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Abstract

Consensus protocols can provide highly reliable and avail-
able distributed services. In these protocols, log entries are
completely replicated to all servers. This complete-entry repli-
cation causes high storage and network costs, which harms
performance.

Erasure coding is a common technique to reduce storage
and network costs while keeping the same fault tolerance abil-
ity. If the complete-entry replication in consensus protocols
can be replaced with an erasure coding replication, storage
and network costs can be greatly reduced. RS-Paxos is the
first consensus protocol to support erasure-coded data, but
it has much poorer availability compared to commonly used
consensus protocols, like Paxos and Raft. We point out RS-
Paxos’s liveness problem and try to solve it. Based on Raft,
we present a new protocol, CRaft. Providing two different
replication methods, CRaft can use erasure coding to save
storage and network costs like RS-Paxos, while it also keeps
the same liveness as Raft.

To demonstrate the benefits of our protocols, we built a
key-value store based on CRaft, and evaluated it. In our ex-
periments, CRaft could save 66% of storage, reach a 250%
improvement on write throughput and reduce 60.8% of write
latency compared to original Raft.

1 Introduction

Consensus protocols, such as Paxos [12] and Raft [14], can
tolerate temporary failures in distributed services. They al-
low a collection of servers to work as a coherent group by
keeping the commands in each server’s log in a consistent
sequence. These protocols typically guarantee safety and live-
ness, which means they always return correct results and can
fully functional if no majority of the servers fail. Using these
consensus protocols, commands can be properly replicated
into each server in the same order, even if machine failures

*These authors contributed equally to this work.
$Dongsheng Wang (wds @tsinghua.edu.cn) is the corresponding author.

may happen. Google’s Chubby [3] is one of the earliest sys-
tems using consensus protocols. In Chubby, metadata, like
locks, are replicated through different nodes by Paxos. Since
Gaios [2], consensus protocols have been used to replicate all
user data (typically much larger than metadata) rather than
only metadata. Recently, Raft and Paxos have been applied in
real large-scale systems like etcd [8], TiKV [1] and FSS [11],
to replicate terabytes of user data with better availability.

In such systems, data operations will be translated into log
commands and then replicated into all servers by consensus
protocols. Thus, data will be transferred to all servers, and
then flushed to disks. In consensus problems, to tolerate any F
failures, at least N = (2F + 1) servers are needed. Otherwise, a
network partition may cause split groups to agree on different
contents which is against the concept of consensus. Therefore,
using consensus protocols to tolerate failures may cause high
network and storage costs which can be around N times of
the original amount of data. Since these protocols are now
applied in large-scale systems and the data volume is growing
larger, these costs become real challenges and they can prevent
systems from achieving low latency and high throughput.

Erasure coding [16] is an effective technique to reduce
storage and network costs compared to full-copy replication.
It divides data into fragments, and encodes the original data
fragments to generate parity fragments. The original data can
be recovered from any large-enough subset of fragments, so
erasure coding can tolerate faults. If each server only needs
to store a fragment (can be either an original data fragment
or a parity one), not the complete copy of the data, storage
and network costs can be greatly reduced. Based on the above
properties, erasure coding may be a good solution to the chal-
lenges of storage and network costs in consensus protocols.
Erasure coding is deployed in FSS [11] for reducing stor-
age cost. However, FSS uses a pipelined Paxos to replicate
complete user data and metadata 5-ways before encoding.
Therefore, extra network cost of FSS is still four times of the
amount of data, which harms performance.

RS-Paxos [13] is the first consensus protocol to support
erasure-coded data. Combining Paxos and erasure coding, RS-
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Paxos reduces storage and network costs. However, RS-Paxos
has poorer availability compared to Paxos. RS-Paxos trades
liveness to use erasure coding for better performance. In other
words, a RS-Paxos-applied system of N = (2F + 1) servers
cannot tolerate F failures any longer. This may be a serious
problem since the system should tolerate enough failures. At
the theoretical level, we tend to design a consensus protocol
with the same level of liveness as Paxos and Raft. We examine
this liveness problem and point out that this problem exists
because the requirement of committing becomes stricter in
RS-Paxos.

We present an erasure-coding-supported version of Raft,
CRaft (Coded Raft). In CRaft, a leader has two methods to
replicate log entries to its followers. If the leader can commu-
nicate with enough followers, it will replicate log entries by
coded-fragments for better performance. Otherwise, it will
replicate complete log entries for liveness. Like RS-Paxos,
CRaft can handle erasure-coded data, so it can save storage
and network costs. However, one major difference between
CRaft and RS-Paxos is that CRaft has the same level of live-
ness as Paxos and Raft while RS-Paxos does not.

To verify the benefits of CRaft, we designed and built key-
value stores based on different protocols, and evaluated them
on Amazon EC2. In our experiments, CRaft could greatly
save network traffic, leading to a 250% improvement on write
throughput and a 60.8% reduction of write latency compared
to original Raft. In addition, we proved that CRaft has the
same availability as Raft.

In the remainder, first we briefly go through the background
knowledge of Raft, erasure coding and RS-Paxos in Section 2.
Next, we explain the details of our CRaft protocol in Section 3
and prove the safety property of CRaft in Section 4. Section 5
describes our implementation, experiments and evaluation.
Finally, we discuss related work in Section 6 and conclude in
Section 7.

2 Background

We begin by briefly describing Raft, erasure coding, RS-Paxos
and then discuss RS-Paxos’s liveness problem.

2.1 Raft

Raft [14] is one of the consensus protocols and it provides
a good foundation for building practical systems. There are
three server states in Raft, as shown in Figure 1. A leader is
elected when a candidate receives votes from a majority of
servers. A server can vote for a candidate only if the candi-
date’s log is at least as up-to-date as the server’s. Each server
can vote at most once in each term, so Raft guarantees that
there is at most one leader in one term.

The leader accepts log entries from clients and tries to
replicate them to other servers, forcing the others’ logs to
agree with its own. When the leader finds out that one log

discovers current
leader or new term

receives votes from
majority of servers

Candidate Leader

starts times out and

starts election

times out and starts
new election

discovers server
with higher term

Figure 1: Three server states in Raft [14]

entry accepted in its term has been replicated to a majority of
servers, this entry and its previous ones can be safely applied
to its state machine. The leader will commit and apply these
entries, and then inform followers to apply them.

Consensus protocols for practical systems typically have
the following properties:

* Safety. They never return incorrect results under all non-
Byzantine conditions.

* Liveness. They are fully functional as long as any ma-
jority of the servers are alive and can communicate with
each other and with clients. We call this group of servers
healthy.

The safety property in Raft is guaranteed by the Leader
Completeness Property [14]: if a log entry is committed in a
given term, then that entry will be present in the logs of the
leaders for all higher-numbered terms.

Liveness is guaranteed by Raft’s rules. Typically, the num-
ber of servers in systems using consensus protocols, NV, is odd.
Assume that N = 2F + 1, then Raft can tolerate any F failures.
We define a consensus protocol’s liveness level as the number
of failures that it can tolerate, so Raft has an F liveness level.
Higher liveness level means better liveness. No protocol can
reach an (F + 1) liveness level. If there exists a protocol with
an (F + 1) liveness level, there can be two split groups of F
healthy servers and these two groups can agree on different
contents respectively, which is against the safety property.

Safety and liveness are the most important properties of
consensus protocols. Raft can guarantee that the safety prop-
erty always holds and it also reaches the highest possible
liveness level F. Furthermore, Raft has been proved to be
a good foundation for system building. According to these
properties, we choose Raft as the basis to design our new
protocol CRaft.

2.2 Erasure Coding

Erasure coding is a common technique to tolerate faults in
storage systems and network transmissions. A large num-
ber of codes have been put forward, but Reed-Solomon (RS)
codes [16] are the most commonly used ones. There are two
configurable positive integer parameters in RS codes, k and m.
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In this technique, data are divided into k fragments with equal
sizes. Then, using these k original data fragments, m parity
fragments can be computed by an encoding procedure. So
there will be (k+ m) fragments generated from the original
data. The magic of a (k,m)-RS code is that any k out of total
(k4 m) fragments are enough to recover the original data, and
that is how RS codes tolerate faults.

When a consensus protocol is applied, the number of the
servers, N, is usually fixed. If each server only stores one
fragment produced by a (k,m)-RS code whose parameters k
and m are subject to k+m = N, storage and network costs can
be reduced to 1/k compared to full-copy replication. However,
how to guarantee the safety property and keep liveness as
good as possible cannot be ignored.

2.3 RS-Paxos

Combining erasure coding and Paxos, RS-Paxos is a reform
version of Paxos which can save storage and network costs.
In Paxos, commands are transferred completely. However,
commands are transferred by coded-fragments in RS-Paxos.
According to this change, servers can store and transfer only
fragments in RS-Paxos, so storage and network costs can be
reduced. The complete description of RS-Paxos can be found
in the RS-Paxos paper [13].

To guarantee safety and liveness, Paxos and Raft are based
on the inclusion-exclusion principle as follows.

[AUB| = |A[+|B|—|ANB| (1)

The inclusion-exclusion principle guarantees that there is at
least one server in two different majorities of servers,! and
then the safety property can be guaranteed.

The insight of RS-Paxos is to increase the size of the inter-
section set. Specifically, after choosing a (k,m)-RS code, the
read quorum Qg, the write quorum Qw, and the number of
the servers N, should fit the following formula.

Or+QOw—N=k @)

Then if a command is chosen (like committed in Raft), at least
QOw servers have accepted it. If a server wants to propose its
own command, it will contact at least Qg servers in Prepare
phase. Because of (2) and (1), at least kK among this Qr servers
have a fragment of the chosen command. So the proposer can
recover the original command by using the k fragments and
then it proposes the chosen value rather than its own.

With the benefits of erasure coding, using RS-Paxos can
greatly reduce storage and network costs when k > 1. How-
ever, RS-Paxos decreases the fault tolerance number of failed
servers. As Theorem 1 shows, RS-Paxos’s liveness cannot be
as good as Paxos or Raft.

Theorem 1. Liveness level of RS-Paxos, Lrsp, is always less
than F when k > 1.

'If|A| > |AUB|/2 and |B| > |AUB| /2, |ANB| = |A| +|B| — |AUB| > 0.

Proof. RS-Paxos works only if at least max{Qg, Qw } servers
are alive, so Lrsp < N —max{Qg, Ow }.
According to (2), we have

max{Qg,Ow} > (Qr+Qw)/2 > (N +k)/2.

Therefore, Lpsp <N — (N+k)/2=F —(k—1)/2 < F.
O

RS-Paxos roughly solves the consensus problem with era-
sure coding, but it cannot reach an F' liveness level any longer
as Theorem 1 shows. RS-Paxos requires more healthy servers
than Paxos or Raft to function. It is important to present a
consensus protocol that not only supports erasure coding but
also possesses the same liveness level as Paxos and Raft.

3 CRaft, a Reform Version of Raft that Sup-
ports Erasure Coding

Liveness is one of the most important properties of consensus
protocols. However, the previous erasure-coding-supporting
protocol, RS-Paxos, fails to reach an F' liveness level. Thus,
our goal is to design a new erasure-coding-supporting proto-
col (so it can save storage and network costs) that possesses
an F liveness level. This new protocol is based on Raft, so it
inherits the basic concepts in Raft.

To reduce network cost, leaders in the new protocol should
be able to replicate their log entries to followers by us-
ing coded-fragments, like RS-Paxos. However, as Theo-
rem 1 shows, a protocol with only coded-fragment replication
method cannot reach an F' liveness level. In fact, Theorem 2
shows that the complete-entry replication method in Raft is
necessary for an F liveness level protocol.

Theorem 2. When there are only (F + 1) healthy servers in
an F liveness level protocol, an entry e can be committed only
after the complete entry has been stored in all (F + 1) healthy
servers’ logs.

Proof. 1f a healthy server S did not store complete entry e
when e was committed, the protocol could not guarantee that
it could work fully functionally in any (F + 1) healthy servers.
Suppose only S and the previous unhealthy servers were
healthy at the next moment, these (F + 1) currently healthy
servers could not recover complete e, then the protocol had to
wait for other servers. So when e was committed, all (F + 1)
healthy servers had this complete entry. O

Both coded-fragment replication and complete-entry repli-
cation are required in our new protocol. Using coded-
fragment replication can save storage and network costs, while
complete-entry replication can keep liveness.

Next we will discuss the details of these two replication
methods, and then we try to integrate them into a complete
protocol, CRaft. To explain the details of CRaft, we first de-
fine some parameters. We assume that there are N = (2F + 1)
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Figure 2: The encoding procedure in CRaft.

Table 1: Comparisons among Different Protocols

Performance Different Protocols
Indicators CRaft Raft RS-Paxos
storage cost | 2F [k+1 | 2F +1 2F [k+1

network cost 2F [k 2F 2F [k

disk /O | 2FJk+1 | 2F+1 | 2FJk+1
liveness level F F F—(k—1)/2

servers in the protocol. Since CRaft should have the same
availability as Raft, its liveness level should be F, which
means that CRaft can still work when at least (F + 1) servers
are healthy. We choose a (k,m)-RS code for CRaft. k and
m should satisfy k+m = N, so each server in the protocol
can correspond to one coded-fragment for each log entry. As
Table | shows, CRaft supports erasure coding so it can save
storage and network costs, while it possesses an F' liveness
level at the same time.

3.1 Coded-fragment Replication

When a leader in CRaft tries to replicate an entry by coded-
fragment replication method, it first encodes the entry. In Raft,
each log entry should contain its original content from clients
and also its term and index in the protocol. When a CRaft
leader tries to encode an entry, the content can be encoded
into N = (k+ m) fragments by the (k,m)-RS code that the
protocol chooses. Term and index should not be encoded,
since they play important roles in the protocol. Figure 2 shows
the encoding procedure.

After encoding, the leader will have N coded-fragments of
the entry. Then it will send the corresponding coded-fragment
to each follower. After receiving its corresponding coded-
fragment, each follower will reply to the leader. When the

leader confirms that at least (F + k) servers store a coded-
fragment, the entry and its previous ones can be safely applied.
The leader will commit and apply these entries, and then
inform followers to apply them. The commitment condition
of coded-fragment replication is stricter than Raft’s. This
commitment condition also implies that a leader cannot use
coded-fragment replication to replicate an entry and then
commit it when there are not (F + k) healthy servers.

When a leader is down, a new leader will be elected. If an
entry is already committed, the election rule of Raft guaran-
tees that the new leader at least has a fragment of the entry,
which means the safety property can be guaranteed. Since at
least (F + k) servers store a fragment of a committed entry,
there should be at least k coded-fragments in any (F + 1)
servers.” So the new leader can collect k coded-fragments and
then recover the complete entry when there are at least (F +1)
healthy servers, which means liveness can be guaranteed.

Figure 3 shows an example of coded-fragment replication
and explains why the commitment condition becomes stricter
in this replication method. If a leader can commit an entry
when it only confirms that " 4- 1 = 4 servers store the entry,
new leaders may be unable to recover committed entries. Like
the Index 3 entry in Figure 3, it should not be committed
because only five servers stored it.3 If it was committed, con-
sider the situation that first three servers could not connect to
other servers while other four servers were all healthy. CRaft
should still be able to work because its liveness level is F = 3.
However, there were at most two fragments of the Index 3
entry in the healthy servers, so new leaders were not able to re-
cover the complete entry. The protocol had to wait for the first
three servers, which means liveness cannot be guaranteed.

In coded-fragment replication, followers can receive and

2 According to (1), the number of the servers storing a fragment of a
committed entry is at least (F +k)+ (F+1)—N=2F +1-N+k=k.

3The entry can be committed only if at least (F + k) servers store it. Since
F +k=343>5, the Index 3 entry should not be committed.
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v #of fragments
4 3 2 inhealthy servers

committed entries
Figure 3: An example of coded-fragment replication. A square
represents a complete entry, while a triangle represents a frag-
ment of an entry. Yellow shadow means that the corresponding
servers of the entries were not healthy. At T = 0, the leader got
three entries and it tried to replicate them. At T = 1, followers
received entry fragments with varying degrees of success. At
T =2, three servers, including the leader, failed.

store coded-fragments of entries. However, in Raft, followers
must receive and store complete entries. According to the
encoding procedure, the size of coded-fragments are about
1 /k of the size of complete entries. So storage and network
costs can be greatly reduced when using coded-fragment
replication.

3.2 Complete-entry Replication

To reduce storage and network costs, leaders are encouraged
to use coded-fragment replication. However, coded-fragment
replication will not work when there are not (F + k) healthy
servers. When the number of healthy servers is greater than
F and less than (F +k), the leader should use complete-entry
replication method to replicate entries.

In complete-entry replication, the leader has to replicate the
complete entry to at least (F + 1) servers before committing
the entry, just like Raft. Since the committing rule is the same
as Raft, safety and liveness are not problems. However, since
CRaft supports coded-fragments, the leader can replicate an
entry by coded-fragments rather than the complete entry to
remaining followers after committing the entry.

In practical implementations, there are many strategies to
replicate an entry via complete-entry replication. Define an
integer parameter 0 < p < F. The leader can first send com-
plete copies of an entry to (F + p) followers and then send
coded-fragments to remaining (F — p) followers. A smaller
p means less storage and network costs, but it also means
a higher probability to have longer committing latency (if
no F out of (F + p) answers return in time, more rounds of

communications may be required before commitment). When
p = F, the strategy becomes the same as Raft’s replication
method. Figure 4 shows different strategies when p =0, 1, F.
In our implementation for experiments, we choose p = 0.

3.3 Prediction

Using coded-fragment replication rather than complete-entry
replication can achieve better performance, if both methods
can replicate successfully. A greedy strategy is that the leader
always tries to replicate entries by coded-fragment replication.
If it finds out that there are not (F + k) healthy servers, it turns
to replicate the entry by complete-entry replication. However,
if the leader already knows that the number of healthy servers
is less than (F + k), the first replication attempt via coded-
fragments is meaningless.

Choosing the replication method accurately can reach the
best performance. However, the leader cannot be sure about
the status of other servers. So it can only predict how many
healthy servers it could communicate with when it tries to
replicate an entry. The leader can use the most recent heart-
beat answers to estimate the number of healthy servers. This
prediction should be accurate enough.

When a leader tries to replicate an entry, it should use
this prediction method to determine how to replicate. If the
number of most recent heartbeat answers are not less than
(F +k), the leader should use coded-fragment replication first,
and then it tries complete-entry replication if coded-fragment
replication does not work. Otherwise, the leader directly uses
complete-entry replication. Figure 5 concludes this process.

It is worth noting that this prediction is independent of
the method that the leader chose to replicate last entry. It
only relies on the most recent heartbeat answers. So it is
quite possible that a leader used complete-entry replication
to replicate the last entry and then it automatically chose
coded-fragment replication to replicate a new entry.

3.4 Newly-elected Leader

Both replication methods can guarantee safety and liveness
when leaders have all complete entries. However, when a
leader is newly elected, it is likely that the newly-elected
leader’s log does not have complete copies but only coded-
fragments of some entries. These incomplete entries are not
guaranteed recoverable when there are only (F + 1) healthy
servers. If some of these unrecoverable entries have not been
applied by the newly-elected leader, the leader has no way to
deal with these entries. The leader cannot send AppendEntries
RPCs containing any one of these entries to the followers who
need them,” so these unrecoverable entries will retain unap-
plied. According to the rules of Raft, the leader’s new entries
received from clients cannot be replicated to the followers as

4CRaft inherits Raft’s RPCs [14], the only difference between their RPCs
is that entries can be encoded in CRaft’s AppendEntries RPC.

USENIX Association

18th USENIX Conference on File and Storage Technologies 301



I
follower D D ; follower

follower A : follower

follower D D : follower

follower A : follower

follower D D ' follower

follower A : follower
@p=0 |

[

A

D l: - follower D
leader | | mup D =) commit mmp D : leader | | mmp D = commit mmp D !

D D : follower D
D D : follower D

bp=1

Figure 4: Examples of complete-entry replication with parameter p = 0, 1, F when N = 7. A square represents a complete entry,

while a triangle represents a fragment of an entry.

Leader starts to
replicate an entry

]

Number
of most recent
heartbeat answers >—yegg— Success?
less than
(F+k)? ‘
\ No Yes

No ‘ J
|
Leader commits

VI
Success? >—Yes the entry

Figure 5: Flow chart of log entry replication.

well. So the protocol fails to function fully and the protocol’s
liveness property cannot be guaranteed. Therefore, some extra
operations are required to guarantee liveness.

The coded-fragments in the newly-elected leader’s log can
be applied or unapplied by the leader. If a coded-fragment is
applied, the entry must have been committed by a previous
leader. According to the commitment condition of two repli-
cation methods, at least k coded-fragments or one complete
copy of the entry are stored in any (F + 1) servers. So the
leader can always recover this entry when there are (F + 1)
healthy servers. However, if a coded-fragment is unapplied,
no rules can guarantee that this entry can be recovered when
there are (F + 1) healthy servers.

To deal with unapplied coded-fragments, newly-elected
leaders in CRaft should do the LeaderPre operation, before
they can become fully-functioned leaders.

When a leader is newly-elected, it first checks its own log,
finds out its unapplied coded-fragments. Then it asks follow-
ers for their own logs, focusing on the indexes of the unap-
plied coded-fragments. At least (F + 1) answers (including
the new leader itself) should be collected or the new leader
should keep waiting. The new leader should try to recover
its unapplied coded-fragments in sequence. For each entry, if

there are at least k coded-fragments or one complete copy in
(F + 1) answers, it can be recovered, but not allowed to be
committed or applied immediately. Otherwise, the new leader
should delete this entry and all the following ones (includ-
ing complete entries) in its log. After recovering or deleting
all the unapplied entries, the whole LeaderPre operation can
be done. During LeaderPre, the newly-elected leader should
keep sending heartbeats to other servers, preventing them
from timing out and starting new elections.

Figure 6 shows examples of LeaderPre. In Figure 6, N =5
and k = 3. S1 committed the first two entries and then crashed,
and other servers had only applied the first entry. S2 was
elected as a new leader, and it would do LeaderPre. It first
asked followers about the entries in Index 2 and Index 3. In
Figure 6(a), after receiving answers from itself, S3 and S4, it
tried to recover the two entries. There were three fragments
of the Index 2 entry and two fragments of the Index 3 entry.
So S2 should recover the Index 2 entry and delete the Index 3
entry. While in Figure 6(b), S3, S5 and S2 itself all had the
Index 2 entry and the Index 3 entry. So S2 could recover
both of them. Though the uncommitted Index 3 entry would
be handled differently if S2 collected answers from different
groups of servers, the committed Index 2 entry would be
guaranteed to be recovered by LeaderPre.

After adding LeaderPre, the Leader Append-Only Property
in Raft has an exception: deletion in LeaderPre. In original
Raft, the original Leader Append-Only Property is the key to
prove safety, so it is necessary to prove that LeaderPre will
not harm safety. The proof can be found in Section 4.

There are two major reasons that leaders in original Raft
do not delete entries. First, leaders have no way to find out
whether an unapplied entry was committed by old leaders or
not. Second, even though an entry is unapplied, leaders can
still replicate it to followers since it has the entry’s complete
copy, so there is no need to delete it. In CRaft, if there are
enough fragments of an unapplied entry, the new leader can
recover it and be able to replicate it. Otherwise, the new leader
can conclude that this entry is uncommitted. Unrecoverable
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Figure 6: Examples of LeaderPre. A square represents a complete entry, while a triangle represents a fragment of an entry.

entries may harm CRaft’s liveness, but unrecoverable also
means uncommitted, so it is reasonable to delete them.

Based on Raft, CRaft provides two different replication
methods for supporting erasure coding while keeping live-
ness. A prediction based on the most recent heartbeat answers
helps the leader to choose replication method. In addition, to
guarantee liveness, LeaderPre can help newly-elected leaders
deal with unapplied coded-fragments.

3.5 Performance

The advantages of CRaft are shown in Table 1. Using a
(k,m)-RS code, CRaft has advantages in reducing storage
and network costs. In CRaft, ideally, only coded-fragments
are needed to be transferred between the leader and followers,
which indicates that the network cost can be saved to 1/k.
With this huge saving, CRaft can reach a much shorter latency
and a higher throughput compared to original Raft.

The major difference between CRaft and RS-Paxos is live-
ness. To tolerate F failures, CRaft only needs to deploy
(2F + 1) servers. However, RS-Paxos needs to deploy at least
(2F + 3) servers. With the same parameter k in erasure cod-
ing, less servers required means that CRaft can save more
storage and network costs compared to RS-Paxos.

One of the major concerns is the extra consumption when
a leader is newly-elected. The new leader has to collect en-
try fragments if there are some behind followers. However,
storage and network costs of CRaft in the worst situations are
basically the same as Raft in any situations. Also, in most
cases, the first new leader can replicate the old entries to all
behind followers, so each entry only needs to be collected
once extra. This harms the performance a little, but network
cost is still greatly reduced generally, compared to Raft.

LeaderPre latency may affect election time, so it may af-
fect the protocol’s availability. This kind of latency is possibly
affected by the number of the new leader’s unapplied entries.
However, a new leader can get brief information of its un-
applied entries first and then collect them later. The time
consumption of communicating brief information is quite

short so that LeaderPre latency will not harm the protocol’s
availability seriously.

It is optional that a newly-elected leader first collect the
whole state machine by communicating with its healthy fol-
lowers. This operation is helpful to reduce read latency in
the future, while it may significantly increase election time
so that it may harm the protocol’s availability. So there is a
trade-off between using it or not.

If there are far behind followers, we recommend that the
followers should catch up with the leader entry by entry when
they become healthy again. Snapshots can be used to compact
logs in CRaft. However, the deployment of snapshots can be
much more complex than original Raft, since different servers
store different fragments in CRaft.

Encoding time can be a problem too. However, many stud-
ies showed that encoding time is short enough compared to
transfer time in practical systems [6]. It is worth having a
slightly longer encoding time to reduce network cost.

4 Safety Argument

The key of safety in Raft is the Leader Completeness Property.
Since we add a new operation LeaderPre in CRaft, we have to
prove that the property still holds. First we give the proofs of
the Log Matching Property and its two related lemmas, then
we use them to prove the Leader Completeness Property.

Lemma 1. A server S has a log entry e, and e was first added
into the protocol in Term T, then e and its previous entries in
S’s log now are the same as the entries in leaderr’s log when
e was first added into the protocol.

Proof. Guaranteed by contents in AppendEntries RPC [14].
Noticing deletions in LeaderPre always delete the newest part
in a log, this Lemma can be proved by the same induction
technique in the Raft paper [14]. O

Theorem 3. Log Matching Property: if two logs contain an
entry with the same index and term, then the logs are the same
in all entries up through the given index.
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Proof. As Lemma 1 holds, these two logs are the same as the
leader’s log when the entry was first added into the protocol.
O

Lemma 2. A server S has a log entry e, then entries with the
same term and smaller index are in S’s log.

Proof. A leader cannot add entries to its log until LeaderPre
is done. When e was accepted, entries with the same term
and smaller index must be in the leader’s log. According to
Lemma 1, Lemma 2 holds. O

Theorem 4. Leader Completeness Property: if a log entry e
is committed in a given term (Term T), then e will be present
in the logs of the leaders for all higher-numbered terms, and e
will not be deleted in any higher-numbered term’s LeaderPre.

Proof. We assume that the Leader Completeness Property
does not hold, then we prove a contradiction. Since indexes
are positive integers, there is a log entry e with a smallest
index that breaks the property.

Consider two kinds of events: one, Leadery (U > T) does
not have e at the time of its election; and two, e is deleted in
LeaderPre by Leadery (U > T).

Assume that event one first appears. According to as-
sumption, leaders between Term T and Term U had e at
the time of their own elections, and e was never deleted in
LeaderPre. So e was never deleted from anyone’s log since
Term T. Leadery replicated e on at least (F + 1) servers
(no matter which replication method Leadery used), and
Leadery received votes from at least (F + 1) servers. Since
(F+1)+(F+1)=N+1> N, at least one server both ac-
cepted e from Leaderr and voted for Leadery. This server
must have accepted e from Leadery before voting for Leadery,
otherwise it would reject Leaderr’s AppendEntries request.
Since e was never deleted since Term 7, this voter had e and
voted for Leadery at the same time. So Leadery’s log must
have been as up-to-date as the voter’s. If the voter and Leadery,
shared the same last log term, then Leadery’s log must have
been at least as long as the voter’s. According to Lemma 2,
Leadery ’s log must have e and this is a contradiction. Other-
wise, Leadery ’s last log term must have been larger than the
voter’s. Since e was in the voter’s log, Leadery ’s last log term,
P, was larger than T. According to assumption, in Term P,
Leaderp’s log had e. According to Lemma 1, Leadery’s log
must have e and this is a contradiction.

So event two must appear earlier than event one. According
to assumption, leaders after Term 7 had e at the time of their
own elections, and e was never deleted in LeaderPre before.
So e was never deleted from anyone’s log since Term 7. Since
e was deleted in LeaderPre, there was an unrecoverable entry
e;. If ey was not e, since e was deleted, the index of e; must be
smaller than e’s. Because e was committed by Leaderr, and
e had a smaller index than e, so e; had been committed. Then
e1 broke the Leader Completeness Property and had a smaller

Other

Server Leader
- /‘ x
: —

Consensus Protocol

|

Persister
(to disk)

Erasure

Coding State Machine

Figure 7: The structure of each server in our key-value store.

index than e, this is a contradiction. So e was deleted because
it was unrecoverable. In Term 7', Leaderr replicated e to at
least (F + 1) servers by complete copies, or at least (F + k)
servers by coded-fragments. Since e was never deleted from
anyone’s log since Term T', According to (1), there were at
least one complete copy or k coded-fragments in any (F + 1)
answers. Then e was recoverable and this is a contradiction.

Then the contradiction is completely proved. The Log
Matching Property guarantees that future leaders will also
contain entries that are committed indirectly (not by its term’s
leader). So, the Leader Completeness Property holds. O

After proving the Leader Completeness Property, we can
conclude the State Machine Safety Property effortlessly.

Theorem 5. State Machine Safety Property: if a server has
applied a log entry at a given index to its state machine, no
other server will ever apply a different log entry for the same
index.

Proof. Suppose T is the lowest term in which any server
applies an entry at the given index i. If a server applied an
entry at Index i in Term U, the entry’s term must be the same
as the term of the Index i entry in Leadery’s log. According
to the Leader Completeness Property, the term of the Index i
entry in Leadery’s log should be identical to the term of the
Index i entry in Leaderr’s log. Since T is constant when i is
given, the State Machine Safety Property holds. O

S Experiments and Evaluation

To evaluate our protocol, we first designed a key-value store
based on Raft. Then we modified it to adapt CRaft. Since RS-
Paxos is based on Paxos but not Raft, it is difficult to compare
RS-Paxos with CRaft or Raft directly. We took the insight
of RS-Paxos and implemented an equivalent protocol named
RS-Raft onto our key-value store. The parameters in RS-Raft
have the same meanings as the ones in RS-Paxos, which are
described in Section 2.3. We ran experiments on the key-value
store with different protocols to present an evaluation.
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Figure 8: Latency in different value sizes when N = 5.

5.1 Key-value Store Implementation

The key-value store we design supports three kinds of op-
erations: Set, Append and Get. Set and Append operations
must be logged, while Get operations are not. The keys were
accessed uniformly in our experimental workloads. Follow-
ers can just store fragments of their entries to reduce storage
cost. However, the leader should keep complete copies of
entries to ensure performance of Get. After a new leader is
elected, if there is a Get operation and the new leader only
has a fragment of the data, it should first force at least (k— 1)
followers’ log to catch up with its own, then collect enough
data fragments from them and decode the data. If the leader
can directly respond to client’s Get, we call this operation a
fast read. Otherwise, if the leader should collect fragments
from followers first, we call this operation a recovery read.

We used C++ to implement our key-value store. The struc-
ture of each server in our key-value store is shown in Figure 7.
The consensus protocol can be Raft, CRaft and RS-Raft. We
used RCF 3.0 [18] to implement RPC, and we chose TCP as
transmission protocol. Jerasure 2.0 [15] is the library that we
used for erasure coding.

5.2 Setup

We ran experiments on the configurations of N =5 and N =7,
which are reasonable choices when using consensus protocols
supporting erasure coding. k was set to 3, so the erasure code
we used is a (3,2)-RS code (when N = 5) or a (3,4)-RS code
(when N =7).

In N =5 configuration, F' = 2, so Raft and CRaft can tol-
erate any two failures. We chose Qr = Qw = 4 for RS-Raft,
so it can tolerate one failure. In N = 7 configuration, F = 3,
so Raft and CRaft can tolerate any three failures. We chose
Or = Ow = 5 for RS-Raft, so it can tolerate two failures.

Our experiments were run on Amazon EC2 platform. We
used six (when N = 5) or eight (when N = 7) instances, one
of them played the role of clients and the other instances were
servers. Each instance has two virtual CPU cores and 8 GiB
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Figure 9: Latency in different value sizes when N = 7.

memory. The network bandwidth of each instance is about
550 Mbps. The storage devices we used are Amazon EBS
General Purpose SSDs, each with 80000 IOPS and 1750 MB/s
throughput.

5.3 Evaluation

We evaluated the protocols by measuring write latency, write
throughput, network cost, liveness level and recovery read
latency. Each experiment is repeated at least 100 times.

5.3.1 Latency

Figure 8 and Figure 9 show commitment latency of various
value-sized write requests with error bars. Operations with
a value size that larger than 2 MB can be solved by splitting
it into multiple Append operations. Each latency consists of
two parts. The part at the bottom with shadow in Figure 8
and Figure 9 is communication time from clients to the leader.
This part of time is only influenced by value size. The other
part is latency from the moment that the leader starts the entry
to the moment that the leader commits it, and it is the part
that we focus.

When value size is lower than 128 kB, three protocols per-
form evenly. In these situations, latency is mainly dominated
by disk I/O. Since data amount is too small, even though
CRaft and RS-Raft can save the amount of data flushed to
disks, the I/O time usage remains almost the same, so there is
not much difference between these protocols on latency.

When value size becomes larger, the advantage of CRaft
and RS-Raft can be revealed. Network traffic and disk I/O
both affect latency. Since CRaft and RS-Raft save network
cost and disk I/O greatly, they reduce 20%—45% of latency
compared to Raft when N =5, and 20%-60.8% when N = 7.

5.3.2 Throughput

Since CRaft and RS-Raft can save the amount of data trans-
ferred and flushed to disks, they are expected to have bet-
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Figure 10: Throughput in different value sizes when N = 5.

ter throughput than Raft. We simulate the situation that 100
clients raise write request, and evaluate throughput of the
leader. Figure 10 and Figure 11 show the experiment results.

The results show that CRaft and RS-Raft can improve
throughput compared to Raft. They can reach about 150%—
200% improvements when value size is relatively large.

With value size grows larger, throughput first increases
and reaches a peak, then it will fall. Throughput will fall
because of network congestion. How to prevent this network
congestion problem is interesting, but it is not our concern
in this paper. We compare the peak throughput of these three
protocols. CRaft and RS-Raft can have a 180% improvement
on write throughput when N =5 and 250% when N = 7.
Also, the throughput peaks of CRaft and RS-Raft both appear
much later than Raft’s. This is another advantage of CRaft
and RS-Raft because of their reductions on network cost.

RS-Raft’s throughput can be slightly better than CRaft’s
when the numbers of servers are equal, because more Ap-
pendEntries replies are needed before commitment in CRaft.
However, it is unfair to compare these two protocols’ through-
put in such way, since RS-Raft’s liveness is worse than
CRaft’s. To tolerate two failures, seven servers are required
when using RS-Raft, while only five servers are required when
using CRaft. So it is fairer to compare RS-Raft’s throughput
when N = 7 with CRaft’s throughput when N = 5. According
to Figure 10 and Figure 11, in this comparison, CRaft has an
advantage.

5.3.3 Network Cost

‘We monitored the amount of data transferred from the leader
to directly prove that our protocol can save network cost. In
this experiment, clients raised a write request every 70 ms.
Figure 12 shows the monitoring results when N = 7. The
leader in Raft transfers about 250% of data amount compared
to the leader in CRaft. This result directly proves that CRaft
can greatly reduce network cost. However, ideally, when k = 3,
the ratio between the amount of data transferred from a Raft
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Figure 11: Throughput in different value sizes when N = 7.

leader and a CRaft leader should be close to 300%. The gap
between 250% and 300% may be caused by costs that are not
generated by the consensus protocols.

5.3.4 Liveness

The major difference between CRaft and RS-Raft is liveness.
CRaft can tolerate any two failures when N =5, and it can
tolerate any three failures when N = 7. Though we choose the
parameters for RS-Raft to reach its highest possible liveness
level, RS-Raft can only tolerate one failure when N = 5, and
it can only tolerate two failures when N = 7.

Figure 13 shows the throughput of different protocols when
the number of healthy servers changes in N = 7 experiments
with error bars. RS-Raft performs very well when the number
of healthy servers is no less than 5, but it cannot work when
the number is 4. CRaft performs just like RS-Raft when the
number of healthy servers is 6 or 7, while it performs worse
than RS-Raft when the number is 5. This is because CRaft
can only use complete-entry replication when the number of
healthy servers is 5, so its throughput is degraded. However,
CRaft can still work when the number of healthy servers is 4,
just like Raft. And this proves CRaft’s liveness advantage to
RS-Raft.

5.3.5 Recovery Read

One of our concerns is that recovery read will take too much
time compared to fast read. The leader in Raft always does
fast read, but sometimes new leaders in CRaft may have to
do recovery read. Noticing that a new leader only needs to
do at most one recovery read to a specific key. If a leader
needs to handle several Get operations of one key in its term,
only the first time it has to do recovery read. So the existence
of recovery read may not harm performance too much when
servers do not crash too often. We made a new leader handle
a Get operation in different protocols, and then we repeated
this Get operation nine more times and calculated average
latency. The results are shown in Figure 14. CRaft takes at
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Figure 12: The leader’s network con-
sumption in Raft and CRaft when

N =T. experiments.

most 140% more time compared to Raft handling the first Get
operation. However, time usages of ten operations between
different protocols become close enough. So we can conclude
that extra time usage of recovery read is acceptable.

6 Related Work

Many systems use consensus protocols to provide highly
reliable and available distributed services. In early years, most
of them use Paxos to achieve consistency, like Chubby [3]
and Spanner [5]. After the presence of Raft, many systems are
using it for understandability, such as etcd [8] and TiKV [1].

Recent years, consensus protocols are not only used to
replicate small size database records, but also files and data
objects. Using Paxos, Gaios [2] builds a high performance
data store. To prevent the service from compromising avail-
ability, FSS [11] uses a pipelined Paxos to replicate both user
data and metadata. Also, etcd and TiKV use Raft to consis-
tently distribute user data to different servers. This kind of
systems are target systems of CRaft.

Erasure coding is first developed in network transmission
area and now it is applied in many distributed storage systems,
such as Ceph [19], HDFS [17] and Microsoft Azure [10]. The
most focus problem about erasure coding now is that its recov-
ery cost is too high compared to simple replication, and there
are many works trying to solve this problem [7, 10]. Our work
does not focus on this area, but we have another contribution
on erasure coding. The methods that most systems replicate
erasure-coded fragments are similar to using the two-phase
commit protocol [9]. This kind of methods have a high prob-
ability to fail in an asynchronous network, while CRaft can
still work well in this situation.

RS-Paxos [13] is the first consensus protocol supporting
erasure coding. However, it cannot reach the best liveness
level and it misses important details to build a practical system.
Our new protocol CRaft solves the above problems. Giza [4]
uses metadata versioning to provide consistency for erasure

Number of Healthy Servers

Figure 13: Throughput when the num-
ber of healthy servers changes in N =7
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Figure 14: Average latency of Get op-
erations when k = 3. Only the first Get
operation harms performance in CRaft.

coding objects. However, its method mainly focuses on safety
and ignores liveness when transferring user data. Liveness
can be optimized by using CRaft.

7 Conclusions

We presented CRaft, an erasure-coded version of Raft. CRaft
is based on Raft while it extents Raft to support erasure coding.
With the help of erasure coding, storage and network costs
can be greatly reduced.

The previous erasure-coding-supporting protocol, RS-
Paxos, fails to retain an F liveness level like Paxos or Raft.
CRaft solves this problem. In other words, to tolerate F faults,
CRaft only needs (2F + 1) servers while RS-Paxos needs
more. So CRaft can save more storage and network costs.

We analyzed the performance of different protocols and
we concluded that CRaft can reduce storage and network
costs most while it has the best liveness. We designed a key-
value store and ran experiments on it. The results show that
CRaft can reduce 60.8% of latency and improve throughput
by 250% compared to Raft. In the future, we will attempt to
implement CRaft onto practical systems.
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