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ABSTRACT 

Embedded systems are becoming increasingly 

sophisticated, inter-connected, and pervasive. 

Unfortunately, securing these systems remains 

challenging. While powerful dynamic analysis tools 

have been developed for traditional software, the 

unique characteristics of embedded systems make it 

difficult to apply these well-known techniques; prior 

work has been limited either to small systems or short 

segments of code. In this paper, we demonstrate a 

system that is capable of emulating and instrumenting 

embedded systems in near-real-time, enabling a variety 

of dynamic analysis techniques. Our approach uses a 

custom, low-latency FPGA bridge between the host’s 

PCI Express bus and the system under test, allowing 

the emulator full access to the system’s peripherals. 

This provides the emulator with a faithful 

representation of the environment the firmware 

normally executes in, enabling additional dynamic 

analysis techniques such as concolic execution. We 

discuss the design decisions and engineering tradeoffs 

made and evaluate our system against prior work. 

1. INTRODUCTION 
Embedded systems are becoming increasingly 

sophisticated, inter-connected, and pervasive, making 

the “Internet of Things” the buzzword du jour. 

Unfortunately, these systems have repeatedly been 

shown to be insecure, with vulnerabilities in a diverse 

range of products such as automobiles [1], medical 

devices [2], routers [3], and voting machines [4]. Even 

if we can convince manufacturers to invest the time 

and resources to secure their products, the security 

tools available to embedded systems developers pale in 

comparison to those for traditional software. 

In particular, dynamic analysis techniques are 

challenging to apply due to the difficulty of 

instrumenting embedded systems. There may not be 

sufficient storage space for an instrumented binary or 

its measurements. There may not be sufficient 

processing power for instrumentation. There may not 

be a way to provide arbitrary data to the system—a 

necessity for fuzzing. Even if a system is technically 

capable of added instrumentation, firmware 

heterogeneity requires substantial work to customize 

instrumentation for each device. Whereas traditional 

software runs on top of a few standard OSes (with 

standard facilities that support instrumentation, such as 

a file system and dynamic linker), embedded systems 

may not even have an OS. The analyst must identify 

instrumentation points and storage available for 

measurements, and surgically insert code into the 

firmware. 

An alternative to placing instrumentation on the device 

itself is to run the system under emulation. However, 

this introduces its own set of challenges. Embedded 

systems are highly intertwined with their environment, 

through sensors, actuators, and other interfaces. 

Furthermore, the peripherals that control these 

interfaces can vary a great deal from one device to 

another. Faithfully emulating these peripherals requires 

a great deal of work building customized solutions. 

An early approach to this problem came in the form of 

in-circuit emulators, which are drop-in, hardware 

replacements for microprocessors. These are typically 

microprocessor cores identical to those being 

“emulated,” with extra debugging signals bonded-out 

and connected to external analyzers. These analyzers 

can be used to examine and control the operation of the 

microprocessors. However, as processor speeds have 

increased, and as microcontrollers have evolved into 

full Systems-on-Chip (SoCs), hardware in-circuit 

emulators have been replaced by special debugging 

facilities built in to most modern microcontrollers and 

SoCs. These facilities, while useful for development 

and debugging, often do not readily lend themselves to 

supporting advanced dynamic analysis techniques, 

such as taint tracking, fuzzing, or concolic execution. 

Another approach, as described in section 2, is to treat 

peripherals as unconstrained symbolic inputs. 

However, this relies on the analysis using symbolic 

execution. Unconstrained inputs can lead to state 

explosion, rendering this technique unsuitable for all 

but the smallest embedded systems. 

We take a different approach. Like Avatar [5] (also 

described in section 2), we run the device’s firmware 



under emulation, directing peripheral I/O to the actual 

device, giving the emulated firmware a realistic view 

of its environment. This leverages the fact that many 

devices rely on a relatively small set of embedded 

processors; SoC manufacturers typically license a 

well-known CPU core and add their own custom 

peripherals.  

However, there are a number of challenges in making 

this approach work without being prohibitively slow. 

Avatar attempts to overcome these challenges by 

limiting the amount firmware executed under 

emulation. However, this raises a number of additional 

problems. The analyst must have sufficient insight into 

operation of the firmware to decide which parts are 

interesting enough to run under emulation. Emulated 

code still executes slowly, so this technique may not 

work with timing-sensitive devices (such as a medical 

device with a watchdog coprocessor.) Furthermore, it 

doesn’t provide a feasible way to do whole-system 

analysis. 

Instead of limiting the scope of emulated execution, we 

introduce a system called SURROGATES, which can 

emulate entire systems in near-real-time. We 

accomplish this by using custom, low-latency 

hardware to bridge the PCI Express bus of the host to 

the device under test, as well as making a number of 

optimizations. In doing so, we uncover and surmount 

new challenges in emulating entire systems, such as 

handling interrupts, DMA, and clocking changes. 

In this paper, we make the following contributions: 1) 

We describe new hardware which enables near-real 

time emulation of arbitrary ARM-based embedded 

systems, providing a platform to build advanced 

dynamic analysis tools on; 2) We discuss the 

engineering tradeoffs in building SURROGATES and 

provide comprehensive performance evaluations of the 

different techniques; 3) We describe and solve several 

issues that arise when emulating entire systems; and 4) 

We demonstrate the practicality of using our system on 

a diverse set of devices. 

The rest of this paper is organized as follows. Section 2 

describes related work. Section 3 discusses a number 

of options to improve the performance of systems like 

Avatar, guiding the design of SURROGATES, which is 

introduced in section 4. Section 5 evaluates the 

performance of our system, compares it to prior work, 

and describes our experience applying our system to a 

variety of embedded systems. Section 6 describes 

future work. Finally, we conclude in section 7. 

2. RELATED WORK 
The poor state of embedded security and the 

seriousness of its consequences have led researchers to 

propose new ways to automatically analyze embedded 

systems, building on the success of traditional dynamic 

analysis tools. However, there are a number of 

challenges in applying traditional dynamic analysis 

tools to embedded systems. 

Whereas traditional software is written against OS-

provided APIs, the “API” that firmware is written 

against is usually a hardware specification. Peripherals 

typically expose their behavior through several 

memory-mapped registers. These registers appear as 

normal memory, but reads and writes to these 

addresses directly control the hardware. With the large 

heterogeneity of embedded devices, faithfully 

reproducing hardware behavior to dynamic analysis 

tools is a time-consuming and error-prone proposition. 

FIE [6] symbolically executes the firmware of small, 

MSP430-based embedded devices. FIE overcomes the 

challenges in the diversity of devices and the need to 

understand peripheral semantics by treating all 

peripheral I/O as an unconstrained symbolic input. 

Unfortunately, this can easily lead to a state space 

explosion, making this technique impractical for all but 

the smallest embedded systems. 

Avatar [5] attempts to constrain the number of states 

explored by using the actual hardware as a guide for 

peripheral semantics. It does so by redirecting 

peripheral I/O to the real device, either by using a 

JTAG debugger or through serial communication with 

an in-memory stub loaded onto the target in a manner 

similar to SerialICE [7]. Unfortunately, with the ability 

to do only about five memory operations per second, 

redirecting all I/O is prohibitively slow. Avatar 

overcomes this limitation by migrating executing code 

between the emulator and the device, and emulating 

only small portions of interest of the firmware. 

However, this optimization is unsuitable for timing-

sensitive systems. We seek to overcome this limitation 

by enabling near-real-time peripheral interaction. 

3. TOWARDS REAL-TIME I/O 
Our system targets ARM processors, which are 

ubiquitous in medium-to-high complexity embedded 

devices. Our system communicates over the JTAG 

interface exposed on most microcontrollers. JTAG has 

several nice properties: 1) it is usually present in 

embedded devices for programming and testing during 

manufacturing, 2) JTAG pins are usually dedicated for 

programming and debugging, so it provides a 

communications channel that is not already used for 



some other purpose during normal operation, 3) JTAG 

interfaces tend to support high transfer rates (e.g. ARM 

processors can support JTAG clock rates up to 1/6th of 

the core processor speed), limited primarily by off-chip 

factors such as connection length, and 4) existing 

JTAG tools can be used to read and write arbitrary 

memory addresses on a device, making it easy to 

rapidly develop an Avatar-like prototype. 

JTAG interfaces expose a simple, standard state 

machine that can be driven by a JTAG adapter. This 

state machine lets the JTAG adapter select, capture, 

and update either a JTAG instruction register or a data 

register. These registers act like shift registers; data is 

shifted in and out simultaneously. While there is only 

one instruction register, several different data registers 

(called scan chains) can be selected using the different 

JTAG instructions.  

As with Avatar, we first redirected emulated memory-

mapped I/O to the target over JTAG using OpenOCD 

[8] (an open-source JTAG program). We initially used 

OpenOCD’s built-in GDB protocol interface to initiate 

reads and writes and control the processor’s state. 

However, memory operations are extremely slow over 

regular JTAG interfaces. This is because these memory 

operations are typically injected into the CPU’s state. 

The JTAG interface must halt the CPU, transfer the 

CPU's state, update the CPU’s state to perform a 

memory operation (including general purpose registers 

and the instruction register), single-step the CPU, 

transfer out the CPU’s state again if the memory 

operation was a read, restore the CPU’s original state, 

and resume the CPU. 

While exposing the CPU’s state over JTAG gives 

debuggers extremely powerful control over the system, 

its performance is poor for common tasks, such as 

transferring large segments of memory. To improve 

performance of these operations, CPU vendors have 

introduced additional scan chains that expose small 

communications channels between the JTAG interface 

and a program running on the CPU. For example, most 

ARM processors support the Debug Communications 

Channel (DCC), which is a 32-bit register accessible 

over a separate JTAG scan chain. JTAG interfaces can 

upload a small stub to the target and use the DCC to 

transfer large portions of memory efficiently. 

We leverage the relatively fast DCC by developing a 

custom stub that runs on the target, accepting memory 

read and write commands from the host. A full 

discussion of our stub and DCC protocol is in section 

4.2. We modified QEMU [9] to directly pass selected 

reads and writes as DCC commands to a Segger J-

Link, a commercial, off-the-shelf USB JTAG interface.  

Unfortunately, we then encountered an unexpected 

bottleneck: USB transaction latency. USB requires all 

communications to be initiated by the host. This 

requires the host to periodically poll all devices for 

their status. The maximum polling rate is 1 kHz, which 

imposes a minimum latency of 1 ms on each USB 

transaction. While this may sound insignificant, it is 

several orders of magnitude slower than the latency of 

native I/O operations. Furthermore, because code 

execution may depend on the result of a memory read, 

this effectively places an upper-limit on the number of 

memory operations we can perform per second. Note 

that while we could continue to execute symbolically 

(later replacing the symbolic result of the read with its 

concrete value and pruning inconsistent code paths), 

further interactions with the hardware may depend on 

the result of the read, and thus to ensure consistency 

we must wait for the read to complete. This latency is a 

fundamental limitation of USB, which means that we 

must look at other interfaces to overcome it. 

4. OUR APPROACH: SURROGATES 
We decided to avoid further unexpected bottlenecks 

and latencies that might be lurking in other interfaces 

(such as Ethernet and Firewire) by developing a 

custom JTAG adapter that connects directly to the 

host’s PCI Express bus. Our goal was to transparently 

map the target’s entire 32-bit physical address space 

into the 64-bit address space of the emulator, such that 

peripheral I/O is simply a memory read or write by the 

emulator. While practical reasons (explained later in 

this section) prevent us from achieving this goal, our 

JTAG interface is directly memory-mapped into the 

emulator process, giving us extremely low-latency 

access to the target. We still use our DCC stub to 

communicate with the target processor. 

The PCI Express bus is not really a bus at all, but a 

packet-switched network. The root complex translates 

CPU reads and writes into PCI Express packets, which 

get routed by address. (Alternate routing schemes can 

be used, e.g., for device discovery and configuration.) 

Writes are posted transactions which complete 

immediately, while reads are unposted, which require a 

completion packet (usually with data) to be sent back 

to the root complex. Since PCI Express is a packet-

switched network, devices can send packets to their 

peers, as well as performing DMA by sending packets 

to the root complex.  

4.1 The Hardware 
Our hardware consists of an off-the-shelf PCI Express 

FPGA card (a Pico Computing E17FX70T), a custom 

FPGA-to-JTAG interface board, and a custom JTAG 

debugging board, as shown in Figure 1. The FPGA-to-



JTAG board shifts signal voltage levels between the 

FPGA and the target’s JTAG interface, and provides a 

standard ARM JTAG connector. It also provides a 

SATA-like, high-speed serial interface that can 

transport JTAG signals over a longer distance. The 

JTAG debugging board can convert this serial stream 

back to a standard JTAG interface, and provides an 

easy interface for a logic analyzer to examine the 

JTAG signals. 

Our implementation uses a Xilinx Virtex5 FX70T 

FPGA. While this FPGA is overkill for our purposes, it 

was available off-the-shelf as a PCI Express card, with 

the bulk of the PCI Express glue logic already 

developed by Xilinx and Pico Computing. Our 

application logic is implemented in approximately 

1,100 lines of Verilog, excluding tests (which are 

approximately another 1,000 lines of Verilog). Device 

utilization is summarized in Table 1. 

We implement two PCIe-to-JTAG bridges in the 

FPGA. The first is a simple set of FIFOs for the TDI, 

TMS, and TDO signals, and supports generic JTAG 

operations, such as manipulating the processor’s state, 

dumping firmware, and uploading code. We extend 

OpenOCD to support this new interface and use it for 

some complicated-but-infrequent operations, such as 

resetting the target to a known state and uploading the 

stub. 

The second interface is designed specifically to work 

with our stub. As previously mentioned, the original 

intention was to provide a transparent mapping of the  

Table 1: FPGA Utilization 

 

target’s 32-bit physical address space somewhere in 

the host’s 64-bit address space. Unfortunately, the PCI 

Express specification requires that all 64-bit address 

ranges be prefetchable—meaning that reads are side-

effect free. This is not the case for several embedded 

devices. For example, a UART controller may have a 

single, memory-mapped character register. A read 

from this register frees the UART to receive another 

byte. While some chipsets do allow 64-bit PCI Express 

regions to not be prefetchable, others do not. 

Of course, only a portion of the target’s 32-bit address 

space is mapped to peripherals. We considered 

transparently mapping a small view of the target’s 

address space, allowing the host to pick the address 

range that is mapped in. However, on a typical PC, 

there is a great deal of contention for address space 

below the 4GB boundary. This makes it difficult to 

map reasonably large 32-bit regions. Furthermore, 

devices typically use large peripheral address spaces 

(e.g. 320 MB on the Samsung S3C2440) even though 

they are sparsely populated. Since the host may have to 

keep remapping different views of the target’s address 

space, we decided to simply expose a few memory-

mapped registers that initiate reads and writes to the 

target. These registers are described below and shown 

in Appendix A. 

There are two address registers–one for reads, and one 

for writes, as well as a data register. When a write 

address and value are written, the FPGA initiates a 

write operation on the target through its DCC interface. 

When an address is written to the read address register, 

a read operation on the target is initiated. We also 

provide two FIFOs and control registers to allow the 

host to initiate optimized multiple-word transactions. 

The packet-based nature of PCI Express lets us stall 

reads of the data register if the target hasn’t returned 

data yet. However, while the root complex is supposed 

to abort transactions that have timed out, our particular 

root complex doesn’t. This means that if the target 

 Used Available Utilization 

Slice Registers 6,503 44,800 14% 

Slice LUTs 6,615 44,800 14% 

Occupied Slices 3,397 11,200 30% 

BlockRAMs/FIFOs 11 148 7% 

Total Memory (KB) 306 5,328 5% 

Figure 1: Hardware components of our system. 

Left-to-right: An off-the-shelf FPGA ExpressCard, 

our JTAG adapter board, a JTAG breakout/debug 

board, and the device under test (a FriendlyARM 

Mini2440). FPGA development and debugging is 

done through another JTAG connection via the 

JTAG interface board, as well as a small logic 

analyzer connected to the JTAG breakout/debug 

board. 

 



device doesn’t respond (due to a bug, being powered 

off, etc.), the host will freeze. Not even the NMI 

watchdog can recover the system. For this reason, we 

typically poll the FPGA for completion. 

When there are no pending read or write requests, the 

FPGA can be configured to continuously poll the 

target’s DCC register to see if an interrupt has 

occurred. Interrupts received from the stub are 

dispatched as interrupts to the host’s processor. This 

required a small modification to the FPGA’s PCI 

Express interface code. The preferred way of sending 

interrupts over PCI Express is to use Message Signaled 

Interrupts (MSIs), which are simply memory writes of 

a specific value to a specific address. Peripherals no 

longer have to share a total of four interrupt signals, 

and can in fact request multiple interrupts. This would 

appear to allow the hardware to send different 

interrupts to the host based on the target’s interrupt 

type. Unfortunately, Linux has limited support for 

multiple interrupts per peripheral, so the driver must 

poll the hardware to determine the interrupt type, as 

described in section 4.3. 

4.2 The Stub 
Our stub targets most microcontrollers based on 

ARMv4T or newer cores. (Some newer ARM Cortex 

cores have different debugging options and 

capabilities.) This covers a wide range of interesting 

embedded devices, including hard drives, cellular 

baseband processors, medical devices, and automotive 

systems. The stub is implemented in approximately 

400 lines of assembly and takes up only 768 bytes—

which can be easily locked into the instruction cache 

on processors that support it. The stub does not use any 

RAM for data or a stack, allowing the emulator to use 

all available RAM on the target if desired. 

Our stub uses a custom word-based protocol to 

efficiently perform memory operations as well as 

transferring status information, such as interrupts and 

interrupt masks. A summary of our protocol is listed in 

Table 2. 

The stub provides handlers for standard (IRQ) and fast 

(FIQ) interrupts. Unlike Avatar, no de-multiplexing is 

attempted. When an interrupt is received, ARM 

processors update their Current Program Status 

Register (CPSR) to set the IRQ or FIQ Disable bit, 

preventing the handler from being interrupted itself. 

The old CPSR value is stored in the Saved Program 

Status Register (SPSR). Normally when the handler 

returns, the SPSR is copied back to the CPSR, re-

enabling interrupts. However, we adjust the SPSR to 

keep interrupts disabled and deliver the interrupt type  

Table 2: Our stub protocol as 32-bit hex words 

►1SXXXXXX 

►YYYYYYYY 

◄ZZZZZZZZ …  

Read XX words of size S (1, 2, or 4 

bytes) from address YY. XX data 

elements ZZ are returned. 

►2S00XXXX 

►YYYYYYYY 

Write a single word XX of size S (1 

or 2 bytes) to address YY.  

►3SXXXXXX 

►YYYYYYYY 

►ZZZZZZZZ … 

Write XX words of size S (1, 2, or 

4 bytes) to address YY. XX data 

elements ZZ are sent. 

►50XXXXXX Set the CPSR register to XX. 

Primarily used to set and clear 

interrupt flags. 

… 

◄C347A5XX 

… 

An interrupt of type XX has 

occurred. This word can be sent at 

any time, including before a read 

response. In the unlikely case that a 

word C347A5XX is the result of a 

read operation, C347A500 is sent 

as an escape sequence. 

 

to the host. The host delivers the interrupt to the 

emulated processor when its CPSR is set to allow 

interrupts. The emulated firmware can then query the 

interrupt controller like any other peripheral to 

determine the source(s) of the interrupt. Note that 

multiple interrupt sources may be set in the interrupt 

controller–setting the IRQ or FIQ Disable flag does not 

mask interrupts from being handled by the interrupt 

controller, but merely prevents them from being 

delivered to the CPU. The firmware acknowledges any 

interrupts it handles. When the emulated firmware 

finally re-enables interrupts, a CPSR update command 

is sent to the target to re-enable its interrupts. If the 

interrupt controller still has an unacknowledged 

interrupt active, it will once again interrupt the target 

CPU. This process repeats until no interrupts are 

active. The acknowledgement protocol prevents any 

race conditions where the emulated processor may 

miss an interrupt. Since these race conditions can 

appear natively, all ARM firmware must implement 

this type of protocol. Some ARM SoCs provide 

vectored interrupts, where the firmware can specify 

different handlers for each interrupt source. However, 

since the ARM core itself only supports two interrupt 

types, these vectors are normally implemented with a 

small handler in ROM, which queries the interrupt 

controller and jumps to the correct vector. This ROM 

can be emulated by our system like any other 



firmware, allowing us to support fully-vectored 

interrupts with no additional work. Extracting this 

ROM and other per-device setup is discussed in 

section 5.2. 

4.3 The Software 
We modified QEMU [9] to pass all MMIO to our 

hardware. We accomplished this by creating a new 

“surrogate” peripheral in QEMU, which owns the 

entire MMIO address space of the target and forwards 

MMIO operations to the hardware. We also created a 

new QEMU “system,” which selects the proper CPU, 

creates the necessary address spaces, initializes the 

surrogate peripheral, and loads the firmware to 

emulate. Note that since we build on QEMU, our 

system easily integrates with tools such as S2E [10] 

and Avatar. (We later created interfaces to our 

hardware as S2E and Avatar plugins, but found that 

doing so incurs a substantial performance hit. Thus, we 

appear to S2E like any other virtualized peripheral.) 

Initially we ran our system under Windows to take 

advantage of the existing drivers for the PCIe card. 

However, the drivers were optimized for streams of 

data, where latency is less of a concern that 

throughput. For example, transfers to the card would 

always use DMA, regardless of the transfer size. 

We ultimately re-implemented a simplified version of 

the driver on Linux (which was based on an open-

source driver for Pico Computing’s other FPGA 

products). To avoid syscall overhead on every MMIO 

operation, we allow applications to mmap the 

hardware’s register space, although in practice this did 

not significantly improve performance. 

Finally, we extended the driver’s interrupt handler to 

deliver a signal to any process that requests it 

whenever a non-DMA interrupt is received. A signal 

handler in QEMU delivers this interrupt to the virtual 

CPU. This provides a low-latency path for interrupts. 

5. Evaluation 
We evaluate our system against two metrics: its 

performance and the ease of configuring it to work 

with a new target device. 

5.1 Performance 
One of the key motivations for SURROGATES was to 

overcome the performance limitations of Avatar. 

While we had independently built a system very 

similar to Avatar, we were unable to use it against 

several devices of interest because proper operation of 

those devices relies on timing constraints that it could 

not meet (e.g. watchdogs on co-processors of a 

medical device). Therefore, we evaluate the several 

performance aspects of our system and compare it with 

prior work. All of our performance experiments were 

run against a FriendlyARM Mini2440 development 

board, described in Section 5.2. 

To test raw MMIO performance, we measure the time 

needed to make 1,000,000 read or write requests to the 

SRAM of the FriendlyARM’s SoC, connected to our 

hardware with a 4 MHz JTAG clock. We find that our 

raw MMIO performance is four orders of magnitude 

faster than what the Avatar authors reported, as shown 

in Table 3. We also measured the time taken to write to 

an FPGA register 1,000,000 times. Although accessing 

the FPGA through a mmap interface is about 60% 

faster (1.4 µs vs. 2.2 µs), the overall performance 

impact under real workloads is negligible.  

To evaluate whether this performance was reasonable 

to support near-real-time emulation, we set out to boot 

Linux on the emulated processor. To accurately 

measure the amount of time to boot, we replaced the 

init binary with one that simply contains a special 

illegal instruction. This instruction shuts down QEMU 

and reports performance statistics. We found that the 

kernel boots in about 27 seconds. 25 seconds were 

spent performing I/O. However, during boot the kernel 

initializes all of the peripherals, so its I/O 

characteristics are different from typical usage of a 

booted system. During this time, approximately 

126,000 reads and 87,000 writes were performed.  

To evaluate interactivity, we replaced the init binary 

with the busybox [11] version of /bin/sh, allowing us 

to interact with the system over its serial port. While 

file system accesses were noticeably slower than on 

the real hardware, the shell maintained a subjectively 

good amount of responsiveness. 

To get a more objective measure of responsiveness, we 

connected the FriendlyARM’s Ethernet port directly to 

a Windows laptop and performed a ping test against 

the emulated system. After 100 pings, the average 

response time was 15 ms. The minimum response time 

was 8 ms, and the maximum was 61 ms. We then 

connected the FriendlyARM to our campus network 

Table 3: Raw MMIO Performance 

 MMIO Operations Per Second 

Avatar ~5 (over serial debug port at 38400 bps) 

Our system 

w/ syscalls 

17172 writes / 15761 reads 

(over 4 MHz JTAG) 

Our system 

w/ mmap 

17174 writes / 15772 reads 

(over 4 MHz JTAG) 



(which has significantly more broadcast traffic) and 

obtained similar results. Finally, we loaded a web page 

from the emulated device’s HTTP server, which loads 

content off of the physical SD card and sends it over 

the physical NIC. When loading a 369KB image from 

the SD card, we obtained an effective throughput of 

17.3 KB/s, which includes an initial stall to read the 

file from the SD card. Subsequent transfers of the same 

image (now in the filesystem cache) had a throughput 

of about 26 KB/s. Note that neither the SD card driver 

nor the NIC driver use DMA, which would allow us to 

exploit the multi-word transfer mode of our system to 

approximately double our throughput (since we 

transfer the address only once, and not on every word 

transfer). 

While slower than running natively, we are able to 

emulate an entire system with reasonable usability. In 

contrast, the authors of Avatar reported that it took 

almost four minutes to reach the bootloader prompt of 

a hard drive. 

5.2 Portability 
This work was also motivated by our desire to build a 

dynamic analysis platform that does not require a great 

deal of work to apply to a new target. Therefore, we 

evaluate the ease of supporting new devices and 

discuss some of the new challenges encountered when 

supporting entire systems. We look at two devices as 

case studies: a FriendlyARM Mini2440 development 

board with a Samsung S3C2440 SoC, and a wireless 

medical device with an iMX21 SoC. 

When applying our system to a new target, the first 

task is to identify the target’s JTAG port. These are 

often connected to test pads on the target’s PCB, but 

sometimes they are brought out to dedicated 

connectors. As a development board, the 

FriendlyARM features a well-identified JTAG port. 

The wireless medical device, however, just has dozens 

of unmarked test points. We had previously identified 

the JTAG test points through manual analysis; 

however, today there are tools like the JTAGulator 

[12] that perform a brute-force search over all test 

points to find the JTAG signals. 

Once JTAG connectivity is established, firmware of 

the device is downloaded. In some cases, the SoC itself 

has a small amount of firmware in ROM that is 

essential to proper operation of the SoC. For example, 

the ROM in the iMX21 performs interrupt vectoring, 

so if the firmware chooses to use vectored interrupts, 

the ROM must be emulated as well. 

A location for the stub must be identified. Different 

SoCs have varying requirements for locating interrupt 

and exception handlers. For example, on the S3C2440, 

exception handlers must be located at 0x00000000, 

while on the iMX21, we can place exception handlers 

anywhere in memory because the ROM at 0x00000000 

uses an exception vector table stored in dedicated 

RAM as a level of indirection. On the S3C2440, we 

place our stub in the NAND “SteppingStone” SRAM 

at 0x00000000. On the iMX21, we place our stub in 

the dedicated exception handler SRAM. Depending on 

the SoC, it may also be possible to lock the stub into 

the cache, allowing you to virtually place it over 

address spaces that are normally not usable (such as 

ROMs at 0). MMUs, if available, may also be used to 

place the stub at arbitrary locations, but this is left for 

future work. 

Next, the layout of the target’s address space must be 

specified in QEMU. Usually this is as simple as 

defining the address regions of RAM, Flash, and 

peripherals. For the iMX21, an additional address 

space entry is created for the ROM. 

There are usually a few exceptions that must be carved 

out of the peripheral address space. These are for 

registers that, when updated, cause the target to lose 

sync with the host. For example, on the S3C2440, 

there are registers that control the core clock speed. 

When the clock speed is adjusted, the CPU is halted 

until the PLLs re-lock. JTAG communication fails 

until the CPU resumes execution. We can use dynamic 

analyses techniques to easily determine these 

exceptions. If we log all MMIO as the system boots, 

the last MMIO operation before the system halts is 

usually responsible for the failure. The SoC datasheet 

can be consulted for the effect of the corresponding 

register so that an intelligent exception can be made. 

Finally, different SoCs have wildly varying DMA 

controllers, some of which must be emulated for 

proper emulation of the device. For example, the 

S3C2440 has a general-purpose DMA controller as 

well as a dedicated LCD DMA controller. Neither are 

required to be emulated to boot Linux. For the iMX21, 

we emulated the LCD DMA controller registers in 

QEMU with only eight additional lines of C. This 

emulated DMA controller simply copies the specified 

video memory from the emulator to the same location 

on the target, and then passes the DMA request on to 

the real DMA controller to transfer the data to the 

LCD. 

As an alternative to emulating different DMA 

controllers, we can treat the emulator’s memory as 

another level of cache. DMA controllers typically 

cannot access the L1 or L2 caches, so any data 

involved in a transfer must reside in main memory. We 



can treat intentional cache invalidations as an 

indication that the memory was or will be used in a 

DMA transfer and flush the affected memory to or 

from the target. (Note that the stub always runs with 

the target’s data caches off, so flushes from the 

emulator to the target will go directly to main 

memory). Unfortunately, this approach only works 

with firmware that turns the data caches on, which was 

not the case with our wireless medical device. 

Overall, we find it straightforward to apply our system 

to different devices, requiring far less work than 

building an emulator for all of the target’s hardware. 

There is some manual configuration involved, but this 

is true of most dynamic analysis tools. 

6. Future Work 

6.1 Further improving performance 
While our stub protocol is relatively efficient, it still 

suffers from inefficiencies in ARM’s DCC 

specification and limitations of JTAG interfaces. For 

example, to read a debug register, we must clock in 36 

bits into the EmbeddedICE interface to select the 

register to read, and then clock another 36 bits out to 

read the value. There are two EmbeddedICE registers 

we use: the DCC status register, and the DCC data 

register. To read a single 32-bit value from the DCC 

data register, at least 144 bits need to be transferred. 

While we could propose some changes to the DCC 

specification, the most recent ARM processors have 

transitioned to debugging interfaces that provide 

complete access to the SoC bus. We have not yet 

examined these new interfaces in detail, as many 

systems of interest do not use them yet, but it may be 

straight forward to adapt our system to ARM’s new 

debugging interfaces. 

6.2 Eliminating our dependence on 

hardware 
While our system enables dynamic analysis of 

embedded systems at an unprecedented scale, it 

doesn’t necessarily scale any further. Systems like 

SAGE [13] and S2E depend on the ability to massively 

parallelize state space searches. This is easy with well-

defined OS APIs, but our approach depends on an 

individual physical system to guide execution. Even 

worse, to ensure the hardware is in a consistent state, 

we may need to reset the SoC and replay all I/O 

operations when another code branch is explored. (In 

practice, peripherals usually have limited state, so once 

they are initialized, we may be able to relax our 

consistency requirements and ignore their states.) 

However, it may be possible to learn models of the 

hardware based on execution traces collected with our 

system. This would enable dynamic analysis systems 

to run largely independent of physical hardware, 

allowing it to scale up massively. The models do not 

necessarily need to be 100% accurate; as long as they 

reasonably constrain the state space search, it is 

feasible to explore several potentially vulnerable code 

paths. When a potentially vulnerable code path is 

found, it can be verified against the actual hardware 

using our system. 

7. Conclusions 
We have built and evaluated a system that enables 

dynamic analysis of embedded systems at an 

unprecedented scale. Our approach is similar to 

Avatar; we run the system under emulation in QEMU 

and redirect I/O to the target hardware to guide 

execution and provide the firmware with a faithful 

reproduction of its environment. However, by using a 

custom FPGA bridge between the host and target, we 

enable near-real time emulation of the target system, 

allowing us to analyze systems of far greater 

complexity. This will ultimately enable embedded 

systems developers to take advantage of several 

dynamic analysis techniques that were previously 

available only to traditional software developers, 

allowing them to deliver safer and more secure 

embedded systems. 

8. References

[1] Stephen Checkoway et al., "Comprehensive 

Experimental Analyses of Automotive Attack 

Surfaces," in USENIX Security Symposium, San 

Francisco, 2011. 

[2] Daniel Halperin et al., "Pacemakers and 

Implantable Cardiac Defibrillators: Software 

Radio Attacks and Zero-Power Defenses," in 

IEEE Symposium on Security and Privacy, 2008. 

[3] Michael Lynn, "Cisco IOS Shellcode," in 

Blackhat USA, Las Vegas, 2005. 

[4] Ariel J Feldman, Alex Halderman, and Edward 

W Felten, "Security Analysis of the Diebold 

AccuVote-TS Voting Machine," in Electronic 

Voting Technology Workshop, 2007. 

[5] Jonas Zaddach, Luca Bruno, Aurelien Francillon, 

and Davide Balzarotti, "Avatar: A Framework to 

Support Dynamic Security Analysis of 

Embedded Systems' Firmwares," in Network and 

Distributed System Security Symposium, 2014. 



[6] Drew Davidson, Benjamin Moench, Somesh Jha, 

and Thomas Ristenpart, "FIE on Firmware: 

Finding Vulnerabilities in Embedded Systems 

Using Symbolic Execution," in USENIX Security 

Symposium, 2013. 

[7] coresystems GmbH, SerialICE, 2009, 

http://ww.serialice.com/. 

[8] Dominic Rath, Open On-Chip Debugger: Design 

and Implementation of an On-Chip Debug 

Solution for Embedded Target Systems, 2005. 

[9] F. Bellard, et. al. QEMU. http://www.qemu.org/ 

[10] Vitaly Chipounov, Volodymyr Kuznetsov, and 

George Candea, "S2E: A Platform for In-Vivo 

Multi-Path Analysis of Software Systems," in 

6th Intl. Conference on Architectural Support for 

Programming Languages and Operating Systems 

(ASPLOS), Newport Beach, CA, 2011. 

[11] BusyBox, http://www.busybox.net/. 

[12] Joe Grand, JTAGulator, 2013, 

http://www.grandideastudio.com/portfolio/jtagul

ator/. 

[13] Patrice Godefroid, Michael Y. Levin, and David 

Molnar, "Automated Whitebox Fuzz Testing," in 

The 15th Annual Network & Distributed System 

Security Conference, San Diego, 2008. 

 

 

 

  



Appendix A: FPGA Register Map 

Addr Desc. Value Specification 

000 Output 

Control 

Register 

Bits: 

31-11 10 9 8 7 6 5 4 3 2 1 0 

Reserved FORCE

OUT 

OUT

EN 

DBGACK DBGRQ nSRST TDO RTCK TCK TMS TDI nTRST 

FORCEOUT – Forces JTAG output pins to the values set in this register 

OUTEN – Enables JTAG output pins 

004 JTAG 

Stream 

Control 

Register 

Bits: 

31-27 26 25 24 23-0 

Reserved Stub Interface Reset Stub Interface Scan Enable Stream Enable Stream Length 

Stub Interface Reset – Reinitializes the stub interface logic 

Stub Interface Scan Enable – Causes the stub interface logic to poll the target for interrupts 

Stream Enable – Streams arbitrary JTAG data (used for non-stub communication) 

Stream Length – The number of bits to stream 

008 JTAG 

Clock 

Divisor 

Bits: 

31 30-0 

JTAG Clock Reset Divisor 

Divisor – The JTAG clock divisor. The JTAG clock speed is 125 MHz / (divisor – 1). 

00C Read 

Stall 

Control 

Bits: 

31 30-0 

Read Stall Enable Read Timeout 

Read Stall Enable – Stalls reads from the Data Register until data is ready 

Read Timeout – Read stall timeout, in multiples of 8 ns 

x10 Read 

Address 

Target address to read. X is the transfer size: 1 = Byte, 2 = 16 bit word, 4 = 32 bit word. Writes 

to this register initiate a read from the target. 

x14 Write 

Address 

Target address to write. X is the transfer size: 1 = Byte, 2 = 16 bit word, 4 = 32 bit word. 

018 Data 

Register 

Data returned from a read, or data to be written. Ignored in bulk transfer mode. Writes to this 

register always initiate a write to the target.  

01C IRQ 

Register 

Bits: 

31-8 7 6 5 4 3-0 

Reserved FIQ IRQ Reserved Data Abort Reserved 

Reads from this register are unacknowledged exceptions received from the stub. Write a 1 back 

to the corresponding bit to acknowledge the exception. 

024 Target 

CPSR  

Writes to this register update the target’s CPSR to the given value. 

028 Bulk 

Data 

Length 

Bits: 

31-25 24 23-0 

Reserved BULKEN Number of elements (bytes, half-words, words) to send 

BULKEN – If set, the stub interface logic uses the bulk-optimized stub protocol, using the stub 

data FIFOs instead of the Data Register 
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