
Charm: Facilitating Dynamic Analysis
of Device Drivers of Mobile Systems

Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng Zhang,
Ardalan Amiri Sani, Zhiyun Qian

UC Irvine UC Riverside

Key ideas to solve the problem
What is the problem?

Design

2

Summary
Evaluation

Security of mobile systems is vital

3

Mobile systems are diverse

4

● More than 1,000
Android device
manufacturers

● More than 24,000
distinct Android
devices

Diverse hardware → many device drivers

5

Vendors competition → more features
 → more hardwares → more device drivers

Device drivers are a major risk to the security of
mobile systems

6
Source: Jeffrey Vander Stoep. 2016. Android: protecting the kernel. In Linux Security Summit. Linux Foundation.

How to investigate bugs in device drivers of
mobile systems?

7
Source: Jeffrey Vander Stoep. 2016. Android: protecting the kernel. In Linux Security Summit. Linux Foundation.

8

Fuzzing Interactive debugging

REC
Play

Record-and-replay Selective Symbolic
Execution

Dynamic analysis is useful to find vulnerabilities

Dynamic taint analysis

Many existing dynamic analysis tools use
virtual machines

Fuzzing

● kAFL
● Digtool

9

Interactive debugging

REC
Play

Record-and-replay

● GDB ● QEMU

Selective Symbolic
Execution

● S2E

Dynamic taint analysis

● DECAF

Many existing dynamic analysis tools use
virtual machines

Fuzzing

● kAFL
● Digtool

10

Interactive debugging

REC
Play

Record-and-replay

● GDB ● QEMU

Selective Symbolic
Execution

● S2E

Dynamic taint analysis

● DECAF

11

Many existing dynamic analysis tools use
virtual machines

Fuzzing Interactive debugging

REC
Play

Record-and-replay

● kAFL
● Digtool

● GDB ● QEMU

Selective Symbolic
Execution

● S2E

Dynamic taint analysis

● DECAF

12

Many existing dynamic analysis tools use
virtual machines

Fuzzing Interactive debugging

REC
Play

Record-and-replay

● kAFL
● Digtool

● GDB ● QEMU

Selective Symbolic
Execution

● S2E

Dynamic taint analysis

● DECAF

13

Many existing dynamic analysis tools use
virtual machines

Fuzzing Interactive debugging

REC
Play

Record-and-replay

● kAFL
● Digtool

● GDB ● QEMU

Selective Symbolic
Execution

● S2E

Dynamic taint analysis

● DECAF

14

Applying these tools to device drivers in mobile
systems is hard

Hardware assisted
 virtual machine

Not available

15

Applying these tools to device drivers in mobile
systems is hard

Software only
virtual machine

Hardware assisted
 virtual machine

Poor performanceNot available

Design
Key ideas to solve the problem

16

Evaluation
Summary

Key idea 1: running device drivers of a mobile
system in a virtual machine on a workstation

17

Virtual machine

Device
driver(s) of

mobile system

Key idea 1: running device driver of a mobile
system in a virtual machine on a workstation

18

Virtual machine

Device
driver(s) of

mobile system

Fails without
I/O access

19

Virtual machine

Device
driver(s) of

mobile system

Low-level I/O
operations

Key idea 2: use the mobile device to serve
low-level I/O operations

Design

20

Evaluation
Summary

User space
Kernel

Mobile system
OS

I/O device

Shared
modules

Shared
HW

Device driver of a mobile system: a closer look

Device driver

21

User space
Kernel

Mobile system
OS

Shared
modules

Shared
HWI/O device

Device driver of a mobile system: a closer look

Device driver

22

● Memory mapped
register read/writes

● Interrupt

User space
Kernel

Mobile system
OS

I/O device

Device driver

Shared
modules

Device driver of a mobile system: a closer look

23

Shared
HW

Clock, power
management, GPIO,

and pin control

User space
Kernel

Mobile system
OS

I/O device

Device driver

Shared
modules

Device driver of a mobile system: a closer look

24

Shared
HW

Function calls to
Linux API for shared

modules

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules

Shared
HW

Move the device driver to a workstation

Device driver

25

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules

Shared
HW

Device driver

26

Move the device driver to a workstation

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules

Shared
HW

Mobile system cannot boot
without clock, power

management, GPIO, and
pin control modules

27

Device driver

Challenge: cannot move shared modules

28

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules

28

Device driver

Do not move shared modules

Shared
HW

29

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules

Remote I/O operations

29

Fails without
I/O access

Device driver

Shared
HW

30

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS OS

I/O device

Shared
modules

30

Stub

Stub

USB
channel

Device driver

Low latency USB channel

Shared
HW

31

Shared
HW

Device driver

I/O device

Shared
modules

User space

Kernel
User space

Kernel

Workstation Mobile system

Hypervisor

Virtual machine OS

Stub

OS

31

Stub

Charm
USB

channel

Design decision 2: low latency USB channel
Normal

USB
channel

~ 2 ms
Latency

~ 100 us
Latency

Virtual machine OS

Shared
modules

Shared
HW

OS
User space

Hypervisor

Kernel Kernel
User space

32

Workstation Mobile system

I/O device

Remote I/O interface 1: remote register read/write

32

Stub

Stub

USB
channel

Device driver

Virtual machine OS

Shared
modules

Shared
HW

OS
User space

Hypervisor

Kernel Kernel
User space

33

Workstation Mobile system

I/O device
33

Stub

Stub

USB
channel

Device driver

Remote I/O interface 2: remote interrupt handling

Virtual machine OS OS
User space

Hypervisor

Kernel Kernel
User space

I/O device

34

Shared
modules

Workstation Mobile system

34

Stub

Stub

USB
channel

Device driver

Remote I/O interface 3: Remote Procedure Call (RPC)

Shared
HW

Evaluation

35

Summary

Charm supports various drivers and devices

36

Model Nexus 5X Nexus 6P Galaxy S7

Manufacturer LG Huawei Samsung

Supported drivers Camera, Audio GPU IMU Sensors

Lines of Code Ported 65,000 + 30,000 31,000 3000

Porting time - 7 days 2 days

Time it takes to port a driver to Charm

37

Model Nexus 5X Nexus 6P Galaxy S7

Manufacturer LG Huawei Samsung

Supported drivers Camera, Audio GPU IMU Sensors

Lines of Code Ported 65,000 + 30,000 31,000 3000

Porting time - 7 days 2 days

Charm supports various dynamic analysis techniques

● Fuzzing
● Record-and-replay
● Manual Interactive debugging

38

How Charm facilitates fuzzing

39

More hardware support

VT-x
PT

How Charm facilitates fuzzing

40

More hardware support

VT-x
PT

KASAN
KMSAN
KTSAN

More software support

How Charm facilitates fuzzing

41

Reliable console access No special hardware

More hardware support

VT-x
PT

KASAN
KMSAN
KTSAN

More software support

Fuzzing scenarios

42

Scenario 1

Execute fuzzer on
the phone

Scenario 2

Execute fuzzer on
the server

Without Charm With Charm

Fuzzing performance on Charm

43

Low overhead for fuzzing on Charm

44

Low-level I/O
operationsHigher

performance

Not frequent

Bugs found by Charm

45

Total number of bugs 25

New bugs 14

Bugs found using KASAN 2

False positive bugs 0

● Fuzzing
● Record-and-replay
● Manual Interactive debugging

46

REC Play

Charm supports various dynamic analysis techniques

Charm facilitates record-and-replay

● Not feasible without Charm for mobile device drivers

47

REC Play

Virtual machine OS
User space

Kernel
User space

Kernel

OS

Resident
modules

Resident
hwHypervisor

48

Workstation

Device driver

Mobile system

I/O device

Record all remote I/O interactions

48

Stub

Stub

USB
channel

REC

Virtual machine OS
User space

Hypervisor

Kernel

49

Workstation

Device driver

49

Stub

Replay the recorded interactions

Play

Virtual machine OS
User space

Hypervisor

Kernel

50

Workstation

Device driver

50

Stub

Replay the recorded interactions

Play

Mobile system is not needed
while replaying

Record-and-replay performance

51

● Fuzzing
● Record and Replay
● Manual Interactive debugging

52

Charm supports various dynamic analysis techniques

Charm facilitates manual interactive debugging

● Charm enables using GDB for device drivers

53

Breakpoint Watchpoint Single-step execution

Manual interactive debugging results

● We analyzed three known vulnerabilities
○ CVE-2016-3903: use-after-free bug
○ CVE-2016-2501: out-of-bounds access bug
○ CVE-2016-2061: out-of-bounds access bug

● We built an arbitrary kernel code execution exploit using
CVE-2016-2061

54

Related work

55

Charm Avatar
[NDSS’14]

Surrogate
[WOOT’15]

Target Mobile
systems, open
source device
drivers

Embedded
systems firmware

Embedded systems
firmware

Forward I/O accesses Yes Yes Yes

Communication
channel

USB UART and JTAG PCIe FPGA
board/JTAG

Performance Near native Poor Near native

Limitations and Future work

56

Current Implementation Future work

Manual port of drivers Automatic port of drivers

No DMA support DMA support

Open source drivers support Binary drivers support

Summary

57

Summary

● Charm facilitates dynamic analysis of mobile device
drivers

● Charm’s performance is on par with actual mobile
systems

● Charm supports a broad variety of device drivers with
reasonable engineering effort

58

Summary

● Charm facilitates dynamic analysis of mobile device
drivers

● Charm’s performance is on par with actual mobile
systems

● Charm supports a broad variety of device drivers with
reasonable engineering effort

59

Charm is open source:
http://trusslab.github.io/charm

Backup slides: vulnerable code snippet of
CVE-2016-2061

60

Backup slides: vulnerable code snippet of
CVE-2016-2061

61

Backup slides: building exploit

62

Heap or stack?

Backup slides: building exploit

63

Heap or stack? Heap ->
 Spray target objects

Backup slides: building exploit

64

Vulnerable
object

Target
object

offset

Dynamic analysis is very useful

65

Static analysis Dynamic analysis

False positives rate High Low

Compiler/linker bugs Cannot find Can find

Code obfuscation Vulnerable Not vulnerable

Unknown types of bugs Cannot find Can find

Code coverage High Low

CVE-2016-3903

66

Is it out-of-bound access?

CVE-2016-3903

67

Is it out-of-bound access?

CVE-2016-3903

68

Watch points

Use after free

