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Key ideas to solve the problem
What is the problem?

Design
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Summary 
Evaluation



Security of mobile systems is vital

3



Mobile systems are diverse
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● More than 1,000  
Android device 
manufacturers 

● More than 24,000 
distinct Android 
devices



Diverse hardware → many device drivers 
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Vendors competition → more features  
          → more hardwares  → more device drivers 



Device drivers are a major risk to the security of 
mobile systems

6
Source: Jeffrey Vander Stoep. 2016. Android: protecting the kernel. In Linux Security Summit. Linux Foundation.



How to investigate bugs in device drivers of 
mobile systems?

7
Source: Jeffrey Vander Stoep. 2016. Android: protecting the kernel. In Linux Security Summit. Linux Foundation.
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Fuzzing Interactive debugging

REC
Play

Record-and-replay Selective Symbolic 
Execution

Dynamic analysis is useful to find vulnerabilities

Dynamic taint analysis



Many existing dynamic analysis tools use
virtual machines

Fuzzing

● kAFL
● Digtool
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Applying these tools to device drivers in mobile 
systems is hard 

Hardware assisted
 virtual machine

Not available
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Applying these tools to device drivers in mobile 
systems is hard 

Software only
virtual machine 

Hardware assisted
 virtual machine

Poor performanceNot available
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Key idea 1: running device drivers of a mobile 
system in a virtual machine on a workstation
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Virtual machine

Device 
driver(s) of 

mobile system



Key idea 1: running device driver of a mobile 
system in a virtual machine on a workstation
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Virtual machine

Device 
driver(s) of 

mobile system

Fails without 
I/O access
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Virtual machine

Device 
driver(s) of 

mobile system

Low-level I/O 
operations

Key idea 2: use the mobile device to serve 
low-level I/O operations



Design
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Evaluation
Summary



User space
Kernel

Mobile system
OS

I/O device

Shared 
modules

Shared
HW

Device driver of a mobile system: a closer look

Device driver
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User space
Kernel

Mobile system
OS

Shared 
modules

Shared
HWI/O device

Device driver of a mobile system: a closer look

Device driver
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● Memory mapped 
register read/writes

● Interrupt



User space
Kernel

Mobile system
OS

I/O device

Device driver

Shared 
modules

Device driver of a mobile system: a closer look
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Shared 
HW

Clock, power 
management, GPIO, 

and pin control



User space
Kernel

Mobile system
OS

I/O device

Device driver

Shared 
modules

Device driver of a mobile system: a closer look
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Shared 
HW

Function calls to
Linux API for shared 

modules



User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared 
modules

Shared
HW

Move the device driver to a workstation

Device driver

25



User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared 
modules

Shared 
HW

Device driver

26

Move the device driver to a workstation



User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared 
modules

Shared
HW

Mobile system cannot boot 
without clock, power 

management, GPIO, and 
pin control modules
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Device driver

Challenge: cannot move shared modules
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User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules
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Device driver

Do not move shared modules 

Shared
HW



29

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared 
modules

Remote I/O operations
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Fails without 
I/O access

Device driver

Shared
HW
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User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared 
modules

30

Stub

Stub

USB 
channel

Device driver

Low latency USB channel 

Shared
HW
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Shared
HW

Device driver

I/O device

Shared 
modules

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS

Stub

OS
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Stub

Charm
USB 

channel

Design decision 2: low latency USB channel 
Normal

USB 
channel

~ 2 ms
Latency

~ 100 us
Latency



Virtual machine OS

Shared 
modules

Shared
HW

OS
User space

Hypervisor

Kernel Kernel
User space
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Workstation Mobile system

I/O device

Remote I/O interface 1: remote register read/write

32

Stub

Stub

USB 
channel

Device driver



Virtual machine OS

Shared 
modules

Shared
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User space

Hypervisor

Kernel Kernel
User space

33

Workstation Mobile system

I/O device
33

Stub

Stub

USB 
channel

Device driver

Remote I/O interface 2: remote interrupt handling



Virtual machine OS OS
User space

Hypervisor

Kernel Kernel
User space

I/O device
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Shared 
modules

Workstation Mobile system

34

Stub

Stub

USB 
channel

Device driver

Remote I/O interface 3: Remote Procedure Call (RPC) 

Shared
HW



Evaluation
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Summary



Charm supports various drivers and devices
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Model Nexus 5X Nexus 6P Galaxy S7

Manufacturer LG Huawei Samsung

Supported drivers Camera, Audio GPU IMU Sensors

Lines of Code Ported 65,000 + 30,000 31,000 3000

Porting time - 7 days 2 days



Time it takes to port a driver to Charm 
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Model Nexus 5X Nexus 6P Galaxy S7

Manufacturer LG Huawei Samsung

Supported drivers Camera, Audio GPU IMU Sensors
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Porting time - 7 days 2 days



Charm supports various dynamic analysis techniques 

● Fuzzing
● Record-and-replay
● Manual Interactive debugging

38



How Charm facilitates fuzzing
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More hardware support

VT-x
PT



How Charm facilitates fuzzing
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More hardware support

VT-x
PT

KASAN
KMSAN
KTSAN

More software support



How Charm facilitates fuzzing
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Reliable console access No special hardware

More hardware support

VT-x
PT

KASAN
KMSAN
KTSAN

More software support



Fuzzing scenarios
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Scenario 1

Execute fuzzer on 
the phone

Scenario 2

Execute fuzzer on 
the server 

Without Charm With Charm



Fuzzing performance on Charm
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Low overhead for fuzzing on Charm

44

Low-level I/O 
operationsHigher 

performance

Not frequent



Bugs found by Charm
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Total number of bugs 25

New bugs 14

Bugs found using KASAN 2

False positive bugs 0



● Fuzzing
● Record-and-replay
● Manual Interactive debugging
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REC Play

Charm supports various dynamic analysis techniques 



Charm facilitates record-and-replay

● Not feasible without Charm for mobile device drivers
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REC Play



Virtual machine OS
User space

Kernel
User space

Kernel

OS

Resident 
modules

Resident 
hwHypervisor
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Workstation

Device driver

Mobile system

I/O device

Record all remote I/O interactions
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Stub

Stub

USB 
channel

REC



Virtual machine OS
User space

Hypervisor

Kernel
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Workstation

Device driver

49

Stub

Replay the recorded interactions 

Play



Virtual machine OS
User space

Hypervisor

Kernel
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Workstation

Device driver

50

Stub

Replay the recorded interactions 

Play

Mobile system is not needed 
while replaying



Record-and-replay performance
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● Fuzzing
● Record and Replay
● Manual Interactive debugging
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Charm supports various dynamic analysis techniques 



Charm facilitates manual interactive debugging

● Charm enables using GDB for device drivers
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Breakpoint Watchpoint Single-step execution



Manual interactive debugging results

● We analyzed three known vulnerabilities 
○ CVE-2016-3903: use-after-free bug
○ CVE-2016-2501: out-of-bounds access bug
○ CVE-2016-2061: out-of-bounds access bug

● We built an arbitrary kernel code execution exploit using 
CVE-2016-2061
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Related work

55

Charm Avatar 
[NDSS’14]

Surrogate 
[WOOT’15]

Target Mobile 
systems, open 
source device 
drivers

Embedded 
systems firmware

Embedded systems 
firmware 

Forward I/O accesses Yes Yes Yes

Communication 
channel

USB UART and JTAG PCIe FPGA 
board/JTAG

Performance Near native Poor Near native



Limitations and Future work
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Current Implementation Future work

Manual port of drivers Automatic port of drivers

No DMA support DMA support

Open source drivers support Binary drivers support



Summary
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Summary 

● Charm facilitates dynamic analysis of mobile device 
drivers

● Charm’s performance is on par with actual mobile 
systems

● Charm supports a broad variety of device drivers with 
reasonable engineering effort
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Charm is open source: 
http://trusslab.github.io/charm



Backup slides: vulnerable code snippet of 
CVE-2016-2061
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Backup slides: vulnerable code snippet of 
CVE-2016-2061
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Backup slides: building exploit
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Heap or stack?



Backup slides: building exploit
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Heap or stack? Heap ->
                       Spray target objects



Backup slides: building exploit
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Vulnerable 
object

Target 
object

offset



Dynamic analysis is very useful
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Static analysis Dynamic analysis

False positives rate High Low

Compiler/linker bugs Cannot find Can find

Code obfuscation Vulnerable Not vulnerable

Unknown types of bugs Cannot find Can find

Code coverage High Low



CVE-2016-3903
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Is it out-of-bound access?



CVE-2016-3903
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Is it out-of-bound access?



CVE-2016-3903
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Watch points

Use after free


