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Abstract

Linux kernel oops is invoked when the kernel detects an
erroneous state inside itself. It kills an offending process
and allows Linux to continue its operation under a com-
promised reliability. We investigate how reliable Linux
is after a kernel oops in this paper. To investigate the reli-
ability after a kernel oops, we analyze thescopeof error
propagation through an experimental campaign of fault
injection in Linux 2.6.38. The error propagation scope is
process-localif an error is confined in the process con-
text that activated it, while the scope iskernel-globalif
an error propagates to other processes’ contexts or global
data structures. If the scope is process-local, Linux can
be reliable even after a kernel oops. Our findings are
twofold. First, the error propagation scope is mostly
process-local. Thus, Linux remains consistent after a
kernel oops in most cases. Second, Linux stops its exe-
cution before accessing inconsistent states when kernel-
global errors occur because synchronization primitives
prevent the inconsistent states from being accessed by
other processes.

1 Introduction

Linux kernel oops is invoked when the kernel detects an
erroneous state inside itself. It prints out an oops mes-
sage and kills the offending process to allow Linux to
continue its operation under a compromised reliability.
After the kernel oops occurs, nothing is guaranteed be-
cause no one can tell which kernel states are consistent or
not. If an inconsistent state happens to be confined in the
context of the offending process, Linux is expected to be
reliable even after the oops because the inconsistent state
can be revoked by killing the offending process. Other-
wise, the kernel becomes unreliable since its operation is
based on inconsistent states.

We investigate how reliable Linux can be after a kernel
oops in this paper. We introduce the concept of thescope

of error propagation to investigate the reliability after a
kernel oops. The error propagation scope isprocess-
local if an error is confined in the process context that
activated it. The scope iskernel-globalif an error prop-
agates to other processes’ contexts or global data struc-
tures.

The distinction between process-local and kernel-
global propagation is significant. If an error is process-
local, the kernel oops allows us to recover from the error
because it revokes the inconsistent states by killing the
faulty process. If an error is kernel-global, the recovery
is hopeless because corrupted global data structures must
be recovered in order to continue processing.

We conduct a series of fault injection experiments to
investigate the scope of error propagation. Since our tar-
get is Linux bugs, we use a fault injection tool widely
used in the OS community [13, 12, 3, 14, 9]. This fault
injector focuses on the emulation of low- and high-level
software faults, including errors specific to operating sys-
tem kernels.

In our fault injection experiments, 6,738 faults (15
types of faults) are injected into Linux 2.6.38. The ker-
nel oops is invoked in 134 out of 6,128 faults, including
panic(). We follow an execution trace until either an oops
or panic() is called in order to analyze the error propaga-
tion when an injected fault is activated. We track down
how an injected error propagates in the kernel using the
execution trace.

According to our experimental results, the Linux ker-
nel oops is useful in handling kernel failures for the fol-
lowing reasons.

• The scope of error propagation is mostly process-
local in Linux. This implies that the Linux kernel
oops is effective in recovering from kernel failures
in most cases. Since an error is not propagated to
other process contexts, the kernel can be recovered
to a consistent state simply by revoking the context
of the faulty process.



• Even if an error propagates to shared kernel data
structures, the non-faulty processes do not access
the inconsistent data because the faulty process
crashes inside a critical section with a lock acquired.
This suggests that Linux shows fail-stopness even
when there are kernel-global errors.

The rest of this paper is organized as follows. Section 2
describes the work related to ours. Section 3 explains the
software fault injector used in the experiments. Section 4
reports our experimental results. Section 5 concludes this
paper.

2 Related Work

Linux is far from bug-free. In practice, it is almost im-
possible to eliminate all the bugs in Linux, despite the
tremendous advances made in debugging tools, testing
methodologies, static analysis, and formal methods. Ac-
cording to the empirical study on Linux bugs [10, 1], the
number of bugs per line is decreasing but the increased
size of the Linux code makes the total number of bugs
almost constant. Microkernel-based OSes are expected
to be more reliable. Minix3 can isolate error propaga-
tion [6] and the seL4 can be formally verified to be cor-
rect [7].

Software-implemented fault injection (SWIFI) has
been conducted with emphasis placed on the different as-
pects of fault manifestation to better understand the ker-
nel behavior under fault manifestation. Our focus in this
paper is the “scope” of error propagation (i.e., process-
local or kernel-global). Previous work focuses on other
aspects of error propagation than the scope of error prop-
agation.

Gu et al. [5] use SWIFI to characterize Linux be-
haviors under error manifestation. Their analysis shows
that crash latencies are within 10 cycles in most cases
and also shows how an error propagates between OS
subsystems. Our concern in this paper is that an error
propagates beyond the boundary of the process context.
Even if an error propagates across subsystems, we can re-
cover from the failure if the scope is process-local. Pham
et al. [11] use SWIFI to evaluate virtualization environ-
ments in a cloud infrastructure.

The techniques used in SWIFI are evolving. G-SWFIT
precisely emulates general software faults by mutating
binary executable code [4]. According to the analysis
in [2], G-SWFIT improves the fault injection accuracy.
Unfortunately, G-SWFIT does not inject faults that are
specific to Linux kernels. So, we use another fault injec-
tor that is widely used in the OS community.

Numerous mechanisms for kernel recovery have been
proposed to mitigate the impact of kernel failures. Swift
et al. [13, 12] propose a kernel mechanism for manag-

Table 1: Fault types
Fault types Description

branch deletes branches
inverse flips predictions
ptr destroys pointers
dstsrc destroys assignments
interface omits function arguments
init omits initialization
irq deletes restoration of interrupts
off by one e.g.,ja change intojae
alloc kmalloc returns NULL
free deletes kfree
size makes heap alloc. smaller
bcopy makes string functions overrun
loop destroys loop condition
var allocates huge local valuable
null omits NULL check

ing and recovering from device driver failures. Other-
world [3] enables us to restart the kernel without dis-
carding the applications’ memory states. Phase-based
Reboot [14] shortens the downtime involved in a reboot-
based recovery.

3 Fault Injection

3.1 Fault Injector

We conduct an experimental fault injection campaign in
Linux 2.6.38 to investigate the scope of error propaga-
tion. The fault injector [8] used in the experiments is
widely used in the OS research community [6, 13, 12, 3,
14].

The fault injector obtained from the Nooks web site
is ported to the Linux x86 kernel (ver. 2.6.38) and ex-
tended to emulate some software bugs that are not in-
cluded in the original but observed in the Linux empir-
ical bug study [10]. Such extensions include thesize

fault that makes the size of a heap allocation smaller to
emulate a heap overrun, thevar fault that allocates huge
local variables, and thenull fault that emulates missing
checks of the null pointers.

In our experiments, 15 types of faults that are injected
are listed in Table 1. Due to the space limitations, five
faults out of 15, which are peculiar to the kernels, are ex-
plained in detail. For ease of understanding, Table 2 lists
some examples of the injected faults on the C-language
level although the injection is done on the binary level.
You can refer to other papers or resources (e.g., [4]) to
know the details of other faults because they are com-
mon in SWIFI.
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Table 2: C-Language Level View of the Injected Faults.
Fault Before After
init int x = 1; int x;

irq arch_local_irq_restore(); deleted.
off by one while (x < 10) while (x <= 10)

alloc ptr = kmalloc(10, GFP_KERNEL); ptr = NULL;

free kfree(ptr); deleted.

• init : This fault creates a situation where the initial-
ization of the variables is missed. The instructions
responsible for initializing a variable are deleted to
create such a situation. More concretely, it deletes
an instruction that assigns an immediate value to an
address lower than the stack pointer.

• irq : A situation is created where a program-
mer forgets to enable the interrupts after dis-
abling them. The injector removes the calls to
arch local irq restore(), which restores the
disabled interrupts in Linux 2.6.38.

• off by one: This fault imitates loop boundary con-
dition errors. The injector changes conditions such
as> to >=, < to <=, and so on. For example, “jae”
is changed into “ja”.

• alloc: This fault makeskmalloc return NULL
to emulate the shortage of the heap memory. In
x86 64, kmalloc returns the address of the allo-
cated memory through the%rax register. Thus,
call kmalloc is changed intoxor %rax, %rax

to inject the alloc fault.

• free: This fault emulates a situation where the mem-
ory is not appropriately released. The injector re-
moves the call tokfree, which is responsible for re-
leasing the unused heap memory. Sincekfree does
not return any values, the injector simply deletes the
call tokmalloc.

The injector rewrites the binary code of the running
kernel to inject each type of fault. The code is rewrote at
runtime as in other work [5, 11]. The injector disassem-
bles the binary of a randomly selected function in the ker-
nel text segment. Since the faults injected by our injector
are context-dependent, it analyzes the disassembled code
and searches for proper locations to which each type of
fault can be injected. For example, to inject thevar fault,
the injector must change at least two instructions for al-
locating and deallocating a large local variable.

3.2 Error Scope Analysis

A trace of the executed instructions is taken from the
fault activation to the error manifestation to keep track
of the error propagation. A breakpoint is set in the in-
struction to which a fault is injected. After the fault is
activated, the CPU is set into the single-step execution
mode to take a trace of every instruction.

Using the execution trace, the scope of error propa-
gation is analyzed in the same way as a taint analysis.
If the injected fault produces an erroneous value, the
value is marked as an “error”. When the value marked
as an “error” is used to calculate another value, the cal-
culated value is also marked as an “error”. If the value
marked as an “error” is used in the prediction of condi-
tional branches, all the values updated in the taken clause
are marked as an “error”. If no value marked as an “er-
ror” is written to a heap until an oops or panic() is called,
the error is concluded to be process-local. Otherwise,
the error is concluded to be kernel-global. Our analysis
is conservative; i.e., an error is considered kernel-global
if we are not confident that it is process-local.

4 Experimental Results

An experimental fault injection campaign has been con-
ducted in Linux 2.6.38 to estimate the reliability after
the Linux kernel oops. In this experiment, 6,738 faults
are injected to randomly selected locations. We run a
workload for each injected fault to activate the faults.
We use six benchmarks that all stress the kernel. The
six workloads are, 1) UnixBench on ext4, 2) UnixBench
on fat, 3) UnixBench on USB, 4) Netperf, 5) Apaly, and
6) Restartd. UnixBench calls a lot of file- and process-
related system calls and puts a heavy workload on current
file systems. Netperf calls network-related system calls.
Aplay invokes sound device drivers. As a benchmark, we
listen to a wav file for 10 seconds. Restartd is a bench-
mark to restart all the system daemons. We run our target
system on a VMware workstation to reduce the time for
rebooting the kernel after failures. The VMware work-
station sometimes detects a critical error in the guest OS
and terminates the execution of the guest OS.
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(a): Activated/Not Activated Faults
This figure shows the relative frequency with which in-
jected faults are activated or not. The number at the
end of each bar represents the total number of injected
faults.
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(b): Observed Failures
This figure shows the relative frequency with which ac-
tivated faults manifest different categories of failures.
The number at the end of each bar represents the total
number of activated faults.

Figure 1:Overall Fault Injection Results.

4.1 Scope of Error Propagation

Figure 1 shows the overall results of our fault injec-
tion experiments (“FSV” means fail silence violation
and “TERM” means unexpected termination by VMM
in Figure 1(b)). There are a total of 6,738 faults injected
in our experiments and 13% of the injected faults are ac-
tivated. Every workload runs 1122 times and 6 faults
manifests failures before the workloads start. The kernel
oops are called in 14% (124 out of 887) and panic() is
called in 1.1% (10 out of 887). 9.9% of the manifested
errors do not invoke a kernel oops because they result in
fail silence violations, hangs, or unexpected terminations
by VMM. 75% of the faults are not manifested.

Since our focus is on the reliability after the kernel
oops, we investigate the scope of error propagation in the
cases of the 124 kernel oops plus the 10 panic (because
most panic() is called by the oops procedure). Figure 2
summarizes the scope of error propagation. According to
our experiments, 73% (98 out of 134) of the kernel oops
are process-local, while 27% (36 out of 134) of them
are kernel-global. This suggests that three quarters of
the kernel oops can be recovered simply by revoking the
faulty process.

This high rate of process-local errors is attributed to
a defensive style of coding in Linux. Linux contains a
lot of self-checking codes. For example,BUG ON macro,
which is similar toassert() in C, checks a given predi-
cate and calls a kernel oops if the predicate is true. Some
errors injected by our injector are caught byBUG ON and
their propagation is prevented.

A typical example we encountered during the ex-
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Figure 2:Scope of Error Propagation
This figure shows the relative frequency with which
propagated errors are process-local or kernel-global. The
number at the end of each bar indicates the total number
of investigated errors.

periments is as follows. Theirq fault, which re-
moves a call toarch local irq restore, which re-
stores disabled interrupts. When this fault is activated,
the kernel continues to run with the interrupts disabled.
Meanwhile,lookup bh lru(bdev, block, size) is
invoked, which is assumed to be called with the inter-
rupts enabled. It eventually callscheck irqs on, which
executesBUG ON(irq disabled()) to check this as-
sumption. Since the interrupts are disabled here (if the
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Figure 3:Kernel behavior after oops
This figure shows the relative frequency with which the
kernel manifests different failure categories after oops re-
covery. The number at the end of each bar indicates the
total number of investigated kernel behaviors.

fault is not injected, the interrupts are enabled here),
BUG ON macro detects this incorrect status of interrupts.

Note that our analysis is very conservative. The rate
of process-local errors is expected to be higher than 73%
in reality. This is because the power of our analyzer of
the propagation scope is very limited, and concludes an
error is kernel-global if it is not confident that the error is
process-local.

4.2 Estimating Reliability after Kernel
Oops

According to the results of our analysis on the scope of
error propagation, Linux is expected to be reliable with
a probability of 73% after the kernel oops. We observe
what happens if we run another workload after killing
a faulty process on the kernel oops to confirm that the
Linux kernel can continue to run after the kernel oops.
Note that the kernel cannot continue to run after crashes
other than the kernel oops. In reality, it is quite difficult to
distinguish process-local errors from kernel-global ones.
So, we run a second workload after every kernel oops,
regardless of whether it is caused by process-local or
kernel-global errors. Just after the kernel oops occur, we
also remove the injected fault to analyze the effect of the
error propagation caused by it.

Figure 3 shows the summary of the kernel behavior af-
ter the kernel oops. The converge of the workloads run
after the kernel oops are quite important for precisely es-
timating the reliability of the Linux kernel. To this end,
we inject an identical fault again and again that caused
the kernel oops in the previous experiment and run differ-

ent workloads after the kernel oops. So, the total number
of errors is larger in Figure 3 than Figure 2.

No errors manifest in 68% of the process-local errors
after the kernel oops. This probability is less than our
expectation, where no errors manifest in almost all the
cases. Even after the process-local errors, deadlock oc-
curs in 29% (132 out of 463). This is because a faulty
process is killed with the lock acquired. Although no
global data structures are corrupted in process-local er-
rors, the faulty process holds locks and killing it results
in deadlocks after the kernel oops.

In kernel-global errors, no errors manifest in 25% af-
ter the kernel oops. This is because the workloads run
after the kernel oops do not access the shared data cor-
rupted by the faulty process. When the corrupted data is
accessed after the kernel oops, deadlock occurs in most
cases. In our experiments, deadlock occurs in 47%. An
error inside a critical section tends to result in a failure
within the critical section because an error does not usu-
ally propagate a long way. Since the accesses to global
data structures are controlled by synchronization primi-
tives, the offending process is killed with the lock held
and deadlocks are caused afterwards. This behavior of
the Linux kernel is preferable because it contributes to
fail-stopness after the kernel oops. This result is interest-
ing because no further data corruption occurs even after
kernel-global errors in 72% (= 25%+47%).

In summary, if we continue to run the Linux kernel af-
ter the kernel oops, it runs reliably or stops its execution
before trying to access corrupted data with a probabil-
ity of 91% (not manifested and deadlock in Figure 3).
While the kernel compromised by the process-local er-
rors does not always succeed in continuing execution,
kernel-global errors do not cause fatal failures in which
the operation continues using inconsistent and corrupted
data. In other words, the Linux kernel has a good fail-
stopness property after the kernel oops.

Killing a faulty process sometimes leads to another
problem. No proc in Figure 3 indicates cases where
workloads running after the kernel oops cannot run as
usual because the killed process is mandatory to continue
the execution of the workloads. For example, UnixBench
on USB cannot be started after kernel oops because a
kernel daemon monitoring the plugs for USB devices is
killed.

In process-local errors, panic() is called in 1.5% of the
cases. It is observed when the kernel detects a buffer
overrun in a kernel stack with a canary, or the kernel
finds that the faulty contexts are those for interrupts or
the init process in the kernel oops procedure. The ker-
nel determines to call panic() regardless of the state of
its data structure, and therefore, panic() is observed even
when errors are process-local.

In kernel-global errors, oops and panic() are called in
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23% of the cases. In these cases, the errors that propagate
to global data structures are simple, so access to them can
be caught with the kernel oops. Unfortunately, there are
three cases (labeled aserroneous in Figure 3) in which
the Linux kernel continues its operation using inconsis-
tent and corrupted data structures. However, this terrible
situation happens only in 0.5% (3 out of 589 errors) of
the cases in our experiments.

5 Conclusion

We investigated how reliable Linux is after a kernel oops
in this paper. We introduced the concept of the scope of
error propagation to investigate the reliability after a ker-
nel oops. The error propagation scope is process-local if
an error is confined in the process context that activated
it. The scope iskernel-globalif an error propagates to
other processes’ contexts or global data structures. Our
findings are twofold. First, the error propagation scope
is mostly process-local. Thus, Linux remains consis-
tent after a kernel oops in most cases. Second, Linux
stops its execution before accessing inconsistent states
when kernel-global errors occur because synchronization
primitives prevent the inconsistent states from being ac-
cessed by other processes.
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