
Tick Tock: Building Browser Red Pills from Timing Side Channels

Grant Ho
Stanford University

Dan Boneh
Stanford University

Lucas Ballard
Google

Niels Provos
Google

Abstract
Red pills allow programs to detect if their execution en-
vironment is a CPU emulator or a virtual machine. They
are used by digital rights management systems and by
malware authors. In this paper we study the possibility of
browser-based red pills, namely red pills implemented as
Javascript that runs in the browser and attempts to detect
if the browser is running inside a virtual machine. These
browser red pills can limit the effectiveness of Web mal-
ware scanners: scanners that detect drive-by downloads
and other malicious content by crawling the Web using a
browser in an emulated environment. We present multi-
ple browser red pills that are robust across browser plat-
forms and emulation technology. We also discuss poten-
tial mitigations that Web scanners can use to thwart some
of these red pills.

1 Introduction

Red pills are pieces of code designed to detect if they
are being run inside a Virtual Machine (VM) or a CPU
emulator1. Red pills have several applications such as:

• Honeypot evasion [14]: Since honeypots often run
in a virtual machine [15, 1, 10], red pills can help
malware evade honeypots: whenever malware de-
tects CPU emulation in its execution environment,
it can decide not to infect the host. This makes it
harder for honeypots to detect the malware.

• Digital Right Management (DRM): DRM-enabled
systems, such as a digital book reader or a movie
player, can use red pills to ensure that DRM pro-
tected content will not play inside a VM.

Previous work on red pills [6, 18, 14, 3, 5] develop
red pills for native software, namely programs that run
directly on the operating system. Some use low-level op-
erations such as examining the TLB size; some examine
the contents of the operating system’s registers and pro-
gram counters; and some use CPU cycle counters to de-
tect a VM-induced slow-down. The general consensus is
that Virtual Machine Monitors (VMMs) are designed for

1The name red pill comes from the movie, “The Matrix”.

efficiency, not transparency [6]. That is, VMMs gener-
ally do not attempt to hide their existence from specifi-
cally crafted code designed to detect them.

Our contributions. In this paper we develop browser-
based red pills: red pills implemented in Javascript that
run in the browser. The interest in browser-based red
pills is a result of several systems that attempt to de-
tect malicious content rendered in webpages. These sys-
tems run a browser in a CPU emulator or VM and crawl
the Web looking for malicious sites. The existence of
browser-based red pills can hamper these scanning ef-
forts since a malicious website can choose to withhold
malicious content if it detects (from the browser) that it
is in an emulated environment. This work is intended
to alert Web scanning services to potential limitations of
their scanning techniques.

The challenge in designing browser-based red pills is
that the browser sandbox is a limited computing envi-
ronment: Javascript cannot access the TLB, cannot read
instruction counters, and cannot look at registers. Thus,
many of the techniques available to application-level red
pills simply do not work in the browser. The main
tool left at our disposal is the browser’s timing features,
which have a granularity of a millisecond.

Results. We show that timing variations in standard
browser operations can reveal the existence of an em-
ulation environment. By comparing the time that the
browser takes to perform a simple baseline operation to
the time the browser takes to do I/O, spawn Web workers,
render complex graphics, or write to local storage, we are
able to detect emulation environments with high statisti-
cal confidence. Not only do our red pills work against
any combination of the two latest versions of Windows
and three major browsers, but they also remain effective
both against VMs that use binary translation for virtual-
ization and against VMs that use hardware-assisted vir-
tualization.

We describe the implementation of multiple browser
red pills in Section 2 and present our evaluation results
in Sections 3. We discuss potential defenses against these
red pills in Section 4 and conclude with a survey of re-
lated work.

1



2 Browser Red Pills

Attack model: We consider a malicious website,
evil.com, that tries to redirect normal users to a ma-
licious webpage, but evade detection by redirecting hon-
eypots to a benign webpage. When evil.com is loaded
on an unknown machine, it will execute our browser red
pills to determine if it is being executed in a VM (hon-
eypot). We say that our browser red pills are effective
if evil.com can successfully redirect a VM to a benign
website and a normal user to a malicious website.

There are numerous practical implementations of this
attack model. For example, consider a scheme where
evil.com executes our browser red pills and then sends
the results to its server through an HTTP GET request.
The server can then process the results of the GET re-
quest and return a response that redirects the visitor to a
benign page if it suspects the visitor is a VM.

We make the assumption that evil.com knows the
browser and operating system of the visiting machine.
Existing literature on browser and device fingerprint-
ing [13, 12, 11] presents a plethora of techniques that
easily allow a webpage to determine the visitor’s browser
and operating system, so we view this as a reasonable as-
sumption.

2.1 Designing Browser Red Pills

While several papers have discussed red pills for native
programs (executables that run directly on the operat-
ing system), many of these techniques are inapplicable
to browser red pills. Prior work on native red pills often
relies on detecting low-level anomalies in a system’s con-
figuration that are caused by the VM; for example, sev-
eral prior red pills enumerate the machine’s hardware de-
vices, check registers and memory addresses, or look for
debugging processes running on the machine to detect
the presence of an emulation environment [18, 14, 3].
Unfortunately for attackers, the browser sandbox and
Javascript language restrict webpages from the low-level
access that these native red pills use. Nonetheless, our
work shows that despite these limitations, browser red
pills are still possible. By leveraging common Javascript
operations, whose execution times are consistently and
significantly different in a VM, we are able to construct
timing-based red pills that work completely inside of the
browser, without the assistance of plugins or browser ex-
tensions.

Concretely, our browser red pills work by running two
operations on the visitor’s machine:

• A “baseline operation”, which takes roughly the
same amount of time to execute on a normal ma-
chine as it does on a virtual machine, and

• A “differential operation”, which has a significant
and predictable difference in execution time be-
tween virtual machines and normal machines.

After executing both operations, the red pills then com-
pute an “adjusted” execution time for their differential
operation by dividing the differential operation’s execu-
tion time by the baseline’s execution time. If the ex-
pected value for this ratio differs detectably between a
virtual machine and a normal machine, then evil.com

can use the ratio to detect the presence of a VM.
We use a baseline operation in our red pills to ac-

count for performance differences that result from dif-
ferent hardware/system configurations and varying back-
ground loads on a user’s machine. If we used just the raw
execution times of our differential operations, it could be
unclear whether a longer execution time resulted from
older hardware, concurrent activity like watching a video
in a separate tab, or being executed in a virtual machine.

2.2 Implementing Browser Red Pills

Each red pill is a snippet of Javascript that executes on
a visitor’s machine. A red pill executes and times the
baseline operation and the differential operation. After-
ward, the red pill computes the ratio of the differential
operation’s execution time to the baseline operation’s ex-
ecution time. The high-level structure of our red pills
is shown in Listing 1; while we used the Date object’s
getTime() function for simplicity, any source of periodic
timing can be used for timing measurements (e.g. other
Javascript timing objects, implicit wall clocks from peri-
odic functions like requestAnimationFrame, etc.).

function redpill () {

var time = new Date ();

var baseStart = time.getTime ();

baselineOperation ();

var baseTime = time.getTime () - baseStart;

var diffStart = time.getTime ();

differentialOperation ();

var diffTime = time.getTime () - diffStart;

return diffTime / baseTime;

}

Listing 1: Structure of Browser Operation

We tested two baseline operations and six differential
operations for our browser red pills. Our six differential
operations fall roughly into three broad categories: I/O
operations, threading, and graphics.

For an operation that depends on memory usage or
I/O, the size of the operation can have a significant im-
pact on its execution time and the red pill’s efficacy; if
an I/O operation truly has a difference in execution time

2



between a VM and a normal machine, a differential op-
eration that executes a greater number of these I/O op-
erations will elicit a larger, and more statistically sig-
nificant time difference. Consequently, for operations
where size/quantity might have a significant impact, we
constructed multiple red pills that use several different
sizes. When relevant to the operation, we will describe
the quantities we used in our different red pills.

2.2.1 Baseline Operations

We tested two baseline operations for our browser red
pills: making repeated writes to a DOM node and allo-
cating and deallocating large chunks of memory. These
two operations are both simple, common JavaScript op-
erations that had two important “stability” properties on
our test machines:

1. Reliability: across multiple executions in a given
browser on a given operating system, the baseline
operation’s execution time stayed approximately the
same.

2. Conformity: the baseline operation’s execution time
on the normal machine took roughly the same
amount of time as it did on its corresponding vir-
tual machine.

Because of their stability, pervasiveness, and simplic-
ity, we thought these baseline operations could help ac-
count for execution time differences in our differential
operations that result from different hardware and back-
ground load on real users’ machines.

We tested all of our red pills using both baseline oper-
ations and report results for both versions of our red pills
in Section 3.2; we also conducted experiments that tested
the effects of a machine’s background activity on our red
pills and the utility of our baseline operations, which we
also discuss in Section 3.2.

Listing 2 shows how our DOM writing baseline works.
First, the DOM baseline operation generates a random-
ized string of twenty characters; it then creates an empty
paragraph node and repeatedly appends this string to the
paragraph node’s content. We tested this baseline opera-
tion at 100, 200, 400, 800, and 1600 repeated writes.

function textBaseline() {

var addString = ‘‘Writes lots of text:"

addString += Math.floor(Math.random() * 10000);

var pNode = document.createElement(‘‘p");

document.body.appendChild(pNode);

for (var i = 0; i < TEXT_REPETITIONS; i++) {

pNode.innerHTML = pNode.textContent + addString;

}

}

Listing 2: DOM Baseline Operation

To prevent unexpected browser optimization/string
caching when our red pill webpage is reloaded for a new
experiment, we randomized the string used in our DOM
baseline operation. This helps ensure that repeated trials
of our red pills independently perform the full computa-
tion for their baseline operation; our data collection/ex-
perimental procedures are discussed in greater detail in
Section 3.1.

The code for our memory allocation/deallocation
baseline is shown in Listing 3. This memory baseline
generates a random number and populates an array with
instances of the Number class (whose value is set to this
random number); immediately after filling this array, we
run a loop that pops all the Number objects from the ar-
ray. Like our DOM baseline, randomness is added be-
tween each execution/function call to ensure indepen-
dence between repeated trials that we performed to col-
lect our results. We tested this baseline operation at 1000,
10000, 20000, 40000, and 80000 allocations and deallo-
cations of Number objects.

function memoryBaseline() {

RANDOM = Math.floor(Math.random() * 1000000);

var array = new Array();

for(var i = 0; i < MEMORY_REPETITIONS; i++) {

array.push(new Number(RANDOM));

}

for(var i = 0; i < array.length; i++) {

array.pop();

}

}

Listing 3: Memory Baseline Operation

To determine the optimal size for these baseline oper-
ations, we ran each baseline fifty times for each size on
every combination of browser and machine setting that
we tested our red pills on (details described in Section 3).
We then looked for the sizes that had the smallest vari-
ance between multiples runs on a given machine and the
smallest difference in execution time between the normal
machine and its corresponding VM. This corresponded
to 40000 Integer objects for our memory baseline and
400 read/writes for our DOM writing baseline; thus, we
used these sizes to construct two versions of all of our
red pills, one version for each of the two baselines.

2.2.2 I/O Differential Operations

Console Writing. Our console operation writes the
string “Error: Writing to Console!” to the browser’s con-
sole (which is hidden by default); to test the number of
console write operations needed for a stable red pill, we
wrote five separate console red pills whose differential
operation made 1000, 2000, 3000, 4000, and 5000 con-
secutive writes to the console. We measured this oper-

3



ation from before the first write to after the last write;
the code for our Console Differential Operation is shown
below in Listing 4.

function consoleOperation() {

var error_str = ‘‘Error: Writing to Console!";

for(var i = 0; i < CONSOLE_REPETITIONS; i++) {

console.log(error_str);

}

}

Listing 4: Console Differential Operation

Local Storage. HTML 5 introduces the local stor-
age feature, which allows websites to store several
megabytes of data persistently on disk. Similar to our
console red pills, we created six different versions of lo-
cal storage red pills. These six versions randomly gener-
ate and write a string to local storage for 100, 200, 400,
800, 1600, and 3200 repetitions; each string is 500 char-
acter longs. After all strings have been written to local
storage, the operation then iterates over the local storage
and reads each String back into an array. We measure
this operation’s time from before the first write (but after
all the strings are generated) to after the last string is read
from local storage.

2.2.3 Threading Differential Operations

In addition to local storage, HTML 5 enables multi-
threading capabilities through web workers. Through
the web worker API, a webpage can spawn new threads
to execute code in Javascript files. The main webpage’s
thread can then communicate with its web workers (and
vice versa) through callback events defined in the web
worker API.

Spawning Workers. Our thread spawning operation
launches a new web worker to execute a Javascript file.
At the beginning of this Javascript file, the web worker
immediately gets the current time and sends this time
stamp to the main thread. The total execution time is
measured from immediately before the web worker is
created to the time stamp that the web worker reports
when it first begins executing code.

Communicating Between Workers. In addition to
measuring the time to spawn threads, we constructed a
red pill that measures how long it takes to communi-
cate between two threads (we call this candidate red pill,
“rtt operation”). For this rtt operation, we spawn a web
worker that gets the current time and sends an “alive”
message to the main thread. The main thread then echoes
this “alive” message back to the web worker. When the

worker receives this echo, it computes the difference be-
tween the current time and the time it initially sent the
“alive” message; this time difference is then sent back to
the main thread as the rtt operation’s execution time.

2.2.4 Graphics Differential Operations

Finally, we constructed two more red pills by leveraging
the WebGL API, which allows webpages to create com-
plex graphics and games through Open GL.

ReadPixels: CPU - GPU Communication. We con-
structed a red pill that tests the communication latency
between the CPU and graphics card of a website’s visi-
tor. This red pill renders and randomly rotates ten trian-
gles with a basic mesh pattern (default shaders and tex-
ture) multiple times. After each render call, we used We-
bGL’s readPixels() method to load the pixel bitmap from
the visitor’s GPU into an array (the visitor’s main mem-
ory). We tested this differential operation with 40, 80,
160, and 320 render (readPixels) calls. We measured this
operation’s time from the start of the first readPixels call
to after the last readPixels call.

Complex Graphics. Our final red pill tests the speed
of the visitor’s GPU by rendering lots of polygons with
complex shaders and textures. In the background of our
canvas, we used the Shader example from Three.js (a
popular WebGL library), which renders a large plane
that uses a complex whirlpool-pattern shader. On top of
the plane, we render three Spheres constructed of many
polygons (our Sphere objects were 100 width segments
by 100 height segments); to each of these objects, we
applied a complex lava texture from Three.js. Our torus
and sphere objects were then animated by rotating the
objects a random number of radians at each render call.
We started the timing measurement at the beginning of
the canvas initialization (before any WebGL objects are
constructed for rendering) and stopped the measurement
after the twentieth animation.

3 Evaluation

3.1 Testing Methodology

We tested our red pills on Chrome version 34, Firefox
version 29, and Internet Explorer version 11 on Win-
dows 7 (SP 1) and Windows 8.1. Our Windows 7 host
machine used an Intel i5 processor and Intel 4600 inte-
grated graphics card; the Windows 8.1 machine used an
AMD A10 processor and AMD Radeon 8750M graphics
card. Our virtual machines used identical operating sys-
tems and browser versions; we ran the VMs on our Win-

4



dows 8.1 (AMD) machine using VMWare Virtual Work-
station.

Each virtual machine instance was run with 3d graph-
ics acceleration enabled, 2 dedicated processors, and 2
GB of RAM; we believe this is a generous resource al-
location when compared to real-world honey pot sys-
tems, which may need to run multiple VMs on a sin-
gle machine in order to operate at scale. We tested our
VMs with both hardware-assisted virtualization enabled
(Intel VT-X/EPT or AMD-V/RVI mode) and hardware-
assistance disabled (binary translation mode); our exper-
iments show that most of our red pills are effective re-
gardless of hardware assisted virtualization. For the rest
of this paper, we will refer to the VM setting with bi-
nary translation as “VM-BT” and the VM setting with
hardware-assisted visualization as “VM-HV”.

In total, this setup yielded 18 testing “environments”
{Chrome, Firefox, IE} x {Host, VM-BT, VM-HV} x
{Windows 7, Windows 8}. To test our red pills, we
created a web page that executes a red pill and records
the differential operation’s execution time, as well as the
execution time of both of our baseline operations; one
loading of a webpage in a given environment constituted
one trial. We conducted one-hundred trials for each en-
vironment by reloading each red pill webpage one hun-
dred times, with a 500 ms delay between reloads. Each
environment was tested independently (i.e. only one
browser and OS [VM or normal machine] was running
during each experiment). From these results, we com-
puted the average timing ratio for each differential oper-
ation against both of our baseline operations.

To evaluate the efficacy of our red pills, we used un-
paired, two-sample t-tests (with α = 0.05) to compare
the average red pill timing ratio for our normal machine
against the average red pill timing ratio for the corre-
sponding VM-BT and VM-HV virtual machines; t-tests
are statistical tests used for hypothesis testing. In our
case, they test if the distribution of a normal machine’s
timing ratios is significantly different from the distribu-
tion of VM timing ratios. For all red pills that yielded a t-
test with p-values less than 0.05 (standard value for a sig-
nificant difference), we calculated whether one standard
deviation away from the mean of the normal machine’s
red pill ratio was more than one standard deviation away
from the mean of the VM’s red pill ratio (either VM-HT
or VM-BT). If this inequality held, we considered the
red pill to be effective because it would allow attackers
to set an easy red pill threshold that attacks real users
and evades VMs with high probability. Since the distri-
bution of timing ratios in our data seems to approximate
the normal distribution, timing ratios that are greater than
one standard deviation above the normal machine’s mean
account for roughly 16% or less of the data (under the
normal curve, a single tail above/below the mean consti-

tutes approximately 16% of the probability density). In
the context of our experiments, this means that our one-
standard-deviation cutoff produced browser red pills that
incorrectly attacked a VM or behaved benignly on a nor-
mal machine less than 16% of the time.

To summarize, we consider a red pill to be effective if:

1. First, the unpaired t-test (at α = 0.05) yielded a p-
value of less than 0.05 when comparing the mean
of the normal machine’s red pill ratio vs. one of the
means for a VM’s red pill ratio (either VM-BT or
VM-HV).

2. Additionally, the red pill satisfied one of these two
properties:

MeanNormal + SDNormal < MeanV M − SDV M , if the
red pill took longer on the VM.
MeanNormal − SDNormal > MeanV M + SDV M , if the
red pill took longer on the normal machine.
Here, MeanNormal and SDNormal are the mean tim-
ing ratio and standard deviation for our normal ma-
chine; MeanV M and SDV M have the corresponding
definitions for our VM.

3.2 Results
Overview. Tables 1 and 2 present a summary of our
red pill efficacy for each environment we tested; Table
1 presents a summary of our red pills that use DOM-
writing as their baseline operation and Table 2 presents
a summary of our red pills that use memory allocation
as their baseline. A suffix of BT means the red pill was
effective against a VM using binary translation, and a
suffix of HV means that the red pill was effective against
a VM with hardware-assisted virtualization enabled. The
numbers in each cell represent the p-value obtained from
our t-tests that compared the normal machine’s average
timing ratio against the VM’s average timing ratio; a p-
value close to zero indicates a high statistical confidence
that there is a significant difference between the distribu-
tion of normal machine timing ratios and the distribution
of VM timing ratios.

Variable Sized Red Pills. Recall that for three of our
red pills, “Console Writing”, “Local Storage”, and “Read
Pixels: CPU-GPU”, we constructed multiple versions of
the red pill that varied the operation size (i.e. number
of read/writes); Tables 1 and 2 present the results for the
red pill sizes that successfully distinguished between the
most environments. For local storage and reading pixels
from the GPU, the maximum size we tested against pro-
vided strictly more successful red pills than the smaller
sizes, so we report the results for 3200 read/writes for
local storage and 320 ReadPixels calls in our tables.

5



DOM Baseline Chrome Firefox IE

Windows 8 BT

Console Writing (<1.0 ·10−6)
Local Storage (<1.0 ·10−6)

ReadPixels (<1.0 ·10−6)
Spawning Workers (<1.0 ·10−6)*

ReadPixels (0)
Complex Graphics (0)

Local Storage (<1.0 ·10−6)
Complex Graphics (<1.0 ·10−6)

Windows 8 HV

Console Writing (<1.0 ·10−6)
Local Storage (<1.0 ·10−6)

Spawning Workers(<1.0 ·10−6)*
ReadPixels (0)

Complex Graphics (0) Complex Graphics (<1.0 ·10−6)

Windows 7 BT
ReadPixels (<1.0 ·10−6)*

Complex Graphics (<1.0 ·10−6)*
ReadPixels (0)

Complex Graphics (0)
ReadPixels (<1.0 ·10−6)

Complex Graphics (<1.0 ·10−6)

Windows 7 HV
ReadPixels (<1.0 ·10−6)*

Complex Graphics (<1.0 ·10−6)*
ReadPixels (0)

Complex Graphics (0)

Local Storage (<1.0 ·10−6)*
ReadPixels (<1.0 ·10−6)

Complex Graphics (<1.0 ·10−6)

Table 1: Successful Red Pills for DOM Baseline. The rows represent the VM settings (BT is a VM with binary trans-
lation and HV is a VM with hardware-assisted virtualization enabled) and each column represents a major browser.
The number in parentheses is the p-value for the t-tests that compare normal machine’s mean ratio vs. the VM’s mean
ratio; smaller numbers indicate a higher statistical confidence that there is a difference between normal machine timing
ratios and VM timing ratios; for non-zero p-values less than 1.0 ·10−6, we simply list the value as “<1.0 ·10−6”. Red
pills with an asterisk ran faster on the VM than on the normal machine (i.e. the timing ratio for the normal machine
was larger than the VM’s timing ratio). Details of these red pills were described in Section 2.3.2.

However, for our console writing red pills, we found
that the number of writes, past 2000 console writes, did
not affect the red pill’s environment coverage (i.e. a
red pill that makes 2000 writes to console is effective
against Chrome on Windows 8 BT/HV, whereas a red pill
that makes 4000 writes to console is still only effective
against Chrome on Windows 8 BT/HV).

Deterministic Browser Red Pills. During our experi-
ments, we noticed that Firefox refuses to render WebGL
contents in a virtual machine - even though it has no
problem rendering the exact same WebGL contents on
exactly the same operation system on a normal machine.
This provides an easy mechanism to distinguish between
Firefox in a VM and Firefox on a normal user’s machine.
We suspect this is a problem with Firefox’s whitelist of
acceptable graphics cards for WebGL. When viewing the
VM’s configuration in Firefox through about:support, we
noticed that Firefox reported VMWare’s vSGA graph-
ics card as the systems graphics card and disabled We-
bGL because of “unresolved driver issues”. At the same
time, Chrome and IE also reported VMWare’s virtual-
ized graphics card as the system’s graphics card, but they
still enabled WebGL features and rendered our WebGL
content in the VM. Given this browser reported informa-
tion, we believe that Firefox’s implementation does not
support WebGL in VMs. More broadly, this is a good
illustration of the difficulties in constructing fully trans-
parent VMs/undetectable honey pots; even virtualization

bugs that seem security-irrelevant can leak information
that can be used for malicious purposes.

Red Pills that Run Faster on VMs. As noted by as-
terisks in our results tables, several of our red pills were
successful because their timing ratios were significantly
larger on the normal machine than on the corresponding
VM; in other words, for these red pills, the differential
operation ran slower on the normal machine. While we
don’t have a definitive reason for this surprising result,
we believe most of these differences can be attributed
to the effects of virtualized hardware on I/O operations.
Many of the red pills that run faster on a VM are I/O
operations, namely our Local Storage red pills and our
ReadPixel red pills that test the communication speed
between the CPU and GPU. For both of these red pills,
our VMs use some form of virtualized hardware (either
a virtualized disk or graphics card). Because the VM
is interacting with virtualized devices, I/O operations in
the VM might run faster because of optimizations/in-
memory caching, or emulation that the VM performs
(which can mitigate the number of expensive I/O op-
erations to the actual physical devices). Future work
should design experiments to more rigorously and pre-
cisely identify the reason why certain red pills run faster
on VMs than on their normal machine counterparts.

Effect of Background Activity. To explore the effects
of background activity on our red pills, we re-ran all of

6



Memory Baseline Chrome Firefox IE

Windows 8 BT
Console Writing (<1.0 ·10−6)

Local Storage (<1.0 ·10−6)
ReadPixels (0)

Complex Graphics (0) Complex Graphics (<1.0 ·10−6)

Windows 8 HV

Console Writing (<1.0 ·10−6)
Local Storage (<1.0 ·10−6)

Spawning Workers (<1.0 ·10−6)*
ReadPixels (0)

Complex Graphics (0) Complex Graphics (<1.0 ·10−6)

Windows 7 BT ReadPixels (<1.0 ·10−6)*
ReadPixels (0)

Complex Graphics (0)

Local Storage (<1.0 ·10−6)*
ReadPixels (<1.0 ·10−6)*

Complex Graphics (<1.0 ·10−6)

Windows 7 HV ReadPixels (<1.0 ·10−6)*
ReadPixels (0)

Complex Graphics (0)
Local Storage (<1.0 ·10−6)*

Complex Graphics (<1.0 ·10−6)

Table 2: Successful Red Pills for Memory Baseline. The rows represent the VM settings (BT is a VM with bi-
nary translation and HV is a VM with hardware-assisted virtualization enabled) and each column represents a major
browser. The number in parentheses is the p-value for the t-tests that compare the normal machine’s mean timing
ratio vs. the VM’s mean timing ratio; for non-zero p-values less than 1.0 ·10−6, we simply list the value as “<1.0
·10−6”. Red pills with an asterisk ran faster on the VM than on the normal machine (i.e. the timing ratio for the normal
machine was larger than the VM’s timing ratio).

the red pills on our normal machines. In this second
round of testing, we followed the exact same procedure
outlined in Section 3.1, except that prior to visiting our
red pill website, we opened three additional tabs in the
browser; the first tab played a long Youtube video, the
second tab contained the researcher’s personal email ac-
count, and the final tab contained a popular news website.
By running these three tabs in the background, the re-
sulting timing measurements from our normal machines
should provide a reasonable approximation of their per-
formance on a real user’s machine; we did not load and
test our VMs with similar background activity because it
is unlikely that a honeypot runs large amounts of back-
ground activity during its analysis.

With the exception of our “Spawning Workers” red
pill, all of our red pills for both baselines remained ef-
fective (based on the same criteria we presented in Sec-
tion 3.1). Since our “Spawning Workers” red pills only
worked for Chrome running on Windows 8 originally,
we still have enough red pills to fully cover every com-
bination of operating system, major browser, and virtu-
alization technology; this suggests that our idea of us-
ing a baseline operation to scale the red pill timing mea-
surements enhances the robustness and practicality of our
browser red pills.

Summary. Overall, our browser red pills fully cover
the three most popular browsers on the two latest ver-
sions of Windows, even when common browsing activ-
ity is concurrently run in the background. Additionally,
both baseline operations generated enough red pills to
fully cover all these execution environments, which sug-

gests that either baseline can be used for browser red
pill constructions. Furthermore, our experiments indi-
cate that even when advanced techniques like hardware-
assisted virtualization are used, our browser red pills re-
main effective at distinguishing a VM from a normal
machine. Ultimately, the high statistical confidence and
broad effectiveness of our red pills at identifying virtual
machines show that browser red pills are possible, de-
spite their inability to access low-level information that
native red pills frequently rely on.

4 Red Pill Defenses

In this section, we discuss three potential defenses to
browser red pills. While two of these defenses face sig-
nificant challenges, we believe our third defense will be
effective against browser red pills for the time being.

4.1 VM-Obfuscation Defenses
Our first two defenses aim to make a honeypot indis-
tinguishable from a normal user machine. The first de-
fense relies on developing better virtualization technol-
ogy, while the second defense attempts to distort the tim-
ing measurements of red pills.

Fully Transparent Virtual Machines. While numer-
ous advances have been made in virtualization technol-
ogy, our work presents several browser red pills that
work even against VMs with hardware-assisted virtu-
alization; thus, detection frameworks that leverage im-
proved virtualization to disguise their presence still face

7



challenges in defeating our browser red pills [4]. In or-
der to fundamentally defend against all timing side chan-
nels, we would ideally have fully transparent VMs; how-
ever, building fully transparent VMs remains an open
problem and some researchers believe that building them
is fundamentally infeasible [6].

Moreover, even if fully transparent VMs existed, hon-
eypots would still need to hide the overhead incurred
by the operational structure of anti-malware organiza-
tions. In order to operate at scale, large honeypot systems
are unlikely to give a single VM the entire hardware-
resource allocation of the underlying normal machine or
purchase/use expensive hardware like graphics cards for
analysis; these operational overheads are likely to enable
reliable timing-based red pills, especially for red pills
that rely on heavy computation from expensive hard-
ware, like our graphics red pills. Given the lack of
technology that enables fully-transparent VMs and the
practically-induced, performance overhead in honeypot
systems, we believe that fully-transparent VMs are not a
viable defense for large-scale honeypot systems.

Corrupting Red Pill Timing Measurements. If a
honeypot can effectively distort the timing measurements
used by red pills, it might be able to trick a nefarious
server into revealing its malicious content. Three time-
distortion techniques come to mind: honeypots could
“cheat” on expensive operations to speed up their exe-
cution time, add random noise to javascript timing mea-
surements, or add delays to certain operations in order to
distort the red pill’s timing ratios.

A cheating honeypot might try to speed up expensive
operations like rendering graphics by forgoing execution
and sleeping for a short amount of time instead. Unfor-
tunately, attackers often have simple ways to check that
an operation was actually executed (thereby detecting a
cheating honeypot). For example, consider a honeypot
that cheats on its graphics operations; rather than ren-
dering graphics, the honeypot simply sleeps for a short
amount of time for each graphics operation. In response,
an attacker can write WebGL code that renders images
that contain several patches of homogeneous color and
performs several animations on the images, such as ro-
tations. In addition to retrieving the red pill timing mea-
surements, the malicious website will also fetch pixels at
specific locations where the colored patches should be in
the final, rotated image. If the rgb values of these cho-
sen pixels don’t match the expected result of the anima-
tion, the attacker can detect that the unknown visitor is
a “cheating” honeypot, who doesn’t actually render We-
bGL graphics.

With cheating ruled out, honeypots might try adding
random noise to JavaScript timing measurements to in-
crease the probability that they pass a red pill check.

Unfortunately, there are numerous ways for a website to
measure time (Date.getTime, Performance.now, setInter-
val, etc.), which means that a honeypot would need to
identify all possible timing sources in Javascript and ran-
domly alter the time returned by each call. Moreover,
beyond the various timing API’s in Javascript, attackers
might be able to construct a variety of implicit timing
sources through periodic functions like requestAnima-
tionFrame() or by sending periodic pings to their servers
as the red pills execute on the visitor’s machine. With
this insight, a red pill can defeat a random-noise hon-
eypot by combining multiple sources of timing to detect
anomalies in the visitor’s reported times. For example,
a red pill might measure a differential operation’s execu-
tion time with both Date.getTime and Performance.now
measurements. If the two time source’s measurements
differ by more than a few milliseconds, then the website
can guess that its visitor is a honeypot who adds random
noise to time sources. Furthermore, a malicious website
could execute its red pills multiple times and average the
timing results to cancel the effect of random noise; an at-
tacker might even be able to analyze the timing variance
of multiple red pill executions to detect a honeypot that
adds random timing noise.

Finally, honeypots can try adding delays to the red pill
baseline operations in order to decrease the timing ratios
and make it seem like the VM is executing at a normal
machine’s speed. If we assume that a honeypot can iden-
tify a red pill’s baseline operations (we discuss this more
in the following section), then it can use this information
to distort the timing ratios and extract a website’s mali-
cious content for more detailed analysis. However, if a
honeypot is unable to identify all possible baseline oper-
ations, then it needs to commit to frequently adding de-
lays to common JavaScript operations, like writing to the
DOM, allocating memory, and any other possible base-
line operation. Given that large-scale honeypots need
to scan tens of millions of websites, adding even a cou-
ple of milliseconds of delay to these common operations
could translate to non-trivial losses in scanning through-
put. Thus, while adding delays to distort timing ratios
might defeat red pills, honeypot operators may need to
evaluate whether the lost scanning time justifies the use
of this defense.

4.2 Detection Techniques

Given these challenges in making virtual machines in-
distinguishable from normal machines, we believe that
honeypots should focus on identifying the presence of
browser red pills or the malicious content that is hidden
by the red pills.

8



Symbolic Execution Techniques. Several papers have
been written on extracting malicious behavior from eva-
sive or obfuscated programs using symbolic execution
[9], [2]. Unfortunately, these techniques can easily be
evaded by webpages that use browser red pills. Unlike
native programs, webpages have much greater flexibility
with the code they execute and where the code comes
from; it is perfectly normal for webpages to send data
to other websites and load content/code from many dif-
ferent URLs. To illustrate the challenges of symbolic
execution against browser red pills, consider the follow-
ing scenario: when an unknown user visits evil.com,
evil.com executes our browser red pills, encodes their
values as HTTP GET parameters in a URL to its server,
and loads the URL in an iframe. Based on the red pill val-
ues encoded in the url, the malicious server then chooses
to return a benign webpage to be loaded in the iframe if it
suspects the visitor is a honeypot. Since the honeypot is
never served any malicious code/content, there is nothing
for a symbolic execution system to extract.

Detecting the Presence of Red Pills. Rather than try-
ing to extract hidden contents from a webpage, it might
be easier to detect the presence of red pills themselves.
Two opportunities exist for detecting browser red pills:
detecting baseline operations and detecting differential
operations.

Currently, our scheme uses two baseline operations,
either of which could be used alone to construct browser
red pills. Against our memory allocation baseline, we
envision using a heap analysis tool to detect unusually
large memory operations; already, tools like Nozzle [17]
analyze a webpage’s memory allocation to detect heap-
spraying attacks, so this might be an effective technique
against memory-based red pills. Against our DOM writ-
ing baseline, honeypots can monitor the DOM calls made
by a webpage; since our DOM writing baseline makes
hundreds of reads and writes to the DOM in a short time
interval, analyzing the frequency of DOM calls might be
sufficient to detect our DOM-based red pills. Implicitly,
these detection techniques rely on an underlying assump-
tion that a wide variety of stealthier baseline operations
do not exist; future work should examine whether a vari-
ety of smaller baseline operations can be built from com-
mon JavaScript operations. If this cannot be done, then
detecting baseline operations can an effective counter
measure to browser red pills.

Additionally, honeypots can try to detect the differ-
ential operations. Unfortunately, aside from our local
storage operation, the differential operations used in our
successful red pills might be hard to detect. While our
console operation makes thousands of writes to console,
this can easily be the result of buggy JavaScript code
(which exists en-mass on the web); so unlike detecting

our DOM writing baseline, it is unclear how to detect our
console writing operation. Against our graphics red pills,
it seems unlikely that a honeypot can successfully deter-
mine if a graphics operation is malicious in light of the
numerous fancy WebGL images and games on the web.
Thus, detecting a red pill’s differential operation seems
like a less effective approach than detecting the baseline
operation used by red pills.

5 Related Work

Our techniques for browser red pills relate to three ar-
eas of security research: red pills for native programs,
methods for honeypot evasion/malicious website cloak-
ing, and web fingerprints for identifying browsers and
devices.

Red Pills for Native Programs. As discussed earlier,
several papers study red pills for native software (pro-
grams that run directly on the operating system) [18],
[14], [3], [5]; however, many of the techniques used
in these papers do not work for browser red pills. Many
of these native red pills are constructed using low-level
operations, such as examining the contents of the op-
erating system’s registers and program counters [18],
[14], and [3]; these tests are unusable for browser red
pills because the browser sandbox and language abstrac-
tions of Javascript prevent websites from accessing this
information. In addition to these low-level, anomaly-
detection red pills, Franklin et al. [5] run select oper-
ations hundreds-of-thousands of times to create “fuzzy
benchmarks” that detect a virtual machine based on per-
formance degradation; however, this approach assumes
it has kernel level access and counts performance degra-
dation based on the number of cpu-cycles elapsed, mak-
ing it unusable for Javascript-based red pills. Finally, for
native red pills that don’t need low-level or root access,
Chen et al. [3] presents a technique using TCP times-
tamps to detect anomalous clock skews in VMs; but, this
technique takes several minutes to execute, making it im-
practical for malicious web pages (a normal user is un-
likely to wait more than a few seconds for a page to load).
Moreover, this clock skew technique requires sending
streams of hundreds of SYN packets to the VM, which is
easy for a honeypot to detect as malicious behavior and
hard for an attacker to obfuscate.

Thus, our work is distinct from prior red pill litera-
ture because we present the first red pills that run com-
pletely within the browser; this more restricted setting
has a number of important attack applications, such as
web malware that wants to hide zero-day, browser ex-
ploits.

9



Malicious Website Cloaking and Honey Pot Evasion.
In addition to the work on detecting evasive malware
that we discussed in our Defense section, several papers
have studied cloaking/evasion techniques that are cur-
rently used in-the-wild by malicious websites.

Rajab et al. [16] discuss different methods that have
been used to evade Google Safe Browsing’s web mal-
ware detection system, as well as a number of defenses
and detection enhancements that counter these evasion
techniques. Our browser red pills address the more fun-
damental problem of generally distinguishing a VM from
a normal user’s machine; additionally, our red pills are
harder to defeat than the techniques presented in [16],
which use fragile methods like cloaking against Google
IP addresses.

Kapravelos et al. [8] also studies evasion techniques
that malware-geared honeypots face; however, the eva-
sion techniques they examine rely on vulnerabilities in
older browsers (e.g. IE 7), affect only a limited set of
custom honeypots, or defer evasion to the malicious, na-
tive program that gets executed in the honeypot.

Additionally, several papers study cloaking for
blackhat-search engine optimization (SEO) [19], [7];
blackhat SEO is the process of presenting malicious/s-
pam content to normal web users, but a tailored web-
page to search engine crawlers that cause the website to
earn a high search ranking. In these papers, blackhat-
SEO techniques work primarily by simple user-agent
cloaking (a malicious webpage checks if the visitor’s
user-agent claims to be a search engine crawler). These
techniques are easily defeated by honeypots that per-
form user-agent spoofing (and by browser extensions that
modify a client’s user-agent to look like a search engine
crawler); our browser red pills present a more fundamen-
tal challenge to honeypots that cannot be easily resolved
by spoofing HTTP header information.

Fingerprinting Browsers and Machines. Many pa-
pers have been written on how a website can fingerprint
not only a visitor’s browser, but also the underlying de-
vice; these techniques can be used to track a user with-
out the use of any cookies or consent from the user [12],
[13], [11]. In general, these fingerprints are constructed
by probing the browser’s DOM and analyzing the behav-
ior of the browser’s Javascript engine to extract details
about the browser and the underlying system.

While fingerprinting can be used to distinguish be-
tween a real user’s browser and a browser emulator, it
is unclear how the fingerprints can be directly applied
to distinguish a honeypot from a real user’s machine.
Since honeypots often run a real browser to visit suspi-
cious webpages, there is nothing fundamentally differ-
ent between a honeypot’s browser configurations and a
real user’s browser configurations. Even if there is a

discernible difference between the configurations of a
honeypot browser and all normal users’ browsers, an at-
tacker would need to know a-priori what the honeypot
fingerprint is in order to evade the honeypot; this a-priori
knowledge would also be needed for every honeypot sys-
tem among all anti-malware organizations and may need
to be updated for every update/change to a honeypot’s
browser or system.

Given these challenges, we believe that browser fin-
gerprinting does not offer an easy and fundamental way
to evade honeypot analysis; however, browser finger-
prints can be combined with our work to effectively
evade honeypots. In particular, prior work on finger-
printing offers a litany of techniques that accurately iden-
tify both the browser and operating system of a web-
site’s visitor. These are two pieces of information that
our browser red pills need to effectively detect if a web-
page is being loaded in a virtual machine. Thus, the work
on browser and device fingerprinting and our work on
browser red pills are complementary and address differ-
ent threat models.

6 Conclusion

Our work shows that despite limitations of the Javascript
execution environment, browser red pills are possible.
By leveraging the execution times of common Javascript
operations, we construct a variety of red pills that work
purely within the browser. This shows that malicious
web sites can potentially hide browser exploits from hon-
eypot detection. Our empirical evaluation shows that
these red pills are effective regardless of the choice of
browser on either of the two latest versions of Windows.
Furthermore, even when a VM uses hardware-assisted
virtualization, our red pills can successfully distinguish
the VM from a normal machine. We outlined a few de-
fenses that need to be further investigated in future work.
Future work can also explore why certain red pills run
faster in VMs and whether browser red pills are actively
being used in-the-wild for honeypot evasion.

Acknowledgments

The work is supported by NSF and DARPA. Any opin-
ions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of NSF and DARPA.

References

[1] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool
for analyzing malware. In EICAR, page 180192, 2006.

10



[2] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,
and H. Yin. Automatically identifying trigger-based be-
havior in malware. In Botnet Detection, pages 65–88.
Springer, 2008.

[3] X. Chen, J. Andersen, Z. M. Mao, M. Bailey,
and J. Nazario. Towards an understanding of anti-
virtualization and anti-debugging behavior in modern
malware. In Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 177–186. IEEE, 2008.

[4] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization extensions.
In Proceedings of the 15th ACM conference on Computer
and communications security, pages 51–62. ACM, 2008.

[5] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Per-
rig, and L. Van Doorn. Remote detection of virtual ma-
chine monitors with fuzzy benchmarking. ACM SIGOPS
Operating Systems Review, 42(3):83–92, 2008.

[6] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin.
Compatibility is not transparency: VMM detection myths
and realities. In HotOS, 2007.

[7] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
deseo: Combating search-result poisoning. In USENIX
Security Symposium, 2011.

[8] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna.
Escape from monkey island: Evading high-interaction
honeyclients. In Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 124–143. Springer,
2011.

[9] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. In Security and Privacy
(SP), 2012 IEEE Symposium on, pages 443–457. IEEE,
2012.

[10] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C.
Mitchell. A layered architecture for detecting malicious
behaviors. In RAID, pages 78–97, 2008.

[11] K. Mowery and H. Shacham. Pixel perfect: Fingerprint-
ing canvas in html5. Proceedings of W2SP, 2012.

[12] M. Mulazzani, P. Reschl, M. Huber, M. Leithner,
S. Schrittwieser, E. Weippl, and F. C. Wien. Fast and
reliable browser identification with javascript engine fin-
gerprinting. In Web 2.0 Workshop on Security and Privacy
(W2SP), volume 5, 2013.

[13] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In Se-
curity and Privacy (SP), 2013 IEEE Symposium on, pages
541–555. IEEE, 2013.

[14] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi.
A fistful of red-pills: How to automatically generate pro-
cedures to detect cpu emulators. In Proc. of WOOT’09,
pages 2–2, 2009.

[15] N. Provos. A virtual honeypot framework. In USENIX
Security Symposium, pages 1–14, 2004.

[16] M. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis, D. No-
jiri, N. Provos, and L. Schmidt. Trends in circumventing
web-malware detection. Google, Google Technical Re-
port, 2011.

[17] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. Noz-
zle: A defense against heap-spraying code injection at-
tacks. In USENIX Security Symposium, pages 169–186,
2009.

[18] J. Rutkowska. Red pill ... or how to detect VMM us-
ing (almost) one CPU instruction. www.hackerzvoice.
net/ouah/Red_%20Pill.html.

[19] D. Y. Wang, S. Savage, and G. M. Voelker. Cloak and dag-
ger: dynamics of web search cloaking. In Proceedings of
the 18th ACM conference on Computer and communica-
tions security, pages 477–490. ACM, 2011.

11

www.hackerzvoice.net/ouah/Red_%20Pill.html
www.hackerzvoice.net/ouah/Red_%20Pill.html

	Introduction
	Browser Red Pills
	Designing Browser Red Pills
	Implementing Browser Red Pills
	Baseline Operations
	I/O Differential Operations
	Threading Differential Operations
	Graphics Differential Operations


	Evaluation
	Testing Methodology
	Results

	Red Pill Defenses
	VM-Obfuscation Defenses
	Detection Techniques

	Related Work
	Conclusion



