
SURROGATES: Enabling Near-Real-Time

Dynamic Analyses of Embedded Systems

Karl Koscher
UC San Diego

supersat@cs.ucsd.edu

Tadayoshi Kohno

University of Washington
yoshi@cs.washington.edu

David Molnar

Microsoft
dmolnar@microsoft.com

ABSTRACT

Embedded systems are becoming increasingly

sophisticated, inter-connected, and pervasive.

Unfortunately, securing these systems remains

challenging. While powerful dynamic analysis tools

have been developed for traditional software, the

unique characteristics of embedded systems make it

difficult to apply these well-known techniques; prior

work has been limited either to small systems or short

segments of code. In this paper, we demonstrate a

system that is capable of emulating and instrumenting

embedded systems in near-real-time, enabling a variety

of dynamic analysis techniques. Our approach uses a

custom, low-latency FPGA bridge between the host’s

PCI Express bus and the system under test, allowing

the emulator full access to the system’s peripherals.

This provides the emulator with a faithful

representation of the environment the firmware

normally executes in, enabling additional dynamic

analysis techniques such as concolic execution. We

discuss the design decisions and engineering tradeoffs

made and evaluate our system against prior work.

1. INTRODUCTION
Embedded systems are becoming increasingly

sophisticated, inter-connected, and pervasive, making

the “Internet of Things” the buzzword du jour.

Unfortunately, these systems have repeatedly been

shown to be insecure, with vulnerabilities in a diverse

range of products such as automobiles [1], medical

devices [2], routers [3], and voting machines [4]. Even

if we can convince manufacturers to invest the time

and resources to secure their products, the security

tools available to embedded systems developers pale in

comparison to those for traditional software.

In particular, dynamic analysis techniques are

challenging to apply due to the difficulty of

instrumenting embedded systems. There may not be

sufficient storage space for an instrumented binary or

its measurements. There may not be sufficient

processing power for instrumentation. There may not

be a way to provide arbitrary data to the system—a

necessity for fuzzing. Even if a system is technically

capable of added instrumentation, firmware

heterogeneity requires substantial work to customize

instrumentation for each device. Whereas traditional

software runs on top of a few standard OSes (with

standard facilities that support instrumentation, such as

a file system and dynamic linker), embedded systems

may not even have an OS. The analyst must identify

instrumentation points and storage available for

measurements, and surgically insert code into the

firmware.

An alternative to placing instrumentation on the device

itself is to run the system under emulation. However,

this introduces its own set of challenges. Embedded

systems are highly intertwined with their environment,

through sensors, actuators, and other interfaces.

Furthermore, the peripherals that control these

interfaces can vary a great deal from one device to

another. Faithfully emulating these peripherals requires

a great deal of work building customized solutions.

An early approach to this problem came in the form of

in-circuit emulators, which are drop-in, hardware

replacements for microprocessors. These are typically

microprocessor cores identical to those being

“emulated,” with extra debugging signals bonded-out

and connected to external analyzers. These analyzers

can be used to examine and control the operation of the

microprocessors. However, as processor speeds have

increased, and as microcontrollers have evolved into

full Systems-on-Chip (SoCs), hardware in-circuit

emulators have been replaced by special debugging

facilities built in to most modern microcontrollers and

SoCs. These facilities, while useful for development

and debugging, often do not readily lend themselves to

supporting advanced dynamic analysis techniques,

such as taint tracking, fuzzing, or concolic execution.

Another approach, as described in section 2, is to treat

peripherals as unconstrained symbolic inputs.

However, this relies on the analysis using symbolic

execution. Unconstrained inputs can lead to state

explosion, rendering this technique unsuitable for all

but the smallest embedded systems.

We take a different approach. Like Avatar [5] (also

described in section 2), we run the device’s firmware

under emulation, directing peripheral I/O to the actual

device, giving the emulated firmware a realistic view

of its environment. This leverages the fact that many

devices rely on a relatively small set of embedded

processors; SoC manufacturers typically license a

well-known CPU core and add their own custom

peripherals.

However, there are a number of challenges in making

this approach work without being prohibitively slow.

Avatar attempts to overcome these challenges by

limiting the amount firmware executed under

emulation. However, this raises a number of additional

problems. The analyst must have sufficient insight into

operation of the firmware to decide which parts are

interesting enough to run under emulation. Emulated

code still executes slowly, so this technique may not

work with timing-sensitive devices (such as a medical

device with a watchdog coprocessor.) Furthermore, it

doesn’t provide a feasible way to do whole-system

analysis.

Instead of limiting the scope of emulated execution, we

introduce a system called SURROGATES, which can

emulate entire systems in near-real-time. We

accomplish this by using custom, low-latency

hardware to bridge the PCI Express bus of the host to

the device under test, as well as making a number of

optimizations. In doing so, we uncover and surmount

new challenges in emulating entire systems, such as

handling interrupts, DMA, and clocking changes.

In this paper, we make the following contributions: 1)

We describe new hardware which enables near-real

time emulation of arbitrary ARM-based embedded

systems, providing a platform to build advanced

dynamic analysis tools on; 2) We discuss the

engineering tradeoffs in building SURROGATES and

provide comprehensive performance evaluations of the

different techniques; 3) We describe and solve several

issues that arise when emulating entire systems; and 4)

We demonstrate the practicality of using our system on

a diverse set of devices.

The rest of this paper is organized as follows. Section 2

describes related work. Section 3 discusses a number

of options to improve the performance of systems like

Avatar, guiding the design of SURROGATES, which is

introduced in section 4. Section 5 evaluates the

performance of our system, compares it to prior work,

and describes our experience applying our system to a

variety of embedded systems. Section 6 describes

future work. Finally, we conclude in section 7.

2. RELATED WORK
The poor state of embedded security and the

seriousness of its consequences have led researchers to

propose new ways to automatically analyze embedded

systems, building on the success of traditional dynamic

analysis tools. However, there are a number of

challenges in applying traditional dynamic analysis

tools to embedded systems.

Whereas traditional software is written against OS-

provided APIs, the “API” that firmware is written

against is usually a hardware specification. Peripherals

typically expose their behavior through several

memory-mapped registers. These registers appear as

normal memory, but reads and writes to these

addresses directly control the hardware. With the large

heterogeneity of embedded devices, faithfully

reproducing hardware behavior to dynamic analysis

tools is a time-consuming and error-prone proposition.

FIE [6] symbolically executes the firmware of small,

MSP430-based embedded devices. FIE overcomes the

challenges in the diversity of devices and the need to

understand peripheral semantics by treating all

peripheral I/O as an unconstrained symbolic input.

Unfortunately, this can easily lead to a state space

explosion, making this technique impractical for all but

the smallest embedded systems.

Avatar [5] attempts to constrain the number of states

explored by using the actual hardware as a guide for

peripheral semantics. It does so by redirecting

peripheral I/O to the real device, either by using a

JTAG debugger or through serial communication with

an in-memory stub loaded onto the target in a manner

similar to SerialICE [7]. Unfortunately, with the ability

to do only about five memory operations per second,

redirecting all I/O is prohibitively slow. Avatar

overcomes this limitation by migrating executing code

between the emulator and the device, and emulating

only small portions of interest of the firmware.

However, this optimization is unsuitable for timing-

sensitive systems. We seek to overcome this limitation

by enabling near-real-time peripheral interaction.

3. TOWARDS REAL-TIME I/O
Our system targets ARM processors, which are

ubiquitous in medium-to-high complexity embedded

devices. Our system communicates over the JTAG

interface exposed on most microcontrollers. JTAG has

several nice properties: 1) it is usually present in

embedded devices for programming and testing during

manufacturing, 2) JTAG pins are usually dedicated for

programming and debugging, so it provides a

communications channel that is not already used for

some other purpose during normal operation, 3) JTAG

interfaces tend to support high transfer rates (e.g. ARM

processors can support JTAG clock rates up to 1/6th of

the core processor speed), limited primarily by off-chip

factors such as connection length, and 4) existing

JTAG tools can be used to read and write arbitrary

memory addresses on a device, making it easy to

rapidly develop an Avatar-like prototype.

JTAG interfaces expose a simple, standard state

machine that can be driven by a JTAG adapter. This

state machine lets the JTAG adapter select, capture,

and update either a JTAG instruction register or a data

register. These registers act like shift registers; data is

shifted in and out simultaneously. While there is only

one instruction register, several different data registers

(called scan chains) can be selected using the different

JTAG instructions.

As with Avatar, we first redirected emulated memory-

mapped I/O to the target over JTAG using OpenOCD

[8] (an open-source JTAG program). We initially used

OpenOCD’s built-in GDB protocol interface to initiate

reads and writes and control the processor’s state.

However, memory operations are extremely slow over

regular JTAG interfaces. This is because these memory

operations are typically injected into the CPU’s state.

The JTAG interface must halt the CPU, transfer the

CPU's state, update the CPU’s state to perform a

memory operation (including general purpose registers

and the instruction register), single-step the CPU,

transfer out the CPU’s state again if the memory

operation was a read, restore the CPU’s original state,

and resume the CPU.

While exposing the CPU’s state over JTAG gives

debuggers extremely powerful control over the system,

its performance is poor for common tasks, such as

transferring large segments of memory. To improve

performance of these operations, CPU vendors have

introduced additional scan chains that expose small

communications channels between the JTAG interface

and a program running on the CPU. For example, most

ARM processors support the Debug Communications

Channel (DCC), which is a 32-bit register accessible

over a separate JTAG scan chain. JTAG interfaces can

upload a small stub to the target and use the DCC to

transfer large portions of memory efficiently.

We leverage the relatively fast DCC by developing a

custom stub that runs on the target, accepting memory

read and write commands from the host. A full

discussion of our stub and DCC protocol is in section

4.2. We modified QEMU [9] to directly pass selected

reads and writes as DCC commands to a Segger J-

Link, a commercial, off-the-shelf USB JTAG interface.

Unfortunately, we then encountered an unexpected

bottleneck: USB transaction latency. USB requires all

communications to be initiated by the host. This

requires the host to periodically poll all devices for

their status. The maximum polling rate is 1 kHz, which

imposes a minimum latency of 1 ms on each USB

transaction. While this may sound insignificant, it is

several orders of magnitude slower than the latency of

native I/O operations. Furthermore, because code

execution may depend on the result of a memory read,

this effectively places an upper-limit on the number of

memory operations we can perform per second. Note

that while we could continue to execute symbolically

(later replacing the symbolic result of the read with its

concrete value and pruning inconsistent code paths),

further interactions with the hardware may depend on

the result of the read, and thus to ensure consistency

we must wait for the read to complete. This latency is a

fundamental limitation of USB, which means that we

must look at other interfaces to overcome it.

4. OUR APPROACH: SURROGATES
We decided to avoid further unexpected bottlenecks

and latencies that might be lurking in other interfaces

(such as Ethernet and Firewire) by developing a

custom JTAG adapter that connects directly to the

host’s PCI Express bus. Our goal was to transparently

map the target’s entire 32-bit physical address space

into the 64-bit address space of the emulator, such that

peripheral I/O is simply a memory read or write by the

emulator. While practical reasons (explained later in

this section) prevent us from achieving this goal, our

JTAG interface is directly memory-mapped into the

emulator process, giving us extremely low-latency

access to the target. We still use our DCC stub to

communicate with the target processor.

The PCI Express bus is not really a bus at all, but a

packet-switched network. The root complex translates

CPU reads and writes into PCI Express packets, which

get routed by address. (Alternate routing schemes can

be used, e.g., for device discovery and configuration.)

Writes are posted transactions which complete

immediately, while reads are unposted, which require a

completion packet (usually with data) to be sent back

to the root complex. Since PCI Express is a packet-

switched network, devices can send packets to their

peers, as well as performing DMA by sending packets

to the root complex.

4.1 The Hardware
Our hardware consists of an off-the-shelf PCI Express

FPGA card (a Pico Computing E17FX70T), a custom

FPGA-to-JTAG interface board, and a custom JTAG

debugging board, as shown in Figure 1. The FPGA-to-

JTAG board shifts signal voltage levels between the

FPGA and the target’s JTAG interface, and provides a

standard ARM JTAG connector. It also provides a

SATA-like, high-speed serial interface that can

transport JTAG signals over a longer distance. The

JTAG debugging board can convert this serial stream

back to a standard JTAG interface, and provides an

easy interface for a logic analyzer to examine the

JTAG signals.

Our implementation uses a Xilinx Virtex5 FX70T

FPGA. While this FPGA is overkill for our purposes, it

was available off-the-shelf as a PCI Express card, with

the bulk of the PCI Express glue logic already

developed by Xilinx and Pico Computing. Our

application logic is implemented in approximately

1,100 lines of Verilog, excluding tests (which are

approximately another 1,000 lines of Verilog). Device

utilization is summarized in Table 1.

We implement two PCIe-to-JTAG bridges in the

FPGA. The first is a simple set of FIFOs for the TDI,

TMS, and TDO signals, and supports generic JTAG

operations, such as manipulating the processor’s state,

dumping firmware, and uploading code. We extend

OpenOCD to support this new interface and use it for

some complicated-but-infrequent operations, such as

resetting the target to a known state and uploading the

stub.

The second interface is designed specifically to work

with our stub. As previously mentioned, the original

intention was to provide a transparent mapping of the

Table 1: FPGA Utilization

target’s 32-bit physical address space somewhere in

the host’s 64-bit address space. Unfortunately, the PCI

Express specification requires that all 64-bit address

ranges be prefetchable—meaning that reads are side-

effect free. This is not the case for several embedded

devices. For example, a UART controller may have a

single, memory-mapped character register. A read

from this register frees the UART to receive another

byte. While some chipsets do allow 64-bit PCI Express

regions to not be prefetchable, others do not.

Of course, only a portion of the target’s 32-bit address

space is mapped to peripherals. We considered

transparently mapping a small view of the target’s

address space, allowing the host to pick the address

range that is mapped in. However, on a typical PC,

there is a great deal of contention for address space

below the 4GB boundary. This makes it difficult to

map reasonably large 32-bit regions. Furthermore,

devices typically use large peripheral address spaces

(e.g. 320 MB on the Samsung S3C2440) even though

they are sparsely populated. Since the host may have to

keep remapping different views of the target’s address

space, we decided to simply expose a few memory-

mapped registers that initiate reads and writes to the

target. These registers are described below and shown

in Appendix A.

There are two address registers–one for reads, and one

for writes, as well as a data register. When a write

address and value are written, the FPGA initiates a

write operation on the target through its DCC interface.

When an address is written to the read address register,

a read operation on the target is initiated. We also

provide two FIFOs and control registers to allow the

host to initiate optimized multiple-word transactions.

The packet-based nature of PCI Express lets us stall

reads of the data register if the target hasn’t returned

data yet. However, while the root complex is supposed

to abort transactions that have timed out, our particular

root complex doesn’t. This means that if the target

 Used Available Utilization

Slice Registers 6,503 44,800 14%

Slice LUTs 6,615 44,800 14%

Occupied Slices 3,397 11,200 30%

BlockRAMs/FIFOs 11 148 7%

Total Memory (KB) 306 5,328 5%

Figure 1: Hardware components of our system.

Left-to-right: An off-the-shelf FPGA ExpressCard,

our JTAG adapter board, a JTAG breakout/debug

board, and the device under test (a FriendlyARM

Mini2440). FPGA development and debugging is

done through another JTAG connection via the

JTAG interface board, as well as a small logic

analyzer connected to the JTAG breakout/debug

board.

device doesn’t respond (due to a bug, being powered

off, etc.), the host will freeze. Not even the NMI

watchdog can recover the system. For this reason, we

typically poll the FPGA for completion.

When there are no pending read or write requests, the

FPGA can be configured to continuously poll the

target’s DCC register to see if an interrupt has

occurred. Interrupts received from the stub are

dispatched as interrupts to the host’s processor. This

required a small modification to the FPGA’s PCI

Express interface code. The preferred way of sending

interrupts over PCI Express is to use Message Signaled

Interrupts (MSIs), which are simply memory writes of

a specific value to a specific address. Peripherals no

longer have to share a total of four interrupt signals,

and can in fact request multiple interrupts. This would

appear to allow the hardware to send different

interrupts to the host based on the target’s interrupt

type. Unfortunately, Linux has limited support for

multiple interrupts per peripheral, so the driver must

poll the hardware to determine the interrupt type, as

described in section 4.3.

4.2 The Stub
Our stub targets most microcontrollers based on

ARMv4T or newer cores. (Some newer ARM Cortex

cores have different debugging options and

capabilities.) This covers a wide range of interesting

embedded devices, including hard drives, cellular

baseband processors, medical devices, and automotive

systems. The stub is implemented in approximately

400 lines of assembly and takes up only 768 bytes—

which can be easily locked into the instruction cache

on processors that support it. The stub does not use any

RAM for data or a stack, allowing the emulator to use

all available RAM on the target if desired.

Our stub uses a custom word-based protocol to

efficiently perform memory operations as well as

transferring status information, such as interrupts and

interrupt masks. A summary of our protocol is listed in

Table 2.

The stub provides handlers for standard (IRQ) and fast

(FIQ) interrupts. Unlike Avatar, no de-multiplexing is

attempted. When an interrupt is received, ARM

processors update their Current Program Status

Register (CPSR) to set the IRQ or FIQ Disable bit,

preventing the handler from being interrupted itself.

The old CPSR value is stored in the Saved Program

Status Register (SPSR). Normally when the handler

returns, the SPSR is copied back to the CPSR, re-

enabling interrupts. However, we adjust the SPSR to

keep interrupts disabled and deliver the interrupt type

Table 2: Our stub protocol as 32-bit hex words

►1SXXXXXX

►YYYYYYYY

◄ZZZZZZZZ …

Read XX words of size S (1, 2, or 4

bytes) from address YY. XX data

elements ZZ are returned.

►2S00XXXX

►YYYYYYYY

Write a single word XX of size S (1

or 2 bytes) to address YY.

►3SXXXXXX

►YYYYYYYY

►ZZZZZZZZ …

Write XX words of size S (1, 2, or

4 bytes) to address YY. XX data

elements ZZ are sent.

►50XXXXXX Set the CPSR register to XX.

Primarily used to set and clear

interrupt flags.

…

◄C347A5XX

…

An interrupt of type XX has

occurred. This word can be sent at

any time, including before a read

response. In the unlikely case that a

word C347A5XX is the result of a

read operation, C347A500 is sent

as an escape sequence.

to the host. The host delivers the interrupt to the

emulated processor when its CPSR is set to allow

interrupts. The emulated firmware can then query the

interrupt controller like any other peripheral to

determine the source(s) of the interrupt. Note that

multiple interrupt sources may be set in the interrupt

controller–setting the IRQ or FIQ Disable flag does not

mask interrupts from being handled by the interrupt

controller, but merely prevents them from being

delivered to the CPU. The firmware acknowledges any

interrupts it handles. When the emulated firmware

finally re-enables interrupts, a CPSR update command

is sent to the target to re-enable its interrupts. If the

interrupt controller still has an unacknowledged

interrupt active, it will once again interrupt the target

CPU. This process repeats until no interrupts are

active. The acknowledgement protocol prevents any

race conditions where the emulated processor may

miss an interrupt. Since these race conditions can

appear natively, all ARM firmware must implement

this type of protocol. Some ARM SoCs provide

vectored interrupts, where the firmware can specify

different handlers for each interrupt source. However,

since the ARM core itself only supports two interrupt

types, these vectors are normally implemented with a

small handler in ROM, which queries the interrupt

controller and jumps to the correct vector. This ROM

can be emulated by our system like any other

firmware, allowing us to support fully-vectored

interrupts with no additional work. Extracting this

ROM and other per-device setup is discussed in

section 5.2.

4.3 The Software
We modified QEMU [9] to pass all MMIO to our

hardware. We accomplished this by creating a new

“surrogate” peripheral in QEMU, which owns the

entire MMIO address space of the target and forwards

MMIO operations to the hardware. We also created a

new QEMU “system,” which selects the proper CPU,

creates the necessary address spaces, initializes the

surrogate peripheral, and loads the firmware to

emulate. Note that since we build on QEMU, our

system easily integrates with tools such as S2E [10]

and Avatar. (We later created interfaces to our

hardware as S2E and Avatar plugins, but found that

doing so incurs a substantial performance hit. Thus, we

appear to S2E like any other virtualized peripheral.)

Initially we ran our system under Windows to take

advantage of the existing drivers for the PCIe card.

However, the drivers were optimized for streams of

data, where latency is less of a concern that

throughput. For example, transfers to the card would

always use DMA, regardless of the transfer size.

We ultimately re-implemented a simplified version of

the driver on Linux (which was based on an open-

source driver for Pico Computing’s other FPGA

products). To avoid syscall overhead on every MMIO

operation, we allow applications to mmap the

hardware’s register space, although in practice this did

not significantly improve performance.

Finally, we extended the driver’s interrupt handler to

deliver a signal to any process that requests it

whenever a non-DMA interrupt is received. A signal

handler in QEMU delivers this interrupt to the virtual

CPU. This provides a low-latency path for interrupts.

5. Evaluation
We evaluate our system against two metrics: its

performance and the ease of configuring it to work

with a new target device.

5.1 Performance
One of the key motivations for SURROGATES was to

overcome the performance limitations of Avatar.

While we had independently built a system very

similar to Avatar, we were unable to use it against

several devices of interest because proper operation of

those devices relies on timing constraints that it could

not meet (e.g. watchdogs on co-processors of a

medical device). Therefore, we evaluate the several

performance aspects of our system and compare it with

prior work. All of our performance experiments were

run against a FriendlyARM Mini2440 development

board, described in Section 5.2.

To test raw MMIO performance, we measure the time

needed to make 1,000,000 read or write requests to the

SRAM of the FriendlyARM’s SoC, connected to our

hardware with a 4 MHz JTAG clock. We find that our

raw MMIO performance is four orders of magnitude

faster than what the Avatar authors reported, as shown

in Table 3. We also measured the time taken to write to

an FPGA register 1,000,000 times. Although accessing

the FPGA through a mmap interface is about 60%

faster (1.4 µs vs. 2.2 µs), the overall performance

impact under real workloads is negligible.

To evaluate whether this performance was reasonable

to support near-real-time emulation, we set out to boot

Linux on the emulated processor. To accurately

measure the amount of time to boot, we replaced the

init binary with one that simply contains a special

illegal instruction. This instruction shuts down QEMU

and reports performance statistics. We found that the

kernel boots in about 27 seconds. 25 seconds were

spent performing I/O. However, during boot the kernel

initializes all of the peripherals, so its I/O

characteristics are different from typical usage of a

booted system. During this time, approximately

126,000 reads and 87,000 writes were performed.

To evaluate interactivity, we replaced the init binary

with the busybox [11] version of /bin/sh, allowing us

to interact with the system over its serial port. While

file system accesses were noticeably slower than on

the real hardware, the shell maintained a subjectively

good amount of responsiveness.

To get a more objective measure of responsiveness, we

connected the FriendlyARM’s Ethernet port directly to

a Windows laptop and performed a ping test against

the emulated system. After 100 pings, the average

response time was 15 ms. The minimum response time

was 8 ms, and the maximum was 61 ms. We then

connected the FriendlyARM to our campus network

Table 3: Raw MMIO Performance

 MMIO Operations Per Second

Avatar ~5 (over serial debug port at 38400 bps)

Our system

w/ syscalls

17172 writes / 15761 reads

(over 4 MHz JTAG)

Our system

w/ mmap

17174 writes / 15772 reads

(over 4 MHz JTAG)

(which has significantly more broadcast traffic) and

obtained similar results. Finally, we loaded a web page

from the emulated device’s HTTP server, which loads

content off of the physical SD card and sends it over

the physical NIC. When loading a 369KB image from

the SD card, we obtained an effective throughput of

17.3 KB/s, which includes an initial stall to read the

file from the SD card. Subsequent transfers of the same

image (now in the filesystem cache) had a throughput

of about 26 KB/s. Note that neither the SD card driver

nor the NIC driver use DMA, which would allow us to

exploit the multi-word transfer mode of our system to

approximately double our throughput (since we

transfer the address only once, and not on every word

transfer).

While slower than running natively, we are able to

emulate an entire system with reasonable usability. In

contrast, the authors of Avatar reported that it took

almost four minutes to reach the bootloader prompt of

a hard drive.

5.2 Portability
This work was also motivated by our desire to build a

dynamic analysis platform that does not require a great

deal of work to apply to a new target. Therefore, we

evaluate the ease of supporting new devices and

discuss some of the new challenges encountered when

supporting entire systems. We look at two devices as

case studies: a FriendlyARM Mini2440 development

board with a Samsung S3C2440 SoC, and a wireless

medical device with an iMX21 SoC.

When applying our system to a new target, the first

task is to identify the target’s JTAG port. These are

often connected to test pads on the target’s PCB, but

sometimes they are brought out to dedicated

connectors. As a development board, the

FriendlyARM features a well-identified JTAG port.

The wireless medical device, however, just has dozens

of unmarked test points. We had previously identified

the JTAG test points through manual analysis;

however, today there are tools like the JTAGulator

[12] that perform a brute-force search over all test

points to find the JTAG signals.

Once JTAG connectivity is established, firmware of

the device is downloaded. In some cases, the SoC itself

has a small amount of firmware in ROM that is

essential to proper operation of the SoC. For example,

the ROM in the iMX21 performs interrupt vectoring,

so if the firmware chooses to use vectored interrupts,

the ROM must be emulated as well.

A location for the stub must be identified. Different

SoCs have varying requirements for locating interrupt

and exception handlers. For example, on the S3C2440,

exception handlers must be located at 0x00000000,

while on the iMX21, we can place exception handlers

anywhere in memory because the ROM at 0x00000000

uses an exception vector table stored in dedicated

RAM as a level of indirection. On the S3C2440, we

place our stub in the NAND “SteppingStone” SRAM

at 0x00000000. On the iMX21, we place our stub in

the dedicated exception handler SRAM. Depending on

the SoC, it may also be possible to lock the stub into

the cache, allowing you to virtually place it over

address spaces that are normally not usable (such as

ROMs at 0). MMUs, if available, may also be used to

place the stub at arbitrary locations, but this is left for

future work.

Next, the layout of the target’s address space must be

specified in QEMU. Usually this is as simple as

defining the address regions of RAM, Flash, and

peripherals. For the iMX21, an additional address

space entry is created for the ROM.

There are usually a few exceptions that must be carved

out of the peripheral address space. These are for

registers that, when updated, cause the target to lose

sync with the host. For example, on the S3C2440,

there are registers that control the core clock speed.

When the clock speed is adjusted, the CPU is halted

until the PLLs re-lock. JTAG communication fails

until the CPU resumes execution. We can use dynamic

analyses techniques to easily determine these

exceptions. If we log all MMIO as the system boots,

the last MMIO operation before the system halts is

usually responsible for the failure. The SoC datasheet

can be consulted for the effect of the corresponding

register so that an intelligent exception can be made.

Finally, different SoCs have wildly varying DMA

controllers, some of which must be emulated for

proper emulation of the device. For example, the

S3C2440 has a general-purpose DMA controller as

well as a dedicated LCD DMA controller. Neither are

required to be emulated to boot Linux. For the iMX21,

we emulated the LCD DMA controller registers in

QEMU with only eight additional lines of C. This

emulated DMA controller simply copies the specified

video memory from the emulator to the same location

on the target, and then passes the DMA request on to

the real DMA controller to transfer the data to the

LCD.

As an alternative to emulating different DMA

controllers, we can treat the emulator’s memory as

another level of cache. DMA controllers typically

cannot access the L1 or L2 caches, so any data

involved in a transfer must reside in main memory. We

can treat intentional cache invalidations as an

indication that the memory was or will be used in a

DMA transfer and flush the affected memory to or

from the target. (Note that the stub always runs with

the target’s data caches off, so flushes from the

emulator to the target will go directly to main

memory). Unfortunately, this approach only works

with firmware that turns the data caches on, which was

not the case with our wireless medical device.

Overall, we find it straightforward to apply our system

to different devices, requiring far less work than

building an emulator for all of the target’s hardware.

There is some manual configuration involved, but this

is true of most dynamic analysis tools.

6. Future Work

6.1 Further improving performance
While our stub protocol is relatively efficient, it still

suffers from inefficiencies in ARM’s DCC

specification and limitations of JTAG interfaces. For

example, to read a debug register, we must clock in 36

bits into the EmbeddedICE interface to select the

register to read, and then clock another 36 bits out to

read the value. There are two EmbeddedICE registers

we use: the DCC status register, and the DCC data

register. To read a single 32-bit value from the DCC

data register, at least 144 bits need to be transferred.

While we could propose some changes to the DCC

specification, the most recent ARM processors have

transitioned to debugging interfaces that provide

complete access to the SoC bus. We have not yet

examined these new interfaces in detail, as many

systems of interest do not use them yet, but it may be

straight forward to adapt our system to ARM’s new

debugging interfaces.

6.2 Eliminating our dependence on

hardware
While our system enables dynamic analysis of

embedded systems at an unprecedented scale, it

doesn’t necessarily scale any further. Systems like

SAGE [13] and S2E depend on the ability to massively

parallelize state space searches. This is easy with well-

defined OS APIs, but our approach depends on an

individual physical system to guide execution. Even

worse, to ensure the hardware is in a consistent state,

we may need to reset the SoC and replay all I/O

operations when another code branch is explored. (In

practice, peripherals usually have limited state, so once

they are initialized, we may be able to relax our

consistency requirements and ignore their states.)

However, it may be possible to learn models of the

hardware based on execution traces collected with our

system. This would enable dynamic analysis systems

to run largely independent of physical hardware,

allowing it to scale up massively. The models do not

necessarily need to be 100% accurate; as long as they

reasonably constrain the state space search, it is

feasible to explore several potentially vulnerable code

paths. When a potentially vulnerable code path is

found, it can be verified against the actual hardware

using our system.

7. Conclusions
We have built and evaluated a system that enables

dynamic analysis of embedded systems at an

unprecedented scale. Our approach is similar to

Avatar; we run the system under emulation in QEMU

and redirect I/O to the target hardware to guide

execution and provide the firmware with a faithful

reproduction of its environment. However, by using a

custom FPGA bridge between the host and target, we

enable near-real time emulation of the target system,

allowing us to analyze systems of far greater

complexity. This will ultimately enable embedded

systems developers to take advantage of several

dynamic analysis techniques that were previously

available only to traditional software developers,

allowing them to deliver safer and more secure

embedded systems.

8. References

[1] Stephen Checkoway et al., "Comprehensive

Experimental Analyses of Automotive Attack

Surfaces," in USENIX Security Symposium, San

Francisco, 2011.

[2] Daniel Halperin et al., "Pacemakers and

Implantable Cardiac Defibrillators: Software

Radio Attacks and Zero-Power Defenses," in

IEEE Symposium on Security and Privacy, 2008.

[3] Michael Lynn, "Cisco IOS Shellcode," in

Blackhat USA, Las Vegas, 2005.

[4] Ariel J Feldman, Alex Halderman, and Edward

W Felten, "Security Analysis of the Diebold

AccuVote-TS Voting Machine," in Electronic

Voting Technology Workshop, 2007.

[5] Jonas Zaddach, Luca Bruno, Aurelien Francillon,

and Davide Balzarotti, "Avatar: A Framework to

Support Dynamic Security Analysis of

Embedded Systems' Firmwares," in Network and

Distributed System Security Symposium, 2014.

[6] Drew Davidson, Benjamin Moench, Somesh Jha,

and Thomas Ristenpart, "FIE on Firmware:

Finding Vulnerabilities in Embedded Systems

Using Symbolic Execution," in USENIX Security

Symposium, 2013.

[7] coresystems GmbH, SerialICE, 2009,

http://ww.serialice.com/.

[8] Dominic Rath, Open On-Chip Debugger: Design

and Implementation of an On-Chip Debug

Solution for Embedded Target Systems, 2005.

[9] F. Bellard, et. al. QEMU. http://www.qemu.org/

[10] Vitaly Chipounov, Volodymyr Kuznetsov, and

George Candea, "S2E: A Platform for In-Vivo

Multi-Path Analysis of Software Systems," in

6th Intl. Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), Newport Beach, CA, 2011.

[11] BusyBox, http://www.busybox.net/.

[12] Joe Grand, JTAGulator, 2013,

http://www.grandideastudio.com/portfolio/jtagul

ator/.

[13] Patrice Godefroid, Michael Y. Levin, and David

Molnar, "Automated Whitebox Fuzz Testing," in

The 15th Annual Network & Distributed System

Security Conference, San Diego, 2008.

Appendix A: FPGA Register Map

Addr Desc. Value Specification

000 Output

Control

Register

Bits:

31-11 10 9 8 7 6 5 4 3 2 1 0

Reserved FORCE

OUT

OUT

EN

DBGACK DBGRQ nSRST TDO RTCK TCK TMS TDI nTRST

FORCEOUT – Forces JTAG output pins to the values set in this register

OUTEN – Enables JTAG output pins

004 JTAG

Stream

Control

Register

Bits:

31-27 26 25 24 23-0

Reserved Stub Interface Reset Stub Interface Scan Enable Stream Enable Stream Length

Stub Interface Reset – Reinitializes the stub interface logic

Stub Interface Scan Enable – Causes the stub interface logic to poll the target for interrupts

Stream Enable – Streams arbitrary JTAG data (used for non-stub communication)

Stream Length – The number of bits to stream

008 JTAG

Clock

Divisor

Bits:

31 30-0

JTAG Clock Reset Divisor

Divisor – The JTAG clock divisor. The JTAG clock speed is 125 MHz / (divisor – 1).

00C Read

Stall

Control

Bits:

31 30-0

Read Stall Enable Read Timeout

Read Stall Enable – Stalls reads from the Data Register until data is ready

Read Timeout – Read stall timeout, in multiples of 8 ns

x10 Read

Address

Target address to read. X is the transfer size: 1 = Byte, 2 = 16 bit word, 4 = 32 bit word. Writes

to this register initiate a read from the target.

x14 Write

Address

Target address to write. X is the transfer size: 1 = Byte, 2 = 16 bit word, 4 = 32 bit word.

018 Data

Register

Data returned from a read, or data to be written. Ignored in bulk transfer mode. Writes to this

register always initiate a write to the target.

01C IRQ

Register

Bits:

31-8 7 6 5 4 3-0

Reserved FIQ IRQ Reserved Data Abort Reserved

Reads from this register are unacknowledged exceptions received from the stub. Write a 1 back

to the corresponding bit to acknowledge the exception.

024 Target

CPSR

Writes to this register update the target’s CPSR to the given value.

028 Bulk

Data

Length

Bits:

31-25 24 23-0

Reserved BULKEN Number of elements (bytes, half-words, words) to send

BULKEN – If set, the stub interface logic uses the bulk-optimized stub protocol, using the stub

data FIFOs instead of the Data Register

	1. INTRODUCTION
	2. RELATED WORK
	3. TOWARDS REAL-TIME I/O
	4. OUR APPROACH: Surrogates
	4.1 The Hardware
	4.2 The Stub
	4.3 The Software

	5. Evaluation
	5.1 Performance
	5.2 Portability

	6. Future Work
	6.1 Further improving performance
	6.2 Eliminating our dependence on hardware

	7. Conclusions
	8. References

