Unpacking Virtualization Obfuscators

Rolf Rolles
rolf .rolles @ gmail.com

Abstract—Nearly every malware sample is sheathed in an
executable protection which must be removed before static
analyses can proceed. Existing research has studied automati-
cally unpacking certain protections, but has not yet caught up
with many modern techniques. Contrary to prior assumptions,
protected programs do not always have the property that they
are reverted to a fully unprotected state at some point during the
course of their execution. This work provides a novel technique
for circumventing one of the most problematic features of modern
software protections, so-called virtualization obfuscation. The
technique enables analysis of heretofore impenetrable malware.

I. INTRODUCTION

Originating conceptually in the form of file-infecting
viruses, and later evolving into digital rights management
schemes, executable protectors have existed in various guises
for decades. Most recently, they have taken a central role in the
malware epidemic: criminals have strong motives to prevent
their malware from being analyzed, which is a mandatory
step in performing incident response. Consequently, much
effort is poured into the creation of increasingly difficult
protections, which has in turn spurred defensive research
toward removing them automatically. The need for automated
removal is especially inflated by today’s enormous volumes of
malware. The result of this arms race is a collection of new
protection features that are exceedingly difficult to remove,
either by humans or by computers, some of which have never
been publicly circumvented. Thus, however unfortunate, the
offensive side is presently winning.

The classical model of an executable protection is that of a
wrapper around a single executable. At the time of creation,
the protector will compress and/or encrypt the contents of the
executable’s sections. It will then append a new code section
that is responsible for decompressing and/or decrypting the
sections when executed, as well as for thwarting attempts at
reverse engineering. The executable’s entrypoint is redirected
into this new code (termed the “unpacking stub”), and upon
completion, execution is transferred back to the original en-
trypoint. The program will subsequently function identically
to the original, unprotected executable.

Previous forays into automated unpacking have attacked this
model of protection with a good degree of success. Though
these tools vary as to their stated goals and internal workings,
they share a common theme. Each assumes that the hidden
code from the protected program will be completely unpro-
tected in memory at some point during execution, and each
uses various measures to guide execution until this point. Some
tools additionally have the goal, beyond merely identifying
hidden code and the original entrypoint, of producing working,
unprotected executables.

Unfortunately, in comparison with the myriad of tech-
niques in modern protections, this model is merely a ruse
of simplicity. Some protections utilize multiple executables:
some will unpack the executable into a new process, some
operate with a two-process model in which one executable
debugs a modified version of the original. Some protections
drastically obscure the relationship of the protected executable
with shared libraries on the system. Most saliently for the goals
of this paper, some protections never restore portions of the
protected code; instead, they translate the code into a different
language and execute it at run-time inside of a custom, often
obfuscated interpreter. Much of the previous literature in this
area has left addressing these protection features to future
work.

II. VIRTUAL MACHINE SOFTWARE PROTECTIONS

”Virtual machines” (VMs) are a somewhat unfortunately-
termed class of software protections, which are perhaps the
most potent of present-generation techniques (some particular
incarnations of which have heretofore resisted public scrutiny).
These protections implement a virtual environment and in-
terpreter within which bytecode programs are executed. The
language accepted by the interpreter is chosen at random at
the time of protection. The interpreter itself is generated in
accordance with the choice of language, and is also typically
heavily obfuscated.

Although their assembly languages are often simple, VMs
pose a challenge because they severely dilute the value of
existing tools. Standard dynamic analysis with a debugger
is possible, but very tedious because of the low ratio of
signal to noise: one traces the same VM parsing / dispatching
code over and over again. White-box static analysis is very
time consuming because of the need to reverse engineer the
interpreter beforehand, which can be poly- or meta-morphic.
Patching the VM program requires a familiarity with the
instruction set that must be gained through analysis of the VM
parser. Reverse engineering such a component is repetitious,
and the high-level details are obscured by the flood of low-
level details.

There are two varieties of virtual machine software protec-
tion, which are classified according to the type of code that
is executed thereunder. Standard virtual machine protections,
such as [7], execute portions of the protected program’s
unpacker stub in the interpreter in order to obscure its inner
workings. Though this type of executable protection is very
effective at thwarting manual analysis, it does not pose any
challenges for automated unpackers per se, and furthermore
this type is well-studied in the literature.

The second variety of virtual machine software protections
is the one with which the rest of this paper shall be concerned.
So-called “virtualization obfuscators” (known in [1] and [10]
as instruction virtualizers) translate portions of the program’s
original x86 machine code into a custom language which is
then interpreted at run-time. The program’s code is never
restored to its original form. As a consequence, without
reconstruction of the original x86 code, existing white- and
gray-box analyses are impossible.

A. Virtual Machine Architecture

As stated, a virtualization obfuscator contains an interpreter,
which shares much in common with an ordinary interpreter.
Virtualization interpreters tend to be written in assembly
language and implemented as a large switch statement, which
may either contain a single point of dispatch or the opcodes
may be directly threaded. The interpreter operates upon the
data available to a machine-language program, namely, the
processor’s registers and flags.

The language interpreted by a virtualization obfuscator
tends to be RISC-like. One x86 CISC instruction will translate
into multiple virtualized instructions. For example, for an
instruction with a complicated memory-addressing mode such
as mov eax, [ebx+tecx*4+123456h], the address cal-
culation will be translated into several virtual instructions: one
to fetch ecx, one to multiply ecx by four, one to fetch ebx,
one to add these quantities together, one to add 123456h to
the result, and one to dereference the formed address.

Upon entering into the virtualization obfuscator at the
beginning of a bytecode program, the interpreter must save
the host’s registers and flags into a structure (termed the VM’s
context structure). The net effect of bytecode execution is a
sequence of manipulations applied to memory and the context
structure. Upon exiting the bytecode program, the interpreter
is responsible for restoring the host’s registers and flags, and
for transferring control back to the native x86 portion.

B. Template Languages

Virtualization obfuscators at their core involve the conver-
sion of the native x86 machine language into another custom
language, chosen at the time of protection at random from a
family, which at run-time is interpreted in an obfuscated in-
terpreter customized for that particular language. The original
x86 code is permanently destroyed.

Internally, each virtualization obfuscator offers one or more
template languages from which the final language is derived.
For instance, Themida allows the user to choose between
four different template languages in its protection options:
RISC-64, RISC-128, CISC and CISC-2. Each of these separate
choices results in a different “basis” language being used.

Considering executables protected with the same template
language, the differences between any two particular instances
generally consist of different encodings for the same instruc-
tion (e.g. byte 0x12 might represent addition in one instance
of the VM, and multiplication in another), extra obfuscation
within certain instructions (e.g. for instructions which take

constant operands that are embedded in the instruction stream,
the constants themselves may be obfuscated), and x86-level
obfuscation upon the VM harness and each of its handlers.

C. Method of Circumvention

To truly break a virtualization obfuscator, we must convert
the protected code from the bytecode language back into
x86 machine code that resembles the original pre-protected
code, thereby removing the program’s dependency upon the
interpreter. Doing so allows us to apply standard program
analysis and reverse engineering techniques, such as testing the
sample against an anti-viral signatures database, or classifying
the sample according to its family [20].

One key observation behind circumventing virtualization
obfuscators is in remembering that they are interpreters. If we
had in our possession a compiler with a front-end accepting the
language of a particular sample and a back-end that produced
x86, we could re-compile the virtualized instructions back
into machine code. Another key observation is that, since
the virtualization obfuscator derives the language for each
individual sample from a template language, the languages
utilized by two different protected binaries will have many
similarities. Whereas deciding the syntax and semantics of a
language accepted by an interpreter may be difficult in general,
answering the same question knowing that the language is
derived from some particular known language family is more
easily tractible.

Combining these two observations, the plan for attacking
these protections is to create a back-end compiler infras-
tructure which translates some representation of the template
language into x86 code, and a mechanism for generating a
front-end for the compiler that is specific to the language
accepted by a protected sample.

1) Reverse engineer the virtual machine: This step must be
performed only once per virtualization obfuscator. A skilled
reverse engineer must examine the virtual machine to de-
termine the operations of which it is capable, design an
intermediate language (IR) that captures the semantics of the
language, and construct a translator which maps the the VM
bytecode operations into a sequence of intermediate language
instructions. [19] discusses a system that automatically extracts
certain information from an arbitrary instance of a virtual
machine, although more analysis is still required in order to
fully break the protection.

We shall use VMProtect [14] as our running example.
VMProtect’s language is stack-based and RISC. On entry to
the VM, in the x86 portion, VMProtect pushes the registers
and the flags onto the stack (in an order that is randomly
determined per sample). Inside of the VM bytecode program,
the first action is to pop all registers off of the stack and
store them into a 16-dword scratch area. Computations take
place upon the scratch area in lieu of upon the processor’s
registers. Upon exit of a VM bytecode program, the contents
of the scratch section are copied onto the host stack and
then restored into the processor registers in a manner that is
randomly determined per sample.

Two examples of VMProtect instructions follow. The first is
responsible for popping a word off of the stack ([ebp+0]),
adding the word to another word on the stack ([ebp+41]),
and pushing result and the flags onto the stack.

mov ax, [ebp+0]

sub ebp, 2

add [ebp+4], ax
pushf

pop dword ptr [ebp+0]

The second pops a dword and then a word off of the stack,
shifts the dword to the right by the word, and then pushes the
result and the flags onto the stack.

mov eax, [ebp+0]

mov cl, [ebpt4d]

sub ebp, 2

shr eax, cl

mov [ebp+4], eax
pushf

pop dword ptr [ebp+0]

When the VMProtect translator encounters an x86 instruc-
tion dictating that two words be added together, it will generate
bytecode that makes use of the aforementioned addition op-
code. For example, add ax, bx will translate into a fetch
of the bx register, a fetch of the ax register, the addition of
words opcode described above, an instruction to pop the flags
off of the stack and store them somewhere in the scratch area,
and finally an instruction to store the resultant word from the
stack into the ax register in the context structure.

VMProtect’s instruction set lacks many features in com-
parison with the x86 assembly language that it represents.
For example, it lacks bitwise exclusive-or, or, and, and not
instructions, as well as add with carry, subtraction, subtraction
with borrow, increment, decrement, unary negation, setting of
registers/memory with condition codes (setcc instructions),
conditional moves, and conditional jump instructions. All of
these features are implemented in terms of more primitive
operations.

For example, the NOR instruction takes two arguments
from the stack ([ebp+0] and [ebp+4]), negates them and
computes the bitwise-AND of the two.

mov eax, [ebp+0]
mov edx, [ebp+4]
not eax
not edx
and eax, edx
mov [ebp+4], eax
pushf
pop dword ptr [ebp+0]
This opcode is used to implement logical opera-
tions. For example, and eax, ebx is represented as

NOR(NOR(eax,eax) NOR(ebx,ebx)). Similarly, the add
instruction is used to implement the arithmetic instructions
previously mentioned.

Further, parts of the x86 instruction set such as the SIMD
instructions are not virtualized by VMProtect. When such
an instruction needs to be executed, VMProtect will exit the
bytecode program (restoring all flags and registers), jump to
a location containing the non-virtualized instruction, and then
re-enter the bytecode program.

2) Detect the locations at which control flow enters the
virtualization obfuscator: Detecting entrypoints into the VM
is a hard problem to solve statically: even assuming perfect
disassembly (in contradiction of [11]), the control transfers
into the VM look like any other control transfer. In practice,
however, it is easy for a reverse engineer to locate the
VM entrypoints, as it is usually obvious which portion of
the program is sensitive enough to require protection (e.g.,
encryption schemes). [19] shows that the transfers into the
VM can be detected through dynamic means.

3) Develop a procedure for producing a disassembler, given
a protected executable: Additionally to knowing the layout
of one instance of the virtualization interpreter, the reverse
engineer must also understand in which respects two different
derivations from the template language are the same, and how
they differ. VMProtect offers two flavors, both of which we
have evaluated: the demonstration version provided on the
author’s website, and the full version available to registered
customers. For the first, we were able to create samples
using the package provided by the author. For the second, a
collection of malware samples were obtained from an antivirus
industry partnership.

The files protected with the demonstration version were all
found to recognize almost entirely the same language. The x86
implementation of each VM opcode dispatcher was identical
across samples. The only differences were the orders in which
the registers were saved on VM entry and restored upon exit,
and the ordering of the dispatchers within the switch table.
Recognizing the variant of the language in this case is easy:
the dispatchers can simply be fingerprinted to decide which
switch case corresponds with which operation, and the register
save/restore sequences can be sliced out of the entry/exit
sequences.

The files protected with the registered version were found
to be rather different. First, the x86 implementation of the
VM and each of its opcode handlers were obfuscated differ-
ently from sample to sample. Meaningful instructions were
interleaved with ”junk” instructions that have no effect on the
legitimate computations. An example follows.

; insert junk here
[ebpt0]

junk here

mov eax,
; insert
mov eax, fs:[eax]
; insert junk here
mov [ebp+0], eax
; insert junk here

Secondly, the VM opcodes which took constant parame-
ters from the instruction stream (e.g. push 0h) had special
obfuscation: the handlers would load the constants from the

instruction stream and apply a series of arithmetic transfor-
mations thereto before using the value (e.g. before pushing it
onto the stack). These “constant obfuscations” were different
per sample. The first six lines of the following snippet are an
example of constant obfuscation.

neg al

ror al, 2

XOor al, 3%h

dec al

neg al

not al

movsx edx, al

mov edx, [ebp+0]
mov [edi+eax], edx

There were certain other cosmetic obfuscations: some sam-
ples would read the instruction stream backwards (e.g. decre-
menting EIP after each instruction rather than incrementing
it), some had further obfuscation in determining which byte
values corresponded to which handlers, and some obfuscated
the addresses of the VM instruction handlers.

To generate a disassembler, we must recognize the handlers
despite their obfuscation, and further recognize the obfuscation
in the handlers which take constant parameters, extracting the
sequence of arithmetic operations responsible for deobfuscat-
ing the constants.

This task turned out to be readily amenable to ad hoc
techniques. Since the obfuscation on the x86 representation of
the VM harness and dispatchers consisted of “junking” only
(insertion of random but harmless instructions between the
legitimate instructions belonging to the handlers) as opposed
to metamorphic obfuscation, every instruction which was
present in the non-obfuscated handler is present in its literal
form in the obfuscated handler. ([18] discusses a possible
solution for metamorphic obfuscation in the handlers, namely
deobfuscation of the x86 assembly representation via com-
piler optimizations.) Therefore, we can simply use regular
expressions upon the disassembly of the obfuscated handlers to
perform a comparison with the non-obfuscated handlers, and
choose the largest match. This method can be used for both
the evaluation version of VMProtect, which does not obfuscate
handlers, as well as the commercial versions.

With the opcodes thus identified, we can then perform
additional analysis for those handlers which take constants
from the instruction stream, to slice out their constant deobfus-
cation routines. In the example above, we simply apply slicing
techniques upon those instructions that modify the register al
to obtain the constant deobfuscation routine.

The current implementation of the VMProtect disassembler
generator is an IDA plugin, consisting of roughly SKLoC of
C++. It constructs OCaml source code for a disassembler that
converts raw bytes into VMProtect bytecode.

Recent research in program analysis ([21] in particular) pro-
vides a more robust method for identifying handlers without
constant obfuscations. By performing pure symbolic execution
upon the VM opcode handlers, we obtain a representation

Figure 1. Abstract syntax for the VMProtect IR

(

(

(binop) ==+ | < | > | Nor | Rel | Rer | + | Idiv | x | Imul

(expr) ::= Reg r | Temp t | Const c | Dereference seg expr
size | Binop expr binop expr | Unop unop expr

(ir) = Assign expr expr | Push expr | Pop expr | Jump
expr | x86Literal littype

of each handler as a mathematical function that is a map
from its input space (the VM context structure, VM EIP
and its surrounding bytes, and the program’s memory) into
the same space. By focusing on the transformation of one
state to another, we can ignore irrelevant details such as
those introduced through obfuscation (including metamorphic
obfuscation). We can then apply a theorem prover to determine
if the handler computes the same function as one of the
handlers that are known a priori. For handlers with constant
obfuscations, perhaps a TQBF solver could be used. We leave
these investigations to future work.

4) Disassemble the bytecode and convert it into interme-
diate code: With a custom disassembler in hand, we can
now disassemble the bytecode stream into a sequence of
VMProtect bytecode instructions. However, we find that the
disassembled code is hard to read due to the somewhat
complicated semantics of each VMProtect instruction. Since
VMProtect is a stack machine, all instructions either push or
pop data from the stack, and it can be complicated to track
the flow of data throughout a basic block (i.e. a value may
be pushed onto the stack dozens of instructions before it is
finally popped). Therefore, it is convenient to translate each
VMProtect instruction into a series of instructions in a simpler
language, so as to explicate all implicit operations (such as
pushes and pops).

The OCaml source code that converts the VMProtect byte-
code to intermediate representation is roughly 1000 lines of
OCaml. The abstract syntax for the intermediate language is
displayed in figure 1.

Here is one of the VMProtect bytecode handlers, and its
corresponding translation into the intermediate representation.

mov eax, [ebp+0] ;
mov eax, fs:[eax] ;

[ebpt01],

pop dword from stack
read dword from address

mov eax ; push dword onto stack

DeclareTemps ([(0,D); (1,D) 1)

Pop (Temp O0)

Assign (Temp 1,

Push (Temp 1)

Deref (FS, Temp 0, D))

We introduce temporary variables to ease the translation;
these variables are not actually part of the VMProtect instruc-
tion set nor the produced x86 code. We shall eliminate them
later with compiler optimizations.

5) Apply compiler optimizations to the IR: With the VM-
Protect bytecode suitably transformed, we can now apply

compiler optimizations locally to each basic block in order
to transform the intermediate representation into something
closer to x86. We begin with an unoptimized listing, immedi-
ately after translation into the intermediate language. The code
is what one would expect from a stack machine: nearly every
instruction is a push or a pop.

An unoptimized IR listing that we shall use as a running
example follows.

push Dword (-88)
push esp

push Dword (4)
pop t3

pop t4

th = t3 + t4
push tb5

push flags tb5
pop Scratch:[52]
pop t6

pop t7

t8 = t6 + t7
push t8

push flags t8
pop Scratch:[12]

pop esp

We apply a simple analysis to rid the IR of its stack machine
features. We scan the basic block from the beginning to the
end, maintaining a stack. For each push instruction that we
encounter, we make a note of the size of the push and the
instruction generating it. For each pop, we simply inspect the
bottom of the stack and note which instruction pushed the
value onto the stack. From here, we can eliminate the push/pop
pair and replace it with a direct assignment statement. The
resulting program resembles a more conventional listing.

t3 = Dword (4)

td = esp

t5 = t3 + t4

Scratch: [52] = flags t5
t6 = tb5

t7 = Dword(—88)

t8 = t6 + t7
Scratch:[12] = flags t8
esp = t8

Next, we apply the standard compiler optimizations copy
propagation and constant propagation to eliminate the tem-
porary variables; as a result, we have eliminated 80% of the
original IR, and are left with a very readable listing.

Scratch:[52] =
esp = esp - 84
Scratch:[12] =

flags 4 + esp

flags esp — 84

We perform copy propagation to decide which scratch areas
correspond to which registers. The result of optimizing the
running example is the single statement esp = esp - 84.

With the IR suitably transformed, we can now invert the

transformations concerning the bitwise and arithmetic instruc-
tions as described previously. We simplify expressions such as
nor (nor (eax, eax) ,nor (ebx, ebx)) into expressions
such as and eax, ebx.

A representative example of a fully-optimized block of
VMProtect IR follows. As can be readily seen, the listing
is virtually identical to x86 assembly language, with the
exception of the presence of assignment statements instead of
mov instruction, and explicit representation of the instructions’
effect on the flags.

push ebp
ebp = esp
push -1

push 4525664
push 4362952

eax = FS:[0]

push eax

FS:[0] = esp

eflags = flags esp - 84
esp = esp — 84

push ebx

push esi

push edi

SS: [ebp-24] = esp

call [4590300]

For comparison, the original code before it was protected
by VMProtect is reproduced below.

push ebp

mov ebp, esp

push OFFFFFFFFh

push 450E60h

push offset sub_4292C8

mov eax, large fs:0
push eax
mov large fs:0, esp
add esp, OFFFFFFA8h
push ebx
push esi
push edi
mov [ebp-18h], esp

call ds:[0460ADCh]

6) Generate x86 code: Code generation in this particular
application has several differences from the operations per-
formed by a regular compiler: we seek to generate code that
is as close to the original, pre-protected code as is possible. For
example, rather than choosing an arbitrary register allocation,
we are able to infer which registers should be used in each
operation through the compiler optimizations discussed previ-
ously. Additionally, since some of the VMProtect instructions
have no analogues in the x86 instruction set such as the nor
instruction, we seek to recognize the constructs built thereupon
and translate them directly into assembly language, as opposed
to compiling sequences involving nor constructs. Also, we
must generate instructions that are not typically considered by

standard compilers, such as the privileged instructions in and
out.

ITI. RELATED WORK
A. Automated unpacking in general

It is the simplistic model of protection discussed in the in-
troduction that has been targeted by previous work in this area.
Previous automated, generic unpackers assume that protections
will adhere to a simple model: namely, that there will be some
point in time where the executable is entirely unprotected in
memory, and that dumping the process image to the disk will
result in a functioning executable. The goal of these systems
is to monitor execution until the packed program has finished
executing its unpacking stub, at which point it is assumed to
be unprotected.

Automated unpackers produced heretofore can be divided
into two categories: those that take advantage of either pro-
cessor features and/or the operating system, and those based
on emulation. The archetypical example of an in-guest au-
tomated unpacker is OllyBonE [6]. OllyBonE uses a kernel
driver to simulate non-executable paging in software by taking
advantage of x86’s split instruction/data TLB organization, and
by coopting the pagefault handler. The general workflow is
very reminiscent of PaX [13]. This facility provides a semi-
automatedunpacker: the user manually selects the section in
which the program’s original code resides, and the driver will
trigger on all attempts to execute within that section.

Present-day automated unpackers such as Renovo [1], Saf-
fron [8], and Azure [9] vary as to their internal workings, but
the unifying idea behind them relies upon the simple notion of
protection given above. These tools automatically execute the
program (respectively under emulation, instrumentation, and
hypervision) until the program counter is resting at the original
entrypoint, at which point its unprotected code section is
written to the disk. The literature surrounding these three tools
does not mention executable recreation nor import rebuilding.

Renovo, as described in [1], is an automated unpacking
system based on dynamic taint analysis, using BitBlaze’s
TEMU [2] modification to QEMU [3]. The emulated x86
code is instrumented such that each memory write renders the
destination ’dirty’. If the instruction pointer ever resides over
dirty memory, the system considers the surrounding region to
be hidden code and dumps it to disk, along with the position of
the instruction pointer within the dumped region. It then resets
its clean/dirty bit-maps and continues emulation. Pandora’s
Bochs [10] is an unpacker based on Bochs [12] which employs
similar principles as Renovo, although it additionally attempts
to reconstruct working executables, including rebuilding im-
port information.

Azure [9] is a proof-of-concept tracing utility designed for
stealth, based on Intel’s VT hypervisor capabilities. Its litera-
ture describes its efficacy in tracing unpacking stubs through
to the original entrypoint undetected, and mentions that future
work will see an unpacking framework implemented around
it. Though its literature also indicates that it is capable of

unpacking Armadillo [4], it is unclear how a tracing framework
could break a multi-process protection such as that.

Anti-virus engines also have the goal of generically un-
packing theretofore unknown protections, for the purposes of
removing file-infecting viruses and also to be able to apply
signature-based or behavioral detections to the executables
underneath. These components are commonly constructed as a
combination x86 processor emulator and Windows operating
system emulator. Though on first glance this seems similar to
systems like Renovo or Pandora’s Bochs, the crucial difference
is that, whereas the latter provide a genuine copy of Windows
to the sample in consideration, the former provide only a
simplistic, emulated model of it. This design decision, while
sensible in light of real-world pressures such as resource
efficiency, renders antivirus emulators especially susceptible
to detection and evasion.

B. Unpacking virtualization obfuscators

Virtualization obfuscators have been examined in-depth
recently. Rolles first published techniques for removing simple
virtualization obfuscators in [15]. Shortly thereafter, Lau pub-
lished details about applying his mixed static and dynamic
tracing framework, DSD-Tracer, to analyzing virtualization
obfuscators in [16]. Rolles then published in [17] more com-
prehensive techniques for removing industrial-grade virtual-
ization obfuscators. [18] later discussed the use of compiler
optimizations applied directly to the assembly instructions
comprising the opcode dispatchers for the purpose of dis-
assembler generation. Lastly, [19] discusses automatically
extracting certain information from unknown virtualization
obfuscators.

REFERENCES

[1] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden Code
Extractor for Packed Executables. In Proc. of the 5Sth ACM Workshop
on Recurring Malcode, 2007.

[2] TEMU: The BitBlaze Dynamic
http://bitblaze.cs.berkeley.edu/temu.html.

[3] F. Bellard: QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the 2005 USENIX Conference, 2005.

[4] Silicon Realms Toolworks.
http://siliconrealms.com/index.shtml

[S] Themida. http://www.oreans.com/

[6] OllyBonE. http://www.joestewart.org/ollybone/

[7]1 R. E. Rolles: Defeating HyperUnpackMe2 with an IDA Processor Mod-
ule. http://www.openrce.org/articles/full_view/28

[8] D. Quist and V. Smith: Covert Debugging: Circumventing Software
Armoring Techniques. In Black Hat Briefings USA, August 2007.

[9] P. Royal: Alternative Medicine: The Malware Analyst’s Blue Pill. In
Black Hat Briefings USA, August 2008.

[10] L. Boehne: Pandora’s Bochs: Automated Unpacking of Malware.
Diploma thesis. January 2008.

[11] R. N. Horspool, N. Marovac: An Approach to the Problem of Detrans-
lation of Computer Programs. In Comput. J. 23(3): pages 223-229, 1980.

[12] Bochs: The Open Source 1A-32 Emulation Project.
http://bochs.sourceforge.net/

[13] The PaX Team. Pax. http://pax.grsecurity.net/

[14] VMPSoft. VMProtect. http://www.vmprotect.ru/

[15] R. E. Rolles: Compiler 1, X86 Virtualizer 0. April 4th, 2008.
http://www.openrce.org/blog/view/1110/

[16] Dealing with Virtualization Packer. In CARO Conference, Amsterdam,
May 2nd, 2008.

[17] R. E. Rolles: Unpacking VMProtect.
http://www.openrce.org/blog/view/1238/

Analysis Component.

Armadillo.

August 6th, 2008.

[18] _g_: Fighting Oreans’ VM (code virtualizer flavour). August 19th, 2008.
http://www.woodmann.com/forum/showthread.php?t=12015

[19] M. Sharif, A. Lanzi, J. Giffin, W. Lee. Automatic Reverse Engineering
of Malware Emulators. In Proc. of the 30th IEEE Symposium on Security
and Privacy, 2009.

[20] Zynamics GmbH. http://www.zynamics.com/vxclass.html

[21] D. Gao, M. K. Reiter and D. Song. BinHunt: Automatically Finding
Semantic Differences in Binary Programs. In Proc. of the 4th International
Conference on Information Systems Security, December 2008.

