
This paper is included in the Proceedings of the
2020 USENIX Conference on Operational Machine Learning.

July 28–August 7, 2020
978-1-939133-15-1

Open access to the Proceedings of the
2020 USENIX Conference on Operational

Machine Learning is possible thanks to the
generous support of

Auto Content Moderation in C2C e-Commerce
Shunya Ueta, Suganprabu Nagaraja, and Mizuki Sango, Mercari Inc.

https://www.usenix.org/conference/opml20/presentation/ueta

Auto Content Moderation in C2C e-Commerce

Shunya Ueta, Suganprabu Nagarajan, Mizuki Sango
Mercari Inc.

Abstract
Consumer-to-consumer (C2C) e-Commerce is a large and

growing industry with millions of monthly active users. In
this paper, we propose auto content moderation for C2C e-
Commerce to moderate items using Machine Learning (ML).
We will also discuss practical knowledge gained from our auto
content moderation system. The system has been deployed
to production at Mercari since late 2017 and has significantly
reduced the operation cost in detecting items violating our
policies. This system has increased coverage by 554.8 % over
a rule-based approach.

1 Introduction

Mercari1, a marketplace app is a C2C e-commerce service.
In C2C e-commerce, trading occurs between consumers who
can be both sellers and buyers. Unlike standard business-to-
consumer (B2C) e-commerce, C2C buyers can buy items
that are listed without strict guidelines. However, C2C e-
commerce has the risk of sellers selling items like weapons,
money and counterfeit items that violate our policies, inten-
tionally or unintentionally. Our company needs to prevent the
negative impact such items have on buyers, and we also need
to comply with the law regarding items that can be sold in our
marketplace. In order to keep our marketplace safe and pro-
tect our customers, we need a moderation system to monitor
all the items being listed on it. Content moderation has been
adopted throughout industry by Microsoft [3], Google [2] and
Pinterest [1] in their products. Rule based systems are easy to
develop and can be quickly applied to production. However
the logic of rule based system is hard to manage and it is
difficult to cover the inconsistencies in (Japanese) spellings.
It is also infeasible for human moderators to review all the
items at such a large scale.

Machine Learning (ML) systems can overcome the limita-
tions of rule based systems by automatically learning the fea-
tures of items deleted by moderators and adapting to spelling

1Mercari. https://about.mercari.com/en/

Customer

Positive	Dataset:	
Deleted	by	Moderator
Negative	Dataset:	

Not	alerted	by	moderation	service

Moderator

sell	items

Moderation	Service

Report	items

Rule	Based

Machine	Learning

Review

Hide	&	Alert

Figure 1: C2C e-Commerce content moderation system
overview

inconsistencies. The moderators review the items predicted as
positive by our system and we continuously re-train our mod-
els with the latest annotated data. Figure 1 shows an overview
of our content moderation system. The moderator functions as
a Human In The Loop to review the results of ML inference,
rule based logic and reported items from customers, and helps
regulate the items that are deleted.

The main contributions of this paper are (1) implementing
multi-modal classifier models for imbalanced data in the wild
(2) introducing and updating models in production (3) and
preventing concept drift. In this paper, we also discuss more
specifics about how we moderate items in our marketplace
using ML.

2 Method

2.1 Model Training
Item listings in our marketplace consist of multi-modal data
(e.g. text, image, brand, price), so we use multi-modal models
to improve model performance. All models are trained in a
one-vs-all setup since alerts from different models can over-

USENIX Association 2020 USENIX Conference on Operational Machine Learning 33

https://about.mercari.com/en/

lap. One model corresponds to one violated topic. One-vs-all
models can also be easily re-trained and deployed indepen-
dently. We made a pipeline using Docker [9] container-based
workloads on a Kubernetes [6] cluster for model training
workloads. We write manifest files containing requirements
like CPU, GPU and Storage which are deployed using this
pipeline.

For ML algorithms, we used Gated Multimodal Units
(GMU) [5] and Gradient Boosted Decision Trees (GBDT) [7].
GMU potentially provides the most accuracy using multi-
modal data. GBDT is efficient to train and use for prediction
when training dataset size is not large. We train the GMU
models using PyTorch [10] and deploy them using PyTorch
to ONNX [4] to Caffe2 [8] conversion.

The system then automatically evaluates the new model
against the current model in production using offline evalua-
tion (Sec. 2.2).

2.2 Evaluation
We propose offline and online evaluation to avoid concept
drift [11].

Offline evaluation. We use the precision@K of the model
as our evaluation metric since it directly contributes to the
moderator’s productivity, where K is the bound on the number
of alerts in each violated topic and is defined by the moder-
ation team. We evaluate the new model based on back-tests
(the current model’s output on test data is known). The back-
tests guarantee that the new model is not worse than the cur-
rent model which prevents concept drift. However, this test
is biased towards the current model because the labels were
created based on it. Thus, we also evaluate online for a prede-
termined number of days by using both models for predictions
on all items.

Online evaluation. In our scenario, A/B testing is slow for
decision making because the number of violations is much
lower than valid item listings. As a result, A/B testing can take
several months. This results in concept drift occurring and
does not meet our business requirements. For faster decision
making, we deploy the current and new models in production,
and both of them accept all traffic. We set the thresholds of
current and new models to alert half the target number each
in that violated topic. The current and new model send K

2
alerts each to the moderator. If the new model has better
precision@ K

2 during online evaluation, we deprecate the old
one and expand the new model to the target number of alerts.
Table 1 shows the relative performance gain of the model
based on precision@K. It shows our back-test reflecting the
performance in production.

3 System Design

Figure 2 describes the system architecture. Our deployments
are managed using Horizontal Pod Autoscaler which helps to

Table 1: Percentage gains of GBDT and GMU compared to
Logistic Regression in offline and online evaluation on one
violated topic.

Algorithms Offline Online
GBDT +18.2 % Not Released
GMU +21.2% +23.2%

Subscribe

Publish

proxy
Preprocessing
Container

inference
Container

Preprocessing	+	inference
Container

Caffe2	model

scikit-lean	+	GBDT

violated
topic	A

violated
topic	N

Message
queue

Message
queue

prediction	layerproxy	layer

scikit-learn

...

Figure 2: Auto content moderation system architecture.
GBDT: One container contains the preprocessing and infer-
ences. GMU:GMU has two containers. i) preprocessing. ii)
inference using Caffe2.

maintain high availability and cut down production costs. The
system has a proxy layer which gets messages from a queue
and makes REST calls to the prediction layer. The prediction
layer is responsible for preprocessing and inference, and re-
turns a prediction result to the proxy layer. The proxy layer
aggregates the responses from all the models and publishes
messages for those items predicted as positive by at least one
model, to a different queue where these messages are then
picked up by a worker, and sent to the moderators for manual
review of items. In online and offline evaluation, the proxy
layer logs the predictions from all models and these logs are
exported to a Data Lake.

4 Conclusion

Content moderation in C2C e-Commerce is a very challenging
and interesting problem. It is also an essential part of services
providing content to customers. In this paper, we discussed
some of the challenges like new ML model introduction into
production and how to efficiently prevent concept drift based
on our experience. Our Auto Content Moderation system
successfully increased moderation coverage by 554.8 % over
a rule-based approach

Acknowledgments

The authors would like to express their gratitude to Abhishek
Vilas Munagekar and Yusuke Shido for their contribution to
this system and Dr. Antony Lam for his valuable feedback
about the paper.

34 2020 USENIX Conference on Operational Machine Learning USENIX Association

References

[1] Getting better at helping people feel better. https:
/ / newsroom.pinterest.com / en / post / getting -
better-at-helping-people-feel-betterl. Ac-
cessed on 2020.04.14.

[2] Google maps 101: how contributed content makes a
more helpful map. https://www.blog.google/
products / maps / google - maps - 101 - how -
contributed - content - makes - maps - helpful/.
Accessed on 2020.04.14.

[3] New machine-assisted text classification on con-
tent moderator now in public preview. https:
/ / azure.microsoft.com / es - es / blog / machine -
assisted - text - classification - on - content -
moderator - public - preview/. Accessed on
2020.04.14.

[4] Open neural network exchange format (onnx). https:
//github.com/onnx/onnxl. Accessed on 2020.02.24.

[5] John Arevalo, Thamar Solorio, Manuel Montes-y
Gómez, and Fabio A González. Gated multi-
modal units for information fusion. arXiv preprint
arXiv:1702.01992, 2017. https://arxiv.org/abs/
1702.01992.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Queue, 14(1):70–93, 2016.

[7] Tianqi Chen and Carlos Guestrin. XGBoost: A scal-
able tree boosting system. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. ACM.

[8] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of
the 22nd ACM international conference on Multimedia,
pages 675–678, 2014.

[9] Dirk Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014(239):2, 2014.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019.

[11] Indrė Žliobaitė, Mykola Pechenizkiy, and Joao Gama.
An overview of concept drift applications. In Big data
analysis: new algorithms for a new society, pages 91–
114. Springer, 2016.

USENIX Association 2020 USENIX Conference on Operational Machine Learning 35

https://newsroom.pinterest.com/en/post/getting-better-at-helping-people-feel-betterl
https://newsroom.pinterest.com/en/post/getting-better-at-helping-people-feel-betterl
https://newsroom.pinterest.com/en/post/getting-better-at-helping-people-feel-betterl
https://www.blog.google/products/maps/google-maps-101-how-contributed-content-makes-maps-helpful/
https://www.blog.google/products/maps/google-maps-101-how-contributed-content-makes-maps-helpful/
https://www.blog.google/products/maps/google-maps-101-how-contributed-content-makes-maps-helpful/
https://azure.microsoft.com/es-es/blog/machine-assisted-text-classification-on-content-moderator-public-preview/
https://azure.microsoft.com/es-es/blog/machine-assisted-text-classification-on-content-moderator-public-preview/
https://azure.microsoft.com/es-es/blog/machine-assisted-text-classification-on-content-moderator-public-preview/
https://azure.microsoft.com/es-es/blog/machine-assisted-text-classification-on-content-moderator-public-preview/
https://github.com/onnx/onnxl
https://github.com/onnx/onnxl
https://arxiv.org/abs/1702.01992
https://arxiv.org/abs/1702.01992

	Introduction
	Method
	Model Training
	Evaluation

	System Design
	Conclusion

