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Abstract
Constraining dynamic control transfers is a common tech-
nique for mitigating software vulnerabilities. This de-
fense has been widely and successfully used to protect
return addresses and stack data; hence, current attacks
instead typically corrupt vtable and function pointers to
subvert a forward edge (an indirect jump or call) in the
control-flow graph. Forward edges can be protected us-
ing Control-Flow Integrity (CFI) but, to date, CFI im-
plementations have been research prototypes, based on
impractical assumptions or ad hoc, heuristic techniques.
To be widely adoptable, CFI mechanisms must be inte-
grated into production compilers and be compatible with
software-engineering aspects such as incremental compi-
lation and dynamic libraries.

This paper presents implementations of fine-grained,
forward-edge CFI enforcement and analysis for GCC and
LLVM that meet the above requirements. An analysis
and evaluation of the security, performance, and resource
consumption of these mechanisms applied to the SPEC
CPU2006 benchmarks and common benchmarks for the
Chromium web browser show the practicality of our ap-
proach: these fine-grained CFI mechanisms have signif-
icantly lower overhead than recent academic CFI proto-
types. Implementing CFI in industrial compiler frame-
works has also led to insights into design tradeoffs and
practical challenges, such as dynamic loading.

1 Introduction
The computer security research community has developed
several widely-adopted techniques that successfully pro-
tect return addresses and other critical stack data [13, 20].
So, in recent years, attackers have changed their focus
to non-stack-based exploits. Taking advantage of heap-
based memory corruption bugs can allow an attacker to
overwrite a function-pointer value, so that arbitrary ma-
chine code gets executed when that value is used in an
indirect function call [6]. Such exploits are referred to as
forward-edge attacks, as they change forward edges in
the program’s control-flow graph (CFG).

To make these attacks more concrete, consider a C++
program that makes virtual calls and has a use-after-free
bug involving some object. After the object is freed, an

attacker can reallocate the memory formerly occupied by
the object, overwriting its vtable pointer. Later virtual
calls through this object get the attacker’s vtable pointer
and jump to a function from the attacker’s vtable. Such
exploits are becoming commonplace, especially for web
browsers where the attacker can partially control executed
JavaScript code [14, 23].

Control-Flow Integrity (CFI) [1] guards against these
control-flow attacks by verifying that indirect control-
flow instructions target only functions in the program’s
CFG. However, although CFI was first developed over a
decade ago, practical CFI enforcement has not yet been
adopted by mainstream compilers. Instead, CFI imple-
mentations to date are either ad-hoc mechanisms, such
as heuristic-driven, custom binary rewriting frameworks,
or experimental, academic prototypes based on simpli-
fying assumptions that prevent their use in production
compilers [1, 9, 12, 29, 31–34].

In this paper, we present implementations of two mech-
anisms that provide forward-edge CFI protection, one
in LLVM and one in GCC. We also provide a dynamic
CFI analysis tool for LLVM which can help find forward-
edge control-flow vulnerabilities. These CFI implemen-
tations are fully integrated into their respective compil-
ers and were developed in collaboration with their open
source communities. They do not restrict compiler opti-
mizations, operation modes, or features, such as Position-
Independent Code (PIC) or C++ exceptions. Nor do they
restrict the execution environment of their output binaries,
such as its use of dynamically-loaded libraries or Address
Space Layout Randomization (ASLR).

The main contributions of this paper are:
• We present the first CFI implementations that are

fully integrated into production compilers without
restrictions or simplifying assumptions.

• We show that our CFI enforcement is practical and
highly efficient by applying it to standard bench-
marks and the Chromium web browser.

• We identify, discuss, and resolve the main challenges
in the development of a real-world CFI implemen-
tation that is compatible with common software-
engineering practices.

All our mechanisms verify targets of forward-edge in-
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direct control transfers but at different levels of preci-
sion, depending on the type of target and the analysis
applied. For example, C++ indirect-control transfers con-
sist mostly of virtual calls, so one of our approaches
focuses entirely on verifying calls through vtables. Our
security analyses show that our CFI mechanisms protect
from 95% to 99.8% of all indirect function calls. They are
also highly efficient, with a performance penalty (after
optimizations) ranging from 1% to 8.7%, as measured on
the SPEC CPU2006 benchmark suite and on web browser
benchmarks.

Most notably, our CFI mechanisms compare favorably
to recent CFI research prototypes. The security guarantees
of our work differ from these prototypes, but a compari-
son is nonetheless instructive, since our attack model is
realistic, and our defenses give strong guarantees.

MIP [28] and CCFIR [34] state efficiency as their main
innovation. In particular, on the SPEC Perl benchmarks
(where they both were slowest), CCFIR reports 8.6% over-
head, and MIP reports 14.9% to 31.3% overhead. Our
mechanisms have a corresponding overhead of less than
2%, as we report in Section 7.2. For C++ benchmarks,
which perform indirect calls more frequently, the perfor-
mance differences can be even greater. Another recent
CFI implementation, bin-CFI [35], reports overheads of
12% on the SPEC Perl benchmarks, but 45% for the C++
benchmark omnetpp, while the overhead is between -1%
and 6.5% for omnetpp compiled using our mechanisms.
Even the most recent CFI implementation, SAFEDIS-
PATCH [19], must sacrifice software-engineering practi-
cality and use profile-driven, whole-program optimization
to achieve overheads comparable to ours (roughly 2% for
all three of their Chromium benchmarks).

2 Attacks and Compiler-based Defenses
Software is often vulnerable to attacks that aim to subvert
program control flow in order to control the software’s
behavior and assume its privileges. Typically, successful
attacks exploit software mistakes or vulnerabilities that
allow corruption of low-level state.

To thwart these low-level attacks, modern compilers,
operating systems, and runtime libraries protect software
integrity using a variety of techniques, ranging from
coarse-level memory protection, through address-space
layout randomization, to the fine-grained type-safety guar-
antees of a high-level language. In particular, machine-
code memory is commonly write protected, and thread
execution stacks are protected by placing them at ran-
dom, secret locations, and by checking that secret values
(a.k.a. canary values) remain unmodified. This guards re-
turn addresses and other stack-based control data against
unintended overwriting [7, 13].

As a result of such compiler-based defenses becoming
widely used, corruption of the execution stack or machine

code has become a far less common means of successful
attack in well-maintained, carefully-written software such
as web browsers [20]. However, there has been a corre-
sponding increase in attacks that corrupt program-control
data stored on the heap, such as C++ vtable pointers (in-
side objects) [14], or function pointers embedded in data
structures; these attacks subvert indirect control trans-
fers and are known as “return-to-libc” or return-oriented
programming [3, 8, 22, 25–27, 30].

In this paper we present three compiler-based mech-
anisms for further protecting the integrity of program
control data. Focusing on the integrity of control-transfer
data stored on the heap, two of our mechanisms enforce
forward-edge CFI by restricting the permitted function
pointer targets and vtables at indirect call sites to a set
that the compiler, linker, and runtime have determined
to be possibly valid. The third mechanism is a runtime
analysis tool designed to catch CFI violations early in
the software development life-cycle. Our mechanisms
are efficient and practical and have been implemented as
components of the GCC and LLVM production compiler
toolchains. While they differ in their details, and in their
security — such as in how precisely the program’s CFG
is enforced — all three of our implementations:
• add new, read-only metadata to compilation modules

to represent aspects of the program’s static CFG;
• add machine code for fast integrity checks before

indirect forward-edge, control-flow instructions;
• optionally divert execution to code that performs

slower integrity checks in certain complex cases;
• call out to error handlers in the case of failures; and
• may employ runtime library routines to handle im-

portant exceptional events such as dynamic loading.
Like all defenses, we aim to prevent certain threats

and not others, according to an attack model. As in the
original work on CFI, our model pessimistically assumes
that an adversary can arbitrarily perturb most writable
program data at any time [1]. The program code, read-
only data, and thread register state cannot be modified.
While pessimistic, this attack model has stood the test of
time, and is both conceptually simple and realistic.

Similar to recent independent CFI work done concur-
rently with ours [19], and motivated by attackers’ increas-
ing focus on heap-based exploits, our mechanisms protect
only forward-edge control transfers. Our attack model
does not contain many types of stack corruption, since,
as stated previously, effective defenses against such cor-
ruption are already in common use. Thus, our choice of
attack model differs from most earlier work on CFI, ex-
cept for work on mechanisms like XFI [12], which place
the stack outside of pointer-accessible memory.

In our attack model we also depart from most previous
CFI work by choosing to trust the compiler toolchain.
For the integration of general-purpose defenses in pro-
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duction compilers, we find relying only on stand-alone
verification of the final, output binaries to be impractical —
although well-suited to custom compilers for specific sce-
narios, such as in Google’s Native Client [17, 21]. While
eliminating trust in the compiler is a laudable goal [24],
doing so increases complexity, reduces portability, and
prevents optimizations, while providing only uncertain
benefits. In particular, we know of no exploits on pre-
vious compiler-based defenses that justify the software
engineering costs of eliminating trust in the compiler.

By adopting the above attack model, our mechanisms
are practical as well as efficient. While many experimen-
tal CFI mechanisms have been constructed and described
in the literature, none have been able to efficiently provide
strong, precise integrity guarantees with the full support
that programmers demand from a production compiler. In
particular, incremental compilation and dynamic libraries
have remained primary challenges for CFI implementa-
tions, as has achieving low performance overheads; these
challenges have only recently started to be addressed in
experimental prototypes that enforce more coarse-grained
CFI policies [28, 34]. However, CFI enforcement that
is too coarse grained may provide only limited protec-
tion [4, 10, 15, 16] against modern attackers.

In summary, by focusing on forward-edge CFI, and
fully integrating into compilers, our mechanisms can en-
force fine-grained CFI at a runtime overhead that im-
proves on that of the best previous work.

Related Work. Following the original 2005 work on
CFI, later revised as Abadi et al. [1], there have been
a number of implementations that have extended or
built-upon CFI: XFI by Erlingsson et al. [12], BGI by
Castro et al. [5], HyperSafe by Wang and Jiang [31],
CFI+Sandboxing by Zeng et al. [32], MoCFI by Davi
et al. [9], CCFIR by Zhang et al. [34], Strato by Zeng
et al. [33], bin-CFI by Zhang et al. [35], MIP by Niu
et al. [28], and SAFEDISPATCH by Jang et al. [19].

These CFI-based mechanisms vary widely in their
goals, tradeoffs and implementation details. To achieve
low overhead, many enforce only coarse-grained CFI,
which may be a weak defense [15].

XFI, Strato, HyperSafe, and BGI use control-flow in-
tegrity primarily as a building block for higher-level func-
tionality, such as enforcing software-based fault isolation
(SFI), or fine-grained memory-access controls. Some,
like XFI, focus on statically verifying untrusted binary
modules, to establish that CFI will be correctly enforced
during their execution, and thus that they can be used
safely within different address spaces, such as the OS
kernel.

Many implementations of CFI are based on binary
rewriting. XFI and the original work on CFI used the
sound, production-quality Windows binary rewriter, Vul-
can [11], as well as debug information in PDB files.

These implementations construct precise control-flow
graphs (CFGs) to ensure that all indirect control trans-
fers are constrained in a sound manner. Other imple-
mentations — including MoCFI, CCFIR, and bin-CFI —
are based on more ad hoc and fragile mechanisms. For
example, MoCFI produces an imprecise CFG for ARM
applications running on an iPhone based on runtime code
dumping, disassembly, and heuristics. CCFIR relies on
relocation tables and recursive disassembly with heuris-
tics to identify code that needs to be protected. The code
is then rewritten to use a special randomized springboard
section through which all indirect control transfers hap-
pen. Bin-CFI also uses heuristic disassembly; however,
unlike CCFIR, bin-CFI injects a CFI-protected copy of
the text section into the original binary and uses dynamic
binary translation to convert pointers between the two
code copies at runtime.

Other implementations, including HyperSafe, MIP,
CFI+Sandboxing, and SAFEDISPATCH are implemented
as modifications to the compiler toolchain and compile
source code to binaries with CFI protection. The first
three are implemented as rewriting either assembly or
the compiler’s Intermediate Representation (IR) of ma-
chine code — essentially a more precise form of binary
rewriting.

Our vtable verification (see Section 3) is most simi-
lar to SAFEDISPATCH: work done independently and
concurrently with ours that adds passes to LLVM for in-
strumenting code with runtime CFI checks, and relies
on profile-driven, whole-program optimization to reduce
enforcement overhead. At a call site, SAFEDISPATCH
checks that either (1) the vtable pointer is to a valid vtable,
for the call site, or (2) the address in the vtable points to a
valid method for the call site. However, SAFEDISPATCH
disallows separate compilation, dynamic libraries, etc.,
and relies on profile-driven, whole-program optimization,
which is not very practical.

The overhead of all these various CFI mechanisms
ranges from 6% to 200%, with some significant variations.
In particular, the recent papers on MIP, CCFIR, and Strato
state their low CFI enforcement overhead as a main con-
tribution; Strato also highlights its support for compiler
optimizations. However, as mentioned previously, their
overheads on comparable benchmarks are several times
larger than those of our CFI mechanisms — and they are
likely to perform even worse on C++ benchmarks. This is
due in part to the different properties our work enforces:
we limit our scope to protecting control data that is not
already well-protected by other mechanisms.

3 VTV: Virtual-Table Verification
Vtable Verification (VTV) is a CFI transformation imple-
mented in GCC 4.9 for C++ programs. VTV protects only
virtual calls and does not attempt to verify other types of
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indirect control flow. However, most indirect calls in C++
are virtual calls (e.g., 91.8% in Chrome), making them
attractive targets for attackers. VTV is our most precise
CFI approach: it guarantees that the vtable used by each
protected virtual call is both valid for the program and
also correct for the call site.

3.1 Problem Description

Virtual calls are made through objects, which are instances
of a particular class, where one class (e.g., rectangle)
inherits from another class (e.g., shape), and both classes
can define the same function (e.g., draw()), and declare
it to be virtual. Any class that has a virtual function
is known as a polymorphic class. Such a class has an
associated virtual function table (vtable), which contains
pointers to the code for all the virtual functions for the
class. During execution, a pointer to an object declared
to have the type of a parent class (its static type, e.g.,
shape) may actually point to an object of one of the
child classes (its dynamic type, e.g., rectangle). At
runtime, the object contains a pointer (the vtable pointer)
to the appropriate vtable for its dynamic type. When it
makes a call to a virtual function, the vtable pointer in the
object is dereferenced to find the vtable, then the offset
appropriate for the function is used to find the correct
function pointer within the vtable, and that pointer is used
for the actual indirect call. Though somewhat simplified,
this explanation is generally accurate.

The vtables themselves are placed in read-only memory,
so they cannot be easily attacked. However, the objects
making the calls are allocated on the heap. An attacker
can make use of existing errors in the program, such as
use-after-free, to overwrite the vtable pointer in the object
and make it point to a vtable created by the attacker. The
next time a virtual call is made through the object, it uses
the attacker’s vtable and executes the attacker’s code.

3.2 Overview of VTV

To prevent attacks that hijack virtual calls through bogus
vtables, VTV verifies the validity, at each call site, of
the vtable pointer being used for the virtual call, before
allowing the call to execute. In particular, it verifies that
the vtable pointer about to be used is correct for the call
site, i.e., that it points either to the vtable for the static
type of the object, or to a vtable for one of its descendant
classes. VTV does this by rewriting the IR code for
making the virtual call: a verification call is inserted after
getting the vtable pointer value out of the object (ensuring
the value cannot be attacked between its verification and
its use) and before dereferencing the vtable pointer. The
compiler passes to the verifier function the vtable pointer
from the object and the set of valid vtable pointers for the
call site. If the pointer from the object is in the valid set,
then it gets returned and used. Otherwise, the verification

function calls a failure function, which normally reports
an error and aborts execution immediately.

3.3 More Details
VTV differs from all previous compiler-based CFI im-
plementations in that it allows incremental compilation
rather than requiring that all files be recompiled if a single
one is changed. VTV also does not forbid or restrict dy-
namic library loading. Such requirements and restrictions
are common in research prototypes but impractical for
real world systems.

Because VTV allows incremental compilation and dy-
namic loading, it must assume that its knowledge of the
class hierarchy is incomplete during any particular compi-
lation. Therefore, VTV has two pieces: the main compiler
part, and a runtime library (libvtv), both of which are part
of GCC. In addition to inserting verification calls at each
call site, the compiler collects class hierarchy and vtable
information during compilation, and uses it to generate
function calls into libvtv, which will (at runtime) build
the complete sets of valid vtable pointers for each poly-
morphic class in the program.

To keep track of static types of objects and to find sets
of vtable pointers, VTV creates a special set of variables
called vtable-map variables, one for each polymorphic
class. At runtime, a vtable-map variable will point to the
set of valid vtable pointers for its associated class. When
VTV inserts a verification call, it passes in the appropriate
vtable-map variable for the static type of the object, which
points to the set to use for verification.

Because our vtable-pointer sets need to be built before
any virtual calls execute, VTV creates special constructor
init functions and gives them a high priority. The compiler
inserts into these special functions the calls for building
vtable-pointer sets. These functions run before standard
initialization functions, which run before main, ensuring
the data is in place before any virtual calls are made.

Vtable-map variables and vtable-pointer sets need to
be read only to avoid introducing new vectors for attack.
However, they must be writable when they are first ini-
tialized and whenever a dynamic library is loaded, since
the dynamic library may need to add to the vtable-pointer
sets. So, we need to be able to find all our data quickly.
To keep track of the vtable-pointer sets, we wrote our own
memory allocation scheme based on mmap. VTV uses
this scheme when creating the sets; this lets it find all such
sets in memory.

To find vtable-map variables, VTV writes them into a
special named section in the executable, which is page-
aligned and padded with a page-sized amount of zeros to
prevent any other data from residing on the same pages.
Before updating its data, VTV finds all memory pages that
contain vtable-map variables and vtable-pointer sets and
makes them writable. When it finishes the update, it finds
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all appropriate pages and makes them read-only. Thus,
the only times these VTV data structures are vulnerable
to attack are during program initialization, and possibly
during dlopen calls. The VTV code that updates our data
structures uses pthread mutexes to prevent races between
multiple threads.

3.4 Practical Experience with VTV
We encountered some challenges while developing VTV.

Declaring global variables. Originally, VTV declared
vtable-map variables as COMDAT and as having global
visibility, because incremental compilation can result in
multiple compilation units defining the same vtable-map
variable, and COMDAT sections can be coalesced by the
linker. However, this did not work reliably because there
are many ways in which programmers can override the
visibility of a symbol: linker version scripts can explicitly
declare which symbols have global visibility; the rest of
the symbols become hidden by default. Also, if global
symbols are not added to the dynamic symbol table, then
vtable-map variables might not be global. Finally, calls to
dlopen with the RTLD_LOCAL flag have similar effects.
We found all these techniques at work in Chromium.

When some vtable-map variables do not have global
visibility, there can be multiple live instances of a vtable-
map variable for a particular class, each pointing to a
different vtable-pointer set containing only part of the full
vtable-pointer set for the class. If the verification function
is passed a variable pointing to the wrong part of the set,
execution aborts incorrectly. We call this the split-set
problem.

We finally concluded that there is no existing mecha-
nism for the compiler to ensure a symbol will always be
globally visible. The only way to eliminate the split-set
problem was to accept that there would be multiple live
versions of some vtable-map variables. To handle the
consequences of this new assumption, VTV keeps track
of the first instance of a vtable-map variable for each class.
When initializing any vtable-map variable, it first checks
if it has already seen a version of that variable. If not, then
it allocates a vtable-pointer set for the variable, makes
the variable point to the vtable-pointer set, and registers
the variable in its variable registry. All subsequent vtable-
map variables for that class are then initialized to point to
the same vtable-pointer set as the first one.

Mixing verified and non-verified code. VTV causes
execution to halt for one of three reasons: (1) a vtable
pointer has been corrupted; (2) the C++ code contains
an incorrect cast between two class types (programmer
error); or (3) the set of valid vtable pointers used for
verification is incomplete. The split-set problem is an
example of the last case. This can also occur if some files
that define or extend classes are instrumented with vtable

lib.cc

#include "lib.h"
struct Derived_Priv : public Base {
virtual ~Derived_Priv() {}

};

Base *GetPrivate() {
return new Derived_Priv;

}
void Destroy(Base *pb) {
delete pb; // virtual call #1

}

main.cc

#include "lib.h"
struct Derived : public Base {

virtual ~Derived() {}
};

int main() {
Derived *d = new Derived;
Destroy(d);
Base *pp = GetPrivate();
delete pp; // virtual call #2

}

main.cc lib.cc vcall #1 vcall #2 Missing from vtable
w/ VTV w/ VTV OK OK pointer set

Yes Yes Yes Yes Nothing
No No Yes Yes Nothing
Yes No Yes No Derived_Priv
No Yes No Yes Derived

Figure 1: Example of problems resulting from mixing
verified and unverified code. If only main.cc is compiled
with verification, the vtable pointer for Derived_Priv
does not get added to the valid set for Base, so virtual
call #2 fails to verify. If only lib.cc is compiled with
verification, the vtable pointer for Derived does not get
added to the valid set for Base, so virtual call #1 fails.

verification, and other files that define or extend part of
the class hierarchy are not. A similar effect also can occur
with libraries or plugins that pass objects in and out, if
one is instrumented and the other is not.

Figure 1 shows this problem: a header file, lib.h, de-
clares a base class Base. The class Base contains one
virtual function, its destructor. There are two source files,
lib.cc and main.cc, that each includes lib.h and contains
classes that inherit from Base, as shown in the upper part
of Figure 1. The table in the lower part of Figure 1 shows
the effects on the two marked virtual calls of compiling
lib.cc and main.cc with and without VTV. Note that the
only cases where both virtual calls pass verification are
when everything is built with VTV or nothing is.

We encountered this problem in ChromeOS with the
Chrome browser. There are two third-party libraries
which are built without VTV and are distributed to
ChromeOS as stripped, obfuscated binaries (these bina-
ries are not part of the open-source Chromium project).
To make matters worse, when we built the rest of Chrome
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and ChromeOS with VTV and ran tests that exercised
those libraries, we encountered verification failures.

To deal with the mixed-code problem in general, VTV
was designed and written with a replaceable failure func-
tion. This function gets called if the verification function
fails to find a vtable pointer in a valid set. To replace
the default failure function, a programmer writes a re-
placement function (using the same signature, provided
in a header file in libvtv), compiles it, and links it into
the final binary. For Chrome we replaced the default
failure function with a whitelist failure function. The
whitelist function maintains an array with one record for
each whitelisted library. The record contains the mem-
ory address range where the readonly data section for
the library (which contains all of the library’s vtables)
is loaded. If a vtable pointer fails normal verification, it
gets passed to the whitelist failure function. The function
goes through the array, checking to see if the pointer is
in any of the address ranges. If so, it assumes the pointer
is valid and execution continues (verification succeeded).
Otherwise, it reports an error and aborts.

Because the obfuscated libraries are dynamically
loaded, the whitelist array records do not initially contain
any addresses. If any records are empty when the whitelist
failure function is called, then the function checks to see
if the corresponding library has been loaded, and if so, it
fills in the addresses before verification. For ChromeOS,
our whitelist consists of the two third-party libraries men-
tioned above. This secondary verification, while not as
accurate as normal VTV verification, still severely limits
what an attacker can do, and with it we were able to exe-
cute all our tests on Chrome with no verification failures.
Our secondary failure function only gets called in those
cases where the main verification function fails. In that
case it usually performs at most one alignment check and
four pointer comparisons. Therefore, its overall impact
on performance is small.

3.5 Alternatives & Enhancements for VTV
Since our performance overhead is reasonably good (rang-
ing from 2.0% to 8.7% in the worst case, as we discuss
in Section 7.1), we have not spent much time improv-
ing the performance of VTV. However, there are some
things that could be done to improve these numbers. For
various reasons, Chrome/ChromeOS currently cannot be
compiled with devirtualization1 enabled; we could enable
devirtualization in Chrome and tune the devirtualizer to
be more aggressive when combined with VTV. Partial
inlining of the verification call sequences is another av-

1Devirtualization is an optimization that replaces virtual calls with
a fast-path/slow-path mechanism: the fast path uses a direct call to
the most common target, with a conditional check to make sure this is
right; the slow path falls back on the normal virtual call mechanism.
Devirtualization reduces the number of indirect calls and verifications
and improves the overall performance of VTV.

enue we could explore, since call overhead accounts for a
significant portion of our overall performance penalties.
We could also implement secure methods for caching and
reusing frequently verified values.

When we started implementing VTV, we decided that
we did not want to modify any element of the toolchain
except the compiler, especially because GCC can be used
with a variety of different assemblers and linkers, and
we did not want to modify all of them. An alternative
approach would have been to have the compiler store the
vtable-pointer sets as data in the assembly files. This data
would be passed through the assembler to the linker. At
link time the linker would see the whole program and
could efficiently combine the vtable-pointer sets from
the various object files into the appropriate final vtable-
pointer sets. The dynamic loader, when loading the pro-
gram, could load the pointers into our data sets and mark
them read-only. This approach would eliminate order-
ing issues between functions that build vtable-pointer
sets and functions that make virtual calls. The dynamic
loader would also need to update the data, as appropri-
ate, whenever it loaded a dynamic library that contained
additional vtable pointers. A disadvantage of this alter-
native approach is that instead of requiring modifications
only to the compiler, it would modify the entire toolchain:
the compiler, the assembler, the linker, and the dynamic
loader.

4 IFCC: Indirect Function-Call Checks
Indirect Function-Call Checks (IFCC) is a CFI transforma-
tion implemented over LLVM 3.4. It operates on LLVM
IR during link-time optimization (LTO). IFCC does not
depend on the details of C++ or other high-level lan-
guages; instead, it protects indirect calls by generating
jump tables for indirect-call targets and adding code at
indirect-call sites to transform function pointers, ensuring
that they point to a jump-table entry. Any function pointer
that does not point into the appropriate table is considered
a CFI violation and will be forced into the right table by
IFCC. IFCC collects function-pointers into jump tables
based on function-pointer sets, like VTV’s vtable-pointer
sets, with one table per set.

IFCC forces all indirect-calls to go through its jump ta-
bles. This significantly reduces the set of possible indirect-
call targets, and severely limits attacker options, prevent-
ing attacks that do not jump to a function entry point of
the right type.

Each entry in a jump table consists solely of an aligned
jump instruction to a function. The table is written to
the read-only text area of the executable and is padded
with trap instructions to a power-of-two size so that any
aligned jump to the padding will cause the program to
crash. Since the size of the table is a power of two, IFCC
can compute a mask that can be used at call sites to force
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a function pointer into the right function-pointer set. For
example, if each jump-table entry takes up 8 bytes, and
the table is 512 bytes in size, then there are 64 entries in
the table, and the mask would be 111111000 in binary,
which is 504 in decimal.

IFCC rewrites IR for functions that have their address
taken; we call these address-taken functions. The main
transformation replaces the address of each such function
with the address of the corresponding entry in a jump table.
Additionally, indirect calls are replaced with a sequence
of instructions that use a mask and a base address to
check the function pointer against the function-pointer set
corresponding to the call site. The simplest transformation
subtracts the base address from the pointer, masks the
result, and adds the masked value back to the base. If the
pointer was in the right function-pointer set before this
transformation, then it remains unchanged. If not, then
a call through the resulting pointer is still guaranteed to
transfer control only to addresses in the function-pointer
set or to trap instructions. Note that every pointer in a
jump table is a valid function pointer (although some
of them immediately hit trap instructions when they are
called), so they can correctly be passed to external code.

IFCC can support many kinds of function-pointer sets,
each with different levels of precision. For example, the
most precise version would have one function-pointer set
per function type signature. However, real world code
does not always respect the type of function pointers, so
this can fail for function-pointer casts. We will focus on
two simple ways of constructing function-pointer sets:
(1) Single puts all the functions into a single set; and (2)
Arity assigns functions to a set according to the number
of arguments passed to the indirect call at the call site
(ignoring the return value).

Note that although we implemented only two simple
types of tables, any disjoint partitioning of the function-
pointer types in the program will work, as long as each
call site can be uniquely associated with a single table.
This is true no matter what analysis is used to generate
these tables — be it static, dynamic, or manual. So, for
example, the compiler could perform a detailed analysis
of escaping pointers and use it to separate these pointers
into their own tables.

The following example demonstrates the IFCC tech-
nique for a simple program. Consider a function
int f(char a) { return (int)a; } and a main
function that makes an indirect call to f through a
function-pointer variable g. In LLVM IR, the sym-
bol @f will refer to function defined above; IFCC adds
a @baseptr symbol that stores a pointer to the first
function pointer in the generated jump table. Before
IFCC, the LLVM IR contains an indirect call instruc-
tion %call = call i32 %2(i8 signext 0) to the
function pointer stored in variable %2.

IFCC generates a new symbol @f_JT and defines it
in the IR as an external function. It finds each instance
where the program uses the address of @f and makes it
use the address of @f_JT instead. It also creates a jump
table of the form:

.align 8

.globl f_JT
f_JT:
jmp f

This defines the symbol @f_JT and satisfies the linker.
IFCC instruments the code before the indirect call with
instructions that transform the pointer. There are several
ways to perform this transformation. We show two tech-
niques, one that requires large alignments, and another
for when large alignments are not supported. The require-
ment for large alignment in one scheme is because the
base pointer must be aligned to the size of its table. This
makes the base a prefix of each entry in its table.

When the object format and the kernel support large
table alignments (e.g., greater than one page), IFCC
can use a compact set of instructions to transform a
pointer. The following IR assumes integer representa-
tions of @baseptr in %1 and @mask in %2, and a pointer
to @f in %3.

%4 = and i64 %2, %3
%5 = add i64 %1, %4
%6 = inttoptr i64 %5 to i32 (i8)*
%7 = call i32 %6(i8 signext 0)

In x86-64 assembly, this becomes:

and $mask, %rax
add $baseptr, %rax
callq *%rax

The ELF format supports arbitrary alignments but the
Linux kernel does not (as of version 3.2.5, under ASLR
with Position-Independent Executables (PIE)). Under
ASLR, the kernel treats the beginning of each ELF seg-
ment as an offset and generates a random base to add to
the offset. The base is guaranteed to be aligned to a page
boundary (212) but the resulting address is not guaranteed
to have larger alignment.

Under these circumstances, IFCC changes the way it
operates on function pointers; instead of adding a masked
pointer to a base, it computes the difference between the
base address and the function pointer, masks this value
with the same mask as before, and adds the result to the
base. This ends up generating 3 instructions for pointer
manipulation in x86-64: a sub, then an and, then an add.

4.1 Practical Experience with IFCC
We modified the Chromium build scripts to build under
LTO as much of the code as possible. It built 128 files as
x86-64 ELF objects, and 11,012 files as LLVM IR. We
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then applied, separately, the Single and Arity versions of
IFCC in this configuration.

Like VTV, IFCC suffers from false positives due to
external code. In particular, any function that was not de-
fined or declared during link-time optimization will trig-
ger a CFI violation. This can happen for several reasons.
First, JIT code (like JavaScript engines) can generate func-
tions dynamically. Second, some external functions (like
dlsym or sigaction) can return external function point-
ers. Finally, some functions can be passed to external
libraries and can be called there with external function
pointers; this is common in graphics libraries like gtk.
The number of false positives varies greatly depending on
the external code, ranging from extremely frequent in the
case of JIT-generated code to extremely infrequent in the
case of signal handlers.

To handle function pointers returned by external code,
we added a fixed-size set of special functions to the be-
ginning of each table. These functions perform indirect
jumps through function pointers stored in an array. IFCC
rewrites all calls to external functions (including dlsym)
that return function pointers and inserts a function call
that takes the pointer and writes it to the array if it is not
already present. It returns a pointer to the table entry that
corresponds to the array entry used to store the pointer. If
the array has no more space, then it halts the program with
an error. This converts function pointers from external
code into table entries at the expense of adding a small
number of writable function pointers to the code. This
memory can be protected using the techniques described
in Section 3.4, though the prototype in this paper does not
perform this protection.

To handle functions passed to external functions, IFCC
must find all cases in which functions are passed to exter-
nal code and must rewrite the functions to not test their
function pointers against the jump tables generated by
IFCC. We added a flag to the IFCC plugin that takes
the name of a function to skip in rewriting. To discover
these function pointers, we added a warning mode to the
IFCC transformation that prints at run time the names of
functions that make indirect calls to functions outside the
function-pointer sets. We found 255 such functions in
Chromium, mostly associated with graphics libraries.

4.2 Annotations
The version of IFCC described in this section provides
automatic methods for discovering and handling false
positives. To improve maintainability of software with
IFCC, however, we have implemented a different version
that uses annotations instead of compile-time flags and
uses custom failure functions like VTV. This is the version
that we are working on upstreaming into LLVM.

Instead of functions being forced into the appropriate
jump table, they are checked using the same code se-

quences as above, and any pointer that fails the check
is passed to a custom failure function. IFCC’s default
failure function prints out the name of the function in
which the failure occurred, and the value of the pointer
that failed the check. This version of IFCC adds a compar-
ison, a jump, and function call to the inserted instruction
sequence. However, it gives greater flexibility to the re-
sulting code in handling false positives, as discussed for
VTV.

This new implementation provides annotations and a
simple interprocedural dataflow analysis to help detect
and handle these problems automatically. We provide
two annotations that programmers can add using attribute
notation: __attribute__((annotate())).

• cfi-maybe-external is applied to local vari-
ables/parameters as well as to pointers in data struc-
tures.

• cfi-no-rewrite is applied to functions.

The dataflow analysis in IFCC finds external func-
tion pointers and traces their flow into indirect calls
and into store instructions. It also traces the flow from
cfi-maybe-external-annotated pointers and other
variables into indirect calls and store instructions. It pro-
duces compile-time warnings if it finds a store instruction
for an external function pointer and the pointer in the
store instruction did not come from a location annotated
by cfi-maybe-external. The annotations then can be
used as a kind of whitelist in the CFI failure function, or
these indirect calls can be skipped in rewriting.

The annotation cfi-no-rewrite means that all in-
direct calls in the annotated function might use external
function pointers. The information from this annotation
can be used either to build a whitelist or to skip rewriting.
Our implementation currently skips rewriting for these
indirect calls.

These annotations are also useful for cases that IFCC
cannot detect, like callbacks buried deep inside data struc-
tures passed to external code. Calls to these functions will
generate CFI violations at run time; these violations are
false positives, and the locations of these indirect calls
can be annotated with, e.g., cfi-maybe-external to
indicate this to the CFI failure function.

It might seem like all an adversary has to do is to
find one of the locations that has been annotated with
cfi-maybe-external and overwrite a pointer that
flows into it, and this will defeat IFCC. However, these
annotations merely convey information to the CFI failure
function; this function can perform arbitrarily complex
checks make sure that function pointers that violate CFI
are still valid. For the purposes of our evaluation, we im-
plemented a simple failure function, as described above.
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5 FSan: Indirect-Call-Check Analysis
The more precise the control-flow graph used in a CFI
implementation, the harder it becomes for an attacker
to exploit a program while staying within CFI-enforced
bounds: a more precise CFG leads to fewer choices in
targets for indirect control-transfer instructions. However,
building a precise CFG is a hard problem, and program-
ming techniques like function-pointer type punning and
runtime polymorphism exacerbate this problem. Every
time a CFI mechanism faces uncertainty, it is forced to
be conservative to preserve correctness. Although this
strategy guarantees correctness, it may result in a loss of
security. Thus, techniques that reduce uncertainty about
the CFG can increase security. We can achieve the best
practical results by combining knowledge of program-
ming language constructs (such as vtables), static analy-
sis (such as we do for IFCC), and dynamic analysis. To
that end, we designed FSan—an optional indirect call
checker—and integrated it into Clang, LLVM’s front end.

Clang’s undefined behavior sanitizer (UBSan) instru-
ments C and C++ programs with checks to identify in-
stances of undefined behavior. FSan was added to UBSan
in LLVM 3.4. FSan detects CFI violations at runtime for
indirect function calls.2 FSan operates during the transla-
tion from the Clang AST to LLVM IR, so it has full access
to type information, allowing it to make more accurate
checks than IFCC, which uses IR alone.

FSan is a developer tool designed to perform optional
type checking. In particular, it is not designed to de-
fend against attacks. Instead, it is designed to be used
by developers to identify CFI violations that may lead
to security issues. As a fully accurate checker (it checks
definedness exactly according to the definition in the C++
standard), it can also be used to help guide the develop-
ment of control-flow integrity techniques by identifying
properties of interest to be checked in the field.

FSan prefixes each function emitted by the compiler
with 8 (on x86-32) or 12 (on x86-64) bytes of metadata.
Table 1 shows the layout of these bytes; they are exe-
cutable and cost little in performance, since the first two
bytes encode a relative branch instruction which skips the
rest of the metadata. The next two bytes encode the in-
structions rex.RX push %rsp (on x86-64) or incl
%esi ; pushl %esp (on x86-32); this sequence of
instructions is unlikely to appear at the start of a non-
instrumented function body, and we observed no false
positives in Chromium due to this choice of prefix.

Each indirect call site first loads the first four bytes
from the function pointer, and compares it to the expected
signature — the optionality of FSan arises from selecting
a signature unlikely but permitted to appear at the start of

2The undefined behavior sanitizer also includes a vtable-pointer
checker which is not described here.

Kind Offset Data Interpretation

Signature

0 0xeb
jmp .+0x08/0x0c1 0x06/0x0a

2 0x46 ‘F’
3 0x54 ‘T’

RTTI 4 Pointer to std::type_info for the
function’s type (4/8 bytes)

Table 1: Function prefix data layout for the optional func-
tion type checker.

an uninstrumented function. Because GCC at optimiza-
tion level -O2 and higher and Clang at any optimization
level will align functions to 16 bytes, this initial read suc-
ceeds for each function compiled with these compilers,
regardless of the length of the function. This assumes
GCC-compiled system libraries are compiled with -O2 or
higher.

If the signature matches, then the next 4 or 8 bytes
are loaded and compared against the expected function
Run-Time Type Information (RTTI) pointer, which is
simply the RTTI pointer for the function type of the callee
expression used at the call site. If the pointers are unequal,
then a runtime function is called to print an appropriate
error message. A pointer equality test is sufficient because
the function RTTI pointer for a particular function type is
normally unique. This is because the linker will normally
(but not always) coalesce RTTI objects for the same type,
as they have the same mangled name.

The condition for undefined behavior as specified by
the C++ standard is that the function types do not match
(see C++11 [18, expr.reinterpret.cast], “The effect of call-
ing a function through a pointer to a function type [...]
that is not the same as the type used in the definition of the
function is undefined”), so FSan is precise (no false posi-
tives or false negatives) with respect to this paragraph of
the standard when both the caller and callee are compiled
with the checker (provided that the linker coalesces RTTI
symbols). However, FSan has not been implemented for
C, and indeed would not work in its present form, mainly
because the C rules relating to the definedness of calls to
functions without a prototype are more complex.

Note that the RTTI pointer for a vtable function call
is less precise than the vtable-pointer set check in VTV.
FSan checks that each function has the correct type but
not whether it was in the original program’s CFG.

5.1 Practical Experience with FSan
We evaluated FSan by applying it to Chromium: we ran an
instrumented version of the main browser executable, and
FSan produced a variety of undefined-behavior reports.
Two of the main categories of reports we observed were:

• Template functions whose parameters are of a tem-
plated pointer type, which are cast to functions
whose parameters are of void pointer type so that
they can be used as untyped callbacks;
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• Functions that take context parameters as typed
pointers in the function declaration but void pointers
or pointers to a base class at the call site.

The fix for these types of bugs is simple in principle:
give the parameters a void pointer type and move the
casts into the function body. One instance of each type
of problem was found and fixed in the Skia graphics li-
brary that Chromium uses. This eliminated much of the
low-hanging fruit reported by FSan; most of the remain-
ing problems were more widespread in the codebase and
thus will take more effort to deal with. For example, V8
uses callbacks to implement a feature known as “reviv-
able objects” which Blink (née WebKit) relies on heavily;
in many cases these callbacks were implemented using
the derived types expected by the object implementation,
rather than V8’s base value type.

6 Security Analysis
In order to evaluate the efficacy of security techniques it
is important to apply them to the real-world code they are
expected to protect and measure the impact. To this end,
we analyzed Chromium compiled with VTV and GCC,
and with IFCC and Clang.

One consequence of implementing security mecha-
nisms in the compiler is that it is important to evaluate the
final output rather than simply the output of the particular
compiler pass. The reasons for this are twofold: (1) later
optimization passes may transform the security mecha-
nism in unpredictable ways; and (2) the final linking step
adds additional binary code to the final executable that
the security pass never sees.

Basic optimizations such as common-subexpression
elimination and loop-invariant code motion can elim-
inate redundant checks or hoist checks out of loops.
Although such optimizations are generally acceptable
from a correctness point of view, they may be imper-
missible from a security standpoint. For example, con-
sider two consecutive calls to C++ member functions
obj.foo(); obj.bar();. A security mechanism that
protects virtual function calls, such as VTV, can load a
vtable pointer into a callee-saved register, perform the
verification, and then perform the two calls:

movq (%r12), %rbx ; set rbx to the vptr
movq %rbx, %rdi
callq verify_vtable ; verify_vtable(vptr)
movq %r12, %rdi
callq *16(%rbx) ; obj.foo()
movq %r12, %rdi
callq *24(%rbx) ; obj.bar()

This is perfectly correct behavior since the first function
call is guaranteed by the platform ABI to preserve the
value of the register. However, if rbx is spilled to the
stack in foo() and is later overwritten, e.g., via a buffer
overflow on the stack, then the call to bar() will be to

an attacker-controlled location. An alternative to using a
callee-saved register is to explicitly spill/reload the regis-
ter to/from the stack, which has similar security concerns.

Since protecting the stack is outside the scope of this
work, the compiler has significantly more freedom to
eliminate this sort of redundant check.

Although it is difficult to meaningfully quantify the
security provided by a mitigation measure, recent work
by Zhang and Sekar [35, Definition 1] introduced the
Average Indirect-target Reduction (AIR) metric

AIR =
1
n

n∑
i=1

(
1− Ti

S

)

where n is the number of indirect control-transfer instruc-
tions (indirect calls, jumps, and returns), Ti is the number
of instructions the ith indirect control transfer instruction
could target after applying a CFI technique, and S is the
size of the binary.

It’s clear that for any reasonable CFI technique and
a large binary, Ti � S for all indirect control-transfer
instructions transformed by the technique. Similarly, Ti ≈
S for all other indirect control-transfer instructions. So,
AIR reduces to the fraction of indirect control transfer
instructions that are protected by the technique.3

Since we are focused on protecting forward edges, we
consider the related metric forward-edge AIR, or fAIR,
which performs the same computation as AIR, but the av-
erage is taken only over the forward-edge indirect control
transfer instructions: indirect calls and jumps.

To compute the statistics reported in the rest of this
section, we modified LLVM’s object-file disassembler
to perform a hybrid recursive and linear scan through
the Chromium binary, reconstructing functions and ba-
sic blocks on which we performed our analysis. This
process was aided by ensuring that Chromium was com-
piled with debugging information including symbols (cf.
Bao et al. [2]). This disassembler was used as part of a
stand-alone tool to find all indirect control transfer instruc-
tions. For each such instruction, the tool walks backward
through the CFG, looking for the specific protection mech-
anism. It also attempts to find constants which are inserted
into registers used for the call or jump. See Table 2 for
a break down of forward-edge indirect control transfer
(fICT) instructions in Chromium.

VTV. Compiling a recent version of Chromium using
GCC with vtable verification leads to a final binary con-
taining 124,325 indirect calls and 18,453 indirect jumps
for a total of 142,778 fICT instructions. Of these, 6,855
are neither constant nor protected by vtable verification,
giving fAIRVTV = 95.2%. The majority of the unprotected

3This demonstrates that AIR — and our related fAIR — is at best a
weak proxy for measuring security. Unfortunately, an actual metric for
the security a CFI technique provides has thus far remained elusive.
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fICT VTV IFCC

Constant 7,410 5,957
Constant, spilled† 7,334 315
Protected 113,617 154,244
Protected, spilled† 7,562 33,914
Unprotected 6,855 908

Total 142,778 195,338

Table 2: Forward-edge indirect control transfer (fICT)
instructions in Chromium. Their arguments may be placed
in three classes: (a) a type of constant, (b) an indirect
address protected by CFI, and (c) an unprotected address.
Constant-argument instructions include indirect jumps in
the PLT which target a read-only GOT section and indirect
jump instructions implementing switch statements, as well
as indirect call instructions with constant targets.
† The targets for these indirect control transfer instructions
are either spilled to the stack explicitly or are in callee-
saved registers which are potentially spilled by intervening
function calls.

fICTs come from C libraries, function-pointer adapter
classes, and C-style callbacks.

Although more than 89% of the protected or constant
fICTs are used almost immediately after being verified
or loaded from read-only memory, in 14,896 instances
(about 10%), the indirect target is potentially spilled to
the stack. But this is not a flaw in our protection (see
below).

IFCC. Compiling the same version of Chromium using
Clang with IFCC (Single) produces a different binary con-
taining 175,396 indirect calls and 19,942 indirect jumps
for a total of 195,338 fICT instructions. Having more
calls and jumps is what we would expect since the link-
time optimizer has more inlining opportunities than is the
case when optimizing one translation unit at a time.4

Since IFCC is designed to protect all fICT instruc-
tions, not just C++ virtual member function calls, only
908 fICT instructions are left unprotected. This gives
fAIRIFCC = 99.5%. In fact, this is an over estimate of
the number of unprotected fICT instructions. Of the 908
unprotected instructions, 512 correspond to the special
functions created for function pointers returned from non-
instrumented functions. Discounting those gives the more
accurate value of fAIRIFCC = 99.8%. Most of the remain-
ing unprotected fICT instructions correspond to functions
which are explicitly not instrumented. (See Section 4.1
for a discussion of both of these.) The remaining hand-
ful come from the C run time statically linked into every
binary.

With IFCC, about 18% of the constant or protected
fICTs have targets which are potentially spilled to the

4There is a corresponding decrease in the number of return instruc-
tions for the same reason.

stack. However this is not a fatal flaw, as discussed im-
mediately below, since we are assuming that the stack is
protected by some other means.

Stack spilling implications. For the purpose of our
techniques, spilling target values to the stack introduces
no additional security risk, since an attacker who can over-
write one value on the stack can easily overwrite a saved
return address. This does have serious implications for
CFI schemes that attempt to protect backward edges.

Our experience shows the importance of verifying a
protection mechanism’s intended invariants on the final bi-
nary output after all optimizations, including architecture-
dependent optimization in the compiler backend, have
taken place and the language runtime has been linked in.

Counting ROP gadgets. It is common in CFI papers
to count the number of return-oriented programming gad-
gets that remain after applying the protection mechanism.
Since we are explicitly not protecting return instructions,
it does not make sense to count gadgets.

7 Performance Measurements and Results
We measured the performance of our approaches both
on the C++ tests from the SPEC CPU2006 benchmark
suite and on the Chromium browser running Dromaeo,
SunSpider, and Octane. Except where otherwise specified,
the VTV tests were run all on an HP Z620 Xeon E52690
2.9GHz machine, running Ubuntu Linux 12.04.2, and the
IFCC and FSan tests were run on an HP Z620 Xeon E5550
2.67GHz machine, running the same OS. We turned off
turbo mode and ASLR on these machines, as doing so
significantly reduced the variation in our results.

The Chromium web browser is a large, complex, real-
world application, comprising over 15 million lines of
C++ code in over 50,000 source files, and containing hun-
dreds of thousands of virtual calls. It links in many third-
party libraries and makes extensive use of dynamic library
loading. It is also representative of the type of target at-
tackers are interested in. For all these reasons, Chromium
makes an excellent test for measuring the effects of our
CFI approaches on real-world systems. Both VTV and
IFCC were able to successfully build fully-functional,
protected versions of Chromium.

7.1 VTV Performance
Since verification adds instructions to the execution, some
performance penalty is unavoidable. Initially, we ran
SPEC CPU2006 C++ benchmarks with and without VTV
to get a baseline. Table 3 shows that omnetpp, astar, and
xalancbmk suffer a noticeable performance penalty in
this naive implementation, ranging from 2.4% to 19.2%.
We improve on this later. The other four benchmarks
(povray, namd, soplex, and dealII) showed no significant
performance effects. To determine why, we collected
statistics on those benchmarks, for both compile-time
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no VTV VTV %
Test (seconds) (seconds) slowdown

omnetpp 320.70 346.42 8.0
astar 440.61 450.95 2.4
xalanc. 248.86 296.53 19.2
namd 445.19 445.32 *
dealII 344.89 348.39 *
soplex 235.20 236.46 *
povray 181.18 181.87 *

Table 3: Untuned SPEC run-time numbers, at -O2. The
asterisks indicate changes that are too small to be of any
significance. These numbers are the minimum out of three
runs (standard deviation is very close to zero).

virtual verified run verified
calls calls time calls

Test (static) (dynamic) (secs) per second

namd 2 0 445.32 0
dealII 2,118 201,867,094 348.39 579,428
soplex 720 4,846,399 236.46 20,496
povray 159 159,186 181.87 875
omnetpp 1,312 1,029,110,532 346.42 2,970,702
astar 2 2,780,359,179 450.95 6,165,560
xalanc. 15,753 2,629,817,426 296.53 8,868,639

dromaeo NA 6,705,708,649 2379.34 2,818,303
octane NA 113,037,194 66.41 1,702,214
sunspi. NA 27,068,246 16.36 1,654,943

Table 4: Verifications per second when running SPEC
CPU2006 C++ benchmarks and Chrome with VTV.

(static) and run-time (dynamic) numbers of verified virtual
calls. From this we calculated the number of verified calls
per second. As shown at the top of Table 4, those tests do
not perform enough calls per second to noticeably affect
performance, so we did not include them in any further
analyses of VTV.

Next, we looked at reducing VTV’s performance
penalty. To determine the minimum lower bound penalty,
we considered two sources of performance overhead: (1)
the cost of making the verification function calls; and (2)
the (potential) cost due to the overall increase in code size
(code bloat). We measured these by doing two experi-
ments on the three SPEC benchmarks of interest. First,
we replaced the bodies of the functions in libvtv with
stubs. Second, we inserted an unreachable region of code
preceded by an unconditional jump over the region just be-
fore each virtual call instruction (the unreachable region
represented the code that would be inserted by VTV). Our
results can be seen in Table 5. Note that making calls with
stubs must increase the number of instructions, just as
with the code bloat test. Therefore the stubs penalty auto-
matically includes the code bloat penalty. This shows that

Code Bloat VTV Stubs
% Slowdown % Slowdown

omnetpp 0.0 2.4
astar 0.2 1.0
xalancbmk 0.8 4.7

Table 5: Results of lower bound experiments for VTV.

even if we could reduce to zero the time spent executing
inside the verification function, the minimum lower bound
VTV penalty for these tests ranges from 1.0% to 4.7%.
Note that the lower bound is test-specific and depends on
the number of virtual calls a test executes.

We then tried various options to reduce VTV’s perfor-
mance penalties. The two most effective options were:
using profile guided optimizations (PGO) to improve de-
virtualization, via GCC’s -ripa flag, thus reducing the over-
all number of virtual calls; and statically linking libvtv
itself, to reduce the level of indirection at each verifica-
tion call. We re-ran the SPEC benchmarks using these
various options, and the results are shown at the top of
Figure 2. The xalancbmk test had the worst performance
with VTV, so it is instructive to consider its results under
optimization: devirtualization brought the performance
penalty from 19.2% down to 10.8%, and static linking
reduced it further to 8.7%. The lower bound of VTV is
4.7% for xalancbmk (see Table 5).

Chrome interacts with many system libraries, so to
avoid the problems of mixing verified and unverified
code with VTV we built and ran a verified version of
Chrome in a verified version of ChromeOS on a Chrome-
book (thus building all the libraries with verification
as well). We built ChromeOS version 28 with VTV,
and ran the Dromaeo, SunSpider 1.0.2, and Octane 2.0
benchmarks with it. For these tests, we loaded our im-
ages onto a Chromebook with an Intel Celeron 867 chip,
pinned at 1.3GHz, with ASLR turned off, and we ran
the tests there, with and without VTV. The bottom of
Figure 2 shows the performance costs. We were not
able to build Chrome with PGO and devirtualization, nor
with the statically linked libvtv, so for these measure-
ments we only have the naive, untuned VTV numbers.
For Octane we saw a 2.6% penalty with VTV. SunSpi-
der had a 1.6% penalty. Dromaeo had a fair amount of
variation across the full set of micro-benchmarks, but
the overall performance penalty across all of them was
8.4%. We expect that adding devirtualization would sig-
nificantly improve these numbers. As with the SPEC
benchmarks, the performance penalty varies depending
on the number of verified calls made at runtime. We
measured this for each of these tests (see Table 4). As
expected, Dromaeo, which had the largest penalty, makes
significantly more verified calls/second than the other
two.

12
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Figure 2: Relative performance overhead of VTV, with
various tuning options, for the SPEC 2006 C++ bench-
marks and for Chrome browser.

7.2 IFCC and FSan Performance
The performance of code compiled under IFCC depends
on how often it makes indirect calls. IFCC adds code to
every indirect call site that is not explicitly skipped by a
command-line directive. The amount of code it adds de-
pends on the version of IFCC: if tables are small enough
to fit in a page in memory, then it can use the transforma-
tion that adds only two instructions (comprising 14 bytes)
to each site. Otherwise, it uses the subtraction version,
which adds 4 instructions (which become 20 bytes). Each
indirect call has additional extra overhead from the jmp in
the indirect call table(s); and jumps through a table might
have effects on instruction-cache usage. Finally, when
rewritten code receives a pointer from dlsym or from a
dynamically-linked library, this pointer is wrapped using
linear search through a fixed-length array; this is a slow
operation but should not happen often.

The exact instructions added by FSan depend on the
specific optimization level used, but we found that it usu-
ally adds about 12 instructions to each call site.

Figure 3 shows results from running C++ programs
from the SPEC benchmark suite under IFCC and FSan
and provides relative performance overhead compared to
an optimized version compiled using Clang; each running
time is the minimum of 10 executions. As expected,
LTO outperforms both IFCC transformations in most
cases. This is because IFCC adds instructions to the
base LTO-compiled binary, and these instructions reduce
performance of the executable. The cases in which IFCC
outperforms LTO involve only small differences in per-
formance and are likely due to effects similar to the noise
discussed by Mytkowicz et al. [24], so we do not analyze
them further here.

We ran the Dromaeo benchmark on Chromium
31.0.1650.41 built with Clang LTO, a version built with
IFCC Single, and a version built with IFCC Arity. Single
got 96.6% of the LTO score, and Arity got 96.1%; higher

is better in Dromaeo, so this is about a 4% overhead, as
shown in Figure 3a. We also built a version of Chromium
and the SPEC CPU2006 benchmarks with the annotation
version of IFCC, and we saw similar results.

IFCC had nearly the same performance as LTO for
both Single and Arity versions of the SPEC CPU2006
benchmarks, except for xalancbmk. FSan had effects sim-
ilar to IFCC. The xalancbmk benchmark suffers the most
performance degradation from IFCC; this is expected due
to it having the most dynamic virtual calls, as shown in
Table 4. Similarly, Dromaeo has a large number of virtual
calls and has the second highest overhead. So, as with
VTV, the performance overhead is directly related to the
number of indirect calls.

7.3 Comparison to Prior Work
The SPEC Perl benchmark is worth highlighting. As Niu
and Tan [28] point out, Perl is, in some sense, a worst
case for CFI techniques for C — whereas C++ code can be
even worse. Perl operates by translating the source code
into bytecode, then sits in a tight loop, interpreting each
instruction by making an indirect call. This worst case
behavior is apparent in the performance of four recent CFI
implementations: CCFIR by Zhang et al. [34], bin-CFI by
Zhang and Sekar [35], Strato by Zeng et al. [33], and MIP
by Niu and Tan [28]. The overheads reported for CCFIR,
bin-CFI, Strato, and MIP are 8.6%, 12%, 15%–25%, and
14.9%–31.3%, respectively.

In contrast, our own work has less than 2% overhead
(see Figure 3a). We are able to achieve this significant
speed up over prior work by focusing only on forward
edges as well as leveraging the compiler to apply opti-
mizations. This gives different security guarantees, but
we believe our attack model comports well with reality.

8 Conclusions
This paper advances the techniques of Control-Flow In-
tegrity, moving them from research prototypes to being
firmly in the domain of the practical. We have described
two different principled, compiler-based CFI solutions
for enforcing control-flow integrity for indirect jumps:
vtable verification for virtual calls (VTV) guarantees that
the vtable being used for a virtual call is not only a valid
vtable for the program but is semantically correct for
the call site; and indirect function-call checking (IFCC)
guarantees that the target of an indirect call is one of the
address-taken functions in the program. We also present
FSan, an optional indirect call checking tool which ver-
ifies at runtime that the target of an indirect call has the
correct function signature, based on the call site.

We have demonstrated that each of these approaches is
feasible by implementing each one in a production com-
piler (GCC or LLVM). We have shown via security analy-
sis that VTV and IFCC both maintain a very high level
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(a) Relative overhead of IFCC enforcement (baseline LLVM
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mark.
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(b) Relative overhead of the FSan optional indirect-call checking
(baseline Clang) for the C++ benchmarks in SPEC CPU2006.

Figure 3: Performance measurements for IFCC and FSan.

of security, with VTV protecting 95.2% of all possible in-
direct jumps in our test, and IFCC protecting 99.8%. We
have also measured the performance of these approaches
and shown that while there is some degradation, averag-
ing in the range of 1%–4%, and in the worst case getting
up to 8.7% for VTV (the most precise approach), this
penalty is fairly low and seems well within the range of
what is acceptable, particularly in exchange for increased
security.

Due to our relaxed, yet realistic, attack model coupled
with compiler optimizations, we achieve significant per-
formance gains over other CFI implementations while
defending against real attacks.
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