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Abstract

This paper introduces the Warp Transactional Filesys-

tem (WTF), a novel, transactional, POSIX-compatible

filesystem based on a new file slicing API that enables

efficient zero-copy file transformations. WTF provides

transactional access spanning multiple files in a dis-

tributed filesystem. Further, the file slicing API enables

applications to construct files from the contents of other

files without having to rewrite or relocate data. Com-

bined, these enable a new class of high-performance

applications. Experiments show that WTF can qual-

itatively outperform the industry-standard HDFS dis-

tributed filesystem, up to a factor of four in a sorting

benchmark, by reducing I/O costs. Microbenchmarks in-

dicate that the new features of WTF impose only a mod-

est overhead on top of the POSIX-compatible API.

1 Introduction

Distributed filesystems are a cornerstone of modern

data processing applications. Key-value stores such as

Google’s BigTable [11] and Spanner [14], and Apache’s

HBase [7] use distributed filesystems for their underlying

storage. MapReduce [15] uses a distributed filesystem

to store the inputs, outputs, and intermediary processing

steps for offline processing applications. Infrastructure

such as Amazon’s EBS [2] and Microsoft’s Blizzard [28]

use distributed filesystems to provide storage for virtual

machines and cloud-oblivious applications.

Yet, current distributed filesystems exhibit a tension

between retaining the familiar semantics of local filesys-

tems and achieving high performance in the distributed

setting. Often, designs will compromise consistency for

performance, require special hardware, or artificially re-

strict the filesystem interface. For example, in GFS,

operations can be inconsistent or, “consistent, but un-

defined,” even in the absence of failures [19]. GFS-

backed applications must account for these anomalies,

leading to additional work for application programmers.

HDFS [4] side-steps this complexity by prohibiting con-

current or non-sequential modifications to files. This

obviates the need to worry about nuances in filesystem

behavior, but fails to support use cases requiring con-

currency or random-access writes. Flat Datacenter Stor-

age [29] is eventually consistent and requires a network

with full-bisection bandwidth, which can be cost pro-

hibitive and is not possible in all environments.

This paper introduces the Warp Transactional File-

system (WTF), a new distributed filesystem that exposes

transactional support with a new API that provides file

slicing operations. A WTF transaction may span mul-

tiple files and is fully general; applications can include

calls such as read, write, and seek within their transac-

tion. This file slicing API enables applications to ef-

ficiently read, write, and rearrange files without rewrit-

ing the underlying data. For example, applications may

concatenate multiple files without reading them; garbage

collect and compress a database without writing the data;

and even sort the contents of record-oriented files with-

out rewriting the files’ contents.

The key design decision that enables WTF’s advanced

feature set is an architecture that represents filesystem

data and metadata to ensure that filesystem-level transac-

tions may be performed using, solely, transactional oper-

ations on metadata. Custom storage servers hold filesys-

tem data and handle the bulk of I/O requests. These

servers retain no information about the structure of the

filesystem; instead, they treat all data as opaque, im-

mutable, variable-length arrays of bytes, called slices.

WTF stores references to these slices in HyperDex [17]

alongside metadata that describes how to combine the

slices to reconstruct files’ contents. This structure en-

ables bookkeeping to be done entirely at the metadata

level, within the scope of HyperDex transactions.

Supporting this architecture is a custom concurrency

control layer that decouples WTF transactions from

the underlying HyperDex transactions. This layer en-

sures that transactions only abort when concurrently-

executing transactions change the filesystem and gener-
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ate an application-visible conflict. This seemingly minor

functionality enables WTF to support concurrent opera-

tions with minimal abort-induced overheads.

Overall, this paper makes three contributions. First,

it describes a new API for filesystems called file slicing

that enables efficient file transformations. Second, it de-

scribes an implementation of a transactional filesystem

with minimal overhead. Finally, it evaluates WTF and

the file slicing interfaces, and compares them to the non-

transactional HDFS filesystem.

2 Design

WTF’s distributed architecture consists of four compo-

nents: the metadata storage, the storage servers, the repli-

cated coordinator, and the client library. Figure 1 sum-

marizes this architecture. The metadata storage builds

on top of HyperDex and its expansive API. The storage

servers hold filesystem data, and are provisioned for high

I/O workloads. A replicated coordinator service serves

as a rendezvous point for all components of the system,

and maintains the list of storage servers. The client li-

brary contains the majority of the functionality of the

system, and is where WTF combines the metadata and

data into a coherent filesystem.

In this section, we first explore the file slicing abstrac-

tion to understand how the different components con-

tribute to the overall design. We will then look at the

design of the storage servers to understand how the sys-

tem stores the majority of the filesystem information. Fi-

nally, we discuss performance optimizations and addi-

tional functionality that make WTF practical, but are not

essential to the core design, such as replication, fault tol-

erance, and garbage collection.

2.1 The File Slicing Abstraction

WTF represents a file as a sequence of byte arrays that,

when overlaid, comprise the file’s contents. The central

abstraction is a slice, an immutable, byte-addressable,

arbitrarily sized sequence of bytes. A file in WTF,

then is a sequence of slices and their associated off-

sets. This representation has some inherent advantages

over block-based designs. Specifically, the abstraction

provides a separation between metadata and data that

enables filesystem-level transactions to be implemented

using, solely, transactions over the metadata. Data is

stored in the slices, while the metadata is a sequence of

slices. WTF can transactionally change these sequences

to change the files they represent, without rewriting data.

Concretely, file metadata consists of a list of slice

pointers that indicate the exact location on the storage

servers of each slice. A slice pointer is a tuple consist-

ing of the unique identifier for the storage server holding

the slice, the local filename containing the slice on that

storage server, the offset of the slice within the file, and

Metadata

Storage

Replicated

Coordinator

Storage Servers

Client

Library

End User

Application

Figure 1: WTF employs a distributed architecture consisting

of metadata storage, data storage, a replicated coordinator, and

the client library. The client library unifies the metadata storage

and storage servers to provide a filesystem interface.

the length of the slice. Associated with each slice pointer

is an integer offset that indicates where the slice should

be overlaid when reconstructing the file. Crucially, this

representation is self-contained: everything necessary to

retrieve the slice from the storage server is present in the

slice pointer, with no need for extra bookkeeping else-

where in the system. As we will discuss later, the meta-

data also contains standard info found in an inode, such

as modification time, and file length.

This slice pointer representation enables WTF to eas-

ily generate new slice pointers that refer to subsequences

of existing slices. Because the representation directly re-

flects the global location of a slice on disk, WTF may use

simple arithmetic to create new slice pointers.

This representation also enables applications to mod-

ify a file with only localized modifications to the meta-

data. Figure 2 shows an example file consisting of five

different slices. Each slice is overlaid on top of previous

slices. Where slices overlap, the latest additions to the

metadata take precedence. For example, slice C takes

precedence over slices A and B; similarly, slice E com-

pletely obscures slice D and part of C. The file, then,

consists of the corresponding slices of A, C, E , and B.

The figure also shows the compacted metadata for the

same file. This compacted form contains the minimal

slice pointers necessary to reconstruct the file without

reading data that is hidden by another slice. Crucially,

all file modifications can be performed by appending to

the list of slice pointers.

The procedures for reading and writing follow directly

from the abstraction. A writer creates one or more slices

on the storage servers, and overlays them at the appro-

priate positions within the file by appending their slice
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Final Metadata:

A@[0,2], B@[2,4], C@[1,3], D@[2,3], E@[2,3]

Compacted Final Metadata:

A@[0,1], C@[1,2], E@[2,3], B@[3,4]

Figure 2: Writers append to the metadata list to change the

file. Every prefix of the shown metadata list represents a valid

state of the file at some point in time. The compacted metadata

occupies less space by rearranging the metadata list to remove

overwritten data.

pointers to the metadata list. Readers retrieve the meta-

data list, compact it, and determine which slices must be

retrieved from the storage servers to fulfill the read.

The correctness of this design relies upon the meta-

data storage providing primitives to atomically read and

append to the list. HyperDex natively supports both of

these operations. Because each writer writes slices be-

fore appending to the metadata list, it is guaranteed that

any transaction that can see these immutable slices is se-

rialized after the writing transaction commits. It can then

retrieve the slices directly. The transactional guarantees

of WTF extend directly from this design as well: a WTF

transaction will execute a single HyperDex transaction

consisting of multiple append and retrieve operations.

2.2 Storage Server Interface

The file slicing abstraction greatly simplifies the design

of the storage servers. Storage servers deal exclusively

with slices, and are oblivious to files, offsets, or concur-

rent writes. The minimal API required by file slicing

consists of just two calls to create and retrieve slices.

A storage server processes a request to create a slice

by writing the data to disk and returning a slice pointer

to the caller. The structure of this request intentionally

grants the storage server complete flexibility to store the

slice anywhere it chooses because the slice pointer con-

taining the slice’s location is returned to the client only

after the slice is written to disk. A storage server can

A BC C

0 MB 1 MB 2 MB 2 MB 3 MB 4 MB

Region 1 Region 2

Region 1 Metadata:

A@[0,2], C@[1,2]

Region 2 Metadata:

B@[2,4], C@[2,3]

Figure 3: Files are partitioned into multiple regions to decouple

the size of metadata lists from the size of the file. This figure

shows the fourth state of the file from Figure 2 partitioned into

2 MB regions. Writes that are entirely within a single region

are appended solely to that region’s metadata. Writes that cross

regions are transactionally appended to multiple lists.

retrieve slices by following the information in the slice

pointer to open the named file, read the requisite number

of bytes, and return them to the caller.

The direct nature of the slice pointer minimizes the

bookkeeping required of the storage server implementa-

tion and permits a wide variety of implementation strate-

gies. In the simplest strategy, which is the strategy used

in the WTF implementation, each WTF storage server

maintains a directory of slice-containing backing files

and information about their own identities in the system.

Each backing file is written sequentially as the storage

server creates new slices.

As an optimization, each storage server maintains

multiple backing files to which slices are appended. This

serves three purposes: First, it allows servers to avoid

contention when writing to the same file; second, it al-

lows the storage server to spread data across multiple

filesystems if configured to do so; and, finally, it allows

the storage server to use hints provided by writers to im-

prove locality on disk, as described in Section 2.7.

2.3 File Partitioning

Practically, it is desirable to keep the list of slice pointers

small so that they can be stored, retrieved, and transmit-

ted with low overhead; however, it would be impractical

to achieve this by limiting the number of writes to a file.

In order to achieve support for both arbitrarily large files

and efficient operations on the list of slice pointers, WTF

partitions a file into fixed size regions, each with its own

list. Each region is stored as its own object in HyperDex

under a deterministically derived key.

Operations on these partitioned metadata lists directly

follow from the behavior of the system with a single

metadata list. When an operation spans multiple regions,

it is decomposed into one operation per region, and the

decomposed operations execute within the context of a

single HyperDex transaction. This guarantees that multi-

region operations execute as one atomic action. Figure 3

shows a sample partitioning of a file, and how operations

can span multiple metadata lists.
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API Description

yank(fd,sz):slice,[data] Copy sz bytes from fd; return slice pointers and optionally the data

paste(fd, slice) Write slice to fd and increment the offset

punch(fd, amount) Zero-out amount bytes at the fd offset, freeing the underlying storage

append(fd, slice) Append slice to the end of file fd

concat(sources, dest) Concatenate the listed files to create dest

copy(source, dest) Copy source to dest using only the metadata

Table 1: WTF’s new file slicing API. Note that these supplement the POSIX API, which includes calls for moving a file descriptor’s

offset via seek. concat and copy are provided for convenience and may be implemented with yank and paste.

2.4 Filesystem Hierarchy

The WTF filesystem hierarchy is modeled after the tra-

ditional Unix filesystem, with directories and files. Each

directory contains entries that are named links to other

directories or files, and WTF enables files to be hard

linked to multiple places in the filesystem hierarchy.

WTF implements a few changes to the traditional

filesystem behavior to reduce the scope of a transaction

when opening a file. Path traversal, as it is traditionally

implemented, puts every directory along the path within

the scope of a transaction, and requires multiple round

trips to both HyperDex and the storage servers.

WTF avoids traversing the filesystem on open by

maintaining a pathname to inode mapping. This en-

ables a client to map a pathname to the corresponding

inode with just one HyperDex lookup, no matter how

deeply nested the pathname. To enable applications to

enumerate the contents of a single directory, WTF main-

tains traditional-style directories, implemented as special

files, alongside the one-lookup mapping. The two data

structures are atomically updated using HyperDex trans-

actions. This optimization simplifies the process of open-

ing files, without significant loss of functionality.

Inodes are also stored in HyperDex, and contain

standard information, such as link count and modifica-

tion time. The inode also maintains ownership, group,

and permissions information, though WTF differs from

POSIX in that permissions are not checked on the full

pathname from the root. Each inode also stores a ref-

erence to the highest-offset region for the file, enabling

applications to find the end of the file. The inode refers

to a region instead of a particular offset so that the inode

is only written when the file grows beyond the bounds of

a region, instead of every time the file changes in size.

Because HyperDex permits transactions to span mul-

tiple keys across independent schemas, updates to the

filesystem hierarchy remain consistent. For example, to

create a hardlink for a file, WTF atomically creates a new

pathname to inode mapping for the file, increments the

inode’s link count, and inserts the pathname and inode

pair into the destination directory, which requires a write

to the file holding the directory entries.

2.5 File Slicing Interface

The file slicing interface enables new applications to

make more efficient use of the filesystem. Instead of op-

erating on bytes and offsets as traditional POSIX systems

do, this new API allows applications to manipulate sub-

sequences of files at the structural level, without copying

or reading the data itself.

Table 1 summarizes the new APIs that WTF provides

to applications. The yank, paste, and append calls

are analogous to read, write, and append, but operate on

slices instead of sequences of bytes. The yank call re-

trieves slice pointers for a range of the file. An appli-

cation may provide these slice pointers to a subsequent

call to paste or append to write the data back to the

filesystem, reusing the existing slices. These write oper-

ations bypass the storage servers and only incur costs at

the metadata storage component.

The append call is internally optimized to improve

throughput. A naive append call could be implemented

as a transaction that seeks to the end of the file, and per-

forms a paste. While not incorrect, such an imple-

mentation would prohibit concurrency because only one

append could commit for each value for the end of file.

Instead, WTF stores alongside the metadata list an off-

set representing the end of the region. An append call

translates to a conditional list append call within Hyper-

Dex that only succeeds when the current offset plus the

length of the slice to be appended does not exceed the

bounds of the region. When an append is too large to

fit within a single region, WTF will fall back on reading

the offset of the end of file, and performing a write at

that offset. This enables multiple append operations to

proceed in parallel in the common case.

The remaining calls in the file slicing API are provided

for convenience, as they may be implemented in terms of

yank and paste. concat concatenates multiple files

to create one unified output file. copy copies a file by

copying the file’s compacted metadata.

2.6 Transaction Retry

To guarantee that WTF transactions never spuriously

abort, WTF implements its own concurrency control that

retries aborted metadata transactions. WTF operations in

4
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the client library often read metadata during the course of

an operation that is not exposed to the calling application.

A change to this data after it is read may force the meta-

data transaction to abort, but to abort the corresponding

WTF transaction would be spurious from the perspective

of the application.

For example, consider a file opened in “append” mode.

Each write to the file must be written at the end-of-

file offset, but the application does not learn this offset

from the write. Internally, the client library computes

the end of file, and then writes data at that offset. If the

file changes in size between these two operations, the

metadata transaction will abort. WTF masks this abort

from the application by re-reading the end of file, and

re-issuing the write at the new offset.

The mechanism that retries transactions is a thin layer

between the WTF client library and the user’s applica-

tion. Each API call the application makes is logged in

this layer by recording the arguments provided to the

call and the value returned from the call. Should a

metadata transaction abort during the WTF transaction

commit, the WTF client library replays each operation

from the log using the originally supplied arguments. If

any replayed operation returns a value different from the

logged call, the WTF transaction signals an abort to the

application. Otherwise, WTF will commit the metadata

changes from the replayed log to HyperDex. This pro-

cess repeats as necessary until the metadata transaction,

and, thus, the WTF transaction, commit, or a replayed

operation triggers an WTF abort. This guarantees that

WTF transactions are lockfree with zero spurious aborts.

To reduce the size of the replay log, the replay log

refers to bytes of data that pass through the interface us-

ing slice pointers instead of copying the data. For exam-

ple, a write of 100 MB will not be copied into the log;

instead, the WTF client library writes the 100 MB to the

requisite number of servers, and records the slice point-

ers in the log. Similarly, reads record slice pointers re-

trieved from the metadata, and not the slices themselves.

2.7 Locality-Aware Slice Placement

As an optimization, the WTF client library carefully

places writes to the same region near each other on the

storage servers to simultaneously improve locality for

readers and to improve the efficiency of metadata com-

paction. When an application writes to a file sequen-

tially, the locality-aware placement algorithm ensures

that, with high probability, writes that appear consec-

utively in the metadata list will be consecutive on the

storage servers’ disks. During metadata compaction, the

slice pointers for these consecutive writes are replaced

by a single slice pointer that directly refers to the entire

contiguous sequence of bytes on each storage server.

Two levels of consistent hashing [23] make it unlikely

that two writes will map to the same backing files on the

same storage server unless they are for the same meta-

data region. The WTF client library chooses the servers

for each write by using consistent hashing across the list

of storage servers. The client then provides the slice and

identity of the metadata region to these servers, which

use a different consistent hashing algorithm to map the

write to disk. When collisions in the hash space do in-

evitably occur, it is unlikely that the colliding writes are

issued so close in time as to be totally interleaved on disk

in a way that eliminates opportunities for optimization.

2.8 Metadata Compaction and Defragmentation

The client library automatically compacts metadata dur-

ing read and write operations to improve efficiency of fu-

ture read and write operations. During write operations,

the client library tracks the number of bytes written to

both the metadata and the data for each region. When the

ratio of metadata to data in a region exceeds a pre-defined

threshold, the library retrieves the metadata list for the

region, compacts it as shown in Figure 2, and writes the

newly compacted list. When reading, the client compacts

the metadata list via the same process.

When metadata compaction alone cannot reduce the

metadata to data ratio below the pre-defined threshold,

the client library defragments the list by rewriting the

data. The library rewrites fragmented data within a

region into one single slice and replaces the metadata

list with a single pointer to this slice. For efficiency’s

sake, defragmentation happens only on read, not on

writes,because the client library necessarily reads the

fragmented slices to fulfill the read; it can rewrite the

slices without the overall system paying the cost of read-

ing the fragmented slices twice. This mechanism is un-

used in the common case because locality-aware slice

placement avoids fragmentation.

2.9 Garbage Collection

WTF employs a garbage collection mechanism to pre-

vent the number of unreferenced slices from growing

without bound. Metadata compaction and defragmenta-

tion ensures that metadata will not grow without bound,

but in the process creates garbage slices that are not ref-

erenced from anywhere in the filesystem.

Because WTF performs all bookkeeping within the

metadata storage, storage servers cannot directly know

which portions of its local data are garbage. One possi-

ble way to inform the storage servers would be to main-

tain a reference count for each slice. This method, how-

ever, would require that the reference count on the stor-

age server be maintained within the scope of the meta-

data transactions. Doing so, while not infeasible, would

significantly complicate WTF’s design and require cus-

tom transaction handling on the storage servers.

5
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Instead of reference counting, WTF periodically scans

the entire filesystem metadata and constructs a list of in-

use slice pointers for each storage server. For simplic-

ity of implementation, these lists are stored in a reserved

directory within the WTF filesystem so that they need

not be maintained in memory or communicated out of

band to the storage servers. Storage servers link the WTF

client library and read the list of in-use slices to discover

unused regions in their local storage space. The garbage

collection mechanism runs periodically at a configurable

interval that exceeds the longest-possible runtime of a

transaction. Storage servers do not collect an unused

slice until it appears in two or more consecutive scans.

Storage servers implement garbage collection by cre-

ating sparse files on the local disk. To compress a file

containing garbage slices, a storage server rewrites the

file, seeking past each unused slice. This creates a sparse

file that occupies disk space proportional to the in-use

slices it contains. Files with the most garbage are the

most efficient to collect, because the garbage collection

thread seeks past large regions of garbage and only writes

the small number of remaining slices. Backing files with

little garbage incur much more I/O, because there are

more in-use slices to rewrite. WTF chooses the file with

the most garbage to compact first, because it will simul-

taneously delete the most garbage and incur the least

I/O. Some filesystems enable applications to selectively

punch holes in the file without rewriting the data; al-

though our implementation does not use these capabil-

ities, an improved implementation could do so.

2.10 Fault Tolerance

WTF uses replication to add fault tolerance to the system.

Changing WTF to be fault tolerant requires modifying

the metadata lists’ structure so that each entry references

multiple replicas of the same data, each with a different

slice pointer. On the write path, writers create multiple

replica slices on distinct servers and append their point-

ers atomically as one list entry. Readers may read from

any replica, as they hold identical data.

The metadata storage derives its fault tolerance from

the guarantees offered by HyperDex. Specifically, that it

can tolerate f concurrent failures for a user-configurable

value of f . HyperDex uses value-dependent chaining

to coordinate between the replicas and manage recovery

from failures [16].

3 Implementation

Our implementation of WTF implements the file slicing

abstraction. The implementation is approximately 30 k

lines of code written. It relies upon HyperDex with trans-

actions, which is approximately 85 k lines of code, with

an additional 37 k lines of code of supporting libraries

written for both projects. The replicated coordinator for

both HyperDex and WTF is an additional 19 k lines of

code. Altogether, WTF constitutes 171 k lines of code

that were written for WTF or HyperDex.

WTF’s fault tolerant coordinator maintains the list of

storage servers and a pointer to the HyperDex cluster. It

is implemented as a replicated object on top of Replicant,

a Paxos-based replicated state machine service. The co-

ordinator consists of just 960 lines of code that are com-

piled into a dynamically linked library that is passed to

Replicant. Replicant deploys multiple copies of the li-

brary, and sequences function calls into the library.

4 Evaluation

To evaluate WTF, we will look at a series of both end-to-

end and micro benchmarks that demonstrate WTF under

a variety of conditions. The first part of this section looks

at how the features of WTF may be used to implement a

variety of end-to-end applications. We will then look at

a series of microbenchmarks that characterize the perfor-

mance of WTF’s conventional filesystem interface.

All benchmarks execute on a cluster of fifteen dedi-

cated servers. Each server is equipped with two Intel

Xeon 2.5 GHz L5420 processors, 16 GB of DDR2 mem-

ory with ECC, and between 500 GB and 1 TB SATA

spinning-disks. The servers are connected with gigabit

ethernet via a single top of rack switch. Installed on

each server is 64-bit Ubuntu 14.04, HDFS from Apache

Hadoop 2.7, and WTF with HyperDex.

For all benchmarks, HDFS and WTF are configured

similarly. Both systems are deployed with three nodes re-

served for the meta-data—a single HDFS name node, or

a HyperDex cluster—and the remaining twelve servers

are allocated as storage nodes for the data. Clients

are spread across the twelve storage nodes. Except for

changes necessary to achieve feature parity, both sys-

tems were deployed in their default configuration. To

bring the semantics of HDFS up to par with WTF, each

write is followed by an hflush call to ensure that

the write is flushed from the client-side buffer to HDFS.

The hflush ensures that writes are visible to readers,

and does not flush to disk. This is analogous to changing

from the C library’s fwrite to a UNIX write in a tra-

ditional application. The resulting guarantees are equiv-

alent to those provided by WTF.

Additionally, in order to work around a bug with ap-

pend operations [5], the HDFS block size was set to

64 MB. Without this change to the configuration, HDFS

can report an out-of-disk-space condition when only 3%

of the disk space is in use. Instead of gracefully han-

dling the condition and falling back to other replicas as

is done in WTF, the failure cascades and causes multi-

ple writes to fail, making it impossible to complete some

benchmarks. The change is unlikely to impact the perfor-

mance of data nodes because the increase from 64 MB to

6
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Figure 4: Total execution time for sorting

100 GB with map-reduce (512 kB rec.).
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down by stage of the map-reduce.
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Figure 6: A concurrent work queue imple-

mentation.

128 MB was not motivated by performance [6]. WTF is

also configured to use 64 MB regions.

Except where otherwise noted, both systems replicate

all files such that two copies of the file exist. This allows

the filesystem to tolerate the failure of any one storage

server throughout the experiment without loss of data or

availability. It is possible to tolerate more failures so long

as all the replicas for a file do not fail simultaneously.

4.1 Applications

This section examines multiple applications that each

demonstrate a different aspect of WTF’s feature set.

Map Reduce: Sorting MapReduce [15] applications

often build on top of filesystems like HDFS and GFS.

In MapReduce, sorting a file is a three-step process that

breaks the sort into two map jobs followed by a reduce

job. The first map task partitions the input file into buck-

ets, each of which holds a disjoint, contiguous section of

the keyspace. These buckets are sorted in parallel by the

second map task. Finally, the reduce phase concatenates

the sorted buckets to produce the sorted output.

Each intermediate step of this application is written

to the filesystem and the entire data set will be read or

written several times over. Here, WTF’s file slicing API

can improve the efficiency of the application by reducing

this excessive I/O. Instead of reading and writing whole

records, WTF-based sort uses yank and paste to re-

arrange records. File slicing eliminates almost all I/O of

the reduce phase using a concat operation.

Empirically, file slicing operations improve the run-

ning time of WTF-based sort. Figure 4 shows the total

running time of both systems to sort a 100 GB file con-

sisting of 500 kB records indexed by 10 B keys that were

generated uniformly at random. In this benchmark, the

intermediate files are written without replication because

they may easily be recomputed from the input. We can

see that WTF sorts the entire file in one fourth the time

taken to perform the same task on HDFS.

The speedup is largely attributable file-slicing. From

Figure 5, we can see that the WTF-based sorting appli-

cation spends less time in the partitioning and merging

steps than the HDFS-based sort. HDFS spends the ma-

jority of its execution time performing I/O tasks; just

8.5% of execution time is spent in the CPU-intensive sort
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Figure 7: Time taken to generate a readily-playable video file

from individual scenes.

task. In contrast, WTF spends 74.1% of its time in the

CPU intensive task and seconds in the merge task.

Work Queue Work queues are a common component

of large scale applications. Large work units may be

durably written to the queue and handled by the appli-

cation at a later point in time in FIFO order.

One simple implementation of a work queue is to use

an append-only file as the queue itself. The applica-

tion appends each work unit to the file, and can de-

queue from the work queue by reading through the file

sequentially—the file itself encodes the FIFO nature of

the queue. This benchmark consists of an application

with multiple writers that concurrently write to a single

file on the filesystem. Each work unit is 1 MB in size and

written atomically. The application runs on each client

server, for a total of twelve application instances.

Figure 6 shows the aggregate throughput for the work

queue built on top of both HDFS and WTF. We can see

that WTF’s throughput is 19× that of HDFS for this

workload. Each work unit is saved to WTF in 55 ms,

while the application built on HDFS waits 1.3 s on aver-

age to enqueue each work unit.

Image Host Image hosting sites, such as flickr or

imgur have become the de-facto way of sharing images

on the Internet. While imgur’s implementation serves

images from Amazon S3, Facebook’s image serving so-

lution, called Haystack [9], stores multiple photos in a

single file to reduce the costs of reading and maintaining

metadata. In Haystack, servers read into memory a map

of the photos’ locations on disk so that reading a single

photo from disk does not entail any additional disk reads.

This example application models an imgur-like web-

site built using the multi-photo file technique used within

7
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Haystack. Photos are written to multi-gigabyte files,

each of which has a footer mapping photos to their off-

sets in the files. The application loads this map into mem-

ory so that it may serve requests by locating the file’s off-

set within the map, and then reading the file directly from

the offset in the filesystem.

To better simulate a real photo-sharing website, pho-

tos are randomly generated to match the size of pho-

tos served by imgur. The distribution of photo sizes

was collected from the front page of imgur.com over a

24-hour period. Because imgur serves both static im-

ages and gifs, the size of photos varies widely. Median

image size is 332 kB, while the average image size is

8.5 MB. Because the precise request distribution of re-

quests is not available from imgur, the workload re-uses

the Zipf request distribution specified for YCSB work-

loads [13]. For this workload, we measured that WTF

achieves 88.8% the throughput of the same application

on top of HDFS. The performance difference is largely

attributable to the reads of smaller files. As we will ex-

plore in the microbenchmarks section, WTF needs fur-

ther optimization for small read and write operations.

Video Editing WTF’s file slicing API can be used to

reorganize large files with orders of magnitude less I/O.

One particular domain where this can be useful is video

editing of high-definition raw video. Such videos tend to

be large in size, and will be rearranged frequently dur-

ing the editing process. While specialized applications

can edit and then play back videos, WTF enables another

point in the design space.

This application uses WTF’s file slicing to move

scenes around in a video file without physically rewrit-

ing the video. The chief benefit of this design, over edi-

tors on existing filesystems, is that an off-the-shelf video

player can play the edited video file because it is in a

standard container format. To benchmark this applica-

tion, we used our video editor to randomly rearrange the

scenes in a 2 h movie, such that the movie out of chrono-

logical order. The source material was 1080p raw video

dumped from a Bluray disk. Overall the raw video/audio

occupies approximately 377 GB or 52 MB/s. Figure 7

shows the time taken to rewrite the file using HDFS’s

conventional API compared to WTF’s file-slicing API.

WTF takes three orders of magnitude less time to make

a file readable—on the order of seconds—while conven-

tional techniques require nearly three hours.

Sandboxing The transactional API of WTF makes it

easy to use the filesystem as a sandbox where tasks may

be committed or aborted depending on their outcome.

The WTF implementation includes a FUSE module that

enables users to mount the filesystem as if it were a local

filesystem. This enables shell navigation of the filesys-

tem hierarchy and allows regular applications to read and

write WTF filesystems without modification. In addition

# wtf fuse ./mnt

# cd ./mnt

# wtf fuse-begin-transaction

# ls

/data.0000 /data.0001

/data.0002 /data.0003

....

# rm *
# ls

# wtf fuse-abort-transaction

# ls

/data.0000 /data.0001

/data.0002 /data.0003

....

Figure 8: WTF’s transactional functionality enables users to

manipulate the filesystem in isolation.
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Figure 9: Performance of a one-server deployment of HDFS

and WTF compared with the ext4 filesystem. Error bars indi-

cate the standard error of the mean across seven trials.

to implementing the full filesystem interface, the FUSE

bridge exposes special ioctls to permit users to control

transactions. Users may begin, abort, or commit transac-

tions via command-line tools that wrap these ioctls.

The transactional features of the FUSE bridge enables

users to perform risky actions within the context of a

transaction; the transactional isolation provides a degree

of safety users would otherwise not be afforded. The ac-

tions taken by the user are not visible until the user com-

mits, and should the user abort, the actions will never

be persisted to the filesystem. Figure 8 shows a sam-

ple interaction with an WTF filesystem containing data

for a sample research project. We can see that the user

begins a transaction and inadvertently removes all of the

research data. Because the errantrm command happened

in a transaction, the data remains untouched.

4.2 Micro Benchmarks

In this section we examine a series of microbenchmarks

that quantify the performance of the POSIX API for both

HDFS and WTF. Here HDFS serves as a gold-standard.

With ten years of active development, and deployment

across hundreds of nodes, including large deployments at

both Facebook and LinkedIn [12], HDFS provides a rea-

sonable estimate of distributed filesystem performance.

Although we cannot expect WTF to grossly outperform

HDFS—both systems are limited by the speed of the

hard disks in the cluster—we can use the degree to which

WTF and HDFS differ in performance to estimate the

overheads present in WTF’s design.
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Figure 10: Throughput of a sequential

write workload. Error bars report the stan-

dard error of the mean across seven trials1.
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Figure 11: Median latency of write oper-

ations. Error bars report the 5th and 95th
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Figure 12: Throughput of a random write

workload. Error bars report the standard

error of the mean across seven trials.

Setup The workload for these benchmarks is generated

by twelve distinct clients, one per storage server in the

cluster, that all work in parallel. This configuration was

chosen after experimentation because additional clients

do not significantly increase the throughput, but do in-

crease the latency significantly. All benchmarks oper-

ate on 100 GB of data, or over 16 GB per machine once

replication is accounted for. This is large enough that our

workload blocks on disk on Linux [25].

Single server performance This first benchmark exe-

cutes on a single server to establish the baseline perfor-

mance of a one node cluster. Here, we’ll compare the

two systems to each other and the same workload im-

plemented on a local ext4 filesystem. The comparison

to a local filesystem provides an upper bound on per-

formance. To reduce the impact of round trip time in

each distributed system the client and storage server are

collocated. Figure 9 shows the throughput of write and

read operations in the one-server cluster. From this we

can see that the maximum throughput of a single node is

87 MB/s, which means the total throughput of the clus-

ter peaks at approximately 1 GB/s.
Sequential Writes WTF guarantees that all readers in

the filesystem see a write upon its completion. This

benchmark examines the impact that write size has on

the aggregate throughput achievable for filesystem-based

applications. Figure 10 shows the results for block sizes

between 64 B and 64 MB. For writes greater than 1 MB,

WTF achieves 97% the throughput of HDFS. For 256 kB

writes, WTF achieves 84% of the throughput of HDFS.

The latency for the two systems is similar, and directly

correlated with the block size. Figure 11 shows the la-

tency of writes across a variety of block sizes. We can

see that WTF’s median latency is very close to HDFS’s

median latency for larger writes, and that the 95th per-

centile latency for WTF is often lower than for HDFS.

Random Writes WTF enables applications to write

at random offsets in a file without restriction. Because

HDFS does not support random writes, we cannot use it

as a baseline; instead, we will compare against the se-

quential write performance of WTF.

1Blocks <256 kB wrote smaller files to limit execution time.

Figure 12 shows the aggregate throughput achieved by

clients writing to random offsets within WTF files. We

see that the random write throughput is always within

a factor of two of the sequential throughput, and that

throughput converges as the size of the writes approaches

8 MB.

Because the common case for a sequential write and

a random write in WTF differ only at the stage where

metadata is written to HyperDex, we expect that such

a difference in throughput is directly attributable to the

metadata stage. HyperDex provides lower latency vari-

ance to applications with a small working set than ap-

plications with a large working set with no locality of

access. We can see the difference this makes in the tail

latency of WTF writes in Figure 13, which shows the

median and 99th percentile latencies for both the sequen-

tial and random workloads. The median latency for both

workloads is the same for all block sizes. For block sizes

4 MB and larger, the 99th percentile latencies are approx-

imately the same as well. Writes less than 4 MB in size

exhibit a significant difference in 99th percentile latency

between the sequential and random workloads. These

smaller writes spend more time updating HyperDex than

writing to storage servers. We expect that further opti-

mization of HyperDex would close the gap between se-

quential and random write performance.

Sequential Reads Batch processing applications of-

ten read large input files sequentially during both the

map and reduce phases. Although a properly-written

application will double-buffer to avoid small reads, the

filesystem should not rely on such behavior to enable

high throughput. This experiment shows the extent to

which WTF can be used by batch applications by read-

ing through a file sequentially using a fixed-size buffer.

Figure 14 shows the aggregate throughput of concur-

rent readers reading through a 100 GB of data. We can

see that for all read sizes, WTF’s throughput is at least

80% the throughput of HDFS. The throughput reported

here is double the throughput reported in the write bench-

marks because only one of the two active replicas is con-

sulted on each read. For smaller reads, WTF’s through-

put matches that of HDFS. The difference at larger sizes

9
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Figure 13: 50th/99th percentile latencies

for sequential and random WTF writes.
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Figure 14: Throughput of a sequential

read workload. Error bars report the stan-

dard error of the mean across seven trials.
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Figure 15: Throughput of a random read

workload. Error bars indicate the standard

error of the mean across seven trials.

is largely an artifact of the implementations. HDFS uses

readahead on both the clients and storage servers in or-

der to improve throughput for streaming workloads. By

default, the HDFS readahead is configured to be 4 MB,

which is the point at which the systems start to exhibit

different characteristics. Our preliminary WTF imple-

mentation does not have any readahead mechanism, and

exhibits lower throughput.

Random Reads Applications built on a distributed

filesystem, such as key-value stores or record-oriented

applications often require random access to the files. Fig-

ure 15 shows the aggregate throughput of twelve concur-

rent random readers reading from randomly chosen off-

sets within 100 GB of data. We can see that for reads

of less than 16 MB, WTF achieves significantly higher

throughput—at its peak, WTF’s throughput is 2.4× the

throughput of HDFS. Here, the readahead and client-

side caching that helps HDFS with larger sequential read

workloads adds overhead to HDFS that WTF does not

incur. The 95th percentile latency of a WTF read is less

than the median latency of a HDFS read for block sizes

less than 4 MB.

Scaling Workload This experiment varies the num-

ber of clients writing to the filesystem to explore how

concurrency affects both latency and throughput. This

benchmark employs the workload from the sequential-

write benchmark with a 4 MB write size and a variable

number of workload-generating clients.

Figures 16 and 17 shows the resulting throughput

and latency for between one and twelve clients. We

can see that the single client performance is approxi-

mately 60 MB/s, while twelve clients sustain an aggre-

gate throughput of approximately 380 MB/s. WTF’s

throughput is approximately the same as the throughput

of HDFS for each data point. Running the same work-

load with forty-eight clients did not increase the through-

put of either system beyond the throughput achieved with

twelve clients, but did result in higher latency.

Fault Tolerance WTF’s fault tolerance mechanism en-

ables it to rapidly recover from failures. To demon-

strate this mechanism, this benchmark performs sequen-

tial writes at a target throughput of 200 MB/s. Figure 18

shows the throughput of the benchmark over time. Thirty

seconds into the benchmark, one storage server is taken

offline; ten seconds later, the coordinator reconfigures

the system to remove the failed storage server. In the

time between the failure and reconfiguration, clients may

try to use the failed server, fail to write to it, and fall

back to another server. This increased effort is reflected

in the lower throughput between failure and reconfigura-

tion. After reconfiguration, throughput returns to to its

rate before the failure. During the entire experiment, no

writes failed, and the cluster as a whole remained avail-

able.

Garbage Collection This benchmark calculates the

overhead of garbage collection on a storage server. As

mentioned in Section 2.9, it is more efficient to collect

files with more garbage than files with less garbage, and

WTF preferentially garbage collects these larger files.

Figure 19 shows the rate at which the cluster can col-

lect garbage, for varying amounts of randomly located

garbage, when all resources are dedicated to the task. We

can see that when the cluster consists of 90% garbage,

the cluster can reclaim this garbage at a rate of over 9 GB

of garbage per second, because it need only write 1 GB/s

to reclaim the garbage.

It is, however, impractical to dedicate all resources

to garbage collection; instead, WTF dedicates only a

fraction of I/O to the task. Storage servers initiate

garbage collection when disk usage exceeds a config-

urable threshold, and ceases when the amount of garbage

drops below 20%. Figure 19 shows that the maximum

overhead required to maintain the system below this

threshold is 4%.

Small Writes WTF’s design is optimized for larger

writes. The performance of smaller writes will largely be

determined by the cost of updating the metadata. Writing

a slice to the storage servers requires just one round trip

because replicas are written to in parallel. Writing to the

metadata store requires one round trip between client and

the cluster, and multiple round trips within the cluster to

propagate and commit the data. Further each write to the

metdata requires writing approximately 50 B to Hyper-

Dex, so as writes to WTF shrink in size, the dominating

10
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dard error of the mean across seven trials.
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Figure 19: The maximum rate of garbage collection is posi-

tively correlated with the amount of garbage to be collected.

Consequently, WTF dedicates a small fraction of its overall I/O

to garbage collection.

cost becomes related to metadata.

Figure 20 focuses on a portion of the experiment

shown in Figure 10, specifically writes less than 1 kB

in size. HDFS achieves 140× higher throughput for

64 B writes, while the difference is only a factor of 2.8×
for 1 kB writes. The figure also shows the calculated

theoretical maximum throughput when the latency in-

volved in writing to the metadata server is 2 ms, 5 ms,

and 10 ms. This shows that the throughput of small oper-

ations is largely dependent upon the latency of metadata

operations. Most workloads can avoid small operations

with client side buffering, and further optimization of the

metadata component could improve the throughput for

small WTF writes.

5 Related Work

Filesystems have been an active research topic since the

earliest days of systems research. Existing approaches

related to WTF can be broadly classified into two cate-

gories based upon their design.

Distributed filesystems Distributed filesystems ex-

pose one or more units of storage over a network to

clients. AFS [22] exports a uniform namespace to work-

stations, and stores all data on centralized servers. Other

systems [21, 31, 33], most notably xFS [3] and Swift [10]

stripe data across multiple servers for higher perfor-

mance than can be achieved with a single disk. Petal [24]

provides a virtual disk abstraction that clients may use
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Figure 20: The time spent in metadata operations establishes

an upper bound on the total throughput achievable by the sys-

tem. This figure plots a portion of Figure 10 and theoretical

maximum throughput for multiple metadata latencies.

as a traditional block device. Frangipani [38] builds a

filesystem abstraction on top of Petal. NASD [20] and

Panasas [42] employ customized storage devices that at-

tach to the network to store the bulk of the metadata.

In contrast to these systems, WTF provides transactional

guarantees that can span hundreds or thousands of disks

because its metadata storage scales independently of the

number of storage servers.

Farsite [1] separates data from metadata to implement

a byzantine fault tolerant filesystem where only the meta-

data replicas employ BFT algorithms. WTF uses a simi-

lar insight to leverage the transactional guarantees pro-

vided by the metadata storage to enable transactional

guarantees to extend across the whole filesystem.

Recent work focuses on building large-scale

datacenter-centric filesystems. GFS [19] and HDFS [4]

employ a centralized master server that maintains the

metadata, mediates client access, and coordinates the

storage servers. Salus [41] improves HDFS to support

storage and computation failures without loss of data,

but retains the central metadata server. This centralized

master approach, however, suffers from scalability

bottlenecks inherent to the limits of a single server [27].

WTF overcomes the metadata scalability bottleneck

using the scalable HyperDex key-value store [17].

CalvinFS [39] focuses on fast metadata management

using distributed transactions in the Calvin [40] trans-

action processing system. Transactions in CalvinFS

11
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are limited, and cannot do read-modify-write opera-

tions on the filesystem without additional mechanism.

Further, CalvinFS addresses file fragmentation using

a heavy-weight garbage collection mechanism that en-

tirely rewrites fragmented files; in the worst case, a se-

quential writer could incur I/O that scales quadratically

in the size of the file. In contrast, WTF provides fully

general transactions and carefully arranges data to im-

prove sequential write performance.

Another approach to scalability is demonstrated by

Flat Datacenter Storage [29], which enables applications

to access any disk in a cluster via a CLOS network

with full bisection bandwidth. To eliminate the scalabil-

ity bottlenecks inherent to a single master design, FDS

stores metadata on its tract servers and uses a central-

ized master solely to maintain the list of servers in the

system. Blizzard [28] builds block storage, visible to ap-

plications as a standard block device, on top of FDS, us-

ing nested striping and eventual durability to service the

smaller writes typical of POSIX applications. These sys-

tems are complementary to WTF, and could implement

the storage server abstraction.

“Blob” storage systems behave similarly to file sys-

tems, but with a restricted interface that permits creating,

retrieving, and deleting blobs, without efficient support

for arbitrarily changing or resizing blobs. Facebook’s

f4 [37] ensures infrequently accessed files are readily

available. Pelican [8] enables power-efficient cold stor-

age by over provisioning storage, and selectively turning

on subsets of disks to service requests. The design goals

of these systems are different from the applications that

WTF enables; WTF could be used in front of these sys-

tems to generate, maintain, and modify data before plac-

ing it into blob storage.

Transactional filesystems Transactional filesystems

enable applications to offload much of the hard work re-

lating to update consistency and durability to the filesys-

tem. The QuickSilver operating system shows that trans-

actions across the filesystem simplify application devel-

opment [32]. Further work showed that transactions

could be easily added to LFS, exploiting properties of the

already-log-structured data to simplify the design [35].

Valor [36] builds transaction support into the Linux ker-

nel by interposing a lock manager between the kernel’s

VFS calls and existing VFS implementations. In contrast

to the transactions provided by WTF, and the underlying

HyperDex transactions, these systems adopt traditional

pessimistic locking techniques that hinder concurrency.

Optimistic concurrency control schemes often en-

able more concurrency for lightly-contended workloads.

PerDiS FS adopts an optimistic concurrency control

scheme that relies upon external components to recon-

cile concurrent changes to a file [18]. This allows users

and applications to concurrently work on the same file.

Liskov and Rodrigues show that much of the overhead of

a serializable filesystem can be avoided by running read-

only transactions in the recent past, and employing an op-

timistic protocol for read-write transactions [26]. WTF

builds on top of HyperDex’s optimistic concurrency and

provides operations such as append that avoid creating

conflicts between concurrent transactions.

WTF is not the first system to choose to employ

a transactional datastore as part of its design. Inver-

sion [30] builds on PostgreSQL to maintain a complete

filesystem. KBDBFS [36] and Amino [43] both build

on top of BerkeleyDB; the former is an in-kernel imple-

mentation of BerkeleyDB, while the latter eschews the

complexity and takes a performance hit with a userspace

implementation. WTF differs from these designs in that

it stores solely the metadata in the transactional data

store; data is stored elsewhere and not managed within

the transactional component.

Stasis [34] makes the argument that no one design

support all use cases, and that transactional components

should be building blocks for applications. WTF’s ap-

proach is similar: HyperDex’s transactions are used as a

base primitive for managing WTF’s state, and WTF sup-

ports a transactional API. Applications built on WTF can

use this API to achieve their own transactional behavior.

6 Conclusion

This paper described the Warp Transactional Filesystem

(WTF), a new distributed filesystem that enables applica-

tions to operate on multiple files transactionally without

requiring complex application logic. A new filesystem

abstraction called file slicing further boosts performance

by completely changing the filesystem interface to focus

on metadata manipulation instead of data manipulation.

Together, these features are a potent combination that en-

ables a new class of high performance applications.

A broad evaluation shows that WTF achieves through-

put and latency similar to industry-standard HDFS, while

simultaneously offering stronger guarantees and a richer

API. Sample applications show that WTF is usable in

practice, and applications will often those built on a tra-

ditional filesystem—sometimes by orders of magnitude.
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