
A Precise Memory Model
for Low-Level Bounded Model Checking

Carsten Sinz Stephan Falke Florian Merz
Institute for Theoretical Computer Science

Karlsruhe Institute of Technology (KIT), Germany
{carsten.sinz, stephan.falke, florian.merz}@kit.edu

Abstract—Formalizing the semantics of programming
languages like C or C++ for bounded model checking
can be cumbersome if complete coverage of all language
features is to be achieved. On the other hand, low-level
languages that occur during translation (compilation) have
a much simpler semantics since they are closer to the
machine level. It thus makes sense to use these low-level
languages for bounded model checking. In this paper
we present a highly precise memory model suitable for
bounded model checking of such low-level languages. Our
method also takes memory protection (malloc/free) into
account.

I. INTRODUCTION

Bounded model checking (BMC) has proven to be a
very successful technique in hardware verification [10].
More recently, it has also been applied for verifying
software written in C [6], [14]. Applying BMC for ver-
ifying C programs, however, comes with many obstacles
that have to be tackled. One of the most important
differences is that the syntax (and thus semantics) of
a programming language like C is much more compli-
cated than a hardware description. One has to deal, e.g.,
with memory allocation, (function) pointers, complex
data structures, and function calls. Going from C to
C++ complicates things even further. To analyze a line
of C++ source code like

complex i(0.0,-1.0), a = 2.0 + i;

may involve constructors, overloaded operators, and
user-defined conversion functions. Thus, the precise
semantics of such a statement can only be determined
by taking further parts of the source code into account.

We therefore propose a new approach which, instead
of exploring the source code directly, makes use of
existing compiler technology and performs the analysis
on an assembler-like compiler intermediate language
instead. Such an intermediate language offers a much
simpler syntax (and semantics), and thus eases a logical
encoding of the verification problem considerably.

This work was supported in part by the “Concept for the Future”
of Karlsruhe Institute of Technology within the framework of the
German Excellence Initiative.

We have chosen the LLVM (Low Level Virtual
Machine) [15] compiler infrastructure and its abstract
assembler intermediate language as the starting point
for our approach, but the idea can also be applied
to other low-level languages. LLVM is both a (GCC-
compatible) C/C++/Objective-C compiler and a library
of compiler technologies, providing, e.g., source and
target-independent optimizations.

The intermediate language of the LLVM framework is
a typed, assembler-like language for a register machine
(mainly three-address-code instructions working on an
unbounded number of registers), offering static single
assignment (SSA) form for scalar values (see Fig. 6 for
an example of LLVM’s intermediate language). LLVM’s
optimization features and its machine model (unlimited
number of registers, SSA form) make it especially
suitable for program analysis using BMC.

Our primary goal is to detect memory errors in C
code. Memory errors include invalid memory accesses
(reads or writes to memory locations that have not
been allocated before), heap and stack buffer overflows,
memory leaks, and invalid frees (e.g., double frees).

The overall structure of our BMC approach is de-
picted in Fig. 1. It makes use of the LLVM com-
piler front end and an SMT solver that handles the
generated decision problems. Encoding program checks
requires a transformation from the abstract assembler
intermediate language into the logic of bit-vectors and
arrays. Furthermore, a memory model which captures
the semantics of memory accesses in C is needed at
this point. The present paper mainly deals with how
such a memory model can be constructed.

II. BASIC NOTIONS

A. Software Bounded Model Checking

Let us briefly recapitulate the main ideas of bounded
model checking of software. Software inherently deals
with unbounded data structures such as linked lists
or trees, and may give rise to infinite program runs
(e.g. in reactive or interactive systems). In general
checking properties of such programs is undecidable.
Bounded model checking thus limits all program runs

Program
Source Code

Abstract
Assembler

Representation
Bit-Vector Logic

with Arrays
Verification

Result / Error
Trace

LLVM Compiler
Frontend

Transformed
Assembler

Representation

Loop Unrolling /
Function Inlining Logical Encoding SMT Solver

Memory
Model

Fig. 1. Overview of our approach for low-level bounded model checking of C programs.

and data structures to finite ones, thereby achieving
decidability. This is accomplished by analyzing only
bounded program runs. The bound is typically imposed
by restricting the number of nested function calls and
loop iterations that are allowed. By considering only
finite program runs, affected data structures also become
finite. Function inlining and loop unrolling then results
in one (rather large) function that is subject to verifica-
tion.

In BMC, properties of a program are typically for-
malized using assume/assert statements, where an
assume statement, inserted at some location in the
program, formulates a pre-condition that is assumed to
hold at this location: all program runs not satisfying this
condition are cut off at the assume statement, hence
the term bounded model checking. Similarly, assert
statements encode post-conditions, i.e. properties that
have to hold at the respective location. Assertions that
do not hold constitute errors in the program.

B. LLVM Intermediate Representation

A program in LLVM abstract assembler consists of
type definitions, global variable declarations, and the
program itself, represented as a graph of basic blocks
(see Fig. 6 for an example of an LLVM program). Each
basic block is a list of instructions; (possibly condi-
tional) jumps are only allowed as the last instruction of
each block. The jump (or branch) instructions between
basic blocks induce the basic block graph (Fig. 2 depicts
it for the LLVM program in Fig. 6). We annotate edges
in the basic block graph with the condition under which
the transition between the two blocks is taken.1

For our purpose, LLVM instructions can be catego-
rized into six classes:
• Three-address-code (TAC) instructions working on

registers or constants, like r2 = add i32 r1, 5.
• Memory access and allocation instructions, namely
load, store, malloc, and free.

1If an edge possesses no label, the transition is always taken.

entry

if.then

if.end

c1

¬c1

Fig. 2. Basic block graph for the program in Fig. 6.

• Address calculations using getelementptr.
• Branch and phi instructions.
• Function calls.
• Auxiliary instructions like type casts (type casts do

not change the bit-level representation of the data).
Programs in LLVM assembler are in static single

assignment (SSA) form, i.e. each (scalar) variable is
assigned exactly once. Assignments to scalar variables
can thus be treated as logical equivalences.

Variables in LLVM assembler are typed. Available
types include integer types (like i32; the bit-width is
given explicitly, but no distinction between signed and
unsigned integers is made), floating-point types, and
derived types (encompassing pointer, function, array,
structure and union types). Aggregate types (struc-
tures, arrays, and unions) are accessed using memory
read/write operations and offset calculations using the
getelementptr instruction. Thus having a memory
model for read and write operations and a translation
for the getelementptr instruction is sufficient for
handling all aggregate types.

Function inlining and loop unrolling can be accom-
plished using code provided by the LLVM libraries.
Notice that the basic block graph becomes a DAG after
loop unrolling.

To report error traces back to the user, we employ
debug information generated by LLVM.

C. Logical Encoding

We now describe how an LLVM program can be
transformed into a formula in the logic of bit-vectors
and arrays. The most complex part of this transforma-
tion is the translation of memory instructions, which
will be described in detail in the next section. How the
remaining instructions are handled is explained in the
following.

Translation of three-address-code LLVM instructions
is straightforward since these instructions (like, e.g.,
add, cmp, mul, sign or zero extension) are supported
by SMT solvers and assignments can be regarded as
equalities due to the use of SSA form.

1) Handling of phi Instructions: phi instructions
are a common tool in compiler technology when us-
ing static single assignment form. They are used to
select the correct value for a variable out of a set of
previous ones (e.g., when control merges again after an
if-then-else statement; see Fig. 6 for an example). In
general, a phi instruction has the form

i′ = phi [i1, c1] . . . [in, cn]

where the value of variable i′ takes one of the values
of i1, . . . , in depending on which of the conditions
c1, . . . , cn is true. The conditions cj are mutually ex-
clusive and cover all possible cases such that the value
of i′ is always uniquely determined.

A phi instruction can be translated into a sequence of
ITE (if-then-else) operators (written in C syntax), which
are also supported by SMT solvers:

i′ = c1 ? i1 : (c2 ? i2 : (. . . (cn−1 ? in−1 : in) . . .))

What complicates matters slightly when using LLVM
is that in the assembler intermediate representation
the conditions cj are not given explicitly in the phi

instructions, but basic blocks are used as designators
instead. The basic blocks refer to the predecessor in
the basic block graph from which the current basic
block has been entered (see Fig. 6 for an example).
We thus have to compute the conditions cj for each
basic block of a phi instruction. This is accomplished
as follows. With each basic block b we associate an
execution condition cexec(b). The execution condition
can be calculated recursively. Let us denote by P (b)
the set of predecessors of b in the basic block graph,
and by t(b, b′) the condition under which the transition
from basic block b to b′ is taken (the edge label of the
basic block graph). Then

cexec(b) =
∨

b̂∈P (b)

(
cexec(b̂) ∧ t(b̂, b)

)
if P (b) 6= ∅, and cexec(b) = true otherwise. We can
then replace the basic block b̂ in a phi instruction occur-
ring in basic block b by the condition cexec(b̂)∧ t(b̂, b).

Notice that each definition of cexec(b) requires only
linear space in the number of predecessors of the basic
block b since we do not unroll the recursive definition
but introduce a new Boolean (one-bit) variable for each
cexec(b) and t(b, b′) instead.

2) The getelementptr Instruction: This instruction
has the form q = getelementptr p, o1, . . . , ok, where
p, q are pointers, and the oi’s are offsets. The offsets
are either array indices or select the indicated element
of a structure. In our translation, the getelementptr

instruction is simply transformed into a linear equation
q = p + o1 · S1 + · · · + ok · Sk, where the constant
multiplicands Si can be computed easily based on the
data type definitions and the type of pointer p.

3) Elimination of Branches: With the introduction of
phi instructions and SSA form, branches are no longer
needed. This is, however, only true if all instructions
are in SSA form (and are thus state-independent).
Since memory accesses (load/store) are still state-
dependent, we have to remove these dependencies in
order to eliminate branches completely. How this is
accomplished is discussed in the next section.

III. A C-LIKE MEMORY MODEL FOR LLVM

The aim of the memory model is to capture the C
semantics as precisely as possible.2 We thus do not
employ a typed memory model (as, e.g., suggested by
Cohen et al. [7]), but an untyped one, where arbi-
trary data can be read from any valid address. Such
an untyped memory model supports constructs which
commonly occur in low-level C code, e.g. casting a
block of memory containing a structure to a byte-array
for writing it to disk or sending it over the network.

In our approach memory is thus just an array of
bytes. Stores and loads (of data with arbitrary size) are
accomplished by a sequence of reads and writes to the
memory array on the logic level. E.g., reading a 16 bit
integer (x, say) from address p is encoded as

x = read16(m, p)

which is then converted into

x0..7 = read(m, p) ∧ x8..15 = read(m, p+ 1)

where m is the memory array, and xi..j stands for
bits i to j of bit-vector x. At this point, a decision
has to be made whether a little-endian or big-endian
architecture is analyzed (we have assumed little-endian
in our example).

The logical encoding uses the theory of arrays and
thereby makes the state dependency of loads and stores

2In this paper, we only consider memory consistency checks
for heap-allocated memory. Checks for global variables and stack-
allocated memory can be handled similarly, however.

explicit. An instruction like store i32 5, p is con-
verted into an array update with explicit mentioning of
the modified (memory) array, resulting in the equation
m′ = write(m, p, 5), where m′ is the modified array
after the write operation.

The memory model also has to keep track of allocated
memory blocks, as access to un-allocated addresses is
considered invalid. We therefore introduce a memory
state type called mem which adds this information to the
byte array.

m0

m1

m8

m7

m6

m5

m4

m3

m2

m9

m1 = malloc(m0, p, 8)

m2 = store(m1, p, 5)

m3 = store(m2, pn, NULL)

m4 = malloc(m3, q, 8)

m5 = store(m4, q, 5)

m6 = store(m5, qn, p)

m8 = free(m7, q0)

m9 = free(m8, p)

m7 = phi [m6,c1] [m3, ¬c1]

Fig. 3. Memory modification graph for the program in Fig. 6.

The type mem is abstract in the sense that we do not
maintain an explicit representation of allocated memory
blocks. Instead, we keep track of allocated and freed
memory regions by means of the history or evolution
of the memory state. We therefore introduce a memory
modification graph, which consists of memory states
as nodes, and two memory states are connected if a
memory modification (write, malloc, or free) on the
source state results in the target state (see Fig. 3 for
an example). We also introduce phi nodes for memory
states in this graph, which serve the same purpose as
ordinary phi instructions for scalar values.

Fig. 7 (left) shows the encoding of our example

program (Fig. 6) with explicit memory state transfor-
mations.3

A. Encoding Memory Constraints

Based on the memory modification graph we are now
able to construct memory consistency constraints. Our
goal is to encode memory consistency checks of the
following kind:

1) Valid reads/writes (i.e. they affect only allocated
memory).

2) Valid frees (i.e. the pointer given as a parameter to
a free instruction points to the start of a currently
allocated memory block).

3) No double frees (i.e. no memory is de-allocated
twice).

4) No memory leaks (i.e. all allocated heap memory
is de-allocated when the program ends).

We use malloc and free instructions with signatures

m′ = malloc(m, p, s) and
m′ = free(m, p)

where m, m′ are memory states, p is a pointer, and s is
the size (in bytes) of the memory block to be allocated.
The signature of the malloc instruction seems a bit
unusual, as it takes the pointer p as a parameter. We use
the malloc instruction in such a way that it is always
preceded by a new pointer variable declaration for p,
and malloc adds suitable constraints to this pointer.
The memory state m′ returned by malloc can then be
considered as having these constraints added. Notice
that malloc instructions may also fail (if sufficient
memory is not available); the pointer p is then set to
NULL. The free instruction modifies the memory state
in such a way that the (currently allocated) memory
block starting at address p is deallocated. A NULL

pointer may also be passed to free, the instruction then
has no effect.

To formulate the memory constraints we introduce
further notation. For two memory states, m and m′,
by m � m′ we denote that there is a path from
m to m′ in the memory modification graph. For a
memory-modifying instruction I we write cexec(I) for
the execution condition of the basic block that I belongs
to. With these notions, we can define predicates on
the memory state (the formulas for these predicates are
given in Fig. 4):

• valid mem access(m, p, s) denotes whether ac-
cess to the memory range p, . . . , p + s − 1 in
memory state m is admissible.

3Basic block annotations such as their execution conditions are still
needed in order to formulate memory constraints, as we will see later.

valid mem access(m, p, s) ≡
∨

m′�m
I: m′= malloc(m̂,q,t)

(
cexec(I) ∧ q 6= NULL ∧ (q ≤ p ≤ q + t− s) ∧ ¬deallocated(m′,m, q)

)

deallocated(m,m′, p) ≡
∨

m�m∗�m′
I: m∗= free(m̂∗,q)

(
cexec(I) ∧ p = q

)

non overlap(p, s, q, t) ≡ (p+ s ≤ q) ∨ (q + t ≤ p)

malloc assumption(m, p, s) ≡ p = NULL ∨
[
(p ≥ MEM MIN ∧ p+ s− 1 ≤ MEM MAX) ∧∧

m′�m
I: m′= malloc(m̂,q,t)

(
cexec(I) ∧ q 6= NULL ∧ ¬deallocated(m′,m, q) =⇒

non overlap(p, s, q, t)
)]

valid free(m, p) ≡ p = NULL ∨
∨

m′�m
I: m′= malloc(m̂,q,t)

(
cexec(I) ∧ p = q ∧ ¬deallocated(m′,m, q)

)

no memory leaks(m) ≡
∧

m′�m
I: m′= malloc(m̂,p,s)

[
cexec(I) =⇒

∨
m′�m∗�m

J: m∗=free(m̂∗,q)

(
cexec(J) ∧ p = q

)]

Fig. 4. Memory consistency predicates.

• deallocated(m,m′, p) denotes whether the
memory block starting at address p is deallocated
(freed) between memory states m and m′.

• non overlap(p, s, q, t) denotes that the memory
ranges p, . . . , p+ s− 1 and q, . . . , q+ t− 1 do not
overlap.

• malloc assumption(m, p, s) denotes the as-
sumptions that can be made on pointer p after a
malloc instruction that produced memory state m
has been executed.

• valid free(m, p) denotes that a free instruction
on pointer p in memory state m is admissible. This
includes two aspects: first, the memory region must
have been allocated before and, second, it must not
have been deallocated prior to this free instruction
(i.e., not double free occurs).

• no memory leaks(m) expresses that in memory
state m all heap-allocated memory has been deal-
located again.

Having these definitions, memory checks can be
formalized as follows.

1) Valid Reads and Writes: For this check, we first
add an assume(malloc assumption(m′, p, s)) state-
ment after each m′ = malloc(m, p, s) instruction. Then
we add assert(valid mem access(m, p, s)) before
each m′ = write(m, p, x) and x = read(m, p)
instruction, where s is the size in bytes of the data
to be read or written. Having processed all mallocs,
reads and writes, the malloc and free instructions
can be removed by replacing m′ = malloc(m, p, s) by
m′ = m, and similarly for frees.

In order to illustrate our formalization, we compute

the malloc assumption for the second malloc in-
struction in our example program (see Fig. 7):

malloc assumption(m4, q, 8)

≡ q = NULL ∨ (q ≥ MEM MIN ∧ q + 7 ≤ MEM MAX) ∧
(p 6= NULL =⇒ (q + 8 ≤ p ∨ p+ 8 ≤ q))

Here, by MEM MIN and MEM MAX we denote the minimal
and maximal addresses of valid heap space. By drop-
ping the tests for pointer-equality with NULL, unfailing
malloc instructions can be modelled.

As a further example, we give a computation of
valid mem access (for the last read instruction in
our example program):

valid mem access(m7, q0, 4)

≡ (p 6= NULL ∧ (p ≤ q0 ≤ p+ 4)) ∨
(c1 ∧ q 6= NULL ∧ (q ≤ q0 ≤ q + 4))

≡ (p 6= NULL ∧ (c1 ⇒ p ≤ q ≤ p+ 4)) ∨
(c1 ∧ q 6= NULL)

To obtain the second equivalence (which is mainly
for illustration purposes on expression simplification)
we have used equality reasoning (using the equation
q0 = (c1 ? q : p)), if-lifting and Boolean simplification.
Assuming non-failing mallocs, the formula can be
simplified further, as we then have (c1 ⇒ p ≤ q ≤
p+4) ∨ c1, which is equivalent to true and thus shows
that this read instruction never produces an invalid
memory access error.

The result of this transformation on our example—
under the assumption of non-failing mallocs—is de-
picted in Fig. 7 in the middle.

2) Valid Frees and No Double Frees: A free is
only valid if the address passed to it has been al-
located in a prior malloc instruction and the mem-
ory region has not been deallocated before. Similar
to the check for valid reads and writes, we first add
assume statements with malloc assumptions. Then
we add assert(valid free(m, p)) before each m′ =
free(m, p) instruction.

3) No Memory Leaks: For simplicity, we assume that
only one return statement is present in the LLVM
code. This can always be ensured by using an op-
timization pass already available in LLVM. The last
memory state before the return statement is marked
as finalmem. For this memory state mf we add
the assertion assert(no memory leaks(mf)). As for
the other tests, the memory allocation assumptions
(malloc assumption) also have to be added.

4) Encoding Assumes and Asserts: The final step in
our translation into the logic of bit-vector and arrays
is an encoding of assumes and asserts, which also
eliminates the execution conditions for basic blocks.

In general, the formula we want to check for validity
(expressing that the program contains no memory error)
has the form

Pre ∧ Prog =⇒ Post

Here Pre encodes the pre-conditions (i.e. the assumes),
Prog is an encoding of the LLVM assembler program
instructions, and Post are the post-conditions, i.e. a
conjunction of the asserts.

This formula has to be negated since SMT solvers
check for satisfiability instead of validity, resulting in

Pre ∧ Prog ∧ ¬Post

as the input formula for the SMT solver.
For pre- and post-conditions we have to add the exe-

cution conditions of the basic blocks they belong to, as
these conditions only have to hold when their respective
basic block is executed. This results in the formula
cexec(I) =⇒ Fα for an assume(Fα) statement with
execution condition cexec(I). For each assert(Fω)
statement (with execution condition cexec(J)) we in-
troduce a new Boolean (1-bit) variable ai together with
a definition ai = (cexec(J) =⇒ Fω) to the formula
we want to check for satisfiability. Finally, we add the
constraint ¬(

∧
i ai) to our formula. This completes the

transformation of LLVM programs to the logic of bit-
vectors and arrays. Notice that after we have introduced
the memory consistency constraints, the array accesses
(read/write) have the usual array semantics, and no
additional, “hidden” assumptions on memory access
validity remain.

The result of this transformation on our example
program is shown in Fig. 7 on the right.

B. Complexity

In this section we analyze the complexity of the
memory consistency checks by giving size constraints
on the formulas generated for each test. The size mainly
depends on the number of memory instructions that
occur in the program. For a rough estimate of the worst
case complexity we assume that there are R read or
write instructions in the program, M memory alloca-
tion instructions (malloc), and F free instructions.

For the memory consistency tests the complexity then
is as follows:
• Valid reads and writes: O(R · M · F + M2 ·

F), as for each read/write access the formula
valid mem access, and for each malloc the
formula malloc assumption has to be generated.

• Valid frees and no double-frees: O(F 2 · M +
M2 · F), as for each free instruction the formulas
valid free and malloc assumption have to be
generated.

• No memory leaks: O(M2 ·F), as both the formulas
no memory leaks and malloc assumption

have to be generated, and the size of
malloc assumption dominates the size of
no memory leaks.

As typically the number of malloc and free in-
structions make only a small fraction of all program
instructions, the complexity is acceptable for many
practical cases. Under the assumption that the number
of allocations/frees is bounded by a constant, the com-
plexities even become linear (for the test on valid reads
and writes) or constant (for all other tests).

IV. OPTIMIZATIONS

The encoding presented in the last section can be
optimized in several ways, partly without imposing re-
strictions, and in part with slight additional assumptions.

A. Optimizing Memory Overlapping Constraints

As these constraints (having worst-case complexity
O(M2 · F)) dominate the size of the encoding for
many checks, optimizing them has a huge potential for
improving scalability.

One way to do this is to map allocated mem-
ory regions to fixed addresses such that the non-
overlapping property is guaranteed by construction and
non-overlapping-constraints are not needed at all.4 This
can be done under two assumptions:

1) No comparisons between pointers of different
memory regions are made. (If such comparisons
do occur, they should always evaluate to false.)

4Keeping track of the allocation status of the memory regions can
be accomplished, e.g., by using an additional bit-array.

2) Memory space is sufficient to allow allocation of
all memory regions “in advance”.

The first assumption can be ascertained by keeping track
of the memory block(s) each pointer can reference, and
generating suitable constraints on each pointer compar-
ison. The second assumption holds for many programs,
as long as they do not frequently allocate/deallocate
large memory blocks. Notice that with a 64-bit mem-
ory architecture such an adversary situation practically
never occurs.

B. Tracking Memory Regions for Pointers

In LLVM assembler, pointers are modified mainly
using the getelementptr instruction, where offsets are
added to existing pointers. This makes it possible to
trace back the origin (memory region) of a pointer.5

Notice that phi instructions may introduce multiple
origins for a pointer.

Based on the origins of a pointer, the big disjunctions
and conjunctions of the memory predicates (Fig. 4) can
be simplified, by taking only pointers with a non-empty
intersection with the set of origins of the test pointer
into account.

The set of origins of a pointer can also be used
to reduce the number of (Ackermann) constraints for
functional consistency that are needed for the logic
encoding of the memory array within the SMT solver.

C. Rewriting and Simple Decision Procedures

By using rewriting (substitution in equations) and
simple decision procedures (linear arithmetic, if-lifting,
Boolean simplification), many memory consistency
checks can be handled in advance without having to
invoke the SMT solver (see the Appendix for an exam-
ple of such a simplification).

V. RELATED WORK

Bounded model checking of C programs has been
considered before. The well-known tool CBMC [6]
reduces the problem to propositional logic instead of the
logic of bit-vectors and arrays. Therefore, the formulas
that need to be checked by a SAT solver have a much
bigger size than the formulas that need to be checked
by an SMT solver. Similarly, the tool F-Soft [14]
generates formulas that are checked by a SAT solver.
The use of SMT solvers for bounded model checking
of C programs has been investigated in [1]. According
to their evaluation, the use of SMT solvers typically
outperforms the use of SAT solvers.

In these papers ([6], [14], [1]) no details are given
on the employed memory models, however. On the

5Type casting arbitrary integers to pointers may undermine this
possibility. Checks for such “invalid” casts would need to be added.

other hand, several low-level memory models6 for C-
like languages have been proposed in the past ([19],
[16], [7], [5], [13]). None of them deals with the
combination of automated verification using bounded
model checking and low-level compiler intermediate
languages. Furthermore, they do not emphasize memory
protection (or ignore it completely).

Tuch at al. [19], [18] discuss a typed memory model
in the context of interactive theorem proving with the
proof assistant Isabelle/HOL. It is shown that this typed
memory model is sound with respect to the untyped
memory model assumed by C.

The memory model presented by Leroy and Blazy
[16] is similar to our model and considers load, store,
malloc, and free instructions. While the disjointness
of memory blocks allocated by separate malloc in-
structions is guaranteed, no such separation for accesses
performed within the same memory block is ensured
(e.g. accesses to different members of a structure).
Leroy and Blazy prove properties of their memory
model using the proof assistant Coq (such as semantic
preservation of compiler passes).

Cohen et al. [7] introduce a typed memory model
similar to [19] for a C-like toy programming language
and show that this typed memory model is sound with
respect to the untyped memory model assumed by C.
They support pointer arithmetic and memory access
(load and store instructions) at arbitrary locations in
the memory, but do not consider memory protection
(malloc and free instructions).

Gast [13] gives a formalism for reasoning about mem-
ory layouts of C programs. Proof obligations are formu-
lated in Hoare logic and verified using Isabelle/HOL.

The memory model used in HAVOC is presented in
[5]. HAVOC uses a reachability predicate based on the
memory model in order to reason about heap-based data
structures, but does not support memory protection.

Approaches using an intermediate language, like
LLVM in our case, have also been proposed before,
often in the realm of Java program verification, where
Java Bytecode serves as a standardized, well-defined
language (see, e.g., [20]). Another example is Mi-
crosoft’s BoogiePL which is used as an intermediate
language for verifying Spec# programs [3].

VI. CONCLUSION

We have presented an approach for low-level bounded
model checking of C programs that is based on the
LLVM compiler front end and makes use of an SMT
solver. Thus we are able to start the logical encoding
not on the C source code level, but on the compiler

6In a low-level memory model the memory is not much more than
an array of bytes and suitable disjointness or consistency conditions
are stated explicitly.

intermediate language instead. This simplifies a map-
ping to the input language of an SMT solver (the logic
of bit-vectors and arrays) considerably and results in a
precise and simple modeling for all of C’s programming
constructs.

In this paper we have concentrated on formalizing
memory consistency constraints and have given en-
codings for valid reads and writes, valid frees, and
avoidance of double frees and memory leaks. Checking
such constraints is important for finding residual bugs
like, e.g., stack or heap buffer overflows, which are the
predominant cause of security vulnerabilities.7

We are currently implementing the method proposed
in this paper in the tool LLBMC which uses the SMT
solver Boolector [4] as a back-end solver. First empirical
results obtained on various test cases are quite encourag-
ing, e.g., the double-free bug contained in the C program
described in the Appendix is discovered within fractions
of a second.

APPENDIX

In this appendix we give an example of how our
method works on a small C program. The input program
is shown in Fig. 5, which, in a first step, is translated by
the LLVM front-end to abstract assembler. The LLVM
code is shown in Fig. 6.

1 s t r u c t S {
2 i n t x ;
3 s t r u c t S ∗n ;
4 } ;
5

6 i n t main (i n t argc , char ∗a rgv []) {
7 s t r u c t S ∗p , ∗q ;
8

9 p = ma l lo c (s i z e o f (s t r u c t S)) ;
10 p−>x = 5 ;
11 p−>n = NULL;
12

13 i f (a r g c > 1) {
14 q = m a l lo c (s i z e o f (s t r u c t S)) ;
15 q−>x = 5 ;
16 q−>n = p ;
17 } e l s e {
18 q = p ;
19 }
20

21 l l b m c a s s e r t (p−>x + q−>x == 1 0) ;
22

23 f r e e (q) ;
24 f r e e (p) ;
25

26 re turn 0 ;
27 }

Fig. 5. C program that is to be checked for correct memory accesses.

The LLVM code consists of a type definition section,
followed by the translation of the main function. This
translation was done for a 32-bit architecture, thus

7According to the Vulnerability Type Distributions in CVE Report
of CVE-MITRE, 2007 (http://cwe.mitre.org/documents/vuln-trends/
vuln-trends.pdf).

%s t r u c t . S = t y p e { i32 , %s t r u c t . S∗ }

d e f i n e i 3 2 @main (i 3 2 %argc , i 8∗∗ %argv) {
e n t r y :

%0 = c a l l i 8∗ @malloc (i 3 2 8)
%p = b i t c a s t i 8∗ %0 t o %s t r u c t . S∗
%px = g e t e l e m e n t p t r %s t r u c t . S∗ %p , i 3 2 0 , i 3 2 0
s t o r e i 3 2 5 , i 3 2∗ %px

%pn = g e t e l e m e n t p t r %s t r u c t . S∗ %p , i 3 2 0 , i 3 2 1
s t o r e %s t r u c t . S∗ n u l l , %s t r u c t . S∗∗ %pn

%c1 = icmp s g t i 3 2 %argc , 1
b r i 1 %c1 , l a b e l %i f . then , l a b e l %i f . end

i f . t h e n :
%1 = c a l l i 8∗ @malloc (i 3 2 8)
%q = b i t c a s t i 8∗ %1 t o %s t r u c t . S∗
%qx = g e t e l e m e n t p t r %s t r u c t . S∗ %q , i 3 2 0 , i 3 2 0
s t o r e i 3 2 5 , i 3 2∗ %qx

%qn = g e t e l e m e n t p t r %s t r u c t . S∗ %q , i 3 2 0 , i 3 2 1
s t o r e %s t r u c t . S∗ %p , %s t r u c t . S∗∗ %qn
br l a b e l %i f . end

i f . end :
%q0 = p h i %s t r u c t . S∗ [%q , %i f . t h e n] , [%p , %e n t r y]
%q0x = g e t e l e m e n t p t r %s t r u c t . S∗ %q0 , i 3 2 0 , i 3 2 0
%2 = l o a d i 3 2∗ %px
%3 = l o a d i 3 2∗ %q0x
%4 = add i 3 2 %2, %3
%c2 = icmp eq i 3 2 %4, 10
c a l l vo id @ l l b m c a s s e r t (i 3 2 %c2)
%5 = b i t c a s t %s t r u c t . S∗ %q0 t o i 8∗
c a l l vo id @free (i 8∗ %5)
%6 = b i t c a s t %s t r u c t . S∗ %p t o i 8∗
c a l l vo id @free (i 8∗ %p)
r e t i 3 2 0

}

Fig. 6. LLVM’s abstract assembler (intermediate representation) code
for the example C program of Fig. 5.

integers are 32-bit. The code for the main function
consists of three basic blocks, where the assignment
q = p from the else-branch of the C program (lines
17–19) has been moved to the phi instruction.

Different steps in the translation of the LLVM inter-
mediate code to a formula in the logic of bit-vectors
and arrays, where memory consistency constraints have
also been added, are shown in Fig. 7. On the left, basic
blocks are still present (and annotated with execution
conditions), but branches (or jumps) have been re-
moved; the memory model’s constraints are “hidden” in
the memory state type mem. In the middle, memory con-
straints (via assume and assert statements) checking
validity of all reads, writes, and frees have been added
(according to Sec. III-A, where memory leak checks
have been omitted in order to simplify presentation);
the basic block structure is still present. On the right,
assumes and asserts have been encoded (resulting
in eight new, Boolean assertion variables a1, . . . , a8);
in this formula reads and writes have ordinary array
semantics, and thus it can be passed to an SMT solver.

Using simplification as in Sec. IV-C, all memory read
and write assertions can be shown to hold and only the
simplified assertion for the second free and the initial
assertion, given in the C program in line 21, remain (see
Fig. 8). This formula is satisfiable, and setting argc to 1
reveals the double free bug contained in the C program.

entry: [c_exec: T]
mem m0 = initialmem()
ptr p = nondet()
mem m1 = malloc(m0, p, 8)
mem m2 = write32(m1, p, 5)
ptr pn = p + 4
m3 = write32(m2, pn, NULL)
bool c1 = (argc > 1)

if.then: [c_exec: c1]
ptr q = nondet()
mem m4 = malloc(m3, q, 8)
mem m5 = write32(m4, q, 5)
ptr qn = q + 4
mem m6 = write32(m5, qn, p)

if.end: [c_exec: T]
ptr q0 = (c1 ? q : p)
mem m7 = (c1 ? m6 : m3)
i32 px = read32(m7, p)
i32 qx = read32(m7, q0)
i32 sum = px + qx
bool c2 = (sum == 10)
assert(c2)
mem m8 = free(m7, q0)
mem m9 = free(m8, p)
finalmem(m9)
return 0

entry: [c_exec: T]
assume(p >= MEM_MIN && p+7 <= MEM_MAX)
assert(p <= p && p <= p+4)
mem m2 = write32(m0, p, 5)
ptr pn = p + 4
assert(p <= pn && pn <= p+4)
m3 = write32(m2, pn, NULL)
bool c1 = (argc > 1)

if.then: [c_exec: c1]
assume(q >= MEM_MIN && q+7 <= MEM_MAX &&

(q+8 <= p || p+8 <= q))
assert(p <= q && q <= p+4 ||

c1 && q <= q && q <= q+4)
mem m5 = write32(m3, q, 5)
ptr qn = q + 4
assert(p <= qn && qn <= p+4 ||

c1 && q <= qn && qn <= q+4)
mem m6 = write32(m5, qn, p)

if.end: [c_exec: T]
ptr q0 = (c1 ? q : p)
mem m7 = (c1 ? m6 : m3)
assert(p <= p && p <= p+4 ||

c1 && q <= p && p <= q+4)
i32 px = read32(m7, p)
assert(p <= q0 && q0 <= p+4 ||

c1 && q <= q0 && q0 <= q+4)
i32 qx = read32(m7, q0)
i32 sum = px + qx
bool c2 = (sum == 10)
assert(c2)
assert(q0 = p || (c1 && q0 = q))
assert(p = p && p != q0 ||

c1 && p = q && q != q0)

p >= MEM_MIN
p+7 <= MEM_MAX
a1 = (p <= p && p <= p+4)
m2 = write32(m0, p, 5)
pn = p + 4
a2 = (p <= pn && pn <= p+4)
m3 = write32(m2, pn, NULL)
c1 = (argc > 1)
c1 => q >= MEM_MIN
c1 => q+7 <= MEM_MAX
c1 => q+8 <= p || p+8 <= q
a3 = (c1 => (p <= q && q <= p+4 ||

c1 && q <= q && q <= q+4))
m5 = write32(m3, q, 5)
qn = q + 4
a4 = (c1 => (p <= qn && qn <= p+4 ||

c1 && q <= qn && qn <= q+4))
m6 = write32(m5, qn, p)
q0 = (c1 ? q : p)
m7 = (c1 ? m6 : m3)
a5 = (p <= p && p <= p+4 ||

c1 && q <= p && p <= q+4)
px = read32(m7, p)
a6 = (p <= q0 && q0 <= p+4 ||

c1 && q <= q0 && q0 <= q+4)
qx = read32(m7, q0)
sum = px + qx
c2 = (sum == 10)
a7 = (q0 = p || (c1 && q0 = q))
a8 = (p = p && p != q0 ||

c1 && p = q && q != q0)
not(a1 && a2 && a3 && a4 &&

a5 && a6 && a7 && a8 && c2)

Fig. 7. Different stages in the logical encoding of the program in Fig. 6. Left: Initial SMT encoding with memory states; basic blocks (and their
execution conditions cexec) are still present, as well as type annotations. Middle: SMT encoding with memory constraints (valid reads/writes).
Right: Final formula that can be passed to an SMT solver for the logic of bit-vectors and arrays.

p >= MEM_MIN
p+7 <= MEM_MAX
m2 = write32(m0, p, 5)
m3 = write32(m2, p+4, NULL)
c1 = (argc > 1)
c1 => q >= MEM_MIN
c1 => q+7 <= MEM_MAX
c1 => q+8 <= p || p+8 <= q
m5 = write32(m3, q, 5)
m6 = write32(m5, q+4, p)
px = c1 ? read32(m6, p) : read32(m3, p)
qx = c1 ? read32(m6, q) : read32(m3, p)
p = q || argc <= 1 || px + qx != 10

Fig. 8. SMT formula from Fig. 7 (right) after equational rewriting, if-
lifting, basic linear arithmetic and Boolean simplification. All memory
consistency constraints for reads and writes could be removed without
needing to invoke the SMT solver.

REFERENCES

[1] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,”
STTT, vol. 11, no. 1, pp. 69–83, 2009.

[2] D. Babić and A. J. Hu, “Structural abstraction of software
verification conditions,” in Proc. CAV 2007, ser. LNCS, vol.
4590, 2007, pp. 371–383.

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “Boogie: A modular reusable verifier for object-oriented
programs,” in Proc. FMCO 2005, 2005, pp. 364–387.

[4] R. Brummayer and A. Biere, “Boolector: An efficient SMT
solver for bit-vectors and arrays,” in Proc. TACAS 2009, ser.
LNCS, vol. 5505, 2009, pp. 174–177.

[5] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić, “A
low-level memory model and an accompanying reachability
predicate,” STTT, vol. 11, no. 2, pp. 105–116, 2009.

[6] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking
ANSI-C programs,” in Proc. TACAS 2004, ser. LNCS, vol. 2988,
2004, pp. 168–176.

[7] E. Cohen, M. Moskal, S. Tobies, and W. Schulte, “A precise yet
efficient memory model for C,” ENTCS, vol. 254, pp. 85–103,
2009.

[8] D. R. Cok, “Improved usability and performance of SMT solvers
for debugging specifications,” STTT, 2010.

[9] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer, “Unifying
type checking and property checking for low-level code,” in
Proc. POPL 2009, 2009, pp. 302–314.

[10] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tac-
chella, and M. Y. Vardi, “Benefits of bounded model checking
at an industrial setting,” in Proc. CAV 2001, ser. LNCS, vol.
2102, 2001, pp. 436–453.

[11] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based
bounded model checking for embedded ANSI-C software,” in
Proc. ASE 2009, 2009, pp. 137–148.

[12] M. K. Ganai and A. Gupta, “Accelerating high-level bounded
model checking,” in Proc. ICCAD 2006, 2006, pp. 794–801.

[13] H. Gast, “Reasoning about memory layouts,” in Proc. FM 2009,
ser. LNCS, vol. 5850, 2009, pp. 628–643.

[14] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, and P. Ashar,
“Efficient SAT-based bounded model checking for software
verification,” TCS, vol. 404, no. 3, pp. 256–274, 2008.

[15] C. Lattner and V. S. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in Proc. CGO
2004, 2004, pp. 75–88.

[16] X. Leroy and S. Blazy, “Formal verification of a C-like memory
model and its uses for verifying program transformations,” JAR,
vol. 41, no. 1, pp. 1–31, 2008.

[17] Y. Moy, “Automatic modular static safety checking for C pro-
grams,” Ph.D. dissertation, Université Paris-Sud, France, 2009.

[18] H. Tuch, “Formal verification of C systems code: Structured
types, separation logic and theorem proving,” JAR, vol. 42, no.
2–4, pp. 125–187, 2009.

[19] H. Tuch, G. Klein, and M. Norrish, “Types, bytes, and separation
logic,” in Proc. POPL 2007, 2007, pp. 97–108.

[20] W. Visser, K. Havelund, G. P. Brat, and S. Park, “Model
checking programs,” in Proc. ASE 2000, 2000, pp. 3–12.

