Go Serverless: Securing Cloud via Serverless Design Patterns

Sanghyun Hong* Abhinav Srivastava
University of Maryland Frame.io
Abstract

Due to the shared responsibility model of clouds, ten-
ants have to manage the security of their workloads and
data. Developing security solutions using VMs or con-
tainers creates further problems as these resources also
need to be secured. In this paper, we advocate for tak-
ing a serverless approach by proposing six serverless de-
sign patterns to build security services in the cloud. For
each design pattern, we describe the key advantages and
present applications and services utilizing the pattern.
Using the proposed patterns as building blocks, we intro-
duce a threat-intelligence platform that collects logs from
various sources, alerts malicious activities, and takes ac-
tions against such behaviors. We also discuss the limi-
tations of serverless design and how future implementa-
tions can overcome those limitations.

1 Introduction

Cloud providers such as Amazon Web Services (AWS),
Microsoft Azure, and IBM Cloud offer a shared respon-
sibility model when it comes to security in the cloud. In
this model, the cloud provider manages the security of
the physical infrastructure and hypervisors; the tenants
are responsible for the security of resources, workloads,
and data. Given that security is one of the leading con-
cerns in the broader adoption of cloud computing, cloud
providers offer many security services to help tenants
meet their security and compliance requirements. To this
end, providers offer services such as vulnerability scan-
ning, configuration change detection, and stateful fire-
walls to protect tenant resources and critical workloads.
While these cloud security services help tenants to
some extent, tenants still have to go through the tedious
process of developing security automation, misuse detec-
tion, intrusion detection, virus scanning, etc., before they
execute their code securely in the cloud. Developing this

*This work has been performed during the internship at Frame.io.

William Shambrook

Frame.io

Tudor Dumitras
University of Maryland

security infrastructure using VMs or containers exacer-
bate the problem as now these resources require simi-
lar protection themselves. Serverless architecture helps
solve this last mile problem.

Serverless architecture, aka Function-as-a-Service
(FaaS), simplifies the code deployment and eliminates
the need for system administration, allowing developers
to focus on the core security logic without creating addi-
tional overhead by instantiating resources such as VMs
or containers in the monitoring infrastructure. In this
programming model, developers execute their logic in
the form of functions and submit to the cloud provider
to run the task in a shared runtime environment; cloud
providers manage the scalability needs of the function by
running multiple functions in parallel. Due to the sim-
plicity and ease of deployment, many serverless archi-
tecture has been proposed [27,129,(33}/35,(39,/41]]. While
the past works focus on the design, implementation, and
security of serverless architecture itself [4], in this work,
we focus on how serverless architecture can help cloud
developers and security operation personnel to develop a
variety of security services in a scalable manner by ad-
hering to simple design patterns.

Based on our extensive experience in developing
serverless applications, we have identified six design pat-
terns for serverless architectures: periodic invocation,
event-driven, data transformation, data streaming, state
machine, and bundling multiple patterns (Sec. [2). These
design patterns allow developers to create many security
services such as virus scanning, compliance checking,
and incident response. For each pattern, we discuss: 1)
how the design pattern is composed, 2) what are the ad-
vantages compared to non-serverless designs, and 3) pro-
vide examples of a few services that the pattern can help
build. Using the fundamental patterns as building blocks,
we also propose a threat-intelligence platform for the
cloud that analyzes many data sources, generates alerts
on suspicious activities and automatically takes respon-
sive actions to recover from attacks (Sec. [3).

At the end, we discuss the limitations of current
serverless architecture and how future research can over-
come those limitations (Sec.). By sharing these design
patterns with the wider research and development com-
munity, we hope to encourage others to develop more se-
curity applications using serverless architecture and ex-
plore similar serverless design patterns in other areas.

1.1 AWS Lambda

To focus our attention on one specific serverless archi-
tecture, we only consider AWS Lambda [|16] in the rest
of this paper. AWS Lambda supports various runtime en-
vironments, e.g., Python, Node.js, Java, Go, or C#, and
is tightly integrated with the rest of the AWS ecosystem.
Lambda functions have many advantages compared to
the conventional server-oriented architectures such as:

e Deployment: The speed at which developers can go
from code to executing it is much faster than using
servers such as VMs or containers.

e Scalability: The Lambda allows thousands of concur-
rent executions of a function out of the box, without
any operational overhead to the cloud developers.

e Cost: Unlike traditional architectures using servers,
where we need to pay for the running time of an in-
stance, we only pay for the time when the code is exe-
cuted by a Lambda.

e Integrations: Lambda can subscribe to various event
sources such as CloudWatch [7]], S3 [19], API Gate-
way [5[l, SNS [[10]], and Kinesis [9].

e Stateless: Lambda functions are stateless, which pro-
vides the simplicity in implementing security systems
such as data analytic services that process records in-
dividually. However, some security services, e.g., fire-
walls, are stateful, thus, to implement such service us-
ing Lambda will require an external database to main-
tain states.

1.2 AWS Lambda Security

To provide security services using serverless design pat-
terns, Lambda functions that facilitate serverless archi-
tecture should be secure. As securing the services run-
ning in the cloud follows the shared responsibility model,
cloud providers ensure the security of a shared run-
time environment and provide primitives that back the
Lambda functions, whereas customers are responsible
for securing their functions by using those resources.

Cloud Providers. Service providers are likely to have
motivations and resources to invest heavily in the secu-
rity of their infrastructure. A motivated attacker, for ex-

ample, can attempt to break into a host operating sys-
tem (OS) or shared runtime environment to install mal-
ware that monitors Lambda functions. To thwart such
attacks, providers deploy state-of-the-art intrusion detec-
tion and prevention systems [31]. Nevertheless, instead
of compromising a host OS, an attacker can establish
side-channels [44//45]] to eavesdrop a user’s sensitive data
being processed by a Lambda. For such cases, cloud
providers utilize hardware-based solutions, e.g., Intel
SGX [26,|32], that enable safe executions of Lambda
functions with the compromised host OS or runtime. In
addition, providers limit the execution time of Lambda
functions for few minutes to make it difficult for attack-
ers to probe and establish such channels.

Customers. Securing the code running in a Lambda and
the data coming in/out of the function is the responsi-
bility of customers. Attackers have motivations to mod-
ify users” Lambda functions or eavesdrop the communi-
cation between a Lambda function and data storage to
steal customers’ sensitive information. Customers, for
instance, can use access control policies such as AWS
IAM [20] that provide temporary credentials for Lambda
functions to communicate with other services and AWS
key management service (KMS) to encrypt their secrets,
making it harder for attackers to access the credentials.
However, not all the attack scenarios are covered by these
services, e.g., an attacker can utilize the vulnerabilities
in a customer’s code or perform man-in-the-middle at-
tacks by inserting malicious contents to Lambda mes-
sages. In such cases, tenants can utilize other security
products such as JSON web tokens (JWTs) to strengthen
their Lambda functions. In Sec. [we further discuss
improving the security of a Lambda.

2 A Taxonomy of Serverless Design Patterns

In this section, we introduce a taxonomy of serverless
design patterns that we realize using Lambda and primi-
tives provided by AWS. We categorize serverless design
patterns into six groups: 1) periodic invocation, 2) event-
driven, 3) data transformation, 4) data streaming, 5) state
machine, and 6) bundled pattern. We also discuss how
these patterns can be used to build various security ser-
vices.

2.1 DP1: Periodic Invocation Pattern

A periodic invocation design pattern (see Figure[T]) repre-
sents the kind of models that invokes Lambda functions
periodically by using schedulers such as cron in Unix op-
erating systems or CloudWatch monitoring service [7].
Each Lambda function carries out a simple task and re-
ports the execution results to notification channels such
as asynchronous message buses or emails. For instance,

©

Scheduler

Periodic Invocations (
(Hourly, Daily, etc.)

Lambda functions

Figure 1: Periodic invocation pattern (DP1).

we can archive the data not accessed for an extended pe-
riod of time into long-term backup storage, such as AWS
cold storage service called Glacier, by using a Lambda
function that scans the data using the LRU manner and
copies them to the cold storage. The periodic invocation
approach also allows cloud tenants to build applications
that provide continuous compliance as required by sys-
tem and organization controls (SOC2) [3] or cloud secu-
rity alliance (CSA) [1]]. Those applications periodically
check the compliance status of resources, e.g., if any VM
is subscribed to a security group that has SSH port open
to all IPs (0.0.0.0/0). The compliance status is stored in
a data store for later viewing and auditing purposes.

2.2 DP2: Event-Driven Pattern

An event-driven design pattern, as described in Figure
is where a set of Lambda functions subscribe to events
from cloud resources, such as accessing files in the object
store or updating a table in the database. These events
trigger the execution of the subscribed Lambda function
passing the necessary context. Unlike the periodic invo-
cation pattern, the event-driven approach can reduce the
latency between the occurrence of events and the action
taken by the invoked Lambda. For example, cloud ten-
ants can implement an anti-virus application for the S3
object store that performs the virus scanning of uploaded
files to S3 [42]]. Once the file-upload event occurs, S3 in-
vokes corresponding Lambda function that removes the
malicious files based on its virus scanning results. In
another use case, we can implement layer-7 intrusion de-
tection systems by attaching Lambda functions to appli-
cation load balancers [11]. Given that all web connec-
tions are terminated at the load balancer, a Lambda func-
tion, ingesting load balancer logs, has complete visibil-
ity of incoming requests. We can perform two types of
detections at the Lambda: 1) signature-based detection
that identifies attacks such as SQL injection or cross-site
scripting (XSS), and 2) anomaly-based detections that
isolate malicious web requests, deviating from the nor-

g . : File Uploads to S3
H E — % Triggers k]

Event source Lambda functions

Figure 2: Event-driven pattern (DP2).

=

Databases

[Source: incoming streams] [Transform: enriched or formatted]

Lambda functions
Figure 3: Data transformation pattern (DP3).

mal behavior. The event-based design pattern has sev-
eral advantages: 1) it minimizes the cost by invoking
the Lambda function only when an event occurs, and 2)
Lambda functions scale automatically based on the num-
ber of events, providing a scalable design.

2.3 DP3: Data Transformation Pattern

The ETL (extract-transform-load) data processing
pipelines usually require three steps: 1) extract data
from a data source, 2) transform data by using frame-
works such as Apache Spark [25] or Flink [23]], and 3)
load the transformed data into a database. Realizing
these ETL pipelines into the cloud environment presents
several problems: it requires persistent execution of VMs
or containers to process incoming data, and the data
transformation code is not easy to update once deployed
because it requires pausing the input data streams.

Using Lambda-based architecture, as shown in Fig-
ure 3] solves these issues. The data processing tasks can
be implemented as Lambda functions, and when the data
is available, those Lambda functions perform transfor-
mations and store the results. Lambda functions are not
required to run persistently when there is no data, and
it is quite easy to update a processing pipeline by only
modifying target Lambda functions and redeploying it
on the fly. Data processing pipelines that utilize Lambda
functions provide various advantages in security because
many security applications require data enrichment or
change in the data format for further analysis. For ex-
ample: suppose that we want to append the geolocations
of IP addresses in incoming network packets using Max-
Mind GeolP Database [[36]]. In non-serverless data pro-
cessing pipelines, we first store the original packets in
a database, extract only IP fields from the stored data,
and update the data in the database with the geolocation
information. However, with the Lambda-based transfor-
mation patterns, we can enrich the incoming data on the
fly as it is available using Lambda, which does not de-
mand any other database or data processing framework.
In another example, Lambda functions can transform the
data into the Apache Parquet [24] on the fly, which is
a columnar structure [22], reducing the cost and query
processing time of Amazon Athena [6].

[Data Partitioner]
Streaming data

Data source

—

Streaming data

ing data

Datasource2 | ————
[Data Aggregator]

Lambda functions Destinations

Figure 4: Data streaming pattern (DP4).

2.4 DP4: Data Streaming Pattern

In the data streaming design pattern (see Figure [), a
Lambda function sits in the path of data stream and func-
tions either as an aggregator or data partitioner. For ex-
ample, a lambda can separate an incoming data-stream
into multiple small streams (partition) or merge several
incoming streams into one large data-stream (aggrega-
tion). This partitioning functionality also helps Lambda
act as a load balancer, which divides the data into many
streams of the same size and transfer to multiple stream-
ing services based on the size of incoming streams.

A data streaming pattern is useful to filter events from
the data stream. For instance, we want to be notified im-
mediately if an internal cloud API is invoked from mali-
cious IP addresses. Unlike the traditional designs that re-
quire the deployment of another data processing pipeline,
we deploy a Lambda function in the API processing
path, filter the request using IP addresses, and gener-
ate alerts indicating whether there is suspicious traffic or
not. Many ChatOps solutions such as Slack [40] provide
seamless integrations with the programming languages
used by Lambda, which makes it easier to receive secu-
rity notifications.

2.5 DP5: State Machine Pattern

The state machine pattern in Figure [5] enables building
a complex, stateful procedure by coordinating a collec-
tion of discrete Lambda functions using a tool such as
AWS Step Functions. This pattern provides several ad-
vantages: 1) customers are not required to store states to
cloud storage since Step Functions manage them seam-
lessly and 2) do not need to scale entire pattern as tasks

s data stored?

o -

@ : “
v

(B retry)

(oo) — &—=

Databases

Read failed data and retry

State machine

Figure 5: State machine pattern (DPS5). Note that we ex-
tended data transformation pattern with a state machine.

[Data Partitioner]

Streaming data
Fil Uploads to53_ —| Datasource | — -
Tiogers
Streaming data

Event source Lambda functions

"

Lambda functions

[DP2: Send the fle contents] [DP4: Partition the contents data)

Figure 6: Bundled pattern (DP6).

defined for each state can be scaled-up/down individu-
ally.

As an example, in Figure[5] we make the data stream-
ing pattern more stable by using a state machine. With a
single Lambda function, a failure in delivering a batch
of streaming data means the data will be lost, which
could be the serious problem in security monitoring ser-
vices. On the other hand, this state machine pattern can
deal with this problem; the failure state from the data-
processing Lambda function invokes another Lambda
which tries the same request again until it succeeds. In
addition, the state machine offers a try/catch mechanism
so that we can invoke different functions depending on
the failure reason.

2.6 DP6: Bundled Pattern

The bundled pattern combines two or more of the pre-
viously described patterns together by easily passing
events sequentially between them. Conceptually, this is
very much like UNIX pipelines, where each function is
small, precise and does one thing, but the great power
comes from chaining these together. As proposed in Fig-
ure [6] a collection of functions forms a data processing
pipeline, which combines the data-driven pattern (DP2)
with the data streaming pattern (DP4).

2.7 Cost and Scalability Analysis

Due to the time-bound execution (see Sec. E]), long dura-
tion tasks are difficult to run by a Lambda function. In
addition, for tasks that require short latency (5-10ms),
the non-serverless architectures consisting of VMs or
containers are better suited because the time to start a
Lambda function (50-100ms) is significantly higher than
that of running a VM or container [29]. Thus, when we
compare the cost and scalability of serverless and non-
serverless architecture, we consider tasks with the run-
ning time between 100ms and Smin and expected latency
between 50-100ms.

Cost Analysis. The task is to process load balancer logs,
streaming 200 requests per minute, where each request
has 5000 log entries, i.e., 1 million log entries per minute.
If we use a Lambda function with 256Mb memory (suf-
ficient to process this workload in memory) running 1
seconds for each request, it costs $37.74/month based on
Lambda pricing [[14]]. However, once we serve requests

[DP6: Bundled DP2 and DP3,4 to build data processing pipeline]

[DP1, 2: Monitoring of attacks]

[DP2: Data collection when new event comes]

[DP3, 4: Data Streaming/Transformations]

Periodic Monitoring

|

- I © I "\
D - [Analytics] Administrators

Events

J—» State Machine }— 4

%[From an Application] [

[DP5: State machine that extends DP3, 4] D; B

% Incident
B
K Response

Data Collection Component

Notification & Incident Response Components

Figure 7: Proposed threat intelligence platform: the boxes with dashed-lines indicate what design pattern is used.

using 2 EC2 instances of the mS5.large type equipped
with 2CPUs and 8Gb memory [13[], we need to pay
$138.24/m0nt}ﬂ In this case, the serverless implementa-
tion is a lot cheaper than the non-serverless architecture.
In addition, if the load is unpredictable and irregular, the
cost of running instances can be a lot more than Lambda
functions since the minimum number of containers or
VMs are always required to run. However, if the Lambda
function has to run one minute for each request, since
the number of log entries per request is increased from
5,000 to 300,000 with the same configuration, the cost
is $2,162.16/month, whereas the instances cost $138.24
(the same), which makes Lambda very expensive for the
long-running tasks. The additional cost that we need to
consider is the operational cost, which is not reflected in
the above numbers. Lambda is a managed service that
requires minimum administration and efforts to scale-
up/down whereas containers and VMs are required to be
configured with these scaling options. This saves time
and effort of customers who operate large-scale infras-
tructures for security services.

Scalability Analysis. Both non-serverless and serverless
architecture can be scaled-up/down well with the regu-
lar and predictable loads. However, with unpredictable
loads, serverless patterns have better scalability as they
can release the resources when there is no running task.

3 Serverless Threat-Intelligence Platform

To illustrate how these individual design patterns, as de-
scribed in Sec. 2] can be combined to build security ser-
vices, we propose a threat-intelligence platform that an-
alyzes various data sources in the cloud, notifies suspi-
cious events and takes responsive actions against them.
Our proposed architecture, as illustrated in Figure[7] con-
sists of three components: 1) data collection, 2) alert no-
tifications, and 3) incident response workflows. In de-

INote that the instance type is the cheapest EC2 General Purpose com-
pute instance, and we run at least two instances in case of failures.

scribing the architecture of the threat-intelligence plat-
form, we emphasize on the relevant serverless design
patterns, as described in Sec. 2] pertaining to the func-
tionality of components.

Data Collection Component: The AWS cloud has
many data sources, usually one for each cloud resource,
that is exposed to tenants for performance, debugging,
and security purposes. For example: application fire-
wall [17], load balancer [11], S3 access logs [19],
DNS [21]], and API calls [[12]] are some of the log types
that tenants can utilize. The data collection module uti-
lizes multiple serverless patterns to collect the data from
varying sources and stores them in a centralized loca-
tion. As soon as the new data becomes available at those
data sources, the event-driven pattern (DP2) attached to
sources reads the new data and streams the incoming data
into transformation/streaming sub-modules. The data
transformation pattern (DP3) enriches the input data with
additional information, such as by identifying the geolo-
cation corresponding to an IP address in the data, and
then the data streaming pipeline (DP4) streams the en-
riched data into both S3 and Elasticsearch cluster. When
a failure occurs in sending the data to either S3 or Elas-
ticsearch, the state machine pattern (DP5) catches the
failure and resends the failed entries by invoking another
Lambda.

Notification Component: The notification component
incorporates both the periodic invocation (DP1) and
event-driven (DP2) patterns to alert system operators and
developers of suspicious activities against their cloud re-
sources. For example: when the data collection compo-
nent stores the API call data (collected by AWS Cloud-
Trail) in S3, the event-driven Lambda function verifies if
the API calls are invoked from outside the USA (which
may signify in certain cases that the API keys used to
invoke APIs are misused). On the other hand, there are
attacks, where we need evidence to be collected for a
certain period of time before we can detect them. For in-
stance, detecting login brute force attacks requires ana-
lyzing a number of failed login attempts over time. How-

ever, the Lambda functions attached to the incoming data
streams can only see the evidence present in the current
stream; it has no access to historical data. In this case, the
periodic invocation design (DP1) solves the problem by
periodically invoking a Lambda function, querying the
data from our Elasticsearch cluster and extracting failed
login attempts over time.

Incident-Response Component: This component re-
sponds to attacks identified by the notification compo-
nent. For example, it helps to automate the forensic anal-
ysis of a compromised VM (or a container). When the
notification component notifies on a compromised VM,
the best incident response action is to quarantine the in-
fected VM by blocking all incoming and outgoing traffic
from it and to analyze the memory of the VM. The mem-
ory analysis includes the installation of the kernel mod-
ule such as LiME [2] into the compromised VM to ex-
tract the memory dump and perform forensic actions by
using the known tools such as Volatility [43]. This com-
plete end-to-end incident response workflow requires a
number of well-orchestrated Lambda functions, which
can be achieved using the state machine pattern (DP5).

Cost and Scalability Analysis: To implement each
component as a non-serverless architecture, few contain-
ers or VMs will be essentially running all the time be-
cause of the high spin-up time of a container or VM.
Lambda functions can avoid such resource consumption
by not being invoked when there is no data or incident.
In terms of scalability, as each design pattern can be
scaled-up/down individually, which is managed by cloud
providers, the threat-intelligence platform in Figure
provides more flexibility when we want to add or remove
data, notifications, or incident-response modules.

4 Discussion

Despite the versatile capabilities of the Lambda function,
there are limitations that restrict our design choices. In
this section, we describe the limits and discuss how to
avoid them by using workarounds, followed by potential
approaches that solve such limitations, systematically.

4.1 Resource Constraints

Time-Bound Execution. Lambda functions have a max-
imum execution time limit [[15/30}/37]], which prohibits
using Lambda for tasks that have an unknown duration
as once the limit is reached, AWS will terminate the ex-
ecution without waiting for the completion and any state
will be lost. This limitation can be avoided by splitting
the original task across multiple executions, which is not
possible for all workloads. Thus, the proper solution is

to either increase the execution time limit or to automat-
ically pass state between executions so that the task can
continue in another execution with the previous state.

Lack of Computing Power. From prior experience with
applications such as video encoding, the amount of com-
puting power available to a Lambda function is insuffi-
cient for CPU intensive workloads. CPU resources are
also not directly configurable; instead, they are propor-
tionally allocated depending on the amount of memory
configured to a Lambda function. Thus, such workloads
currently have to be executed inside VMs or containers.
An ultimate solution for this problem is to make comput-
ing resources configurable or to support a Lambda that
uses powerful computing resources such as GPUs.

Disk Space. AWS limits you to 512MB of disk space
under the “/tmp” directory exposed to a Lambda function
which again restricts using Lambda for workloads like
video encoding. There is also no documentation about
whether the Lambda disk is encrypted. We would like to
see the ability to increase this as a simple configuration
option or a way to mount disks like AWS EBS or AWS
EFS which would also allow encryption.

4.2 Limited Functionalities

Event Tracing. There is a lack of tooling to trace an
event through an intricate serverless system to help with
troubleshooting issues and to understand where the bot-
tlenecks exist in the system. This also impacts handling
suspicious activity analysis as it is hard to identify where
the event has originated, and what other components that
the event may have affected. Tools like Zipkin [46] and
AWS X-Ray [18]] provide the required database and vi-
sualizations, but lack integrations with cloud services
such as AWS Cloudwatch and AWS SNS to fully trace
an event propagation. Since this limits the visibility of
serverless systems, either the integrations with existing
cloud services should be supported or cloud providers
need to support such tools.

Security. AWS Lambda functions are offered as a man-
aged service. However, there are no security services in-
tegrated with the Lambda functions, currently. To de-
velop secure function code, developers resort to security
tools, such as bandit [38], integrated into continuous in-
tegration/continuous deployment (CI/CD) pipeline that
statically analyzes the function code to discover unsafe
functions and security bugs. To prevent introducing se-
curity bugs from third-party libraries [34], many Lambda
functions only include AWS provided packages and li-
braries. To allow seamless security to Lambda func-
tions, AWS should integrate AWS Inspector [8] with the
Lambda function that provides vulnerability scanning.

5

Conclusions

To ease the development of security services in the cloud,
this paper describes six serverless design patterns that
can be used to build serverless applications and services.
In each design pattern, we highlighted the key advan-
tages and presented several serverless applications. We
also conceptually demonstrated that a large-scale secu-
rity system for cloud can be composed of proposed de-
sign patterns by introducing a threat-intelligence system.
In addition, we described the limits of Lambda functions
and provided ways to overcome them. We envision that
the proposed serverless design patterns will revolutionize
security systems in the cloud and become dominant by
being a standard of serverless application development.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Michael Swift, for their feedback.

References

[1]

[2]

[4

=

[5

[t

[6

=

[7

—

[8

[t}

[9]

[10]

(11]

[12]

[13]

Cloud Controls Matrix - Cloud Security Alliance : Cloud Se-
curity Alliance. https://cloudsecurityalliance.org/group/cloud-
controls-matrix/#_overview, 2018. [Accessed 03-10-2018].

LIME - Linux Memory Extractor. https://github.com/
504ensicsLabs/LIME, 2018. [Accessed 03-12-2018].

System and Organization Controls: SOC Suite of Services. https:
/Iwww.aicpa.org/interestareas/frc/assuranceadvisoryservices/
sorhome.html, 2018. [Accessed 03-10-2018].

ALPERNAS, K., FLANAGAN, C., FOULADI, S., RYZHYK, L.,
SAGIV, M., SCHMITZ, T., AND WINSTEIN, K. Secure server-
less computing using dynamic information flow control. arXiv
preprint arXiv:1802.08984 (2018).

AMAZON WEB SERVICES. Amazon API Gateway. https://aws.
amazon.com/api-gateway/, 2018. [Accessed 03-14-2018].

AMAZON WEB SERVICES. Amazon Athena - Serverless Inter-
active Query Service - AWS. https://aws.amazon.com/athena/,
2018. [Accessed 03-11-2018].

AMAZON WEB SERVICES. Amazon CloudWatch - Cloud & Net-
work Monitoring Services. https://aws.amazon.com/cloudwatch/,
2018. [Accessed 03-11-2018].

AMAZON WEB SERVICES. Amazon Inspector. https://aws.
amazon.com/inspector, 2018. [Accessed 03-15-2018].

AMAZON WEB SERVICES. Amazon Kinesis.
amazon.com/kinesis/, 2018. [Accessed 03-12-2018].

AMAZON WEB SERVICES. Amazon Simple Notification Ser-
vices (SNS) — Event Notifications for Distributed Applications
and Microservices — AWS. https://aws.amazon.com/sns/, 2018.
[Accessed 03-12-2018].

AMAZON WEB SERVICES. AWS — Elastic Load Balanc-
ing - Cloud Network Load Balancer. |https://aws.amazon.com/
elasticloadbalancing/, 2018. [Accessed 03-12-2018].

AMAZON WEB SERVICES. AWS CloudTrail. https://aws.
amazon.com/cloudtrail/, 2018. [Accessed 03-12-2018].

AMAZON WEB SERVICES. AWS EC2 Pricing - AWS. |https:
/laws.amazon.com/ec2/pricing, 2018. [Accessed 05-10-2018].

https://aws.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

AMAZON WEB SERVICES. AWS Lambda - Pricing. https://aws.
amazon.com/lambda/pricing, 2018. [Accessed 05-10-2018].

AMAZON WEB SERVICES. AWS Lambda Limits - AWS Lambda
- AWS Documentation. https://docs.aws.amazon.com/lambda/
latest/dg/limits.html, 2018. [Accessed 03-11-2018].

AMAZON WEB SERVICES. AWS Lambda Serverless Compute -
Amazon Web Services. https://aws.amazon.com/lambda/, 2018.
[Accessed 02-21-2018].

AMAZON WEB SERVICES. AWS WAF - Web Application Fire-
wall. |https://aws.amazon.com/waf/, 2018. [Accessed 03-12-
2018].

AMAZON WEB SERVICES. AWS X-Ray Distributed Tracing
System. https://aws.amazon.com/xray, 2018. [Accessed 03-14-
2018].

AMAZON WEB SERVICES. Cloud Object Storage — Store
& Retrive Data Anywhere — Amazon Simple Storage Service.
https://aws.amazon.com/s3/, 2018. [Accessed 03-12-2018].

AMAZON WEB SERVICES. Identity and Access Management
(IAM) - Amazon Web Services (AWS). https://aws.amazon.com/.
iam/, 2018. [Accessed 03-15-2018].

AMAZON WEB SERVICES. Managed Cloud DNS - Domain
Name System — AWS Route 53 — AWSI. https://aws.amazon.
com/route53/, 2018. [Accessed 03-12-2018].

AMAZON WEB SERVICES. Using Amazon Redshift Spectrum,
Amazon Athena, and AWS Glue with Node.js in Production
— AWS Big Data Blog. https://aws.amazon.com/blogs/big-
data/using-amazon-redshift-spectrum-amazon-athena-and-
aws- glue-with-node-js-in-production/, 2018. [Accessed
03-11-2018].

APACHE SOFTWARE FOUNDATION. Apache Flink: Scalable
Stream and Batch Data Processing. |https:/flink.apache.org/,
2018. [Accessed 03-11-2018].

APACHE SOFTWARE FOUNDATION. Apache Parquet. https://
parquet.apache.org/, 2018. [Accessed 03-11-2018].

APACHE SOFTWARE FOUNDATION. Apache Spark - Lighting-
Fast Cluster Computing. https://spark.apache.org/, 2018. [Ac-
cessed 03-11-2018].

ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN, D.,
O’KEEFFE, D., STILLWELL, M., ET AL. Scone: Secure linux
containers with intel sgx. In OSDI (2016), vol. 16, pp. 689-703.

BALDINI, I., CASTRO, P., CHANG, K., CHENG, P., FINK, S.,
ISHAKIAN, V., MITCHELL, N., MUTHUSAMY, V., RABBAH,
R., SLOMINSKI, A., ET AL. Serverless computing: Current
trends and open problems. In Research Advances in Cloud Com-
puting. Springer, 2017, pp. 1-20.

ELASTICSEARCH. Open Source Search & Analytics Elastic-
search — Elastic. https://www.elastic.co/, 2018. [Accessed 03-
12-2018].

HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Serverless computation with
openlambda. Elastic 60 (2016), 80.

IBM CLouD. System Details and Limits - IBM Cloud
Docs. https://console.bluemix.net/docs/openwhisk/openwhisk -
reference.html, 2018. [Accessed 03-12-2018].

JAIN, B., BAIG, M. B., ZHANG, D., PORTER, D. E., AND
SION, R. Sok: Introspections on trust and the semantic gap.
In Security and Privacy (SP), 2014 IEEE Symposium on (2014),
IEEE, pp. 605-620.

https://cloudsecurityalliance.org/group/cloud-controls-matrix/#_overview
https://cloudsecurityalliance.org/group/cloud-controls-matrix/#_overview
https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/sorhome.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/sorhome.html
https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/sorhome.html
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/athena/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/inspector
https://aws.amazon.com/inspector
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/sns/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/ec2/pricing
https://aws.amazon.com/ec2/pricing
https://aws.amazon.com/lambda/pricing
https://aws.amazon.com/lambda/pricing
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/waf/
https://aws.amazon.com/xray
https://aws.amazon.com/s3/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/blogs/big-data/using-amazon-redshift-spectrum-amazon-athena-and-aws-glue-with-node-js-in-production/
https://aws.amazon.com/blogs/big-data/using-amazon-redshift-spectrum-amazon-athena-and-aws-glue-with-node-js-in-production/
https://aws.amazon.com/blogs/big-data/using-amazon-redshift-spectrum-amazon-athena-and-aws-glue-with-node-js-in-production/
https://flink.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://spark.apache.org/
https://www.elastic.co/
https://console.bluemix.net/docs/openwhisk/openwhisk_reference.html
https://console.bluemix.net/docs/openwhisk/openwhisk_reference.html

[32]

[33]

[34]

[35]

[36]

[37]

(38]

JAIN, P., DEsAL S. J., SHIH, M.-W., KM, T., Kim, S. M.,
LEE, J.-H., CHoI, C., SHIN, Y., KANG, B. B., AND HAN, D.
Opensgx: An open platform for sgx research. In NDSS (2016).

JoNAS, E., PU, Q., VENKATARAMAN, S., STOICA, ., AND
RECHT, B. Occupy the cloud: distributed computing for the
99%. In Proceedings of the 2017 Symposium on Cloud Com-
puting (2017), ACM, pp. 445-451.

KRUG AND JONES. Hacking Serverless Runtimes - Profiling
Lambda, Azure, and More. https://www.blackhat.com/docs/us-
17/wednesday/us- 17-Krug- Hacking- Severless- Runtimes.pdf,
2018. [Accessed 03-15-2018].

MALAWSKI, M., GAJEK, A., ZIMA, A., BALIS, B., AND
FIGIELA, K. Serverless execution of scientific workflows: Ex-
periments with hyperflow, aws lambda and google cloud func-
tions. Future Generation Computer Systems (2017).

MAXMIND, INC. MaxMind GeolIP2. https://www.maxmind.
com/en/geoip2-services-and-databases, 2018. [Accessed 03-11-
2018].

MICROSOFT AZURE. Azure Functions scale and hosting —
Microsoft Docs. |https://docs.microsoft.com/en-us/azure/azure-
functions/functions-scale#consumption-plan, 2018. [Accessed
04-27-2018].

OPENSTACK. openstack/bandit: Python AST-based static an-
alyzer from OpenStack Security Group. https:/github.com/
openstack/bandit, 2018. [Accessed 03-15-2018].

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

PEREZ, A., MOLTO, G., CABALLER, M., AND CALATRAVA,
A. Serverless computing for container-based architectures. Fu-
ture Generation Computer Systems 83 (2018), 50-59.

SLACK. Slack: Where work happens. https://slack.com/, 2018.
[Accessed 03-11-2018].

SPILLNER, J. Snafu: Function-as-a-service (faas) runtime design
and implementation. arXiv preprint arXiv:1703.07562 (2017).

UpSIDE™. S3 Anti-virus Scanning with Lambda and
ClamAV. https://engineering.upside.com/s3-antivirus-scanning-
with-lambda-and-clamav-7d33f9¢5092e, 2018. [Accessed 03-
11-2018].

VOLATILITY FOUNDATION. Volatility - An Advanced Memory
Forensics Framework. https://github.com/volatilityfoundation/
volatility, 2018. [Accessed 03-12-2018].

ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-vm side channels and their use to extract private keys.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 305-316.

ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in paas clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (2014), ACM, pp. 990-1003.

ZIPKIN. OpenZipkin - A Distributed Tracing System. https://
zipkin.io, 2018. [Accessed 03-12-2018].

https://www.blackhat.com/docs/us-17/wednesday/us-17-Krug-Hacking-Severless-Runtimes.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Krug-Hacking-Severless-Runtimes.pdf
https://www.maxmind.com/en/geoip2-services-and-databases
https://www.maxmind.com/en/geoip2-services-and-databases
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#consumption-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#consumption-plan
https://github.com/openstack/bandit
https://github.com/openstack/bandit
https://slack.com/
https://engineering.upside.com/s3-antivirus-scanning-with-lambda-and-clamav-7d33f9c5092e
https://engineering.upside.com/s3-antivirus-scanning-with-lambda-and-clamav-7d33f9c5092e
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://zipkin.io
https://zipkin.io

	Introduction
	AWS Lambda
	AWS Lambda Security

	3=-0.6em A Taxonomy of Serverless Design Patterns
	DP1: Periodic Invocation Pattern
	DP2: Event-Driven Pattern
	DP3: Data Transformation Pattern
	DP4: Data Streaming Pattern
	DP5: State Machine Pattern
	DP6: Bundled Pattern
	Cost and Scalability Analysis

	Serverless Threat-Intelligence Platform
	Discussion
	Resource Constraints
	Limited Functionalities

	Conclusions

