
user-provided cost budget. Different from SANRAZOR, ASAP
does not consider check redundancy and is prone to removing
critical checks on a program’s hot paths as we have shown.
Run-time Check Reduction. Safe Sulong [30] is a sanitizer
that relies on the dynamic compiler of the Java Virtual Ma-
chine to reduce checks. Java compilers are capable of eliding
certain unneeded checks [42]. However, Safe Sulong can be
overly conservative since it eliminates only those checks that
are identified as redundant by the compiler.

Some approaches reduce sanitizer checks by runtime par-
titioning. Kurmus et al. split the kernel into an unprotected
and a protected partition to reduce overhead caused by kernel
hardening [16]. Bunshin [43] distributes sanitizer checks into
different program variants and executes them in parallel to
reduce the overall overhead. PartiSan [18] is a runtime sani-
tizer partitioning tool using control-flow diversity to improve
sanitizer efficiency. Varan [13] is a multi-version monitor that
uses selective binary rewriting to execute multiple versions
of a system (e.g., instrumented by multiple sanitizers). How-
ever, these approaches reduce sanitization cost with parallel
execution, rather than analyzing redundancy offline.

9 Conclusion

We have presented SANRAZOR, a novel, practical tool for
sanitizer check reduction. SANRAZOR identifies redundant
checks by analyzing their dynamic coverage patterns and
static data dependency patterns. Evaluation on CPU bench-
marks and programs with CVEs shows that SANRAZOR can
effectively lower the overhead caused by ASan and UBSan,
while still retaining high vulnerability detection capability.

Acknowledgments

We thank anonymous reviewers and our shepherd, Shan Lu,
for their valuable feedback. We also thank Fuqiang Fan, who
proofread an early version of the paper and pointed out an
error in Definition 1.

492 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Large single compilation-unit C programs.
https://people.csail.mit.edu/smcc/projects/
single-file-programs/, 2006.

[2] Bzip2 testsuite. https://sourceware.org/git/?p=
bzip2-tests.git, 2019.

[3] SanRazor. https://github.com/SanRazor-repo/
SanRazor, 2021.

[4] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel
Costa, and Miguel Castro. Preventing memory error ex-
ploits with WIT. In 2008 IEEE Symposium on Security
and Privacy, pages 263–277. IEEE, 2008.

[5] Andrew W. Appel. Modern Compiler Implementation
in ML: Basic Techniques. Cambridge University Press,
1997.

[6] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. ABCD:
eliminating array bounds checks on demand. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 321–333, 2000.

[7] Yurong Chen, Hongfa Xue, Tian Lan, and Guru
Venkataramani. CHOP: Bypassing runtime bounds
checking through convex hull optimization. Computers
& Security, 90:101708, 2020.

[8] LLVM Developers. Undefined behavior san-
itizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, 2017.

[9] Cormac Flanagan and Stephen N Freund. Redcard: Re-
dundant check elimination for dynamic race detectors.
In European Conference on Object-Oriented Program-
ming, pages 255–280. Springer, 2013.

[10] Debin Gao, Michael K. Reiter, and Dawn Song. Bin-
Hunt: Automatically finding semantic differences in
binary programs. ICICS, 2008.

[11] Rigel Gjomemo, Phu H Phung, Edmund Ballou, Kedar S
Namjoshi, VN Venkatakrishnan, and Lenore Zuck.
Leveraging static analysis tools for improving usability
of memory error sanitization compilers. In International
Conference on Software Quality, Reliability and Security
(QRS), pages 323–334, 2016.

[12] William H. Harrison. Compiler analysis of the value
ranges for variables. IEEE Transactions on software
engineering, (3):243–250, 1977.

[13] Petr Hosek and Cristian Cadar. Varan the unbelievable:
An efficient N-version execution framework. In Pro-
ceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 339–353, 2015.

[14] Yuseok Jeon, Wookhyun Han, Nathan Burow, and Math-
ias Payer. FuZZan: Efficient sanitizer metadata design
for fuzzing. In USENIX Annual Technical Conference
(USENIX ATC), pages 249–263, 2020.

[15] Priyadarshan Kolte and Michael Wolfe. Elimination of
redundant array subscript range checks. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), page 270–278, 1995.

[16] Anil Kurmus and Robby Zippel. A tale of two kernels:
Towards ending kernel hardening wars with split kernel.
In ACM Conference on Computer & Communications
Security (CCS), 2014.

[17] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In International Symposium on Code Generation
and Optimization (CGO), pages 75–, 2004.

[18] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen,
Stijn Volckaert, and Michael Franz. PartiSan: fast and
flexible sanitization via run-time partitioning. In Inter-
national Symposium on Research in Attacks, Intrusions,
and Defenses, pages 403–422, 2018.

[19] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and
Nikolai Tillmann. Measuring code behavioral similarity
for programming and software engineering education.
In International Conference on Software Engineering
Companion (ICSE-C), pages 501–510, 2016.

[20] Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu.
Automatic grading of programming assignments: an ap-
proach based on formal semantics. In International
Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET), pages
126–137, 2019.

[21] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. Semantics-based obfuscation-resilient bi-
nary code similarity comparison with applications to
software plagiarism detection. In FSE, 2014.

[22] Dongliang Mu. CVE list. https://github.com/
VulnReproduction/VulnReproduction.github.
io, 2019.

[23] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities. In 27th USENIX Security Symposium
(USENIX Security 18), pages 919–936, 2018.

[24] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly compatible
and complete spatial memory safety for C. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), page 245–258, 2009.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 493

https://people.csail.mit.edu/smcc/projects/single-file-programs/
https://people.csail.mit.edu/smcc/projects/single-file-programs/
https://sourceware.org/git/?p=bzip2-tests.git
https://sourceware.org/git/?p=bzip2-tests.git
https://github.com/SanRazor-repo/SanRazor
https://github.com/SanRazor-repo/SanRazor
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/VulnReproduction/VulnReproduction.github.io
https://github.com/VulnReproduction/VulnReproduction.github.io
https://github.com/VulnReproduction/VulnReproduction.github.io

[25] George C. Necula and Peter Lee. The design and imple-
mentation of a certifying compiler. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), page 333–344, 1998.

[26] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. ParmeSan: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2289–2306, 2020.

[27] David A Ramos and Dawson Engler. Under-constrained
symbolic execution: Correctness checking for real code.
In 24th USENIX Security Symposium (USENIX Security
15), pages 49–64, 2015.

[28] Dustin Rhodes, Cormac Flanagan, and Stephen N. Fre-
und. Bigfoot: Static check placement for dynamic race
detection. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
page 141–156, 2017.

[29] Henry Gordon Rice. Classes of recursively enumerable
sets and their decision problems. Transactions of the
American Mathematical Society, 74(2):358–366, 1953.

[30] Manuel Rigger, Roland Schatz, René Mayrhofer,
Matthias Grimmer, and Hanspeter Mössenböck. Sulong,
and thanks for all the bugs: Finding errors in C pro-
grams by abstracting from the native execution model.
In International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 377–391, 2018.

[31] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In 2010 IEEE symposium on
Security and privacy, 2010.

[32] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer: A
Fast Address Sanity Checker. In Proceedings of the
2012 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’12, pages 28–28, 2012.

[33] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: Sanitizing for security. 2019.

[34] Cloyce D Spradling. SPEC CPU2006 benchmark
tools. ACM SIGARCH Computer Architecture News,
35(1):130–134, 2007.

[35] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: Fast detector of uninitialized memory use in
C++. In International Symposium on Code Generation
and Optimization (CGO), pages 46–55, 2015.

[36] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In International Confer-
ence on Compiler Construction (CC), pages 265–266,
2016.

[37] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Eliminat-
ing redundant bounds checks in dynamic buffer overflow
detection using weakest preconditions. IEEE Transac-
tions on Reliability, 65(4):1682–1699, 2016.

[38] Yulei Sui, Ding Ye, and Jingling Xue. Detecting mem-
ory leaks statically with full-sparse value-flow analysis.
IEEE TSE, 40(2):107–122, 2014.

[39] Norihisa Suzuki and Kiyoshi Ishihata. Implementation
of an array bound checker. In ACM SIGACT-SIGPLAN
symposium on Principles of Programming Languages
(POPL), pages 132–143, 1977.

[40] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In IEEE Symposium on Security and
Privacy, pages 866–879, 2015.

[41] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and
Armando Solar-Lezama. Towards optimization-safe
systems: Analyzing the impact of undefined behavior.
In ACM Symposium on Operating Systems Principles
(SOSP), pages 260–275, 2013.

[42] Thomas Würthinger, Christian Wimmer, and Hanspeter
Mössenböck. Array bounds check elimination for the
Java HotSpot client compiler. In International Sym-
posium on Principles and Practice of Programming in
Java (PPPJ), pages 125–133, 2007.

[43] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee.
Bunshin: Compositing security mechanisms through
diversification. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 271–283, 2017.

[44] Zhichen Xu, Barton P. Miller, and Thomas Reps. Safety
checking of machine code. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation (PLDI), page 70–82, 2000.

[45] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian
Lan, and Guru Venkataramani. Simber: Eliminating
redundant memory bound checks via statistical infer-
ence. In IFIP International Conference on ICT Systems
Security and Privacy Protection, pages 413–426, 2017.

[46] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin,
and Steve Zdancewic. Formal verification of SSA-based
optimizations for LLVM. pages 175–186, 2013.

494 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Preliminaries
	Problem Formulation
	Sample Redundant Checks in bzip2
	Redundant Sanitizer Checks

	Design
	Check Identification
	Dynamic Check Pattern Capturing
	Static Check Pattern Capturing
	Extracting Static Features with Three Schemes
	Security Consideration
	Extension Using Static Analysis

	Sanitizer Check Reduction

	Implementation
	Evaluation
	Cost Study
	Vulnerability Detectability Study
	Comparison Study
	Combining SanRazor with ASAP

	Discussion
	Characteristics of Removed Checks
	False Positive Analysis
	False Negative Analysis
	Effects of Workload Selection

	Related Work
	Conclusion

