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Abstract
Deep Neural Network (DNN) models have continuously been
growing in size in order to improve the accuracy and quality
of the models. Moreover, for training of large DNN models,
the use of heterogeneous GPUs is inevitable due to the short
release cycle of new GPU architectures. In this paper, we
investigate how to enable training of large DNN models on
a heterogeneous GPU cluster that possibly includes whimpy
GPUs that, as a standalone, could not be used for training.
We present a DNN training system, HetPipe (Heterogeneous
Pipeline), that integrates pipelined model parallelism (PMP)
with data parallelism (DP). In HetPipe, a group of multiple
GPUs, called a virtual worker, processes minibatches in a
pipelined manner, and multiple such virtual workers employ
data parallelism for higher performance. We also propose a
novel parameter synchronization model, which we refer to
as Wave Synchronous Parallel (WSP) to accommodate both
PMP and DP for virtual workers, and provide convergence
proof of WSP. Our experimental results on a given heteroge-
neous setting show that with HetPipe, DNN models converge
up to 49% faster compared to the state-of-the-art DP tech-
nique.

1 Introduction
Deep Neural Networks have been popularly used to solve
various problems such as image classification [16,29], speech
recognition [17], topic modeling [3], and text processing [10].
The size of DNN models (i.e., the number of parameters) have
continuously been increasing in order to improve the accuracy
and quality of models and to deal with complex features of
data [19, 47, 54, 55]. The size of input data and batches used
for training have also increased to achieve higher accuracy
and throughput [19, 26].

For training large DNN models, data parallelism [4, 31,
32, 50], which employs multiple workers using parame-
ter servers or AllReduce communication, and model paral-
lelism [12,28,30], which divides the network layers of a DNN
model into multiple partitions and assigns each partition to
a different GPU, have commonly been leveraged. Further-
more, to mitigate the critical issue of low GPU utilization of
naive model parallelism, pipelined model parallelism, where
minibatches are continuously fed to the GPUs one after the
other and processed in a pipelined manner, has recently been
proposed [19, 38].

Table 1: Heterogeneous GPUs
Year Archi. CUDA

Core
Boost

Clock (MHz)
Memory

Size (GB)
Memory BW

(GB/sec)

TITAN V 2017 Volta 5120 1455 12 653
TITAN RTX 2018 Turing 4608 1770 24 672

GeForce
RTX 2060 2019 Turing 1920 1680 6 336

Quadro P4000 2017 Pascal 1792 1480 8 243

For training DNN models, the use of GPU clusters is now
commonplace. In such an environment, the use of hetero-
geneous GPUs is inevitable due to the short release cycle
of new GPU architectures [24]. Moreover, several types of
GPUs targeted for high-end servers, workstations, and desk-
tops are being released for purchase [39–42]. Due to their
cost-effectiveness, less expensive GPUs targeted for desk-
tops and workstations, rather than high-end servers are also
commonly used for machine learning training, especially for
small and medium size clusters [14, 21, 49, 56, 57, 59]. Due
to the same reason, spot instances with different types of
GPUs that are offered by cloud service providers are being
used [2,24,36]. Table 1 shows the hardware specifications for
four different types of GPUs, along with their market release
years, that we have purchased in our institution in the short
span of the last three years. Each, at the time of purchase,
was (close to) state-of-the-art affordable with what budget we
could muster. With technology advancing in such rapid pace,
these systems have become outdated. Some of the systems
have become old technologies that, individually, are unable
to run large DNN models that are common today. Such situ-
ations with clusters of heterogeneous GPUs should now be
commonplace.

There are benefits to enabling DNN training with hetero-
geneous resources. First, it allows for large model training
with lower-class GPUs. While unable to train individually
due to their limited resources, aggregated together, they may
be used for training. These GPUs, which likely would have
been retired, become usable, possibly used to create (virtual)
workers that show similar performance as high-class GPUs.
Second, low-class GPUs can be used to improve the perfor-
mance of even high-class GPUs by incrementally adding on
the resources of the (old) lower class systems to the (new)
high-class systems. We call a group of aggregated GPUs that
could satisfy the resource constraint and be used for training a
virtual worker. Internally, such a virtual worker could leverage
pipelined model parallelism (PMP) to process a minibatch,
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while externally, a number of virtual workers could leverage
data parallelism (DP) for higher performance.

In this paper, we explore the integration of PMP and DP
to maximize the parallelism of DNN model training. In par-
ticular, we investigate a DNN model training system, which
employs both PMP and DP, for a heterogeneous GPU cluster
that possibly includes whimpy GPUs that, as a standalone,
could not be used for training large models. Integrating DP
to PMP may sound trivial, but in fact, it is quite challenging.
In this setting, each virtual worker is continuously process-
ing multiple minibatches in a pipelined manner and thus,
all the virtual workers can be in different states. Thus, the
key question here is, what weight version should be used by
each virtual worker to synchronize with other virtual workers?
Numerous questions need to be answered to answer this ques-
tion: 1) How many new minibatches can start being processed
while waiting for global updates from the parameter server?
2) Can synchronization occur at any point of processing the
minibatches? 3) How can convergence be guaranteed when
such synchronization occurs? 4) What version of parameters
is used for the next minibatch while previous minibatches are
still executing within each virtual worker? (This question is
also considered to some extent in a prior work [38].) And so
on. Furthermore, there are also many challenges that need to
be overcome to ideally leverage a heterogeneous GPU cluster
for DNN training: How are the heterogeneous GPUs to be
divided and allocated into virtual workers? How do we reduce
virtual worker stragglers when we consider DP? How do we
partition the model to maximize the performance of PMP
using heterogeneous GPUs?

While DP [4, 31, 32, 50], PMP [19, 38], and heterogene-
ity [24, 25, 33] for training have been considered separately,
to the best of our knowledge, this is the first paper that tack-
les these issues together in attempting to answer some of the
aforementioned questions. In this work, we design a DNN
training system, HetPipe (Heterogeneous Pipeline), that inte-
grates PMP of a virtual worker, which is composed of multiple
(possibly whimpy) heterogeneous GPUs, with DP of virtual
workers using parameter servers to enable and also speed
up training of large models. HetPipe can aggregate heteroge-
neous resources from multiple GPUs to form a virtual worker
such that the performance of each virtual worker is similar to
each other, reducing the straggler problem. For HetPipe, we
propose a novel parameter synchronization model, which we
refer to as Wave Synchronous Parallel (WSP). WSP is adapted
from the Stale Synchronous Parallel (SSP) model [18] to ac-
commodate both PMP and DP for multiple virtual workers
unlike existing synchronization models. We also prove the
convergence of WSP. Note that while HetPipe would work
in a homogeneous GPU cluster in training a large model that
cannot be loaded into the memory of a single GPU, with the
rapid turnaround of newer GPU architectures, it is more likely
that one will end up with a cluster of heterogeneous GPUs.
This is the environment that we target.

We implement HetPipe by modifying TensorFlow, a com-
monly used machine learning training system. We evaluate
the performance of HetPipe for two DNN models using a het-
erogeneous GPU cluster composed of four different types of
GPUs. Our experimental results demonstrate that the perfor-
mance of HetPipe is better than that of the state-of-the-art DP
via Horovod [50] that uses AllReduce communication [45].
This is because HetPipe mitigates the straggler problem, and
also because it enables each virtual worker and the parameter
server to intra-communicate for all parameter updates, sig-
nificantly reducing communication overhead. Compared to
Horovod, the convergence of VGG-19 with a large parameter
set to a desired accuracy becomes 49% faster, and that of
ResNet-152 which is too big to be loaded in four whimpy
GPUs in our cluster becomes 39% faster by using all the
GPUs (including whimpy ones).

Strategies to leverage PMP have been explored in previous
studies [7, 19, 27, 38]. Compared to these, our study makes
forward strides in three aspects. First, we generalize PMP
of a virtual worker to be used together with DP of virtual
workers, increasing the parallelism of DNN model training.
Consequently, this results in speeding up training. Second,
we consider a heterogeneous GPU cluster, which allows the
use of GPUs, which otherwise, could not be used for training.
Finally, we present a parameter synchronization model that
guarantees convergence, of which we provide a proof, for
training models using PMP with DP. We provide a more in-
depth comparative discussion on these studies in Section 2.2.

2 Background
2.1 Data Parallelism
Training of a DNN model is processed by a forward pass
followed by a backward pass for each minibatch, which is a
subset of training samples, in a popularly used stochastic gra-
dient descent (SGD) method. For each minibatch, the weight
updates, i.e., gradients, are computed to update weights (or
parameters) w of the model.

Data parallelism (DP) utilizes multiple workers to speed
up training of a DNN model. It divides the training dataset
into subsets and assigns each worker a different subset. Each
worker has a replica of the DNN model and processes each
minibatch in the subset, thereby computing the weight updates.
Therefore, if a DNN model cannot be loaded into the memory
of a single GPU, DP cannot be used.

Among the multiple workers, the parameters are synchro-
nized using parameter servers [31] or AllReduce communica-
tions [32, 50]. For Bulk Synchronous Parallel (BSP) [1, 35],
each worker must wait for all other workers to finish the cur-
rent minibatch p before it starts to process the next minibatch
p+1 so that it can use an updated version of the weights for
minibatch p+ 1. For Asynchronous Parallel (ASP) [1, 48],
each worker need not wait for other workers to finish mini-
batch p, possibly using a stale version of the weights. With
BSP, which is possible for both the parameter servers and
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AllReduce communications, the system may suffer from high
synchronization overhead, especially in a heterogeneous GPU
cluster where each worker with a different GPU provides dif-
ferent training performance [33]. On the other hand, while
ASP, which is possible for the parameter servers, has no syn-
chronization overhead, it is known that ASP does not ensure
convergence [48, 58].

A method that takes the middle ground between BSP and
ASP is Stale Synchronous Parallel (SSP) [18]. With SSP, each
worker is allowed to proceed the training of minibatches using
a stale version of the weights that may not reflect the most re-
cent updates computed by other workers. Thus, workers need
not synchronize with other workers whenever it finishes the
processing of a minibatch. As such, parameter staleness can
occur. However, this staleness is bounded as defined by the
user and referred to as the staleness threshold. As SSP is bene-
ficial when worker performance is varied, it has been explored
especially in the context of heterogeneous systems [24].

In SSP, each worker periodically pushes the weight updates
to the parameter server. This synchronization interval is called
a clock. Thus, each worker increases its local clock by one for
every iteration, which is the training period of a minibatch.
For a given staleness threshold s where s ≥ 0, each worker
with clock c is allowed to use a stale version of the weights,
which includes all the updates from iteration 0 to c−s−1 and,
possibly, more recent updates past iteration c− s− 1. That
is, a worker can continue training of the next minibatch with
parameters whose updates may be missing from up to the s
most recent minibatches.
2.2 Model Parallelism and Pipeline Execution
Model parallelism (MP) is typically exploited for large DNN
models that are too large to be loaded into memory of a single
GPU. In particular, a DNN model composed of multiple lay-
ers is divided into k partitions and each partition is assigned
to a different GPU. Each GPU executes both the forward
and backward passes for the layers of the assigned partition.
Note that it is important to execute the forward and backward
passes of a partition on the same GPU as the activation result
computed for the minibatch during the forward pass needs
to be kept in the GPU memory until the backward pass of
the same minibatch for efficient convergence, as similarly
discussed by Narayanan and others [38]. Otherwise, consid-
erable extra overhead will incur for managing the activation
through either recomputation or memory management.

In the basic form of MP, k GPUs, individually, act as one
virtual worker to process a minibatch as follows: For each
minibatch, execution of the forward pass starts from GPU1 up
to GPUk. When each GPUi, where 1≤ i < k, completes the
forward pass of the assigned partition, it sends the computed
activations of only the last layer in its partition to GPUi+1.
Once GPUk finishes the forward pass of its partition, the
backward pass of the minibatch is executed from GPUk down
to GPU1. When each GPUi′ , where 1 < i′ ≤ k, finishes the
backward pass, it sends the computed local gradients of only

Table 2: Comparison of HetPipe with GPipe and PipeDream
GPipe PipeDream HetPipe

Heterogeneous Cluster Support No No Yes
Target Large Model Training Yes No Yes
Number of (Virtual) Workers 1 1 N

Data Parallelism Extensible Partition Virtual Workers
Proof of Convergence Analytical Empirical Analytical

the first layer in its assigned partition to GPUi′−1. This basic
form of MP results in low GPU utilization as only one GPU
is actively executing either the forward or backward pass.
Nonetheless, MP allows execution of large DNN models that
are too large for a single GPU.

To improve utilization of the GPUs in a virtual worker,
minibatches can be processed in a pipelined manner. The
subsequent minibatches are fed into the first GPU in MP (i.e.,
GPU1) one by one once the GPU completes the processing
of the previous minibatch. This allows for multiple GPUs
to simultaneously execute either the forward or backward
pass of their assigned layers for different minibatches. This is
referred to as Pipelined Model Parallelism (PMP).

This PMP strategy has been investigated in previous
studies [19, 38]. PipeDream exploits PMP of a single vir-
tual worker to avoid the parameter communication over-
head of DP [38]. Considering only homogeneous GPUs,
when PipeDream partitions a model into stages to maximize
pipeline performance, it does not take into account the mem-
ory requirement of a GPU that depends on the stage of a
pipeline. Thus, PipeDream processes a limited number of
minibatches, which is large enough to saturate the pipeline,
to reduce memory overhead. PipeDream also provides a form
of DP, but it considers DP within a virtual worker to speed up
the execution of lagging layers. No proof of single pipeline
convergence is provided in PipeDream. Note that without
a parameter synchronization model such as WSP, it is not
possible to properly run DP over multiple PipeDream virtual
workers via parameter servers or AllReduce communication.

GPipe is a scheme that leverages PMP of a single virtual
worker to support large DNN models, also in a homogeneous
GPU cluster [19]. In GPipe, a minibatch is divided into mul-
tiple microbatches that are injected into the pipeline. Using
the same weights, GPipe executes the forward passes for all
the microbatches, and then executes the backward passes for
them. When the backward pass of the last microbatch is done,
it updates the weights all together for the minibatch. GPipe in-
curs frequent pipeline flushes, possibly resulting in low GPU
utilization [38]. In GPipe, DP of multiple virtual workers can
be done using existing synchronization schemes like BSP as a
virtual worker processes one minibatch at a time. GPipe saves
on GPU memory by recomputing the activations again in the
backward pass instead of keeping the activations computed
in the forward pass in memory. We do not use this optimiza-
tion though there are no fundamental reasons forbidding it.
A comparison of HetPipe with previous studies is given in
Table 2.
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Figure 1: Pipeline execution of minibatches where Mp,k indicates the execution of a minibatch p in partition k, which is executed
in GPUk and the yellow and green colors indicate the forward and backward passes, respectively.

3 System Overview
The system that we propose focuses on training a large DNN
model in a heterogeneous GPU cluster composed of various
types of GPUs that have different computation capability and
memory capacity. In such settings, for some types of GPUs
in the cluster, the DNN model of interest may be too large
to be loaded into the memory of a single GPU. The system
that we propose in this paper leverages both pipelined model
parallelism (PMP) and data parallelism (DP) to enable train-
ing of such large DNN models and, in the process, enhance
performance as well as the utilization of the heterogeneous
GPU resources of the cluster.

Figure 2 shows the architecture of the proposed cluster
system composed of H nodes. Each node comprises a homo-
geneous set of GPUs, but the GPUs (and memory capacity)
of the nodes themselves can be heterogeneous. Two key nov-
elties exist in this architecture. First, DP is supported through
a notion of a virtual worker (VW), which consists of k, pos-
sibly heterogeneous, GPUs, and encapsulates the notion of a
worker in typical DNN systems. That is, a virtual worker is
used to train the DNN model. In Figure 2, note that there are
N virtual workers with 4 GPUs each, that is, k = 4, and that
the GPUs comprising the virtual worker may be different for
each virtual worker. While in this paper we consider k to be
constant for each virtual worker, our design does not restrain
it to be so; this is simply a choice we make for simplicity.
The key aspect here is that a virtual worker allows DP by
aggregating GPUs possibly even when individual GPUs may
be resource limited.

The second novelty is that each virtual worker processes
each minibatch based on model parallelism, in a pipelined
manner, to fully utilize the GPU resources, as shown in Fig-
ure 1, to accommodate large DNN models. While PMP has
been proposed before (which we compare in Section 2.2), to
the best of our knowledge, we are the first to present PMP in
a heterogeneous setting. We refer to our system as HetPipe
as it is heterogeneous, in GPUs, across and, possibly, within
virtual workers and makes use of pipelining in virtual workers
for resource efficiency.

To train DNN models based on pipelined model parallelism
in virtual workers, the resource allocator first assigns k GPUs
to each virtual worker based on a resource allocation policy
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Figure 2: System architecture (VW: Virtual Worker)

(which will be discussed in Section 8.1). Note that for allo-
cating the heterogeneous GPUs to the virtual workers, the
resource allocation policy must consider several factors such
as the performance of individual GPUs as well as the com-
munication overhead caused by sending activations and gra-
dients within a virtual worker, and synchronizing the weights
among the virtual workers and the parameter server. Then,
for the given DNN model and allocated k GPUs, the model
partitioner divides the model into k partitions for the virtual
worker such that the performance of the pipeline executed in
the virtual worker can be maximized.

As any typical DP, multiple virtual workers must periodi-
cally synchronize the global parameters via parameter servers
or AllReduce communication; in HetPipe, parameter servers
are used to maintain the global weights. Each virtual worker
has a local copy of the global weights and periodically syn-
chronizes the weights with the parameter server. Evidently,
when managing the weights within a virtual worker and across
virtual workers, two types of staleness, local staleness and
global staleness, need to be permitted to improve the perfor-
mance of DNN training. Local staleness refers to staleness
within a virtual worker. As each virtual worker processes
minibatches in a pipelined manner, there are multiple mini-
batches that are being processed in parallel. Thus, staleness is
inevitable as weights seen by a minibatch may not reflect the
updates of all of its previous minibatches.

Global staleness, on the other hand, is similar to the stale-
ness notion introduced by Ho et al. [18]. That is, the system
needs to reduce communication overhead between the param-
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eter server and (virtual) workers, and, in our case, also mitigate
the synchronization overhead caused by possibly heteroge-
neous virtual workers. Therefore, similarly to SSP [18], each
virtual worker should be allowed to proceed training without
querying the global weights for every minibatch, unless its
local copy is so old such that there are too many missing
recent updates made by other virtual workers. Note that such
staleness condition is set by the user [18].

For our system, we propose the Wave Synchronous Par-
allel (WSP) model to synchronize the weights. A wave is a
sequence of minibatches that are processed concurrently in
a virtual worker. Let the number of minibatches in a wave
be Nm. Within a wave, processing of the i-th minibatch is
allowed to proceed without waiting for the preceding mini-
batchs i′ to be completed, where 1 < i ≤ Nm and 1 ≤ i′ < i.
That is, there is no dependency among the weights used by
minibatches in the same wave. As the virtual worker does not
enforce the updates even from the first minibatch in a wave
to be reflected in the weights used by the last minibatch, the
local staleness threshold in WSP is Nm−1. Moreover, each
virtual worker only pushes the aggregated updates from all
the minibatches in a wave, instead of for every minibatch, to
the parameter server. This results in considerable reduction
in communication overhead.

As it is important that the results generated through our
proposed system configuration are correct [18, 24, 60], we
show the convergence of our methodology in Section 6.

Note that HetPipe uses parameter servers, which may incur
synchronization and communication overhead. However, Het-
Pipe mitigates such overhead by permitting global staleness
among virtual workers and executing the pipeline in each vir-
tual worker such that it continues to process minibatches that
have already been injected while waiting for the parameter up-
date. We believe HetPipe can be further optimized by taking
decentralized approaches, but leave this for future work.

4 Pipelined Model Parallelism Within a VW
Number of Minibatches in the Pipeline: In our system,
each virtual worker processes up to Nm minibatches con-
currently in a pipeline manner so that the executions of the
minibatches can overlap. Given a DNN model and k GPUs,
the maximum number of minibatches executed concurrently
in the virtual worker, Maxm, is basically determined by the
memory requirement for training the model. For a model that
requires a huge amount of memory for output activations and
weights, Maxm may be less than k. Note that in such cases,
the utilization of each GPU is unlikely to be high.

Nm, the actual number of minibatches in the pipeline will
be Nm ≤Maxm and basically determined by considering the
throughput of the pipeline. Note that Nm must be the same
in every virtual worker, and thus, Nm is set to the minimum
Maxm among all the virtual workers. Nm will affect the local
staleness that we discuss later in this section.

Model Partitioning: To train a DNN model, a set of k

GPUs is allocated to a virtual worker by a resource allocation
policy, which we discuss in Section 8.1. For now, let us as-
sume that k, the number of possibly heterogeneous GPUs, and
Nm are given. Then, a partitioning algorithm is employed to
divide multiple layers of the model into k partitions, assigning
them to the k different GPUs. The goal of the partitioning
algorithm is to maximize the performance of the pipeline,
while satisfying the memory requirement of each partition to
process Nm minibatches.

In particular, in this study, for memory, we consider the
fact that the actual memory requirement will vary depending
on the stage of the pipeline that the GPU is used for. For
example, contrast GPU4 and GPU1 in Figure 1. GPU4, the
GPU that handles the last stage of the pipeline, handles only
one minibatch at a time and is immediately done with the
minibatch as exemplified by the yellow (forward pass) and
green (backward pass) Mi,4 pairs for i = 1,2, ..., that are side-
by-side. In contrast, for GPU1, the yellow and green Mi,1 pairs
are far apart, meaning that the forward pass Mi,1 needs to hold
up memory until the backward pass Mi,1 is finished with its
execution. Thus, with GPU1, the memory requirement is high
as it needs to hold on to the results of the forward pass for all
stages of the pipeline. This variance in memory requirement
is considered in partitioning the layers.

Execution time must also be considered when partitioning
the layers. To do so, we calculate the execution time of a parti-
tion to be the sum of the computation time of all the layers in
the partition and the communication time needed for receiv-
ing the activations (in the forward pass) and local gradients
(in the backward pass). Our partitioning algorithm attempts
to minimize the maximum execution time of the partitions
within the bounds of satisfying the memory requirement.

Partition Scheduling: Once the partition is set, the parti-
tions need to be scheduled for each of the GPUs. Each GPUq
responsible for partition q may have multiple forward pass
and backward pass tasks to schedule at a time. Each GPU
schedules a task by enforcing the following conditions:

1. A forward pass task for a minibatch p will be executed
only after a forward pass task for every minibatch p′ is
done where 1≤ p′ < p.

2. Similarly, a backward pass task for a minibatch p will
be executed only after a backward pass task for every
minibatch p′ is done where 1≤ p′ < p.

3. Among multiple forward and backward pass tasks, a
FIFO scheduling policy is used.

Note that in the last partition, for a minibatch, processing a
forward pass immediately followed by a backward pass is
executed as a single task.

Considering Staleness: Given the description of pipelin-
ing, the question of staleness of weights used needs to be
considered. That is, as a minibatch is scheduled, it may be
that the layers are not using the most up-to-date weights. For
example, in Figure 1, when the forward pass M2,1, the second
minibatch, begins to be processed, it must use stale weights as
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the first minibatch has not completed and hence, the changes
in the weights due to the first minibatch have not yet been
appropriately reflected, which is in contrast with typical pro-
cessing where minibatches are processed one at a time. We
now discuss how this staleness issue is considered.

Let local staleness be the maximum number of missing
updates from the most recent minibatches that is allowed for
a minibatch to proceed in a virtual worker. As training with
Nm minibatches can proceed in parallel in a virtual worker,
the local staleness threshold, slocal , is determined as Nm−1,
where 1≤ Nm ≤Maxm. If Nm = 1, the behavior is exactly the
same as naive model parallelism. Larger Nm may improve the
performance (i.e., throughput) of the pipeline as a larger num-
ber of concurrent minibatches are executed, but local staleness
increases, possibly affecting the convergence of training. In a
real setting, typically, Nm will not be large enough to affect
convergence as it will be bounded by the total amount of GPU
memory of a virtual worker.

Such local staleness also exists in PipeDream [38]. As
PipeDream basically employs weight stashing that uses the
latest version of weights available on each partition to exe-
cute the forward pass of a minibatch, a different version of
weights is used across partitions for the same minibatch. Un-
fortunately, PipeDream only shows empirical evidence of con-
vergence when weight stashing is used. Note that PipeDream
also discusses vertical sync, which is similar to HetPipe, but
it excludes vertical sync in its evaluations [38].

Now let wp be the weights used by minibatch p. Then, ini-
tially, we can assume that w0, the initial version of weights,
is given to the virtual worker. Then, the first (slocal +1) mini-
batches are processed in a pipelined manner with w0 = w1 =
· · ·= wslocal = wslocal+1.

To accommodate staleness in our system, when process-
ing of minibatch p completes, the virtual worker updates the
local version of the weights, wlocal as wlocal = wlocal + up,
where up is the updates computed by processing minibatch p.
Therefore, in HetPipe, weights are not updated layer by layer
and wlocal is a consistent version of weights across partitions.
When the virtual worker starts to process a new minibatch,
it makes use of the latest value of wlocal without waiting for
the other minibatches to update their weights. For example,
once the virtual worker is done for minibatch 1 and updates
wlocal with u1, it will start to process minibatch slocal +2 by
using the updated weights without waiting for minibatches 2
up to slocal +1 to be completed. Similarly, when the virtual
worker is done with minibatch slocal + 1 and updates wlocal
with uslocal+1, it will start to process minibatch 2× (slocal +1)
without waiting for the previous most recent slocal minibatches
to be completed. Therefore, except for the initial minibatches
1 to slocal + 1, for minibatch p the virtual worker will use
the version of the weights that reflects (at least) all the local
updates from minibatches 1 to p− (slocal +1). Note that for
every minibatch p, wp must be kept in GPU memory until the
backward pass for p is executed.

Note that staleness in SSP is caused by the different pro-
cessing speed of minibatches among multiple workers. Thus,
in SSP, staleness is used as a means to reduce the synchroniza-
tion and communication overhead. However, local staleness
in HetPipe is caused inherently as minibatches are processed
in a pipelined manner within a virtual worker.

5 Data Parallelism with Multiple VWs
In this section, we discuss data parallelism (DP) with virtual
workers. The first and foremost observation of DP being sup-
ported with virtual workers is that the virtual workers may be
composed of (whimpy) heterogeneous GPUs. While it is well
known that DP helps expedite DNN execution, DP, in typical
systems, is not possible if individual GPUs, that is, workers,
do not have sufficient resources to handle the DNN model,
in particular, large DNNs. By allowing a virtual worker to be
composed of multiple GPUs that are lacking in resources, our
system allows DP even with whimpy GPUs. The other key
observation in properly supporting DP with virtual workers
is that each virtual worker now retains local staleness as dis-
cussed in Section 4. Making sure that, despite such individual
staleness, we understand and show that the results obtained
from DP among virtual workers (globally) converge is an
important issue that must be addressed. The rest of the section
elaborates on this matter.

Workings of WSP: As stated in the system overview, Het-
Pipe uses parameter servers. We assume that such synchro-
nization occurs in clock units, a notion taken from SSP [18].
Precisely, a clock unit is defined as the progress of completing
one wave. Recall from Section 3 (and Figure 1) that a wave
is a sequence of slocal +1 minibatches concurrently executed
such that a virtual worker is allowed to process a later mini-
batch in a wave without updates from an earlier minibatch in
the same wave.

Similarly to SSP (which, however, considers the staleness
of weights only in DP), each virtual worker maintains a local
clock clocal , while the parameter server maintains a global
clock cglobal , which holds the minimum clocal value of all
the virtual workers. Initially, the local clocks and the global
clock are 0. At the end of every clock c, each virtual worker
completes the execution of all the minibatches in wave c.
At this point, the virtual worker computes the aggregated
updates from minibatch c× (slocal + 1) + 1 to minibatch
(c+1)×(slocal +1) and pushes the updates ũ to the parameter
server. We see that, similar to in SSP [18], ũ is synchronized
with a clock value c. For example, as shown in Figure 1 where
slocal = 3, at the end of clock 0, the virtual worker pushes the
aggregated updates of wave 0, which is composed of mini-
batches from 1 to 4, and at the end of clock 1, the aggregated
updates of wave 1, which is composed of minibatches from
5 to 8, and so on. It is important to note that in WSP, the vir-
tual worker pushes ũ to the parameter server for every wave,
instead of pushing ũ for every minibatch, which will signifi-
cantly reduce the communication overhead.
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When the parameter server receives the updates ũ from
the virtual worker, the parameter server updates the global
version of the weights as wglobal = wglobal+ ũ. Note that the
parameter server updates its cglobal to c+1 only after every
virtual worker has pushed the aggregated updates of wave c.

In WSP, each virtual worker is allowed to proceed training
without retrieving the global weights for every wave. Thus,
the virtual worker may use a weight version that, from a
global standpoint, may be stale, as the most recent updates
received by the parameter servers may not be reflected in its
local version of the weights. We discuss how global staleness
among the virtual workers is bounded.

Global Staleness Bound: Let clock distance be the differ-
ence in clocal between the fastest and slowest virtual workers
in the system. Therefore, a virtual worker with local clock
c, where c ≥ D+ 1, must use a version of the weights that
includes all the (aggregated) updates from wave 0 up to
c−D−1. Also, the weight version may include some recent
global updates from other virtual workers and some recent lo-
cal updates within the virtual worker beyond wave c−D−1.

When a virtual worker pulls the global weights at the end
of clock c to maintain this distance, it may need to wait for
other virtual workers to push their updates upon completion
of wave c−D. However, while a virtual worker waits for other
virtual workers to possibly catch up at the end of clock c, local
processing is allowed to proceed with slocal minibatches of
wave c+1 as the minibatches are executed in a pipelined man-
ner. Take, for example, the case when D = 0 and slocal = 3 in
Figure 3 (and Figure 1). As a virtual worker, VW1, completes
minibatch 4, it computes the aggregated updates ũ for wave 0
(composed of minibatches 1 to 4) and pushes ũ to the param-
eter server. VW1 now waits for the other virtual workers to
complete wave 0 before proceeding with minibatch 8. How-
ever, note that as shown in the figure, VW1 has already started
to process minibatches 5, 6 and 7, which belong to wave 1,
while its local clock is still 0. Similarly, once it completes
minibatch 8, it pushes the aggregated updates ũ for wave 1
(composed of minibatches 5 to 8) to the parameter server; in
the meantime, it has already started processing minibatches 9,
10, and 11, which belong to wave 2, while its clock is still 1.

Note that this processing of local minibatches in the virtual
worker does not violate the local staleness bound. Note also
that when D = 0, each virtual worker must wait for each other
at the end of every clock to synchronize the weights for every
wave, which is BSP-like behavior with pipelined execution in
each virtual worker.

Now let us define the global staleness bound, sglobal , to
be the maximum number of missing updates from the most
recent minibatches, globally computed by all the other virtual
workers in the system, that is allowed for a minibatch to pro-
ceed in a virtual worker. We want to identify sglobal based on
our discussion so far. This will allow each virtual worker to
determine whether it can proceed with its current minibatch.

Initially, all virtual workers start processing the first (D+1)

1

2

3

4

clock0 1 2

VW 1

VW 2

5

6

7

8

10

11

1

2

3

4

5

6

7

8

1 to 4
: Global updates reflected in 𝒘𝟏𝟏

Cannot start minibatch 12 until all the global 
updates from minibatches 1 to 8 are available

9

8 to 10
: Local & global updates not reflected in 𝒘𝟏𝟏

𝒔𝒍𝒐𝒄𝒂𝒍

5 to 7
: Only local updates reflected in 𝒘𝟏𝟏

𝒔𝒈𝒍𝒐𝒃𝒂𝒍

Push
Pull

Figure 3: Local and global staleness with WSP

waves without querying the global weights from the parameter
server. Furthermore, they can start to process up to slocal
minibatches of the next wave before receiving the global
weights that include the recent updates as discussed above.
Therefore, for those initial minibatches, the virtual worker
uses w0 or a weight version that may include some recent
local updates.

For any minibatch p thereafter, that is, where p> (D+1)×
(slocal +1)+ slocal , p must use a weight version that reflects,
at the very least, all the global updates from all the other vir-
tual workers from minibatch 1 to minibatch p− (sglobal +1),
where sglobal = (D+ 1)× (slocal + 1)+ slocal − 1. The first
term of this equation is due to the fact that a virtual worker
is allowed to proceed with the next (D + 1) waves (i.e.,
(D+ 1)× (slocal + 1) minibatches), and the second term is
due to the additional slocal minibatches that can be started be-
cause of pipelined execution. Continuing with the example in
Figure 3, where D = 0 and slocal = 3, VW1 proceeds the train-
ing of minibatch 11 without the global and/or local updates
from wave 1 (minibatches 5 to 8) or the two local updates
from minibatches 9 and 10 (i.e., having sglobal = 6). Thus, it
must have a version of the weights that includes all the global
updates from minibatches 1 to 4. Actually, the weight version
used for minibatch 11 includes three local updates from mini-
batches 5, 6, and 7, along with all the global updates from
wave 0. In case of minibatch 12, it cannot start the training
until global updates up to minibatch 8 are received.

6 Convergence Analysis
In this section, we discuss the convergence property of the
WSP model. Let N be the number of virtual workers and
un,p be the update of worker n at minibatch execution p. Let
sg = sglobal and sl = slocal + 1, and following the analysis
of [18], the noisy weight parameter1 w̃n,p for worker n at
minibatch execution p, is decomposed into

w̃n,p = w0 +

[
N

∑
n′=1

p−sg−1

∑
p′=1

un′,p′

]
+

[
∑

p′∈Cn,p

un,p′

]

+

 ∑
(n′,p′)∈En,p

un′,p′

 . (1)

1In this section, we use the term ‘weight parameter’ to denote all weights
of a network. Thus, the weight parameters refer to a set of weights of net-
works.

USENIX Association 2020 USENIX Annual Technical Conference    313



Here w0 refers to the initial parameter, and the noisy weight
parameter has three other terms which respectively include

1. updates of all workers (guaranteed to be included) to
process minibatch execution p,

2. Cn,p ⊆ [p− sg, p−1]: the index set of the latest updates
of the querying worker n in the range of current global
staleness bound, and

3. En,p ⊆ ([1,N]\{n})× [p− sg, p+ sg + sl ]: the index set
of extra updates of other workers in the range of the
current global staleness bound. When execution p is not
at a synchronization point, En,p = /0.

We define {ut} as the sequence of updates of each vir-
tual worker after processing each minibatch and {wt = w0 +

∑
t−slN
t ′=0 ut ′} as the reference sequence of weight parameters,

where ut := ut mod N,bt/Nc+ t mod sl , in which we loop over
the workers (t mod N) and over each update after a mini-
batch execution inside a worker (bt/Nc+ t mod sl). Here,
slN (= sl ×N) is the number of total minibatch updates in
one wave from all virtual workers. Since a virtual worker
uses a version of the weight parameter that reflects all the
local updates from minibatch 1 to p− sl for worker p, the
reference and noisy sequences at iteration t are updated up
to t− slN. The set Et and the noisy weight parameter w̃t are
defined similarly and the difference between wt and w̃t is
w̃t = wt −

[
∑i∈Rt ui

]
+
[
∑i∈Qt ui

]
where Rt is the index set

of missing updates in the reference weight parameter but not
in noisy weight parameter, and Qt is the index set of extra
updates in the noisy weight parameter but not in reference
weight parameter.

After T updates, we represent the target function as f (w) :=
1
T ∑

T
t=1 ft(w), the regret of two functions with w̃t , the pa-

rameter learned from the noisy update, and w∗, the pa-
rameter learned from the synchronized update is R[W ] :=
1
T ∑

T
t=1 ft (w̃t)− f (w∗) .

Thus, when we bound the regret of the two functions, we
can bound the error of the noisy updates incurred by the
distributed pipeline staleness gradient descent. We first bound
the cardinality ofRt and Qt in the following lemma.
Lemma 1. The following two inequalities, |Rt |+ |Qt | ≤
(2sg+sl)(N−1) and min(Rt ∪Qt)≥max(1, t−(sg+sl)N),
hold.
Proof. Since Qt ⊆ Et and Rt ⊆ Et\Qt , |Rt |+ |Qt | ≤ |Et | ≤
(2sg + sl)(N−1). The second claim follows from Et ⊇Rt ∪
Qt .

With the following two assumptions, the proof of conver-
gence generally follows Qirong et al. [18]2

Assumption 1. (L-Lipschitz components) For all t, the com-
ponent function ft is convex and has bounded subdifferential
‖∇ ft(w)‖ ≤ L, in which L > 0 is a constant.
Assumption 2. (Bounded distances) For all w,w′, the dis-
tance between them is bounded D(w‖w′) ≤ M, in which
M > 0 is a constant.

2The full proof is omitted due to space, but can be found in [44].

We also denote 1
2‖w−w′‖2 as D(w‖w′). Then, we can

bound the regret of the function trained with our noisy dis-
tributed, pipeline update as in Theorem 1.

Theorem 1. Suppose w∗ is the minimizer of f (w). Let ut :=
−ηt∇ ft (w̃t) where ηt =

σ√
t with σ = M

L
√

(2sg+sl)N
, in which

M,L are the constants defined in the assumptions. Then the

regret is bounded as R[W ]≤ 4ML
√

(2sg+sl)N
T .

Our theoretical results are similar with existing work on non
pipelined version of staleness update [18, 24]. However, we
reflect the new characteristics of distributed pipeline staleness
update in Lemma 1, and thus in Theorem 1.

7 Partitioning Algorithm

Recall that the goal of our partitioning algorithm is to min-
imize the maximum execution time of the partitions within
the bounds of satisfying the memory requirement. To obtain
a performance model to predict the execution time of each
layer of a model in a heterogeneous GPU, we first profile
the DNN model on each of the different types of GPUs in a
cluster, where we measure the computation time of each layer
of the model. For GPU memory usage, we measure the usage
of each layer (by using the logging feature of TensorFlow)
on only one GPU type (as it is roughly the same for all GPU
types). For profiling the memory usage on a whimpy node, we
measure the memory usage of each layer using a small batch
size and then multiply it for the target batch size. To compute
the memory requirement for a given partition, we take into
account the total memory usage to store the data to process
the layers as well as the maximum number of minibatches
concurrently assigned to the partition.

For communication time between layers in the model, we
first derive the amount of input data for each layer in the for-
ward and backward pass from the model graph. For the given
data size, we predict intra-node communication based on the
PCI-e bandwidth, then multiply it by a scaling-down constant
(which is similarly done in Paleo [46]), since in practice, it is
not possible to utilize the peak bandwidth. The scaling-down
constant is derived by running a synthetic model that sends
various sizes of data from one GPU to another GPU in the
same node. For inter-node communication (via InfiniBand),
we use linear regression to estimate the communication time
for the given data size. To build a prediction model, we collect
27 samples by training two DNN models, used in our exper-
iments, with arbitrary partitions. Note that in this work, the
heterogeneity of network performance such as slow network
links is not considered (as in [33]). However, for such cases,
we can extend our partitioning algorithm to consider different
network performance between two nodes when estimating the
communication time. Also, a model that estimates the mem-
ory requirement for each stage more accurately will be helpful
in partitioning a DNN model in a more balanced manner.
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To find the best partitions of a DNN model, we make use of
CPLEX, which is an optimizer for solving linear programming
problems [20]. The memory requirement for each partition on
the pipeline to support Nm concurrent minibatches is provided
as a constraint to the optimizer. The algorithm will return
partitions for a model with a certain batch size only if it finds
partitions that meet the memory requirement for the given
GPUs. Also, the optimizer checks all the different orders of
the given heterogeneous GPUs for a single virtual worker to
partition and place layers of the DNN model on them.

8 Experimental Results

8.1 Methodology
Heterogeneous GPU cluster: In our experiments, we use
four nodes with two Intel Xeon Octa-core E5-2620 v4 proces-
sors (2.10 GHz) connected via InfiniBand (56 Gbps). Each
node has 64 GB memory and 4 homogeneous GPUs. Each
node is configured with a different type of GPU as shown
in Table 1. Thus, the total number of GPUs in our cluster
is 16. Each GPU is equipped with PCIe-3×16 (15.75 GB/s).
Ubuntu 16.04 LTS with Linux kernel version 4.4 is used. We
implement HetPipe based on the WSP model by modifying
TensorFlow 1.12 version3 with CUDA 10.0 and cuDNN 7.4.
DNN models and datasets Our main performance metric is
throughput (images/second) of training a DNN model. We
use ResNet-152 [16], and VGG-19 [51] with ImageNet [13].
For each DNN model, batch size of 32 is used. For all other
hyperparameters, we use the default settings as specified in
the benchmark [52] of ResNet-152 and VGG-19.
Resource allocation for virtual workers: Given any hetero-
geneous GPU cluster, there can be many ways of allocating
the resources to the multiple virtual workers. For our experi-
ments, we consider allocation policies within the bounds of
our platform. Thus, given the 16 GPUs, HetPipe employs four
virtual workers, each of which is configured with four GPUs,
along the following three allocation policies.
Node Partition (NP): This policy assigns a node per virtual
worker. Thus, each virtual worker is composed of homoge-
neous GPUs. Consequently, as the nodes are heterogeneous,
partitioning of layers for a DNN model is different for each
virtual worker. NP results in minimum communication over-
head within each virtual worker as communication between
GPUs occurs within the same node via PCI-e, rather than
across multiple nodes where communication is via Infini-
Band. On the other hand, as the performance of each virtual
worker varies, a straggler may degrade performance with DP.
Equal Distribution (ED): This policy evenly distributes GPUs
from each node to every virtual worker. Thus, every virtual
worker is assigned four different GPUs, but every virtual
worker has the exact same resources. Thus, model partitioning
is the same, and thus, performance will be the same across

3Modified LOC is ∼1.5K in the TensorFlow framework and TensorFlow
benchmark codes, where most features are added as independent functions.

Table 3: Resource allocation for the three policies considered

Node Partition Equal Distribution Hybrid Distribution

VW1 VVVV VRGQ VVQQ

VW2 RRRR VRGQ VVQQ

VW3 GGGG VRGQ RRGG

VW4 QQQQ VRGQ RRGG

the virtual workers, which mitigates the straggler problem.
However, ED results in high communication overhead within
each virtual worker.
Hybrid Distribution (HD): This policy is a hybrid of NP and
ED. For our cluster, a combination of two GPU types are
allocated to each virtual worker such that their performances
in terms of aggregated computation capability and amount
of GPU memory are similar to each other. This choice is
made to mitigate the straggler problem while reducing the
communication overhead within each virtual worker. As, in
terms of computation power, V> R> G> Q and, in terms of
the amount of the GPU memory, R> V> Q> G, two virtual
workers are allocated VVQQ, while the other two are allocated
RRGG, where V, R, G and Q refers to TITAN V, TITAN RTX,
GeForce RTX 2060, and Quadro P4000, respectively.

Table 3 shows the resource allocation of each virtual worker
for the three resource allocation policies.
Parameter Placement: In our experiments, for DP, we locate
the parameter servers, each of which only handles a portion
of the model parameters, over all the nodes. For the default
placement policy, which can be used with all three of our
resource allocation policies, we place layers of the model
in round-robin fashion over all the parameter servers as in
TensorFlow [53]. For ED, however, another policy is possible,
which we refer to as ‘ED-local’. With ‘ED-local’, we place
the layers of a partition on the parameter server running on
the same node, incurring no actual network traffic across the
nodes for parameter synchronization. This is possible as the
same partition of the model can be assigned locally to the
GPU on the same node for every virtual worker. For all results
reported hereafter, the ‘default’ policy is used, except for ‘ED-
local’.

8.2 Performance of a single virtual worker
We first investigate the performance of the 7 different in-
dividual virtual workers that are possible according to the
allocation schemes in Table 3. Figure 4 shows the throughput
over various values of Nm, which is the number of minibatches
executed concurrently, in the virtual worker normalized to that
of when Nm = 1 and the maximum average GPU utilization
among the four partitions for ResNet-152 and VGG-19. The
numbers shown (in the box) along with the allocation policy
are the absolute throughput (images/sec) when Nm = 1. Note
that some results for larger Nm are not shown. This is because
the GPU memory cannot accommodate such situations and
hence, cannot be run.
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Figure 4: Normalized throughput and the maximum average GPU utilization among partitions in a single virtual worker for
various resource allocation policies as Nm is varied. The number in parenthesis is absolute throughput (images/sec) when Nm = 1
(which is equivalent to the naive MP) for each policy.
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Figure 5: Performance with the three allocation policies when
D=0 (The number on bar represents Nm)

From the results, we can see that as Nm increases, normal-
ized throughput of a virtual worker as well as the maximum
GPU utilization generally increases. Note that, though not
shown, the total GPU memory utilization tends to increase
as Nm increases. However, depending on the resource alloca-
tion scheme (which results in different partitions of a model)
as well as the DNN model, the effect of having larger Nm
varies. When a virtual worker is configured with homoge-
neous GPUs, the average GPU utilization of each partition
is similar to each other. However, when it is configured with
heterogeneous GPUs, there is a tendency that the GPU uti-
lization of the first or last partition is higher than those of the
other partitions. For this configuration, different computation
capabilities and memory capacity of the GPUs are considered
when partitioning a model. As it is possible that only a small
number of layers are assigned to some GPUs, the overall GPU
utilization may turn out to be low.

8.3 Performance of multiple virtual workers
Figure 5 shows the throughput of training each model with
the three resource allocation policies, where “Horovod” indi-
cates the state-of-the-art DP via Horovod that uses AllReduce
communication4. In these experiments, for each resource al-
location policy, Nm is set such that performance is maximized
while every virtual worker uses the same value of Nm as this
is the assumption behind HetPipe. For ResNet-152, the whole
model is too large to be loaded into a single GPU with G type,
and thus, Horovod uses only 12 GPUs.

4We use the same minibatch size for all workers of Horovod as the
minibatch size is one of the critical factors to the final performance of a
trained DNN and adaptive batch sizing will affect convergence [5].

Table 4: Performance improvement of adding whimpy GPUs
(The number in parenthesis presents the total number of con-
current minibatches in HetPipe)

Model
Single

GPU [V]
Method

4 GPUs
4[V]

8 GPUs
4[VR]

12 GPUs
4[VRQ]

16 GPUs
4[VRQG]

VGG-19 159
Horovod 164 205 265 339
HetPipe 300(5) 530(16) 572(20) 606(20)

ResNet-152 112
Horovod 233 353 415 X
HetPipe 256(5) 516(20) 538(24) 580(28)

The results in Figure 5 show that the performance of DNN
training is strongly affected by how heterogeneous GPUs
are allocated to virtual workers. From the results, we can
make the following observations: First, for VGG-19 whose
parameter size is 548MB, the performance of Horovod, which
reduces communication overhead for parameter synchroniza-
tion, is better than those of NP, ED, and HD. However, for
ResNet-152 whose parameter size is 230MB, ED and HD,
which utilize virtual workers with similar performance, show
a bit better or similar performance to Horovod (with 12 GPUs).
Second, with NP, training performance of ResNet-152 and
VGG-19 is low as Nm is bounded by the virtual worker
with the smallest GPU memory. Third, with ED-local, intra-
communication occurs between each GPU and the parameter
server, significantly reducing communication overhead across
the nodes, especially for VGG-19, the model with a large
parameter set. For VGG-19, the amount of data transferred
across the nodes per minibatch with ED-local (i.e., 103MB) is
much smaller than that with Horovod (i.e., 515MB). Thus, the
performance of ED-local (which also mitigates the straggler
problem) is 1.8× higher than Horovod. For ResNet-152, the
amount of data transferred with ED-local (i.e., 298MB) is
larger than that with Horovod (i.e., 211MB) because the sizes
of output activations to be sent between partitions are large,
even though the parameter size is relatively small. However,
the throughput of ED-local is still 40% higher than Horovod.
This is because Hetpipe allows each virtual worker to process
a large number of minibatches concurrently. Compared to
NP and HD, ED-local (or ED) usually has larger Nm in each
virtual worker, improving throughput.
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Figure 6: ResNet-152 top-1 accuracy

Next, we investigate how the throughput is improved when
whimpy GPUs are additionally used for training. Table 4
shows the throughput of VGG-19 and ResNet-152 when DP
via Horovod and HetPipe with ED-local are used over dif-
ferent sets of heterogeneous GPUs, and also when a single V
GPU is used. For these experiments, HetPipe is configured to
use four virtual workers, except for ‘4 GPUs’ where a single
virtual worker is used. In the table, the number and type of
GPUs used for each experiment are also given. From the re-
sults, we can see that the performance of both Horovod and
HetPipe increases when additional whimpy GPUs are used
for training. With additional GPUs, HetPipe can increase the
total number of concurrent minibatches processed, having up
to 2.3 times speedup. This scenario can be thought of as an
answer to when new, higher end nodes are purchased, but one
does not know what to do with existing nodes. The results
show that making use of the whimpy systems allows for faster
training of larger models.

8.4 Convergence
Our HetPipe based on the WSP model is guaranteed to con-
verge as proven in Section 6. In this section, we analyze the
convergence performance of HetPipe with ED-local using
ResNet-152 and VGG-19. For our experiments, the desired
target accuracy of ResNet-152 and VGG-19 is 74% and 67%,
respectively.

Figure 6 shows the top-1 accuracy of ResNet-152 with
Horovod (12 GPUs), HetPipe (12 GPUs), and HetPipe (16
GPUs), where D is set to 0 for HetPipe. For the experiments
with 12 GPUs, the 4 G type GPUs are not used. When the same
set of GPUs are used, convergence with HetPipe is 35% faster
than that of Horovod by reducing the straggler problem in a
heterogeneous environment and exploiting both PMP and DP.
Furthermore, by adding four more whimpy G GPUs, HetPipe
improves training performance even more, converging faster
than Horovod by 39%.

Figure 7 shows the top-1 accuracy of VGG-19 with
Horovod and HetPipe as we vary D to 0, 4, and 32. For the
experiments, all 16 GPUs are used. The figure shows that
convergence with the BSP-like configuration (i.e., D = 0)
of HetPipe is roughly 29% faster than that with Horovod.
As we increase D to 4, the straggler effect is mitigated and
the communication overhead due to parameter synchroniza-
tion is reduced. Thus, convergence is faster by 28% and 49%
compared to D = 0 and Horovod, respectively. In this experi-
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Figure 7: VGG-19 top-1 accuracy

ment with ED-local (where the training speed of each virtual
worker is similar), when D becomes very large (i.e., 32), the
throughput remains similar but the convergence performance
degrades by 4.7%, compared to D = 4. This is because it is
unlikely that the clock distance between the fastest and slow-
est virtual workers becomes as large as 32, but higher global
staleness can degrade the convergence performance (similarly
discussed in [18]). Note that though not shown, using larger D
has a greater effect for HetPipe with NP, ED and HD resource
allocation, and the different resource allocations only affect
the set of heterogeneous GPUs used for each virtual worker
and do not affect the convergence behavior.

We also analyze the synchronization overhead as D is var-
ied. We find that as D increases, the waiting time of a virtual
worker to receive the updated global weights decreases. In our
experiments, the average waiting time with D = 4 is found
to be 62% of that with D = 0. Furthermore, the actual idle
time is only 18% of the waiting time as the virtual worker can
continue to proceed in the pipeline while waiting.

9 Discussion
Comparison to PipeDream PipeDream [38], which is the
closest related study, optimizes PMP of a single virtual worker,
only employing DP for lagging layers within a virtual worker
in homogeneous environments. To be adapted to heteroge-
neous environments, its partitioning algorithm must be ex-
tended to consider the different performance and memory
sizes of heterogeneous GPUs, various orders of heteroge-
neous nodes used for a pipeline, and the memory requirement
of the GPUs for partitions.

We run the training of ResNet-152 using PipeDream, which
is implemented on PyTorch [37], in our heterogeneous GPU
cluster described in Section 8.1. Since the partitioning al-
gorithm does not consider heterogeneous GPUs, for each
GPU type, we profile ResNet-152, then generate partitions
of the model assuming that our cluster is configured with
homogeneous GPUs with that type, and finally, measure the
throughput of PipeDream with the partitions. All the com-
puted configurations of the pipeline result in a large number
of (i.e., 12 or 14) partitions. For example, with Q, the configu-
ration is 4-2-1-1-1-1-1-1-1-1-1-1 indicating that the model is
divided into 12 partitions where the first partition is executed
by four GPUs with DP, the second one is executed by two
GPUs with DP, and so on. For these configurations, we run
experiments with various orders of the four different nodes
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and test using several batch sizes. (Note that we could not
run training for some configurations due to out of memory er-
rors.) The best throughput measured using PipeDream is 158.
Recall that the throughputs of Horovod (with 12 GPUs) and
HetPipe are 415 and 580, respectively. In this case, the per-
formance of PipeDream for ResNet-152 is found to be low as
a large number of partitions cause high network overhead, in
addition to the sub-optimal partitions. Therefore, with PMP
alone (i.e., single virtual worker), the performance benefit
may become limited when a model is divided into numerous
partitions. Instead of increasing partitions, running DP with
multiple virtual workers like HetPipe can improve the paral-
lelism of training and further improve performance in such
cases.

Effect of imbalanced partitions Our partitioning algo-
rithm attempts to balance partitions while satisfying the mem-
ory requirements. However, depending on the DNN model,
computed partitions may be imbalanced. For example, for a
model composed of a small number of layers, if one layer
takes much longer to execute compared to other layers, the
partitions may end up having different execution times. In
this case, the performance of the pipeline will be degraded as
in any other pipeline-based systems. Note that running DP for
the slow partition to have a similar processing rate across all
the partitions like PipeDream [38] will be a possible extension
of HetPipe.

10 Related Work

Pipelining has been leveraged to improve the performance
of machine learning systems [6, 7, 19, 32, 38]. A pipelin-
ing scheme is employed to handle expensive backpropa-
gation [7]. Pipe-SGD pipelines the processing of a mini-
batch to hide communication time in AllReduce based sys-
tems [32]. A weight prediction technique is proposed to ad-
dress the staleness issue in pipelined model parallelism [6].
Detailed comparisons of HetPipe with PipeDream [38] and
GPipe [19] are provided in Section 2.2. Note that the feature
of overlapping computation and communication, presented
in PipeDream [38], will also improve the performance of our
system. PipeDream employs the one-forward-one-backward
scheduling algorithm for pipeline execution. Sophisticated
schedulers that consider various factors such as heterogeneous
configurations, the number of partitions, and the number of
concurrent minibatches within a virtual worker, can poten-
tially improve the performance of HetPipe. Techniques to
optimize learning rates have been studied [15], which can
also be applied to HetPipe to help converge faster.

Decentralized training systems that consider heterogeneous
environments have also been studied [33, 34]. However, these
techniques do not consider integration of DP with PMP, which
allows support for large models that do not fit into single
GPU memory. In AD-PSGD, once a mini-batch is processed,
a worker updates the parameters by averaging them with only

one neighbor which is randomly selected [33]. This is done
asynchronously, allowing faster workers to continue. In the-
ory, the convergence rate of AD-PSGD is the same as SGD.
In principle, the contribution of AD-PSGD is orthogonal with
the contributions of HetPipe in that we can extend our HetPipe
further by adapting the idea of asynchronous decentralized
update in AD-PSGD when there is a bottleneck in the param-
eter server. When it comes to the experimental evaluations,
the performance of AD-PSGD is evaluated for DNN models
whose sizes are 1MB, 60MB, and 100MB, which are smaller
than the models we consider in HetPipe. For a decentralized
training system, Hop [34] considers the bounded staleness
and backup workers, and uses CIFAR-10 for performance
evaluation on a CNN model.

There have been earlier efforts to employ DP and/or MP for
model training. Project Adam uses both DP and MP to train
machine learning models on CPUs [8]. Pal et al. combine DP
and MP in a similar way as our system, but do not consider
pipelining nor heterogeneous GPUs [43]. STRADS leverages
MP to address the issues of uneven convergence of param-
eters and parameter dependencies [27]. FlexFlow considers
utilizing parallelism in various dimensions such as sample,
operator, attribute and parameters to maximize paralleliza-
tion performance [23]. Bounded staleness has been explored
where Jiang et al. present heterogeneity-aware parameter syn-
chronization algorithms based on the SSP model [24], while
Cui et al. analyze the effects of bounded staleness [11].

Hierarchical AllReduce performs the AllReduce operation
in two levels [22]. This technique does not solve the straggler
problem in a heterogeneous GPU cluster, as master GPUs in
the second level will have different GPU types. BlueConnect
is an efficient AllReduce communication library consider-
ing heterogeneous networks [9]; unfortunately, it also cannot
handle stragglers caused by heterogeneous GPUs.

11 Conclusion
In this paper, we presented a DNN training system, HetPipe,
that integrates pipelined model parallelism with data paral-
lelism. Leveraging multiple virtual workers, each of which
consists of multiple, possibly whimpy, heterogeneous GPUs,
HetPipe makes it possible to efficiently train large DNN mod-
els. We proved that HetPipe converges and presented results
showing the fast convergence of DNN models with HetPipe.
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