
DWG Smart-Card USB Integrated Circuit(s) Card Devices

Universal Serial Bus

Device Class: Smart Card

ICCD

Specification for
USB Integrated Circuit(s) Card Devices

Revision 1.0

April 22nd 2005

USB-ICC ICCD Rev 1.0 Page 1 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Intellectual Property Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER
INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS
SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY
FOR NFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION
ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL
NOT INFRINGE SUCH RIGHTS.

Contributors

DONNAT Francis Gemplus
DRABCZUK Nicolas Axalto

DREWS Steffen Philips Semiconductor
FRUHAUF Serge STMicroelectronics
LEYDIER Robert Axalto

SCHNECKENBURGER Christian Infineon
WEISS Dieter Giesecke & Devrient

Page 2 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Revision History

Revision Issue Date Comment

0.7 May 25th, 2004 DWG Smart Card, Initial document

0.8g December 1st, 2004 Fully reviewed by the SCDWG

0.9 February 3rd, 2005 Release for public review

1.0 April 22nd , 2005 Release

USB-ICC ICCD Rev 1.0 Page 3 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Table of Contents
1 Introduction ... 6

1.1 Related Documents... 6
1.2 Terms and Abbreviations .. 6
1.3 Document Conventions ... 7

2 Overview .. 8
3 USB-ICC Functional Characteristics... 9

3.1 Communication pipes.. 9
3.2 Selective suspend ... 9
3.2.1 Idle detection .. 9
3.2.2 Idle notification request .. 9

3.3 Resume ... 9
4 Standard USB Descriptors... 10

4.1 Device ... 10
4.2 Configuration ... 10
4.3 Interface .. 11

5 Smart Card Device Class ... 12
5.1 Descriptors .. 12
5.2 USB-ICC Endpoints... 14
5.2.1 Bulk-OUT Endpoint .. 15
5.2.2 Bulk-IN Endpoint .. 15
5.2.3 Interrupt-IN Endpoint .. 16

6 Data transfers.. 17
6.1 Bulk transfers .. 17
6.1.1 Bulk messages ... 18
6.1.2 Status and error conditions .. 24

6.2 Control Transfers... 25
6.2.1 Version A.. 25
6.2.2 Version B.. 32

6.3 Interrupt transfers .. 38
6.3.1 Virtual insertion/removal event ... 38

7 Notation for the state diagrams... 39

Page 4 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Figures
Figure 1.3-1 Scope of the USB-ICC specification ..8
Figure 6.1-1 State diagram, USB-ICC, bulk transfers, short and extended APDUs19
Figure 6.2-1 State diagram, USB-ICC, control transfers (Version A), character level29
Figure 6.2-2 State diagram, USB-ICC, control transfers (Version A), short APDUs30
Figure 6.2-3 State diagram, USB-ICC, control transfers (Version A), extended APDUs31
Figure 6.2-4 State diagram, USB-ICC, control transfers (Version B).......................................35

Tables
Table 1.3-1 Typographic conventions..7
Table 4.1-1 Specific fields for the USB-ICC in the standard device descriptors10
Table 4.3-1 Interface Descriptor ..11
Table 5.1-1 Smart Card Device Class descriptors returned by an USB-ICC.12
Table 5.2-1 Configuration of endpoints for a USB-ICC..14
Table 5.2-2 Endpoint descriptor Bulk-OUT ..15
Table 5.2-3 Endpoint descriptor Bulk-IN ..15
Table 5.2-4 Endpoint descriptor Interrupt-IN..16
Table 6.1-1 Bulk-IN and bulk-OUT messages ...17
Table 6.1-2 PC_to_RDR_IccPowerOn message...20
Table 6.1-3 RDR_to_PC_DataBlock message containing the ATR...20
Table 6.1-4 PC_to_RDR_IccPowerOff message...21
Table 6.1-5 RDR_PC_SlotStatus message ...21
Table 6.1-6 PC_to_RDR_XfrBlock message ...22
Table 6.1-7 RDR_to_PC_DataBlock message containing a data block23
Table 6.1-8 Bitmap for bStatus field...24
Table 6.1-9 Error codes for bError ...24
Table 6.2-1 Class specific requests, Version A..25
Table 6.2-2 ICC_POWER_ON..26
Table 6.2-3 ICC_POWER_OFF...26
Table 6.2-4 XFR_BLOCK ..26
Table 6.2-5 DATA_BLOCK ..26
Table 6.2-6 GET_ICC_STATUS ..26
Table 6.2-7 Description of the StatusByte..28
Table 6.2-8 Class specific requests, Version B..32
Table 6.2-9 ICC_POWER_ON...33
Table 6.2-10 ICC_POWER_OFF...33
Table 6.2-11 XFR_BLOCK ..33
Table 6.2-12 DATA_BLOCK ..33
Table 6.2-13 SLOT_STATUS request ...34
Table 6.2-14 Data stage of DATA_BLOCK..36
Table 6.2-15 Bitmap for bStatus field...37
Table 6.2-16 Error codes for bError ...37
Table 6.3-1 Interrupt-IN message ..38

USB-ICC ICCD Rev 1.0 Page 5 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

1 Introduction
This document describes proposed requirements and specifications for Universal Serial
Bus (USB) Integrated Circuit(s) Card Devices, USB-ICC.

1.1 Related Documents

Reference Title Location

[USB20] USB 2.0 Specification http://www.usb.org/developers/docs/

[RECN] Resistor Engineering Change Notice http://www.usb.org/developers/docs/

[CCID] Integrated Circuit(s) Card Interface Devices
Specification Revision 1.1

http://www.usb.org/developers/devclass_docs#approved

The following related documents can be ordered through www.iso.org

• ISO/IEC 7816-1; Identification Cards – Integrated circuit(s) cards with contacts
Part 1: Physical Characteristics

• ISO/IEC 7816-2; Identification Cards – Integrated circuit(s) cards with contacts
Part 2: Dimensions and Locations of the contacts

• ISO/IEC 7816-3; Identification Cards – Integrated circuit(s) cards with contacts
Part 3: Electronic signals and transmission protocols

• ISO/IEC 7816-4; Identification Cards – Integrated circuit card
Part 4: Organization, security and commands for interchange

• ISO/IEC 7816-12; Identification Cards – Integrated circuit cards
Part 12: Cards with contacts: USB electrical interface and operating procedures

1.2 Terms and Abbreviations
The meanings of some words have been stretched to suit the purposes of this document.
These definitions are intended to clarify the discussions that follow.

APDU Application Protocol Data Unit
APDU Command
Header

The four byte sequence that begins an APDU; CLA INS P1 P2
(ISO/IEC 7816-4 § 5.3.1)

ATR Answer To Reset
CCID Integrated Circuit(s) Cards Interface Devices conforming to the

specification for Integrated Circuit(s) Cards Interface Devices
Chip Card Any of a number of similar devices conforming to ISO/IEC 7816.

Used interchangeably with Integrated Circuit(s) Card (ICC) or
Smart Card.

Cold RESET The sequence described in the ISO/IEC 7816-3 §5.3.2. The
sequence starts with the ICC powered off.

ICC Integrated Circuit(s) Card.
Used interchangeably with Smart Card.

ICCD Integrated Circuit(s) Card Devices conforming to this specification.
Used interchangeably with USB-ICC.

Page 6 of 40 USB-ICC ICCD Rev 1.0

http://www.iso.org/

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Interface Device Terminal communication device or machine to which the ICC is
electrically connected during operation [ISO/IEC 7816-3].

ISO/IEC International Standards Organization/ International Electro
technical Commission

Lc Optional part of the body of a command APDU. Its size is 0, 1 or 3
bytes. The maximum number of bytes present in this body.

Le Optional part of the body of a command APDU. Its size is 0, 1, 2,
or 3 bytes. The maximum number of bytes expected in the data
field of the response APDU.

P1, P2 INS parameter of a command header.
P3 INS parameter of a command header. P3 contains Lc or Le
RFU Reserved for Future Use – Must be set to zero unless stated

differently.
Smart Card Used interchangeably with Chip Card or Integrated Circuit(s) Card

(ICC)
T = 0 Command
Header

The sequence of five bytes; CLA INS P1 P2 P3 [ISO/IEC 7816-3
§ 8.3.2].

TPDU Transport Protocol Data Unit
USB-ICC USB Integrated Circuit(s) Card.

An ICC providing a USB interface [ISO/IEC 7816-12].
Used interchangeably with ICCD.

Warm RESET The sequence described in the [ISO/IEC 7816-3 § 5.3.3]. The
sequence starts with the ICC already powered.

1.3 Document Conventions
Fields that are larger than a byte are stored in little endian. Little endian is a method of
storing data that places the least significant byte of multiple-byte values at lower storage
addresses. For example, a 16-bit integer stored in little endian format places the least
significant byte at the lower address and the most significant byte at the next address.

This specification uses the following typographic conventions:

Table 1.3-1 Typographic conventions

Example of convention Description

bValue
bcdNam
wOther
……

Placeholder prefixes such as ‘b’, ‘bcd’, and ‘w’ are used to
denote placeholder type. For example:
ab array of bytes
b bits or bytes dependent on context
bcd binary-coded decimal
bm bit map
w word (2 bytes)
dw double word (4 bytes)

USB-ICC ICCD Rev 1.0 Page 7 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

2 Overview
USB Integrated Circuit(s) Card Devices (USB-ICC) as applied to this document, comprise
a selection of similar devices conforming to ISO/IEC 7816 specifications.

This document specifies the USB-related configuration information and communication
pipes of an USB-ICC.

Also this document specifies protocols by which a host computer interacts with an
USB-ICC.

A USB-ICC is connected to a USB host by means of an USB connection device equipped
with a USB plug on one side, and a Vendor Specific interconnect on the opposite side.
The USB connection device is out of the scope of this specification.

At any time an USB-ICC can be hot plugged to the bus. At any time an USB-ICC can be
disconnected from the bus.

This Specification

USB
Host


USB

Integrated
Chip(s)
Card

Figure 1.3-1 Scope of the USB-ICC specification

Page 8 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

3 USB-ICC Functional Characteristics
3.1 Communication pipes
An USB-ICC may either communicate with the host using the default control pipe only or it
may communicate over message pipes using bulk-IN and bulk-OUT.

Control transfer mode is supported by two versions, version A and version B. In both
cases, the default pipe is used to exchange data between the USB host and the USB-ICC.

Optionally, an USB-ICC may provide an interrupt-IN endpoint to indicate specific events to
the host.

3.2 Selective suspend
USB-ICC associated with its driver shall support selective suspend in the following
conditions.

3.2.1 Idle detection
The first step in the USB Selective Suspend process is for the Client Driver to determine
that the USB-ICC is idle. A USB-ICC is Idle when all commands have had a complete
response and when there was no new command during one second.

3.2.2 Idle notification request
The USB Client Driver shall submit an Idle Notification I/O Request Packet (IRP) to the
USB HUB driver when it has determined that the USB-ICC is idle.

3.3 Resume
USB-ICC can support remote wake up.

The communication between the application and the USB-ICC is resumed by remote wake
up or by the application itself.

USB-ICC ICCD Rev 1.0 Page 9 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

4 Standard USB Descriptors
4.1 Device
It is the 12h bytes standard device descriptor as per section 9, “USB Device Framework,”
in the Universal Serial Bus Specification. For USB-ICC three specific field values are
defined, see Table 4.1-1.

Table 4.1-1 Specific fields for the USB-ICC in the standard device descriptors

Offset Field Size Value Description

4 bDeviceClass 1 00h Indicates that the device class is specified in the
interface descriptor of the device.

5 bDeviceSubClass 1 00h Reset to zero because bDeviceClass is reset to zero.

6 bDeviceProtocol 1 00h The device does not use class-specific protocols on
the device basis. Instead, it uses class-specific
protocols on the interface level.

4.2 Configuration
It is a standard configuration descriptor as per section 9, “USB Device Framework,” in the
Universal Serial Bus Specification.
It does not contain class-specific information.

Page 10 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

4.3 Interface
The values of the interface descriptor fields are listed in Table 4.3-1.

Table 4.3-1 Interface Descriptor

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor in bytes.

1 bDescriptorType 1 04h INTERFACE descriptor type.

2 bInterfaceNumber 1 Number Number of this interface. Zero-based value identifying the
index in the array of concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 00h Value used to select this alternate setting for the interface
identified in the prior field.
Alternate settings are not supported.

4 bNumEndpoints 1 00h
01h
02h
03h

Number of endpoints for a USB-ICC used by this
interface (excluding endpoint zero).
00h does not use further endpoint
01h uses interrupt-IN
02h uses bulk-IN and bulk-OUT
03h uses bulk-IN, bulk-OUT and interrupt –IN
NOTE 01h indicates that the control endpoints are used
for data transmission and interrupt-IN for notification of card
specific events sent from the USB-ICC to the host.

5 bInterfaceClass 1 0Bh Smart Card Device Class.

6 bInterfaceSubClass 1 00h Subclass code.

7 bInterfaceProtocol 1 00h
01h
02h

Protocol code.
The given value indicates the transfer mode used for the
communication between the host and the USB-ICC.
00h bulk transfers optional interrupt-IN
01h version A, Control transfers, (no interrupt-IN)
02h version B, Control transfers (optional interrupt-IN).

8 iInterface 1 Index Index of string descriptor this interface.

USB-ICC ICCD Rev 1.0 Page 11 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

5 Smart Card Device Class
5.1 Descriptors
The USB-ICC class specific descriptors are mapped on the Smart Card Device Class
descriptors published in the Integrated Circuit(s) Cards Interface Devices specification,
see § 1.1.

The USB-ICC class specific descriptors are returned by the USB-ICC to set the host’s
driver in a dedicated mode. The asterisk (*) identifies Fields evaluated by the driver. Other
fields are not evaluated by the driver but returned as mentioned for consistency within the
Smart Card Class between Integrated Circuit(s) Cards Interface Devices (CCID) and
Integrated Circuit(s) Card Devices (USB-ICC or ICCD).

Table 5.1-1 Smart Card Device Class descriptors returned by an USB-ICC.

Offset Field Size Value Description

0 bLength* 1 36h Size of this descriptor, in bytes.

1 bDescriptorType* 1 21h Functional Descriptor type.

2 bcdCCID* 2 0110h Integrated Circuit(s) Cards Interface Devices
Specification Release Number in binary coded
decimal.
Ex: spec rev 1.1, value 0110h

4 bMaxSlotIndex* 1 00h Index of the highest available slot. An USB-ICC
is regarded as a single slot CCID.

5 bVoltageSupport 1 01h 5.0 Volt, not relevant but fixed to 01h for legacy
reason

6 dwProtocols* 4 0000
0001h
0000
0002h

Indicates the supported protocol types:
00000001h = Protocol T = 0
00000002h = Protocol T = 1

NOTE : The USB-ICC supports APDU level
exchanges for T = 1 or character level exchanges for T
= 0. Other combinations of dwProtocols and
dwFeatures are not supported by the USB-ICC. This
applies for Bulk Transfer Mode and for Control
Transfer mode.

10 dwDefaultClock 4 0000
0DFCh

3.58MHz, not relevant, fixed for legacy reason

14 dwMaximumClock 4 0000
0DFCh

3.58MHz, not relevant, fixed for legacy reason

18 bNumClockSupported 1 00h Default clock, not relevant, fixed for legacy
reason

19 dwDataRate 4 0000
2580h

9600bps, not relevant, fixed for legacy reason

23 dwMaxDataRate 4 0000
2580h

9600bps, not relevant, fixed for legacy reason

27 bNumDataRatesSupported 1 00h Default data rate, not relevant, fixed for legacy
reason

Page 12 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Offset Field Size Value Description

28 dwMaxIFSD* 4 Indicates the maximum IFSD supported by the
USB-ICC for protocol T=1. For T=0 any value
may be given.
For T = 1: 000000FEh
For T = 0: any value

32 dwSynchProtocols 4 0000
0000h

ISO7816-3, not relevant, fixed to for legacy
reason

36 dwMechanical 4 0000
0000h

No special characteristic, not relevant, fixed to
for legacy reason

40 dwFeatures* 4 0000
0840h

0002
0840h
0004
0840h

The value of the lower word (=0840) indicates
that the host will only send requests that are
valid for the USB-ICC.
The value of the upper word is the level of data
exchange with the USB-ICC:
0000h Character level exchanges
0002h Short APDU level exchanges
0004h Short and extended APDU level
 exchanges
NOTE: see also dwProtocols

44 dwMaxCCIDMessageLength* 4 The value shall be between:
for bulk transfers:
(261 + 10) and (65544 +10).
NOTE: The value 10 is the size of the header
for control transfers:
261 and 65544.

48 bClassGetResponse* 1 FFh Echoes the class of the APDU

49 bClassEnveloppe* 1 FFh Echoes the class of the APDU

50 wLcdLayout 2 0000h No LCD, not relevant, fixed for legacy reason

52 bPinSupport 1 00h No PIN pad, not relevant, fixed for legacy
reason

53 bMaxCCIDBusySlots* 1 01h One slot is busy, the USB-ICC is regarded as a
single slot CCID.

USB-ICC ICCD Rev 1.0 Page 13 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

5.2 USB-ICC Endpoints
An USB-ICC may either communicate with the host using the default control pipe only or it
may communicate with the host over message pipes using bulk-IN and bulk-OUT.

Optionally, the USB-ICC may provide an interrupt-IN endpoint used to emulate the
behaviour of an Integrated Circuit(s) Cards Interface Device with an ICC inserted or not.

An USB-ICC may have one of the following configurations listed in Table 5.2-1.

Table 5.2-1 Configuration of endpoints for a USB-ICC

Using control transfers Endpoints for data
transmission

Version A Version B

Using bulk transfers

Default control pipe yes yes yes

Bulk-OUT no no yes

Bulk-IN no no yes

Interrupt-IN no optional optional

Page 14 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

5.2.1 Bulk-OUT Endpoint
The Bulk-Out Endpoint is used to send commands and transfer data from the host to the
device.

Table 5.2-2 Endpoint descriptor Bulk-OUT

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor in bytes

1 bDescriptorType 1 05h ENDPOINT descriptor type

2 bEndpointAddress 1 01-0Fh The address of this endpoint on the USB
device. This address is an endpoint number
between 1 and 15.
Bit 0..3 Endpoint number
Bit 4..6 Reserved, reset to 0
Bit 7 0 = Out

3 bmAttributes 1 02h This is a Bulk endpoint

4 wMaxPacketSize 2 00xyh Maximum data transfer size can be 8,16,32, or
64 bytes

6 bInterval 1 00h Does not apply to Bulk endpoints

5.2.2 Bulk-IN Endpoint
The Bulk-In Endpoint is used to send responses and transfer data from the device to the
host in reply to commands received on the Command Pipe.

Table 5.2-3 Endpoint descriptor Bulk-IN

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor in bytes

1 bDescriptorType 1 05h ENDPOINT descriptor type

2 bEndpointAddress 1 81-8Fh The address of this endpoint on the USB
device. This address is an endpoint number
between 1 and 15.
Bit 0..3 Endpoint number
Bit 4..6 Reserved, reset to 0
Bit 7 1 = In

3 bmAttributes 1 02h This is a Bulk endpoint

4 wMaxPacketSize 2 00xyh Maximum data transfer size can be 8,16,32, or
64 bytes

6 bInterval 1 00h Does not apply to Bulk endpoints

USB-ICC ICCD Rev 1.0 Page 15 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

5.2.3 Interrupt-IN Endpoint
The Interrupt-IN Endpoint is used optionally to report events.

Table 5.2-4 Endpoint descriptor Interrupt-IN

Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor in bytes

1 bDescriptorType 1 05h Endpoint descriptor type

2 bEndpointAddress 1 81-8Fh The address of this endpoint on the USB device.
This address is an endpoint number between 1
and 15. It must be different from the Bulk-IN
endpoint address.
Bit 3..0 Endpoint number
Bit 6..4 Reserved, reset to 0
Bit 7 1 = In

3 bmAttributes 1 03h This is an Interrupt endpoint

4 wMaxPacketSize 2 00xyh Maximum data transfer size (depends on the
size of the RDR_to_PC_NotifySlotChange
message but it is at least 2h)

6 bInterval 1 xyh Interval for polling endpoint for data transfers.
Expressed in milliseconds.
Shall be in the range from 1 to 255.
The recommended value is 255.

Page 16 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6 Data transfers
When the USB-ICC is attached to the bus and thereafter has obtained a state where the
host may use the functions provided by the USB-ICC, the USB-ICC is designated as
"Configured".

The USB-ICC shall be configured before the host sends messages.

The exchange of data between a host and an USB-ICC may be done using control
transfers or bulk transfers. For control transfers two implementations are possible version
A and version B.

The state of the current execution as depicted in state diagrams Figure 6.1-1, Figure 6.2-1,
Figure 6.2-2, Figure 6.2-3 and Figure 6.2-4. shall not be affected by the state of the USB
interface engine. For example, bus enumeration and suspend shall not cause any
transition.

Also, the state of the current application in the USB-ICC shall not be affected by the state
of the USB interface engine. Specifically, when the USB-ICC enters suspend the current
state of the application shall not be affected.

The notation for the state diagrams is given in § 7.

6.1 Bulk transfers
This section defines messages for bulk transfers, see Table 6.1-1.
To transmit commands, responses and corresponding data between host and USB-ICC,
see Figure 6.1-1, only the following messages shall apply:

Table 6.1-1 Bulk-IN and bulk-OUT messages

Bulk-OUT message name Bulk-IN response message name Description

PC_to_RDR_IccPowerOn RDR_to_PC_DataBlock Exits the initial state of a USB-ICC and
returns the ATR in the response message.

PC_to_RDR_IccPowerOff RDR_to_PC_SlotStatus Sets the USB-ICC to initial conditions.

PC_to_RDR_XfrBlock RDR_to_PC_DataBlock Messages to transmit data between host
and USB-ICC.

USB-ICC ICCD Rev 1.0 Page 17 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.1.1 Bulk messages
For the correct transmission of data, the following general rules shall apply:
 Once the USB-ICC is configured, the host shall submit PC_to_RDR_Icc_Power_Off

for the USB-ICC to enter its initial state.

 If the USB-ICC receives a PC_to_RDR_IccPowerOn when it is not in the state "Initial",
the USB-ICC shall respond with a STALL. The USB-ICC shall remain in its current
state.

 If the USB-ICC requests a time extension, see Table 6.1-8 the value of bSeq shall
remain unchanged.

 If the USB-ICC returns RDR_to_PC_DataBlock indicating the errors ICC_MUTE or
HW_ERROR, the host should preferably submit a PC_to_RDR_IccPowerOff
message.

All messages transmitted over bulk endpoints start with a 10 byte-header, optionally
followed by data. The purpose of the header is to exchange control and status information
between host and USB-ICC. In addition, sequence numbering assigns command
messages with their corresponding response messages. The USB-ICC returns its status
and error information in the fields bStatus and bError.

Page 18 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

PC_to_RDR_XfrBlock
wLevelParameter: 0000h
abData: command APDU

RDR_to_PC_DataBlock
bChainParameter : 00h
abData: response APDU

PC_to_RDR_XfrBlock
wLevelParameter: 0001h
abData: part of command APDU

RDR_to_PC_DataBlock
bChainParameter : 10h
abData: empty

PC_to_RDR_XfrBlock
wLevelParameter: 0003h
abData: part of command APDU

RDR_to_PC_DataBlock
bChainParameter : 10h
abData: empty

PC_to_RDR_XfrBlock
wLevelParameter: 0002h
abData: last part of command APDU

RDR_to_PC_DataBlock
bChainParameter : 01h
abData : part of response APDU

PC_to_RDR_XfrBlock
wLevelParameter = 0010h
abData: empty

RDR_to_PC_DataBlock
bChainParameter : 03h
abData : part of response APDU

RDR_to_PC_DataBlock
bChainParameter : 02h
abData: last part of response APDU

Last part of
response
APDU?

Chained
response
APDU?

no

yes

Waiting for
command

APDU

Command
APDU partially

received

Response
APDU partially

sent

no

yes

dwFeatures: 0002 0840h (short APDU) and
0004 0840h (extended APDU)

dwProtocol: 0000 0002h (T=1)

Initial

PC_to_RDR_IccPowerOn
abData : empty

RDR_to_PC_DataBlock
bChainParameter: 00h
abData: ATR

USB-ICC is
activated

USB-ICC is
present

USB-ICC is
virtually not present

USB-ICC is
configured

Busy1

End of Process

Busy[i]

Waiting Time
exeeded

RDR_to_PC_DataBlock
bmIccStatus : 0
bmCommandStatus : 2
bSeq: remains unchanged
abData: empty

Busy2

End of Process

Busy4

End of Process

Busy3

End of Process

Any State

Busy5

End of Process

RDR_to_PC_SlotStatus
bmIccStatus : 2
bmCommandStatus: 0
abData:: empty

Overrun detected

RDR_to_PC_DataBlock
bmIccStatus : 0
bmCommandStatus : 1
bError: XFR_OVERRUN
abData: empty

Waiting for
command

APDU

PC_to_RDR_IccPowerOff
abData: empty

Initial

Figure 6.1-1 State diagram, USB-ICC, bulk transfers, short and extended APDUs

USB-ICC ICCD Rev 1.0 Page 19 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.1.1.1 PC_to_RDR_IccPowerOn and RDR_PC_DataBlock
A PC_to_RDR_IccPowerOn message will return an Answer To Reset (ATR) data in
RDR_to_PC_DataBlock.
Each warm reset to a USB- ICC can return a sequentially significant warm ATR. Any
subsequent PC_to_RDR_IccPowerOn message will return the next warm ATR.

Table 6.1-2 PC_to_RDR_IccPowerOn message

Offset Field Size Value Description

0 bMessageType 1 62h Indicates PC_to_RDR_IccPowerOn

1 dwLength 4 00000000
h

Message-specific data length

5 bSlot 1 00h USB-ICC requires a single slot.
Not relevant, fixed for legacy reason

6 bSeq 1 00-FFh Sequence number for command.

7 bReserved 1 01h This value shall be 01h

8 abRFU 2 0000h All other values are reserved for future use

The USB-ICC’s response to this command message is the RDR_to_PC_DataBlock
response message and the data returned is the Answer To Reset (ATR) data.

Table 6.1-3 RDR_to_PC_DataBlock message containing the ATR

Offset Field Size Value Description

0 bMessageType 1 80h Indicates RDR_to_PC_DataBlock

1 dwLength 4 Size of bytes for the ATR

5 bSlot 1 00h USB-ICC requires a single slot.
Not relevant, fixed for legacy reason

6 bSeq 1 Same as
Bulk-OUT
message

Sequence number for the corresponding command.

7 bStatus 1 USB-ICC Status register as defined in Table 6.1-8

8 bError 1 USB-ICC Error register as defined in Table 6.1-9

9 bChainParameter 1 00h Indicates that this message contains the complete
ATR.

10 abData ATR

Page 20 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.1.1.2 PC_to_RDR_IccPowerOff and RDR_PC_SlotStatus
PC_to_RDR_IccPowerOff message sets the USB-ICC to initial conditions.

Table 6.1-4 PC_to_RDR_IccPowerOff message

Offset Field Size Value Description

0 bMessageType 1 63h Indicates PC_to_RDR_IccPowerOn

1 dwLength 4 00000000h Message-specific data length

5 bSlot 1 00h Slot number for a USB-ICC
Not relevant, fixed for legacy reason

6 bSeq 1 00-FFh Sequence number for command.

7 abRFU 3 000000h All other values are reserved for future use

The USB-ICC’s response to this command message is the RDR_to_PC_SlotStatus
response message.

Table 6.1-5 RDR_PC_SlotStatus message

Offset Field Size Value Description

0 bMessageType 1 81h Indicates RDR_to_PC_SlotStatus

1 dwLength 4 00000000
h

Message-specific data length

5 bSlot 1 00h USB-ICC requires a single slot.
Not relevant, fixed for legacy reason

6 bSeq 1 Same as
Bulk-OUT
message

Sequence number for the corresponding command.

7 bStatus 1 USB-ICC Status register as defined in Table 6.1-8

8 bError 1 USB-ICC Error register as defined in Table 6.1-9

9 bReserved 1 00h This value shall be 00h

USB-ICC ICCD Rev 1.0 Page 21 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.1.1.3 PC_to_RDR_XfrBlock and RDR_PC_DataBlock
This command is used to transmit command APDUs to the USB-ICC.

The abData field should never exceed the (dwMaxCCIDMessageLength -10)
dwMaxCCIDMessageLength is defined in the Smart Card Device Class descriptors
returned by an USB-ICC, see Table 5.1-1.

Table 6.1-6 PC_to_RDR_XfrBlock message

Offset Field Size Value Description

0 bMessageType 1 6Fh Indicates PC_to_RDR_XfrBlock

1 dwLength 4 Size of abData field of this message

5 bSlot 1 00h USB-ICC requires a single slot.
Not relevant, fixed to 00h for legacy reason

6 bSeq 1 00-FFh Sequence number for command.

7 bReserved 1 00h Shall be set to 00h

8 wLevelParameter 2 Depends on the exchange level reported by the class
descriptor in the dwFeatures field: :
Character level:
Size of expected data to be returned by the bulk-IN
endpoint.

0000h Short APDU level

Extended APDU level:
Indicates if APDU begins or ends in this command:
0000h
the command APDU begins and ends with this
command,
0001h
the command APDU begins with this command, and
continue in the next PC_to_RDR_XfrBlock,
0002h
this abData field continues a command APDU and
ends the command APDU,
0003h
the abData field continues a command APDU and
another block is to follow,
0010h
empty abData field, continuation of response APDU
is expected in the next RDR_to_PC_DataBlock.

10 abData Byte
array

 Data block sent to the USB-ICC

Page 22 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

The USB-ICC’s response to PC_to_RDR_XfrBlock message is RDR_to_PC_DataBlock.

Table 6.1-7 RDR_to_PC_DataBlock message containing a data block

Offset Field Size Value Description

0 bMessageType 1 80h Indicates RDR_to_PC_DataBlock

1 dwLength 4 Size of abData field of this message

5 bSlot 1 00h Slot number for a USB-ICC

6 bSeq 1 Same as
Bulk-OUT
message

Sequence number for the corresponding
command.

7 bStatus 1 USB-ICC Status register as defined in Table 6.1-8

8 bError 1 USB-ICC Error register as defined in Table 6.1-9

9 bChainParameter 1 Depends on the exchange level reported by the
class descriptor in dwFeatures field:
Character level: 00h
Short APDU level: 00h.
Extended APDU level:
Indicates if the response is complete, to be
continued or if the command APDU can continue

00h: The response APDU begins and ends in this
command

01h: The response APDU begins with this
command and is to continue

02h: This abData field continues the response
APDU and ends the response APDU

03h: This abData field continues the response
APDU and another block is to follow

10h: Empty abData field, continuation of the
command APDU is expected in next
PC_to_RDR_XfrBlock command

10 abData Byte
array

 This field contains the data returned by the
USB-ICC.

USB-ICC ICCD Rev 1.0 Page 23 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.1.2 Status and error conditions
The Bulk-IN messages RDR_to_PC_SlotStatus and RDR_to_PC_DataBlock contain
status information about the USB-ICC if processed commands successfully. In case of a
failure, an error code will be returned.

The bStatus field consists of two bitmap fields that contain information about the USB-ICC
status (bmICCStatus) and the processed command (bmCommandStatus). The following
two tables give the values for the status and the error codes.

Table 6.1-8 Bitmap for bStatus field

Offset Field Size Value Description

0 bmIccStatus 1
(2 bits)

0, 1, 2 0 = The USB-ICC is present and activated.
1 = The USB-ICC is present but not activated
2 = The USB-ICC is virtually not present
3 = RFU

(2 bits) (4 bits) RFU

(6 bits) bmCommandStatus (2 bits) 0, 1, 2 0 = Processed without error.
1 = Failed, error condition given by bError.
2 = Time extension is requested
3 = RFU

1 bError 1 Error codes

Only the following errors are supported.

Table 6.1-9 Error codes for bError

Error name Error code Possible causes

ICC_MUTE -2 (FEh) The applications of the USB-ICC did not respond or the
ATR could not be sent by the USB-ICC.

XFR_OVERRUN -4 (FCh) The USB-ICC detected a buffer overflow when receiving a
data block.

HW_ERROR -5 (FBh) The USB-ICC detected a hardware error.

 -64 to –127 (C0h to 81h) User defined

 -3 (FDh), -8 to -14 (F8h to F2h)
-16 (F0h), -17 (EFh), -32 (E0h)

These values shall not be used by the USB-ICC

 all others
(80h and those filling the gaps)

Reserved for future use

For the usage of error codes, the following rules shall apply:
 if the value of bmCommandStatus equals 0 or RFU, the value of bError shall be 0.

 if the value of bmCommandStatus equals 1, the value of bError shall be:

 error code = error conditions as described in Table 6.1-9

 offset = if the USB-ICC cannot parse one field in the (10 bytes) header or
is not supporting one of these fields, then bError contains the offset of the first bad
value as a positive number (e.g. if the host sets bSlot to 01h, the USB-ICC will
return bError = 05h). A USB-ICC receiving a command that is not supported, shall
set the offset value to zero.

Page 24 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.2 Control Transfers
This transfer mode can be employed for USB-ICCs that offer low speed functions. This
section defines the class specific requests for control transfers. These requests provide
the same services to the application layer as bulk transfers.
There are two possible implementations for control transfers, version A and version B.

6.2.1 Version A

6.2.1.1 Specific requests
The following table defines valid values of bRequest.:

Table 6.2-1 Class specific requests, Version A

bRequest Value Direction
data stage

Description

ICC_POWER_ON 62h IN Exits the initial state of a USB-ICC. Returns the
ATR in the data stage.

ICC_POWER_OFF 63h OUT Sets the USB-ICC to initial conditions.

XFR_BLOCK 65h OUT Data transfer from the host to the USB-ICC

DATA_BLOCK 6Fh IN Data transfer from the USB-ICC to the host

GET_ICC_STATUS A0h IN Returns the status of the command execution.

6.2.1.2 Setup Stage
The setup stage contains the class specific request and corresponding parameters. The
following tables give the values and the parameters for each of the class specific requests
and describe the data that is transferred between host and USB-ICC.

For the parameters, the following general rules shall apply:

 The value of bInterface is the same value as bInterfaceNumber given in Table 4.3-1.
 Reserved parameter values for class specific requests used in the fields wValue and

wIndex are designated as bRFU and wRFU. The value of bRFU shall be set to 00h
and the value of wRFU shall be set to 0000h.

 If the USB-ICC receives an invalid request or if a valid request contains an invalid
parameter value (wValue, wIndex, wLength), the USB-ICC shall respond with a
STALL.

 On an input request, the USB-ICC shall not return more data than is indicated by
wLength value. It may return less.

 On an output request, wLength shall always indicate the exact amount of data to be
sent by the host. The USB-ICC shall return a STALL if the host should not send the
amount of data than is specified in wLength.

 For ICC_POWER_OFF and GET_ICC_STATUS, the host shall send the values for
wLength as specified in the corresponding tables. If not, the USB-ICC shall respond
with STALL

USB-ICC ICCD Rev 1.0 Page 25 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

The following tables give the values and the parameters for each of the class specific
requests and describe the data that is transferred between host and USB-ICC supporting
version A.

Table 6.2-2 ICC_POWER_ON

bmRequestType bRequest wValue wIndex wLength Data

10100001B ICC_POWER_ON wRFU bRFU
bInterface

Length of ATR ATR

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 6.2-3 ICC_POWER_OFF

bmRequestType bRequest wValue wIndex wLength Data

00100001B ICC_POWER_OFF wRFU bRFU
bInterface

0000h Empty

The wIndex field specifies bRFU in the high byte and bInterface in the low byte.

Table 6.2-4 XFR_BLOCK

bmRequestType bRequest wValue wIndex wLength Data

00100001B XFR_BLOCK bLevelParameter, bRFU bRFU
bInterface

Length of data Command
APDU.

The wIndex field specifies bRFU in the high byte and bInterface in the low byte. The
wValue field specifies bLevelParameter in the high byte, and bRFU in the low byte.

Table 6.2-5 DATA_BLOCK

bmRequestType bRequest wValue wIndex wLength Data

10100001B DATA_BLOCK wRFU bRFU
bInterface

Length of data.
The value shall be either 2, Le
or
dwMaxCCIDMessageLength
depending of the preceding
StatusByte.

Response
APDU

The wIndex field specifies bRFU in the high byte and bInterface in the low byte

Table 6.2-6 GET_ICC_STATUS

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_ICC_STATUS wRFU bRFU
bInterface

0001h StatusByte

The wIndex field specifies bRFU in the high byte and bInterface in the low byte

Page 26 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.2.1.3 ATR and data transmission
The messages to be transmitted in order to set the USB-ICC to initial state, to obtain the
ATR and to transmit data are given in the following state diagrams Figure 6.2-1, Figure
6.2-2, Figure 6.2-3.

For the correct transmission of data, the following general rules shall apply:

 Once the USB-ICC is configured, the host shall submit ICC_POWER_OFF for the

USB-ICC to enter its initial state.

 If the USB-ICC receives a request that is not assigned to the current state as defined
in the state diagram, the USB-ICC shall return a STALL and remain in its current state.

 If the StatusByte indicates that the card is not responsive, see Table 6.2-7, the host
should preferably submit ICC_POWER_OFF.

 The request GET_ICC_STATUS polls the status of execution of a command APDU.
Upon this request, the USB-ICC returns the StatusByte to indicate the status of
execution. It may have the values in Table 6.2-7.

6.2.1.4 APDU level message exchange, short APDU
In case that the length of the response APDU exceeds the value of wLength in the data
stage of the DATA_BLOCK request, the response APDU has to be transmitted in
subsequent blocks. In this case, the USB-ICC shall use the same mechanism as for an
extended response APDU.

6.2.1.5 Error conditions
Error conditions are returned in the StatusByte, see Table 6.2-7. If the card is not
responsive, the value 80h will be returned.

6.2.1.6 Interrupt Transfers
Version A does not use interrupt transfers.

USB-ICC ICCD Rev 1.0 Page 27 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Table 6.2-7 Description of the StatusByte

StatusByte Description

4xh busy where x shall be cyclically incremented.
When receiving a busy indication, the host shall subsequently submit GET_ICC_STATUS until the
USB-ICC indicates another value. The time interval is driver dependent. In order to save bandwidth,
the time interval should not be less than 10ms.
NOTE When the host detects that the four least significant bits did not change after a certain
period, the host might time-out the device. The period, which is considered as time-out, is driver
dependent and should not be less than 1 second.

20h ready to send status words only
Indicates that the data stage of the subsequent DATA_BLOCK will convey SW1-SW2 only.

1yh if dwProtocols = 00000001h and dwFeatures = 00000840h
10h: ready to send data
 or
10h: ready to receive data
The status words are not returned when the value is 10.
When GET_ICC_STATUS returns StatusByte = 20h, a subsequent DATA_BLOCK request shall be
submitted to obtain the status words.
if dwProtocols = 00000002h and dwFeatures = 000z0840h (with z=2 or z=4) the StatusByte has two
different functions.
When bLevelParameter is 01h or 03h in the previous XFR_BLOCK request (chained command
APDU), the StatusByte is used to acknowledge the chaining of the command (respectively 11h or
13h) and to regulate the data flow (StatusByte = 4xh).

When bLevelParameter in the previous XFR_BLOCK request is 00h or 02h (end of command
APDU), the StatusByte is used to indicate the chaining of the response APDU and to regulate the
data flow (StatusByte = 4xh):

10h the APDU response begins and ends with the next DATA_BLOCK request
11h the APDU response begins with the next DATA_BLOCK request and is to continue
12h the APDU response continues and ends with the next DATA_BLOCK request
13h the APDU response continues with the next DATA_BLOCK request and another
 block is to follow
20h the APDU response contains only the status word and ends with the next
 DATA_BLOCK request.

80h mute the card is not responsive

00h The USB-ICC is ready to receive a command APDU

Page 28 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Inital

Is C-APDU
data field

expected ?

Is a R-APDU
data field

available ?

yes

no

yes

ICC_POWER_ON

ATR

XFR_BLOCK
 bLevelParameter = 00h
 Data = 5 first bytes of
 C-APDU

DATA_BLOCK

R-APDU data field

DATA_BLOCK

SW1-SW2

Busy1
StatusByte =

4xh

Ready to send
ATR

StatusByte = 10h

Wait for
C-APDU

StatusByte =
00h

Busy2
StatusByte =

4xh

Wait for data
field

StatusByte =
10h

Data field
available

StatusByte =
10h

Busy3
StatusByte =

4xh

SW1-SW2
available

StatusByte =
20h

XFR_BLOCK
 bLevelParameter = 00h
 Data = C-APDU
 data field

dwFeatures = 0000 0840h
dwProtocols = 0000 0001h (T=0)

no

xyh

GET_ICC_STATUS

Any state
StatusByte =

xyh

End of proccess

End of proccess

End of proccess

Internal Reset

ICC_POWER_OFF

Abbreviations:
C-APDU... Command APDU
R-APDU... Response APDU

Figure 6.2-1 State diagram, USB-ICC, control transfers (Version A), character level

USB-ICC ICCD Rev 1.0 Page 29 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Does the
R-APDU

contain a data
field ?

yes

no

ICC_POWER_ON

ATR

XFR_BLOCK
 bLevelParameter = 00h
 Data = APDU command

DATA_BLOCK

R-APDU

DATA_BLOCK

SW1-SW2

Ready to send
ATR

StatusByte = 10h

Wait for
C-APDU

StatusByte =
00h

Busy2
StatusByte =

4xh

R-APDU
available

StatusByte =
10h

SW1-SW2
available

StatusByte =
20h

dwFeatures = 0002 0840h
dwProtocols = 0000 0002h (T=1)

Busy1
StatusByte =

4xh

End of proccess

End of proccess

Inital

xyh

GET_ICC_STATUS

Any state
StatusByte =

xyh

ICC_POWER_OFF

Internal Reset

Abbreviations:
C-APDU... Command APDU
R-APDU... Response APDU

Figure 6.2-2 State diagram, USB-ICC, control transfers (Version A), short APDUs

Page 30 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Does the
R-APDU

contain a data
field ?

yes

no

ICC_POWER_ON

ATR

XFR_BLOCK
 bLevelParameter = 00h
 Data = C-APDU

DATA_BLOCK

First part of R-APDU

DATA_BLOCK

SW1-SW2

Ready to send
ATR

StatusByte = 10h

Wait for
C-APDU

StatusByte =
00h

Busy3
StatusByte =

4xh

First part
of R-APDU
available

StatusByte =
11h

SW1-SW2
available

StatusByte =
20h

XFR_BLOCK
 bLevelParameter = 01h
 Data = First part of
 C- APDU

Receive
first part of

C-APDU
StatusByte =

11h

XFR_BLOCK
 bLevelParameter = 02h
 Data = Last part of
 C-APDU

XFR_BLOCK
 bLevelParameter = 03h
 Data = Next part of
 C-APDU

Receive
next part of

C-APDU
StatusByte =

13h

Busy2
StatusByte =

4xh

Busy4
StatusByte =

4xh

Is the R-APDU
chained ?

Busy5
StatusByte =

4xh

Next part
of R-APDU
available

StatusByte =
13h

Last part
of R-APDU
available

StatusByte =
12h

Last part
of R-APDU
available ?

DATA_BLOCK

Last part of R-APDU

DATA_BLOCK

Next part of R-APDU

R-APDU
available

StatusByte =
10h

no

yes

no yes

dwFeatures = 0004 0840h
dwProtocols = 0000 0002h

Busy1
StatusByte =

4Xh

End of proccess

End of proccess End of proccess

End of proccess

End of proccess

Inital

xyh

GET_ICC_STATUS

Any state
StatusByte =

xyh

ICC_POWER_OFF

Internal Reset

Abbreviations:
C-APDU... Command APDU
R-APDU... Response APDU

Figure 6.2-3 State diagram, USB-ICC, control transfers (Version A), extended APDUs

USB-ICC ICCD Rev 1.0 Page 31 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.2.2 Version B
Control requests under Version B are similar to the exchange of information when using
message pipes in bulk mode. This is achieved by the fact that each OUT-requests are to
be followed by IN-requests. This pair wise use of requests reflects the structure of OUT-
messages and IN-messages for bulk mode.

6.2.2.1 Specific requests
The following table defines valid values of bRequest:

Table 6.2-8 Class specific requests, Version B

bRequest Value Direction
data stage

Description

ICC_POWER_ON
Equivalent to:
PC_to_RDR_IccPowerOn

62h OUT Exits the initial state of a USB-ICC. The ATR is
returned in the data stage of the subsequent
DATA_BLOCK request.

ICC_POWER_OFF
Equivalent to:
PC_to_RDR_IccPowerOff

63h OUT Sets the USB-ICC to initial conditions.

XFR_BLOCK
Equivalent to:
PC_to_RDR_XfrBlock

65h OUT Data transferred from the host to the USB-ICC

DATA_BLOCK
Equivalent to:
RDR_to_PC_DataBlock

6Fh IN Data transferred from the USB-ICC to the host. Also
returns information created by the preceding request.

SLOT_STATUS
Equivalent to:
RDR_to_PC_SlotStatus

81h IN The data stage of this command contains bStatus,
bError and bReserved.
The value for bReserved shall be 00h.

6.2.2.2 Setup Stage
The setup stage contains the class specific request and corresponding parameters. The
following clauses give the values and the parameters for each of the class specific
requests and describe the data that is transferred between host and USB-ICC.

The parameters of the class specific request shall be set as follows:

 The value of bInterface is the same value as bInterfaceNumber given in the Interface
Descriptor.

 Reserved parameter values for class specific requests used in the fields wValue and
wIndex are designated as bRFU, wRFU and bReserved. The value of bRFU shall be
set to 00h and the value of wRFU shall be set to 0000h. The value for bReserved is
given in the tables.

 If the USB-ICC receives an invalid request or if a valid request contains an invalid
parameter value (wValue, wIndex, wLength), the USB-ICC shall respond with STALL.

 On an input request, the USB-ICC shall not return more data than is indicated by
wLength value. It may return less.

Page 32 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

 On an output request, wLength shall always indicate the exact amount of data to be

sent from the host to the USB-ICC. When the USB-ICC receives more data than
indicated in the setup stage, it shall respond with STALL. The host may abort any
transfer by sending an IN-token prematurely. In this case the USB-ICC shall confirm
the IN-token with ACK. If the number of received data is not equal to wLength, the
USB-ICC shall discard these data.

 For ICC_POWER_ON, ICC_POWER_OFF and SLOT_STATUS, the host shall send
the values for wLength as specified in the corresponding tables. If not, the USB-ICC
shall respond with STALL.

Table 6.2-9 ICC_POWER_ON

bmRequestType bRequest wValue wIndex wLength Data

00100001B ICC_POWER_ON bRFU bReserved=01h bRFU bInterface 0000h Empty

The wIndex field specifies bRFU in the high byte and bInterface in the low byte. The
wValue field specifies bRFU in the high byte, and bReserved in the low byte.

Table 6.2-10 ICC_POWER_OFF

bmRequestType bRequest wValue wIndex wLength Data

00100001B ICC_POWER_OFF wRFU bRFU bInterface 0000h Empty

The wIndex field specifies bRFU in the high byte and bInterface in the low byte

Table 6.2-11 XFR_BLOCK

bmRequestType bRequest wValue wIndex wLength Data

00100001B XFR_BLOCK bLevelParameterbReserved=00h bRFU bInterface Length of
data

Command
APDU

The wIndex field specifies bRFU in the high byte and bInterface in the low byte. The
wValue field specifies bLevelParameter in the high byte and bReserved in the low byte.

Table 6.2-12 DATA_BLOCK

bmRequestType bRequest wValue wIndex wLength Data

10100001B DATA_BLOCK wRFU bRFU
bInterface

Length of data + 1

The value of wLength
shall be greater than
or equal to 4. This
allows the USB-ICC
to return at minimum
the complete status
information.

Response APDU or ATR or
status information.

Notes:
wLenght indicates the
maximum size of expected
data plus one additional byte
for bResponseType.

If the length of the response
APDU is greater than indicated
in wLenght then the USB-ICC
will signal chaining in
bResponseType.

The wIndex field specifies bRFU in the high byte and bInterface in the low byte

USB-ICC ICCD Rev 1.0 Page 33 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

Table 6.2-13 SLOT_STATUS request

bmRequestType bRequest wValue wIndex wLength Data

10100001B SLOT_STATUS wRFU BRFU bInterface 0003h Contains status/error
information:
bStatus, bError, bReserved

The value for bReserved shall
be 00h

The wIndex field specifies bRFU in the high byte and bInterface in the low byte

6.2.2.3 ATR and data transmission
The messages to be transmitted in order to set the USB-ICC to initial state, to obtain the
ATR and to transmit data are given in the following state diagram
Figure 6.2-4.

For the correct transmission of data, the following general rules shall apply to the state
diagram:

 Once the USB-ICC is configured, the host shall submit ICC_POWER_OFF for the

USB-ICC to enter its initial state.

 If the USB-ICC receives a request that is not assigned to the current state as defined
in the state diagram, the USB-ICC shall return a STALL and remain in its current state.

 If the interface device sends DATA_BLOCK and the USB-ICC returns in the data
stage the errors ICC_MUTE or HW_ERROR, the host should preferably submit
ICC_POWER_OFF.

Note When the host has sent ICC_POWER_OFF, the USB-ICC shall enter the state
“virtually not present”. The use of interrupt-IN messages for this case is described in § 6.3.

Page 34 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

XFR_BLOCK
bLevelParameter: 00h
Data: command APDU

Data stage:
bResponseType: 00h
abData: response APDU

XFR_BLOCK
bLevelParameter: 01h
abData: part of command APDU

Data stage:
bResponseType: 10h
abData: empty

XFR_BLOCK
bLevelParameter: 03h
abData: part of command APDU

Data stage:
bResponseType: 10h
abData: empty

XFR_BLOCK
bLevelParameter: 02h
abData: last part of command APDU

Data stage:
bResponseType: 01h
abData: part of response APDU

XFR_BLOCK
bLevelParameter = 10h
abData: empty

Data stage:
bResponseType: 03h
abData: part of response APDU

Data stage:
bResponseType: 02h
abData: last part of response APDU

Last part of
response
APDU?

Chained
response
APDU?

no

Waiting for
command

APDU

ready to
receive next
command
APDU part

response
APDU partially

sent

no

dwFeatures: 0002 0840h (short APDU) and
0004 0840h (extended APDU)

dwProtocol: 0000 0002h (T=1)

DATA_BLOCK

DATA_BLOCK

DATA_BLOCK

Initial

ICC_POWER_ON
abData: empty

DATA_BLOCK
bResponseType: 00h
abData: ATR

USB-ICC is
activated

USB-ICC is
present

USB-ICC is
virtually not present

USB-ICC is
configured

yes

yes

DATA_BLOCK

Busy1

DATA_BLOCK

Busy[i]

Data stage:
bResponseType: 80h
abData: dwDelayTime

DATA_BLOCK

Any State

ICC_POWER_OFF
abData: empty

Data stage:
 bStatus, bError, bReserved

Waiting for
SLOT_STATUS

SLOT_STATUS

1

End of Process

Ready

[i]

Busy2

2

Busy3

3

Busy4

4

Busy5

5

Data stage:
 bStatus, bError,
 bReserved

SLOT_STATUS Overrun detected

Waiting for
DATA_BLOCK

Waiting for
command

APDU

Data stage:
bResponseType: 40h
abData::
 bmIccStatus: 0
 bmCommandStatus: 1
 bError: XFR_OVERRUN
 bReserved

DATA_BLOCK

Initial

Figure 6.2-4 State diagram, USB-ICC, control transfers (Version B)

USB-ICC ICCD Rev 1.0 Page 35 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

The USB-ICC returns on the DATA_BLOCK request the following values in the data stage:

Table 6.2-14 Data stage of DATA_BLOCK

Offset Field Description

0 bResponseType Indicates the type of information abData field contain:
 00h: the abData field contains the information created by the preceding
 request.
 40h: Status information
 the abData field contains bStatus, bError and bReserved=00h.
 80h: Polling
 the abData field contains the delay time (wDelayTime) until the host
 waits to send out the next request. The value is given in units
 of 10ms (e.g. 0078h = 1,2s). If wDelayTime equals 0000h, the
 host shall set the polling interval at its own discretion. For all other
 values, the host shall use the given value at is best effort.
For extended response APDUs:
 00h: the response APDU begins and ends in this command,
 01h: the response APDU begins with this command and is to continue,
 02h: this abData field continues the response APDU and ends the
 response APDU,
 03h: this abData field continues the response APDU and another block is
 to follow.
 10h: empty abData field, continuation of the command APDU is expected
 in the next XFR_BLOCK.
 See also the state diagram in Figure 7.

1 abData Data sent from the USB-ICC to the host

The information that is transmitted in abData field of DATA_BLOCK, depends on the
preceding request.

6.2.2.4 Coding of bLevelParameter for XFR_BLOCK
The value of bLevelParameter designates the position (first block, middle, last) of the
subsequently transmitted blocks of a command APDU. The following values are assigned:
00h the command APDU begins and ends with this command
01h the command APDU begins with this command and is to continue
02h the command APDU continues and ends the command APDU
03h the command APDU continues and another block is to follow
10h the data stage is empty, continuation of response APDU is expected in the

next DATA_BOCK request

6.2.2.5 APDU level message exchange, short APDU
In case that the length of the response APDU exceeds the value of wLength in the data
stage of the DATA_BLOCK request, the response APDU has to be transmitted in
subsequent blocks. For this block wise transmission, the USB-ICC shall use the same
mechanism as for extended response APDUs.

6.2.2.6 Status and error conditions reported by USB requests
The bStatus field consists of two bitmap fields that contain information about the USB-ICC
status (bmIccStatus) and the processed command (bmCommandStatus). The following
two tables give the values for the status and the error codes.

Version B returns status and error conditions in the data stage of DATA_BLOCK. This
condition is indicated by bResponseType = 40h. In addition, the USB-ICC will respond

Page 36 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

with a STALL handshake when it receives an invalid request or if a valid request contains
an invalid parameter value (wValue, wIndex, wLength).

If bResponseType = 40h, abData field contains status and error information.

The term "virtual" is used to express that the USB-ICC may be envisaged as removed
from the interface device although it is still powered.

Table 6.2-15 Bitmap for bStatus field

Offset Field Size Value Description

0 bmIccStatus 1
(2 bits)

0, 1, 2 0 = The USB-ICC is present and activated.
1 = The USB-ICC is present but not activated
2 = The USB-ICC is virtually not present
3 = RFU

(2 bits) (4 bits) RFU

(6 bits) bmCommandStatus (2 bits) 0, 1 0 = Processed without error.
1 = Failed, error condition given by bError.
2 = RFU
3 = RFU

1 bError 1 Error codes

Only the following errors are supported.

Table 6.2-16 Error codes for bError

Error name Error code Possible causes

ICC_MUTE -2 (FEh) The applications of the USB-ICC did not respond or the ATR could not
be sent by the USB-ICC.

XFR_OVERRUN -4 (FCh) The USB-ICC detected a buffer overflow when receiving a data block.

HW_ERROR -5 (FBh) The USB-ICC detected an hardware error.

 -64 to -127
(C0h – 81h)

User defined

 -3 (FDh)
-8 to –14
(F8h –F2h)
-16 (F0h)
-17 (EFh)
-32 (E0h)

These values shall not be used by the USB-ICC

 all others
(80h and those
filling the gaps)

Reserved for future use

If the value of bmCommandStatus equals 0 or RFU, the value of bError shall be 0.

USB-ICC ICCD Rev 1.0 Page 37 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

6.3 Interrupt transfers
Bulk transfer mode and control transfer mode (Version B) optionally provide an Interrupt-
IN endpoint. This endpoint is used to notify the host of events that may occur
asynchronously to the command/response exchange between host and USB-ICC.
The USB-ICC may notify to the host its virtual insertion/removal.

Notes:
The driver in combination with the operating system shall provide means to recognize
properly card removal.

6.3.1 Virtual insertion/removal event
The term "virtual" is used to express that the USB-ICC may be envisaged as removed
from the interface device although it is still powered.

Table 6.3-1 Interrupt-IN message

Offset Field Size Value Description

0 bMessageType 1 50h Indicates NotifySlotChange.

1 bmSlotIccState 1 000000xyB The USB-ICC indicates the status (removed or inserted)
in the two least significant bits.
The least significant bit reports:
 0b= TheUSB-ICC is virtually not present,
 1b= The USB-ICC is present.

The other bit reports whether the virtual presence of the
USB-ICC has changed since the last NotifySlotChange
message was sent:
 0b= no change
 1b= change

All other bits shall be set to zero.

For correct operation of the interrupt request, the following conditions shall apply:

 When the USB-ICC exits from the state "Initialized" by PC_to_RDR_IccPowerOn

(ICC_POWER_ON), the USB-ICC shall send a NotifySlotChange message with
bmSlotIccState = 00000011B.

 The USB-ICC may enter “virtually not present” at any point in time. The host will
receive the NotifySlotChange message with bmSlotIccState = 00000010B. The USB-
ICC shall not send the NotifySlotChange message after it has received a
PC_to_RDR_IccPowerOff (ICC_POWER_OFF).

NOTE The first condition allows the host to detect an unresponsive card. The second
condition ensures that the interrupt message "virtually not present" is an asynchronous
event caused by the USB-ICC. It is not the result of an OUT message or request received
from the host.

Page 38 of 40 USB-ICC ICCD Rev 1.0

DWG Smart-Card USB Integrated Circuit(s) Card Devices

7 Notation for the state diagrams

Initial

Waiting for
command

APDU

RDR_to_PC_DataBlock
 bChainParameter:00h
 abData: response APDU

PC_to_RDR_XfrBlock
 wLevelParameter: 0000h
 abData: command APDU

Initial state in the state diagram

State in the state diagram

Waiting time
exceeded?

no

yes

Decision branch

The USB-ICC receives data.

For bulk transfers:
 The message type and relevant parameters/values are given.
For control transfers:
 The control request and relevant parameters/values are given

The USB-ICC sends data.

For bulk transfers:
The message type and relevant parameters/values are given. The
USB-ICC always initiates the transmission of this message.

For control transfers:
The control request and relevant parameters/values are given. The
host always initiates the transmission of this data by sending the
DATA_BLOCK or SLOT_STATUS. Therefore, these two requests are
always represented by two arrowed boxes: a box with an IN-arrow
(request) and a box with an OUT-arrow (data).

End of proccess The USB-ICC receives data. from an (USB-ICC)
internal process

USB-ICC ICCD Rev 1.0 Page 39 of 40

DWG Smart-Card USB Integrated Circuit(s) Card Devices

This page is left intentionally blank.

Page 40 of 40 USB-ICC ICCD Rev 1.0

	Introduction
	Related Documents
	Terms and Abbreviations
	Document Conventions

	Overview
	USB-ICC Functional Characteristics
	Communication pipes
	Selective suspend
	Idle detection
	Idle notification request

	Resume

	Standard USB Descriptors
	Device
	Configuration
	Interface

	Smart Card Device Class
	Descriptors
	USB-ICC Endpoints
	Bulk-OUT Endpoint
	Bulk-IN Endpoint
	Interrupt-IN Endpoint

	Data transfers
	Bulk transfers
	Bulk messages
	PC_to_RDR_IccPowerOn and RDR_PC_DataBlock
	PC_to_RDR_IccPowerOff and RDR_PC_SlotStatus
	PC_to_RDR_XfrBlock and RDR_PC_DataBlock

	Status and error conditions

	Control Transfers
	Version A
	Specific requests
	Setup Stage
	ATR and data transmission
	APDU level message exchange, short APDU
	Error conditions
	Interrupt Transfers

	Version B
	Specific requests
	Setup Stage
	ATR and data transmission
	Coding of bLevelParameter for XFR_BLOCK
	APDU level message exchange, short APDU
	Status and error conditions reported by USB requests

	Interrupt transfers
	Virtual insertion/removal event

	Notation for the state diagrams

