utc L2/21-241
2021-11-20
Khmer Encoding Structure

Executive Summary. This document analyses and describes an extended grapheme cluster structure for
Khmer script. It proposes no new characters. The document is being written in close liaison with script
experts in Cambodia and undergoing review by staff at various governmental organisations. This document
contains a snapshot of the current state of the research to allow for parallel consensus building between
experts in Cambodia and the UTC. The purpose is to provide appropriately early engagement with those
outside the core team working on this document, while having a proposal mature enough to be worth
engaging with.

Issues. A current list of issues for which input is sought is repeated here. From p9 and the structure for
Modern Khmer:

* How complex do we want to make the consonant shifter rules? There are some other sequences that
we could say: these cause the shifter to downshift. But where do we draw the line? We could make
the rules very clever and complicated and thus never need ZWNJ or we can simplify the rules and
require more uses of ZWNJ.

* Should ZWNJ come before or after a consonant shifter?

From p22 and Middle Khmer:
* Do we really need ZWIJ to push consonant shifters down or is there another analysis for those words?
* Should we differentiate Middle and Modern Khmer syllable structures by language tag?

Of these, the last question is probably of most interest to the UTC and I give more background to this
question.

The cluster structures for Modern Khmer and Middle Khmer are quite different. While the structure for
Middle Khmer is an extension to that of Modern Khmer, the extensions are pervasive enough that they, if
applied to Modern Khmer would cause problems. In particular, Middle Khmer supports vowel sequences and
final coengs, that are not supported in Modern Khmer. The costs of implementing support for the Middle
Khmer extensions for font developers only interested in Modern Khmer is high. This cost would also apply
to all other processing functions. It would also cause problems with people misspelling if not using an
appropriate input method. For example:

* while Middle Khmer has some visual distinction between a spacing coeng being stored before or
after a non spacing above vowel, this distinction is not made in Modern Khmer (since the final coeng
never occurs) and so a user would not necessarily notice the visual distinction and therefore may
well store a final coeng for a Modern Khmer word, which they may not notice is wrong.

* The user base for Middle Khmer is very small in comparison to that of Modern Khmer.

The result of these difficulties is that there is a recommendation that Middle and Modern Khmer be given
different cluster definitions. The problem is that they they are both the same script and the distinction would
be based on language rather than script. This is assumed to be a novel requirement and therefore needs
careful review by shaping engine implementers, since they would carry the primary cost of implementation.
Notice that the default cluster definition for Khmer script would be for Modern Khmer and only text
appropriately language marked would follow the Middle Khmer cluster structure.

Changes. There are various changes that may not be obvious from the document, that are worth
highlighting:
* Folding coeng da into coeng ta in Modern Khmer. There is a section on this in the document, but it is
a significant encoding change.

* Abandoning the use of ZWJ and ZWNJ to control ligatures in the Muul style. Instead normal font
styling is to be used.

Khmer Encoding

Marti)n Hosken (SIL International, NPIC LSDU)

Introduction

The Khmer script has been encoded in Unicode for a long time. But it is a very complex script used to write
several languages in that it has multiple orthographies. The primary driving orthography is for the modern
Khmer language and there is some confusion in understanding how to encode it. This document is a step
in a long history of the discussion of how to encode the Khmer script. It proposes no changes to the
character repertoire of the Unicode Standard, but concentrates on the description of what a Khmer
sequence consists of and what rules are to be applied to it.

One of the primary concerns with this revision of the encoding is to ensure that one visual form only has
one encoding. That is, there are not two ways to encode the same visual representation. This is important
for three reasons:

1. Confusability. If you can encode the same visual representation in two ways, you can come up with
say two different website addresses that look identical, thus allowing someone to spoof another
site.

2. Ease of typing. If there are two ways to represent a single visual form, then it is up to the typist to
ensure that they enter text in such a way as to get the correct encoding for any given visual form.
If, on the other hand, there is only one encoding possible, then the computer can generate that
encoding based on a visual input from the typist, regardless of how badly they type that visual
form. This means that those who are not experts in Khmer Unicode can successfully enter good
data based exclusively on the visual form.

3. Sorting and searching. If there are two ways to encode the same visual representation, people will
be confused as to why two identical looking words do not match each other, or sort to different
places or why one might be marked as misspelled for no visual reason or why some words cannot
be found in a search.

Therefore the current encoding results in significant user experience difficulties (see Appendix 1). Thus
while, if one is careful, one can enter Khmer text in a manually enforced consistent fashion with correct
rendering, most users are not proficient enough to ensure such consistency of data entry.

When considering the encoded syllable structure for a script there are two extremes that can be created:

e The loose specification aims to allow any possible sequence so long as it meets the above 3
requirements, even if such a sequence could never occur in any orthography using the script. For
example, in Khmer, this would allow multiple vowels or multiple non spacing diacritics. The cost
with this approach is that implementers then need to support these extra sequences. For example,
font developers would need to support vertical stacking diacritics for vowels and other diacritics
for Khmer.

e The tight specification aims to only describe sequences that could occur in an orthography. The
danger here is that it may limit someone who needs to use the script in unexpected ways for a
new orthography or the transliteration of foreign words.

In this discussion, we will start from a relatively tight position of building the syllabic structure from
orthographic analysis. Such an analysis cannot be completed without consideration of all orthographies
that use Khmer script, including Old and Middle Khmer. In this discussion, ‘Khmer language’ refers to
Modern Khmer. Other Khmer language orthographies (like Middle or Old Khmer) are explicitly identified. It
is worth noting that modern minority language orthographies have been designed specifically to fit within
the structural norms of Modern Khmer. Thus they do not use consonant shifters outside of their use in the
Khmer language; only use one vowel character, etc.

In handling what are described as illegal sequences, font developers and shaping engine developers, etc.
are free to represent such sequences as they see fit, so long as they are visually contrastive to any other
sequence. For example, one developer may decide to insert a dotted circle between two signs, while
another may simply stack them.

Rationale

Encoding issues are something that end users of applications, working with Khmer script, should never
have to consider. Systems should do the right thing for them, and they should not even need to know what
Unicode is. That users need to know about Unicode in order to type is a failing on the part of the system
implementers. This is not a criticism because implementation is hard and has lacked the necessary
supporting standards. Users should be able to type in a way that is natural to them. They should be able to
search for a word and find all the instances of that word across multiple documents, typed by different
people with different applications (assuming such a search can deal with the different file formats
appropriately).

The current situation, for Khmer, is that users are expected to have a relatively deep understanding of how
Khmer is encoded in Unicode in order to type correctly. They are expected to type their coengs, vowels and
other diacritics and signs in the right order with nothing to help them visually. It is not a surprise therefore
that there can be a plethora of ways in which a single word is spelled (see Appendix 1).

It is assumed, in this document, that the implementation of support for Khmer will include everything
needed to hide the encoding complexities from users. There is no need to consider the impact that
encoding will have on how end users type. Instead the question is of the impact the encoding has on the
implementation of input methods that enable users to type in a natural way without consideration of
encoding issues.

One of the purposes of this document, therefore, is to help implementers create solutions that allow users
to not have to know about Unicode to be able to type their language correctly. We hope that this
document will lead to others that will enable font designers and keyboard implementers to produce fonts
and tools that work consistently and enable consistent data entry and rendering. We do this by
concentrating on describing an unambiguous encoding structure for Khmer.

One important presupposition of this document is that if there is only one way to encode something, then
it makes it easier to produce a system that works with that one way. Thus if there is only one way to store
a word, an input method can take a variety of ways that a user might type a word and normalise them into
the single correct way. On the other hand, if there are multiple ways to encode a word, then the input
method cannot do this and the user is expected to resolve the ambiguity and pick the right ordering.

In the technical context where a keyboard only allows a user to type single codepoints (or short
sequences), there has been no other option. Users want to be able to type in a variety of orders and
therefore have made use of the existing ambiguities in the encoding. But modern keyboard applications
are far more sophisticated and are capable of allowing different typing orders and outputting a single
correct order. But they can only do this if there is an agreed single correct order to output. If they are
expected to output different orders, then the keyboard cannot resolve its input and the decision of what
output to generate has to be pushed back onto users. Users therefore have to become aware of encoding
issues. This is the problem this document attempts to resolve: What is the agreed single correct order
to be used?

Document Conventions

The approach taken in describing the encoding, will be strongly regular expression based both in terms of
describing the structure but also in describing transformations for rendering and keyboarding. The regular
expression language used is based on PCRE (as used in Perl and Python and a number of other tools). In
particular the following more advanced aspects of regular expressions are used:

e Alternation. Sequences are kept together between | alternation marks within a group.

e Aseparately defined subexpression, which is presented as a variable declaration and use, is

considered its own group.

e (?=regex) is a look ahead assertion and (?<=regex) is a look behind assertion. This allows the
identification of a specific subexpression in the context of text before and after. This is used in
rewrite rules where the matched expression is replaced, leaving the context unchanged.

e (?!regex) is a negative look ahead assertion (fail if the regex matches) and (?<!regex) is a
negative look behind assertion. This is not currently used.

e From standard regular expressions we use ? for optional and {@, 23} for ‘up to two'. Parentheses are
used to group sequences and alternations. [] match one of the characters in the list.

There are various technical terms that are often used very ambiguously. This document is not immune to
such ambiguities. But it is hoped that:

e Adiacritic is a non spacing character, above or below a letter. This is in contrast to general Khmer
linguistics. Thus for this document the following are also diacritics: non spacing coengs and non
spacing vowels.

e Asymbol is a character that is not part of a linguistic syllable. For example, digits, punctuation.

e Asign is a character that is not a symbol, consonant, coeng, independent vowel or vowel. Most of
the signs are diacritics, but some are spacing. Signs may not occur on their own and are part of the
syllable structure. This is more commonly called a diacritic in Khmer linguistics.

e The term spacing, for example when talking about spacing signs, vowels and coengs, is restricted
in this document to mean only right spacing, unless otherwise specified. Thus coeng ro (U+17D2
U+179A), coeng vo (U+17D2 U+179C) and prevowels (U+17BE, U+17C1..U+17C3) are not
considered spacing. Split vowels with both pre and post components (U+17BF, 1U+17C0, U+17C4,
U+17C5) are considered spacing.

The Starting Point

Over the years, there have been a number of attempts at resolving the issues in the Khmer encoding and
various orthographic syllable structures have been proposed. The structure proposed in this document
follows in that tradition and while it is derived from scratch, the result tries not to stray too far from what
has gone before. The starting point in that tradition, is from an unpublished proposal from 2004 [Sol3] to
refine the Khmer syllable structure:

B (R | (ZWNJ? C)) Sx (ZWNJ? C)? (ZWNJ? V)? 07 (ZWJ S)?

Where
B - Base consonant or independent vowel
R - Robat

ZWNJ - zero width non-joiner

C - Consonant shifter

Subscript consonant or independent vowel sign
V - Dependent vowel sign

0 - Other signs

ZWJ - zero width joiner

(9]
1

This is more complex than is needed for Modern Khmer, given it aims to support Middle Khmer as well.
Although, by the time we are finished, the syllable structure will be no less complex. The main issue this
description suffers from is that it allows multiple ways of representing the same visual form. In addition,
actual font implementations and shaping engines diverge from this description in various ways (e.g.
Lindenberg 2019). We will, therefore, build up a new regular expression, but in the same direction. Due to
the complexities of Middle Khmer, these will not be considered initially, although they may be mentioned,
for this initial development of an encoded orthographic syllable structure. Current minority language
orthographies will be considered where appropriate.

All analysis of Khmer encoding so far has concentrated on the rendering of correctly input text with a
strong linguistic motivation. Unfortunately, for many Khmer writers, they have insufficient expertise in the
linguistics of the language, let alone Unicode, to be sure to enter correctly encoded text. Ambiguities in the
encoded syllable mean that it is impossible for tooling to help users to type well. If we can remove the

visual ambiguities from the structure, it is then possible for tooling to enable users to type in any order or
resolve common typing errors. It also removes confusability (where two different sequences render
identically) which is rife in Khmer encoded data.

Orthographic Syllable Structure

At its simplest, a Khmer orthographic syllable may consist of a single consonant or independent vowel.
This is the only required element of an orthographic syllable.

Syl =B | I
B [1780-17A2]
I [17A5-17A7 17A9-17B3]

The characters 17A3, 17A4 and 17A8 are excluded since they are deprecated.

We can treat independent vowels just like base consonants. While they have different linguistics associated
with them, visually they behave as bases. For example, it makes no sense for an independent vowel to
have another vowel diacritic. But this is purely a spelling issue, there is no visual contrast that needs to be
resolved. This also holds for all other diacritics and signs. Thus:

Syl =B
B = [1780-17A2 17A5-17A7 17A9-17B3]

For the purposes of the syllable structure, there are also other characters that we treat as being a syllable
in their own right. They take no diacritics and occur, simply, on their own:

0 = [17D4-17D7 17D9-17DC 17E@-17F9 19EQ-19FF]
17D8 is not included because it is deprecated.

A Khmer syllable may also include a single dependent vowel, unlike other scripts of SouthEast Asia, which
use vowel sequences:

SyL=BV? |0
V = [17B6-17C5]

Khmer has subjoined consonants, called “coengs”, in Khmer, that are used for initial consonant clusters
(sequence of consonants) and also for syllable chaining (whereby the base consonant is read as the final to
the previous linguistic syllable and the coeng as the initial for the next linguistic syllable). In Middle Khmer
they can even represent syllable final consonants. These uses are not contrasted and so for orthographic
purposes, we treat the final consonant from a previous linguistic syllable that is chained visually with the
initial consonant of the next linguistic syllable, as the initial of the next orthographic syllable with the
linguistic initial as an orthographic medial. For example, ﬁjﬁg“l%i is made up of two linguistic syllables but
three orthographic syllables each starting with a base character (fU 91 §). The second base character (1) in
this example is acting as the final consonant of the first linguistic syllable. There may be up to two coengs
in an orthographic syllable, (e.g. involving coeng ro or as result of syllable chaining). While, visually, more
could occur, two pre-vowel coengs is the limit used in any known orthography. The cost, therefore, of
requiring support for more, given they are never used, outweighs the value of increased generality. In
Unicode a coeng is made up of a Khmer sign coeng (17D2) followed by a base consonant or independent
vowel.

Syl = B C{0,2 V2 | O
C=17D2 B

Khmer has final consonants, but for orthographic purposes, these are treated as the start of a new

orthographic syllable, as mentioned previously. With regard to the ordering of coengs, all coengs have a
component that renders under the base or a previous coeng. Therefore coengs are considered as being
ordered downwards from the base character regardless of whether they are spacing. Fonts need to ensure
that contrastive order results in contrastive rendering, e.g. in the contrastive order of coengs in Tampuan:

E? U+1780 U+17D2 U+179A U+17D2 U+179C 17B6

U U+179F U+17D2 U+179C U+17D2 U+179A 17B7
Versus the opposite order which would be considered wrong spelling in Tampuan:
[M U+1780 U+17D2 U+179C U+17D2 U+179A 17B6

W U+179F U+17D2 U+179A U+17D2 U+179C 17B7

In many fonts coeng ro (179A) has no part that goes directly under the base in such a way that it interacts
with another coeng (i.e. the other coeng moves up, down or sideways). In which case the non ro coeng is
rendered alongside any part of the coeng ro that goes under the base. But in other fonts, the coeng ro
does interact with another coeng. For more discussion on this, see the Shaping and Font Development
section. In the Khmer language if there is such a visual interaction, the coeng ro always goes below the
other coeng. This is because linguistically, the r comes last in a consonant cluster. But we formalise this
and say that coeng ro always comes second in a coeng sequence even if it doesn’t sound second.

Consonant Shifter

The consonant shifters, triisap (17CA) and muusikatoan (17C9), are such important signs in Khmer that they
require their own very careful analysis. There are contextual shaping issues, keyboarding issues and
encoding issues with these signs. This section just considers the encoded syllable issues. For a full
discussion of all the issues see the section on Downshifting Consonant Shifters.

In the Khmer orthography it is the orthographic consonant cluster that is interpreted as having a series,
even if its constituent consonants are from different series. Where in a sequence should the consonant
shifter be stored? There are two schools of thought:

e The consonant shifter immediately follows the consonant it affects. Thus if the shifter changes the
series of the base consonant, it is stored after the base and before a possible coeng. Likewise if it
affects the coeng, it follows that coeng. The problem is that if the coeng is not spacing, it requires
considerable linguistic awareness to decide whether the shifter affects the base or coeng and in
some cases not even this is sufficient to resolve the ambiguity.

e The consonant shifter is stored at the end of the consonant cluster, since it applies to the whole
cluster.

Since in all orthographies we know about, there is no semantic difference between a shifter before or after
a spacing coeng, it is preferable to give the shifter a fixed position in the sequence. Thus we propose the
shifter is stored at the end of the consonant cluster.

The later section on consonant shifters examines the whole issue of how in some contexts a consonant
shifter changes to the glyph of a -u vowel (17BB). The only structural implications of that section is that it is
sometimes necessary to override the default shaping behaviour and to not allow a consonant shifter to
‘down-shift’. To do this we introduce the use of zero width non-joiner ZWN] (200C) to stop a shifter from
down-shifting. This affects the syllable description:

Syl =B ¢{0,2} S? V? | O
S = (ZWNJ? [17C9 17CAD)
ZWNJ = 200C

Simply adding a ZWN]J into the syllable description also introduces an ambiguity. Where a consonant
shifter cannot be downshifted (because there is no upper diacritic following), then the ZWN]J is redundant
and a string with or without the ZWN], by definition, will render the same. To complicate things further, a
simplistic algorithm that says any shifter followed by an appropriate above diacritic shifts down, results in

ambiguity, since either consonant shifter will result in the same visual representation. Thus, while we can
allow any consonant shifter after a consonant cluster, only those that might result in down shifting may
take a ZWN]J. The constraints are complicated and we copy them here from the discussion and analysis in
the section on Downshifting Consonant Shifters. In copying here we simplify the simple case:

S = (((?<=SF CNB{0,2} | B (SCF CNB? | CNB SCF)) ZWNJ 17CA

| (?7<=SS c{0,2} | B (SCS C? | C SCS)) ZWNJ 17C9)
(?=[17B7-17BA 17DD] | 17B6 17C6)
| (?<=SS c{0,2} | B (SCS C? | C SCS)) ZWNJ 17C9 (?=17D0)

| [17C9 17CAD)

BNB = [1780-1793 1795-17A2] # Consonant no BA [fi-8 N-H]
CNB = (17D2 BNB)

SCF = (17D2 SF) # Shifter Coeng First series
SCNF = (17D2 SNF) # Shifter Coeng Not First series
SCS = (17D2 SS) # Shifter Coeng Second series

SF = [1794 179E 179F 17A0 17A2] # Shifter First series [U ¥ U U1 H]
SNF = [1780-1793 1795-179D 17A1] # Shifter Not First series [fi-8 N-# %]]
SS = [1784 1789 1798 1799 179A 179C 179D] # Shifter Second series [l m g uiya

Signs

In Modern Khmer script, there is only ever one non spacing sign and / or one spacing sign. We categorise
the non spacing sign as a modifying sign and the final spacing sign as a modifying final. This gives flexibility
to categorise non spacing signs as modifying finals if that is needed (see Middle Khmer).

Syl = B R? C{0,2} S? V? MS{0,2} MF? | O

MS = [17C6 17CB 17CD-17D1 17DD] # Modifying Signs [~ 1
MF = [17C7 17C8] # Modifying Finals [= :]
R = 17CC # Robat [1]

Since some diacritics may occur with other diacritics, we generalise the syllable structure to allow two
diacritic signs. The specifics are given for each sign.

o
U+17C6 Nikahit .

This marks final nasalisation and, in the Khmer language, occurs in three contexts: on its own, after -u
(17BB) and after -aa (17B6). In conjunction with -aa, it pushes a consonant shifter down. May be followed by
kakabat or toandakhiat and also samyok sannya in Tampuan.

U+17CB Bantoc :.

Bantoc is placed over a final consonant to shorten or change the nature of the vowel in the linguistic
syllable (including the inherent vowel) that ends with that consonant. It currently only occurs after a
simple base consonant, in Modern Khmer. In Middle Khmer, it may also follow -aa 17B6 where it renders
over the consonant (ﬁJ’ﬁﬁ fu).

U+17CC Robat 3.

This represents a final r on a previous consonant (cf. Repha in Devanagari). It is rarely sounded in Modern
Khmer (e.g. 9|13 § Glﬁfﬁ '?rlﬁﬁ) and there is little to be gained in positioning it earlier in the orthographic
syllable sequence. It currently only occurs with 1786 (1), with 17BB () or with no vowel. There are legacy
transitional issues with this character. All the current syllable structure specifications place robat early in
the sequence, before any coengs. This is the only core conflict between valid strings between the various

syllable structures. Therefore, we place the robat separately, early in the sequence.

¢
U+17CD Toandakhiat .}

This is a silencer and may occur after any vowel (except 17B6) or final consonant cluster. It is a rare
character that, in the Khmer language, most often occurs alone or after 1787 (') with which it visually
ligates.

L
U+17CE Kakabat i.;

This is a + like diacritic that marks exclamation in Khmer. It renders above any vowel. The presence of
Kakabat does not cause the shifter to go down, on its own. (See the later section on Downshifting
Consonant Shifters). In an extreme case there may be a consonant shifter, vowel and kakabat all stacked
up: i:i:. (It can also occur after samyok sannya when transcribing Thai tones.)

[
U+17CF Ahsda i

This mark highlights certain consonants as being a discrete word. It may occur after 17¢5 (1) in which case
it renders centred over the base consonant. Such occurrences are rare but do turn up in the Chuon Nath
dictionary.It may also occur before 17¢7 (3).

5]
U+17D0 Samyok Sannya t.}

This modifies the vowel and final sound on a syllable. In many respects, samyok sannya behaves like a
vowel. It pushes muusikatoan down, but not triisap. Since there is a possible sequence that renders
identically with 17BB, samyok sannya may not co-occur with -u 17BB. It has similar positioning behaviour to

Kakabat and Ahsda. In Tampuan there are words like: WITI% 1794 1780 17D2 179A 1786 17D@ 17C7 where
the 17D00() is rendered over the reahmuk.

Samyok Sannya may also be used for transliteration purposes. For example in the Chuon Nath dictionary it
may be followed by Kakabat to represent Thai tones.

U+17D1 Viriam

This kills the inherent vowel in a consonant and as such marks it as a final. This currently, does not
co-occur with Bantoc, which has a similar effect as well. This character is primarily used in transliteration
of Old Khmer (Chuon Nath Dictionary), where it is common. It does not co-occur with vowels or shifters.

[

U+17DD Atthacan i}

This was originally used to indicate the presence of the inherent vowel. In minority languages, its meaning
is often reappropriated to represent a vowel, e.g. in Bunong: 8U1 § /nho ro/ 'unending'. May be
followed by kakabat or toandakhiat.

U+17C7 Reahmuk i} e

Acts like a final -h as is found in other scripts in the region (Devanagari, Myanmar). It is spacing but is not
considered its own cluster. It can also occur following an independent vowel. There is no expectation to be
able to insert a cursor before it. In Tampuan U+17D0 (samyok sannya) renders over the 17C7 even though
it is stored before. This is language specific styling. See the example in the discussion of samyok sannya
above.

U+17C8 Yuukaleapintu %}-

In the Khmer language, this is a stopped short vowel. In Bunong, on the other hand, this can occur after
several vowels ([17B6 17C1 17C2 17C4 17DD1 1 i1), also indicating that the vowel is stopped and short.

Miscellaneous

Deprecated Characters

While deprecated characters should not be used, it is necessary to process them appropriately when they
do occur.

17A3, 17A4, 17A8 Treat as independent vowels, class B
17B4, 17B5 Treat as dependent vowels, class v
17D3 Treat as a modifying sign, class MS
17D8 Treat as a symbol, class 0

A number of these characters can be represented using sequences of non-deprecated characters. As such,
therefore, those deprecated characters should be considered confusable with the preferred sequences.
See the list of formally confusable characters later.

Collation

Collation follows the Chuon Nath dictionary and the Unicode tailoring for Khmer works well pretty much
regardless of the order of characters in the cluster. The primary orders are: Consonant, Vowel, Coengs.
With Shifter and the Modifiers taking secondary orders. With Coengs being stored before Vowels, the
coeng sign character (17D2) is given a sort key greater than any vowel, that way Cons + Vowel sorts before
Cons + Coeng.

The CLDR tailoring, for Modern Khmer, currently assumes that both robat and coengs follow the
consonant immediately. There are a number of direct relations of ro (179A) + coeng to the coeng
consonant + robat (17¢C). This also means that shifter cannot go before the coeng otherwise, given that ro
(179A) can take a shifter, the shifter would interfere with the contraction (a code sequence with a single
collation key). This establishes the initial cluster order as:

B R? c{0,2} S? or B ¢{0,2} R? S?

Of these two, the first makes the most sense, being closer to existing encoding orders. In addition, it would
cause a significant growth in tailoring rules. The cost of changing the order to move the S to before the
coeng is significant, if not huge. Notice that this ordering also means that the robat cannot become just
another Ms.

Outstanding Questions

e How complex do we want to make the consonant shifter rules? There are some other sequences
that we could say: these cause the shifter to downshift. But where do we draw the line? We
could make the rules very clever and complicated and thus never need ZWNJ or we can simplify
the rules and require more uses of ZWNJ.

e Should ZWNJ come before or after a consonant shifter?

o ZWN]J after shifter is how people typically type it. Also ZWN] is seen to naturally break the
shifter + vowel sequence and so stop the downshifting behaviour.

o ZWN]J before shifter makes it easier to replace it with an error character like dotted circle
that appears before the shifter rather than the vowel.

Conclusion

After all this analysis, the structure of a syllable may be expressed using a regular expression:

Syl = B R? C{0,2} S? V? MS{0,2} MF? | O
S = (((?<=SF CNB{9@,2} | BNB (SCF CNB? | CNB SCF)) ZWNJ 17CA
| (?<=SS SCNF{®@,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9)
(?=[17B7-17BA 17BE 17DD] | 17B6 17C6)
| (?<=SS SCNF{@,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9 (?=17D0)
| [17C9 17CAT)
B = [1780-17B3] # Base consonant [fi-8]
BNB = [1780-1793 1795-17A2] # Consonant no BA [fi-S N-H]
C=17D2 B # Coeng
CNB = (17D2 BNB)
MS = [17C6 17CB 17CD-17D1 17D3 17DD] # Modifying Sign [- 1
MF = [17C7 17C8] # Modifying Final [3:]
0 = [17D4-17DC 17E@-17F9 19EQ-19FF] # Other: Symbols and digits [1- O- -]
R = 17CC # Robat []
SCF = (17D2 SF) # Shifter Coeng First series
SCNF = (17D2 SNF) # Shifter Coeng Not First series
SCS = (17D2 SS) # Shifter Coeng Second series
SF = [179E-17A0 17A2] # Shifter First series [U-U1 H]
SNF = [1780-179D 17A1] # shifter Not First series [fi-BF §]]
SS = [1784 1789 1794 1798-179A 179C 179D] # Shifter Second series [#1 (N U Y-i { @]
V = [17B4-17C5] # Vowel 1]
ZWNJ = 200C # Zero width non-joiner

The regular expression, for all its complexity, is incomplete in that it allows some illegal sequences:

17BB [17D@ 17DD] # consonant shifter ambiguity
17D2 179A 17D2 # coeng ro comes last
17CC [17C9 17CA] # robat may not occur with consonant shifter

While it may be possible to incorporate these into the main regular expression, it would complicate an
already complex expression beyond the point of being a useful description. For completeness:

Syl = B R? Coengs? S? V? MS{0,2} MF? | O

V = ([17B4-17BA 17BC-17C5] | 17BB (?![17D@ 17DD1))
Coengs = ((17D2 [1780-1799 179B-17B31)? 17D2 B)

R = (17CC (?![17C9 17CAD))

Downshifting Consonant Shifters

Khmer and any other languages that use consonant shifters, have a contextual behaviour that a consonant
shifter, followed by certain above base diacritics, like an above vowel, changes shape to look like a -u vowel
(178B). One might think that the obvious way to address this is to keyboard and store a 17BB instead of a
consonant shifter. Whether or not this is a good solution, it is not a preferred option given the technical
legacy of data. But storing a shifter is only an option if the two main processes of converting its shape and
also of allowing someone to type visually and have a keyboard insert the correct shifter, are both
algorithmically definable. This section examines that question: how to render/shape a consonant shifter
with an upper vowel and how to convert an input of a -u vowel and upper vowel to the correct consonant
shifter.

In Khmer orthography, consonant letters are considered to fall into two series, series 1 and 2. When
reading Khmer, the phonetic vowel is derived from a combination of the series of the initial orthographic
consonant cluster and the vowel. Most vowel signs have a different sound associated with the two series.
Most consonants have series 1 and series 2 pairs. In some cases, where there is no equivalent consonant
in the other series a consonant is identified as being able to take a consonant shifter to switch its series. To
switch from series 1 to series 2, a triisap (17CA™) is used, and from series 2 to series 1, a muusikatoan (17¢9 '
) is used. The set of consonants in series 1 is B1 and the set in series 2 is B2. Within these series, only a
small number can take a consonant shifter (B1S, B2S).

S = [17C9 17CA]

B1 = [1780 1781 1785 1786 178A 178B 178E 178F 1790 1794 1795 179E 179F 17A0 17A1 17A2]

B2 = [1782 1783 1784 1787 1788 1789 178C 178D 1791 1792 1793 1796 1797 1798 1799 179A 179B 179C
179D]

B1S = [1794 179E 179F 17A0 17A2]

B2S = [1784 1789 1793 1798 1799 179A 179B 179C 179D]

Note that 178E (flN) and 179E (15) have their series swapped from that implied by the Unicode name in the
Unicode chart for Khmer. In addition, 179D (%), as used for Pali/Sanskrit transliteration, gave the character
series 1. But when the character was reappropriated for minority language use, it was given series 2, in
keeping with its visual representation (the ‘hair’ on the base character does not combine visuallyl with
muusikatoan)'. Bear in mind that Pali/Sanskrit does not use consonant shifters and so what to do with a
downshifted shifter is not an issue. But should such a thing occur, in keeping with the single encoding per
representation, where a Pali/Sanskrit transliteration does require a triisap to be downshifted, a
muusikatoan should be stored instead. But if the triisap does not downshift, then a triisap is stored. Apart
from this exceptional odd spelling, there is no other difficulty. The characters 1793 (8) and 1798 (fU) do
have their other series counterparts, but are included in this list because their other series counterparts
are Pali characters, and when showing pronunciation, Pali characters are avoided and a triisap may be
used.

But what is the series of a consonant cluster? The series is easy to derive when there is only one consonant
involved: the series of the cluster is the series of the consonant. But when a consonant cluster consists of
more than one consonant (via coengs) of consonants of different series, which consonant derives the
series for the cluster?

Talk about paired series consonants taking consonant shifters and that they can't take a ZWNJ. Their
downshifting behaviour is undefined (controlled by the font). Recommendation?

Makara (2016, table 10) presents a chart of orthographic consonant based on a sonority hierarchy such
that whichever consonant in a cluster has the lowest sonority in the hierarchy (earlier in the table), that is

' The known minority languages that use consonant shifters are: Brao [brb], Jarai [jra], Kuay [kdt], Northern
Khmer [kxm], Tampuan [tpu] and they all do downshifting.

10

the consonant that sets the series for the cluster. His chart is reproduced here using Unicode codepoints.
In addition, minority characters are added.

Table 1 - Consonant Sonorities

Class

1st Series

2nd Series

Implosive

H(178A) U(1794)

$(178¢) (1794 17CA)

Unaspirated Plosive

fi(1780) G(1785) W(178F) (1794 17C9)
H(17A2)

7(1782) 11(1787) $(1791)
N(1796) (1742 17CA)

Aspirated Plosive

2(1781) §H(1786) U(178B) BG(1790)
11(1795)

Uus(1783) RUs(1788) £I(178D)
1i1(1792) A (1797)

Fricative

BQ79E) 8d(179F) U1(17A0)

G179 17CA) R3(179F 17CA)
U1(17A0 17CA)

Minor Fricative

#(179D 17C9)

7 (179D)

Sonorant

(1784 17¢9) M(1789 17¢9) §(1793 17C9)
AN178E) B(1798 17C9) tI(1799 17C9)
T1(179A 17C9) RG(179B 17C9) §j(17A1)

11(1784) M(1789) 8(1793)
H(1798) ti5(1799) 1(179A)
PU(179B) §(179C)

1(179C 17C9)

Downshifting

Typographically rendering a vowel above a consonant with a consonant shifter can lead to visual problems
in particular to the line height. For example:

Uy

To resolve this, there is an orthographic principle that, in most contexts involving a consonant shifter
followed by certain above diacritics, the consonant shifter is rendered as a -u vowel (17BB) instead of its
default form. The consonant looks like it has two vowels. The list of diacritics that have this effect are the
above vowels and samyok sannya. It may also involve -aa (1786 1) followed by a nikahit (1 7C6°). Before
discussing the precise rules for when this contextual rendering occurs, we will discuss how, when reading
(or typing) it is necessary to analyse which consonant shifter the -u vowel glyph represents: muusikatoan
or triisap.

The consonant shifter is the one appropriate to the series of the consonant cluster that precedes it. For
this we use the sonority hierarchy. But we only need to consider those entries involving a consonant
shifter. 1794 () has the strange property that 1794 17¢9 (ij) is not a series shifted consonant. Instead the
presence of muusikatoan changes the nature of the consonant (to a PA). 1794 17CA () is series shifted.
But, counterintuitively, it is only the 17¢9 (') that is ‘down shifted’ following BA 1794 (15), and 17CA (*) never
shifts down following BA (1794 U5). This can be addressed by saying that we ignore 1794 17CA (T) and treat
PA 1794 17C9 (U3) as a simple consonant shifted consonant. In removing the BA, PA and all single
codepoints from the above Table 1, we see that a number of cells become empty (see Table 2). In addition,
the plosives and fricatives have only 2nd series entries while the minor fricative and sonorants have only
first series. Thus we can condense the chart into two sets and one negative set that lists all bases not in
S1B. These lists will be important in calculating which shifter a -u form represents, which we will come to.

Table 2 - Consonant Sonorities simplified

Class 1st Series 2nd Series

Implosive

11

Unaspirated Plosive F(17A2 17CA)

Aspirated Plosive

Fricative B(179E 17CA) 0 (179F 17CA)
Y1740 17CA)

Minor Fricative #1790 17C9)

Sonorant h(1784 17C9) m(1789 17C9) 8(1793 17C9)

§(1798 17C9) HI(1799 17C9) i(179A 17C9)
PG(179B 17C9) 1(179C 17C9)

= [179E 179F 17A0 17A2] # Shifter First series
SNF = [1780-179D 17A1] # Consonants not in SF
= [1784 1789 1793 1794 1798-179D] # Shifter Second series (including BA/PA)
SCF = (17D2 SF) # Shifter Coeng First series
SCNF = (17D2 SNF) # Coengs not in SCF
SCS = (17D2 SS) # Shifter Coeng Second series

Notice that BA 1794 (U) has been added back into the second series set since 17C9 is pushed down
following BA. This is contrary to the linguistics around BA, and is a pragmatic engineering solution to the
issue of handling BA. 1793 (8) and 179B (fU) are included for historic reasons (Chuon Nath, 1967).

Shaping
In shaping text, the need is to know how to render a sequence of Unicode characters. In the case of
downshifting consonant shifters, we can write transform rules in shaping the text:

(?<=B R? ¢{0,2}) [17C9 17CA] (?=VA) > 17BB
where
VA = [17B7-17BA 17BE 17D@ 17DD] | (17B6 17C6)

17BF, 17C0 (j,:l) are not included in the VA class above, because their sound is not dependent on the
series of the consonant. In conjunction with PA the shifter does not go down. 1700 () and 170D (7)? are
added because they are diacritics that act like vowels in this context, although samyok sannya (17D@) only
pushes a muusikatoan down. The sequence 1786 17¢6 (T) involves a nikahit that renders over the vowel
but still pushes a shifter down. Notice that the 17BB in the rule above is not an actual -u vowel stored in
data, it is an internal representation (glyph) of a 178B, for example in a corresponding glyph string inside a
font. We also need to bring back the special case of BA which means that not all consonant shifters shift
down. The rules become more refined:

(?7<=1794 ¢{0,2}) 17CA (?=VA) > 17CA # no action rule, not strictly necessary
(?7<=1794 c{0,23}) 17C9 (?=VA) > 17BB
(?<=BNB R? CNB{®@,2}) [17C9 17CA] (?=VA) > 17BB

where
BNB = [1780-1793 1795-17A2 17A5-17A7 17A9-17B3] # Base No BA
CNB = (17D2 BNB)

Since the transform applies to all consonants, a rendering implementation needs to show a visual contrast
between a downshifted consonant shifter and the illegal sequence of two vowels: 17BB VA (or VA 17BB).

But there is a big problem with this algorithm in that it makes no difference whether a consonant is
followed by a muusikatoan or a triisap, the shifter will downshift. This means that two different sequences
result in the same visual representation. We have to disambiguate the expression and only downshift

2 Used as a vowel in Bunon [brb] (where it marks the following consonant as having the inherent vowel)
and Central Mnong [cmo].

12

those sequences that would result if we converted from the downshifted form to the unshifted sequence.
Only one of the two shifters should downshift in any context. To derive these rules, we need to analyse
which consonant shifter a down shifted form represents. This is akin to the question of which shifter
should be inserted if someone types visually a 17BB followed by a VA (or equivalently from OCR).

Text Entry

On the opposite side of the question is that of how to convert from a visual representation to the
underlying Unicode text. What happens if someone types both a 17BB and an above vowel? This is an illegal
sequence in the structure. But it is indicative that the user is typing according to the visual representation
of a consonant shifter and an input method can help to achieve the result desired by the user. The only
real issue is that we don’t know which consonant shifter to replace the 178B with, to transform what is
currently an illegal sequence into a legal one. Unlike the shaping rules, which while strongly motivated by
the Khmer orthography, apply structurally to all strings, the text entry issue is much more tied to the
Khmer orthography. The rules presented here probably work for other languages but may just as well
need to be changed.

Again, transform rules can help here. We assume that the 17BB is in the string preceding the VA, for the
purposes of the transformation, even though no data should be stored like this.

(?<=SF R? ¢{0,2} | B R? SCF C? | B R? C SCF) 17BB (?=VA) > 17CA
(?<=SS R? SCNF{@,2} | SNF R? SCS SCNF? | SNF R? SCNF SCS) 17BB (?=VA) » 17C9

The first rule says that if there is a first series consonant anywhere in the consonant cluster then the 1788
becomes a triisap. Likewise the second rule says that if there is no first series consonant in the consonant
cluster but there is a second series consonant, then the 178B becomes a muusikatoan. (N.B. First and
second series consonants here means those that take a consonant shifter to change series, not those that
have a corresponding consonant in the other series. Also consonants include coengs here.)

What happens if a user types a different consonant than is in the SF or SS classes? The answer is
implementation dependent, since it is up to the system to, if possible, only generate structurally correct
text. Thus an error may be indicated by beeping or, if the text is passed through, the rendering system will
show a suitable contrast. In the case of a Middle Khmer keyboard, it is highly unlikely that it would be
visually based in this way, but if it were, it could insert ZW].

Structure

Now we are in a position to specify unambiguously, which sequences downshift. This also has the side
effect of specifying for which sequences a ZWN]J (which indicates that the shifter should not downshift)
may occur. The structure is similar to the rules for mapping from -u to a shifter. We need to identify
whether a shifter will be downshifted. This can occur if a triisap occurs after any first series consonants or
a muusikatoan occurs following any second series, if there are no first series consonants in the cluster. To
aid with reading, the key new elements in a regular expression are highlighted.

We allow ‘bad sequences’ such as a first series consonant followed by a muusikatoan, even though this is
against the spelling rules of Khmer. Since they are visually distinct, we do not need the font to mark a
distinction by making the sequence illegal.

S = (((?<=SF R? ¢{0,2} | B R? SCF C? | B R? C SCF) ZWNJ 17CA (1)
| (?<=SS R? SCNF{0,2} | SNF R? SCS SCNF? | SNF R? SCNF SCS) ZWNJ 17C9) (2]

(?=[17B7-17BA 17BE 17D@ 17DD] | 17B6 17C6) (3]
| [17C9 17CAI) (4]

SF = [179E 179F 17A0 17A2] # Shifter First series

SNF = [1780-179D 17A1] # Shifter Not First series

SS = [1784 1789 1793 1794 1798-179D] # Shifter Second series (including BA/PA)

SCF = (17D2 SF) # Shifter Coeng First series

SCNF = (17D2 SNF) # Shifter Coeng Not First series

SCS = (17D2 SS) # Shifter Coeng Second series

13

The regular expression is addressing the question of what sequence is legal. If there is no ZWN]J in the
string, then the regular expression is simple, it is just line @ and [17C9 17CA]. If there is a ZWN]J in the
sequence then the regular expression required to match it for legality is more complicated. Now we read
the regular expression:

1. The sequence ZWNJ 17CA may only follow a consonant cluster containing a first series consonant
that takes a shifter. Without the ZWN]J the triisapp would be downshifted. So the addition of the
ZWN] keeps the shifter from downshifting and is visually contrastive.

2. The sequence ZWNJ 17C9 may only follow a consonant cluster containing a second series
consonant that takes a shifter, so long as there is no first series consonant in the cluster. Without
the ZWN]J the muusikatoan would be downshifted. So the addition of the ZWN] keeps the shifter
from downshifting and is visually contrastive.

3. These two sequences may also only occur if followed by an upper vowel.

4. Otherwise there can be any shifter.

BA

But there is a constraint and that is that if there is a BA in the cluster, then any triisaap (17CA) is not going
to downshift even if there are other first series consonants that might take a 17CA that would downshift.
This has to happen because if the 17CA downshifted then it would be indistinguishable from the BA 17C9.
To achieve this, we need to remove coeng BA from the first leg, which matches the consonant cluster with
a first series in it. To do this we remove the BA from the C (Coeng) class.

BNB [1780-1793 1795-17A2] # Consonant no BA
CNB = (17D2 BNB)
S = (((?<=SF R? CNB{0,2} | BNB R? (SCF CNB? | CNB SCF)) ZWNJ 17CA
| (?<=SS R? SCNF{0,2} | SNS R? (SCS SCNF? | SCNF SCS)) ZWNJ 17C9)
(?=[17B7-17BA 17BE 17D@ 17DD] | 17B6 17C6)
| [17C9 17CAT)

In addition the regular expression is slightly restructured to reduce its length. There is no functional
difference.

Samyok Sannya

Samyok sannya (17D0) only pushes down musikatoan (17C9). It does not push a triisaap (17CA) down. This
is @ common contrast and is probably worth expressing in the regular expression. But there may be other
such rules. The question is whether the added complexity is worth the cost of requiring an extra ZWN] in
some sequences.

S = (((?<=SF R? CNB{@,2} | BNB R? (SCF CNB? | CNB SCF)) ZWNJ 17CA
| (?7<=SS R? SCNF{0,2} | SNF R? (SCS SCNF? | SCNF SCS)) ZWNJ 17C9)
(?=[17B7-17BA 17BE 17DD] | 17B6 17C6)
| (?<=SS R? SCNF{0,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17€9 (?=17D@)
| [17C9 17CAD)

Robat

Robat never occurs with a consonant shifter, so we can remove it from the regular expression. The result is
the final expression that is sufficient for Modern Khmer.

S = (((?<=SF CNB{@,2} | BNB (SCF CNB? | CNB SCF)) ZWNJ 17CA
| (7<=SS SCNF{@,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9)
(?=[17B7-17BA 17BE 17DD] | 17B6 17C6)
| (7<=SS SCNF{@,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9 (?=17D@)
| [17C9 17CAT)

BNB
CNB

[1780-1793 1795-17A2] # Consonant no BA
(17D2 BNB) # Coeng no BA

14

SCF = (17D2 SF) # Shifter Coeng First series

SCS = (17D2 SS) # Shifter Coeng Second series
SF = [179E-17A0 17A2] # Shifter First series
SS = [1784 1789 1793 1794 1798-179D] # Shifter Second series (including BA/PA)

Middle Khmer

There is a later section that analyses Middle Khmer and the structure of the orthographic syllable that is
necessary. Here we just discuss possible extensions to the consonant shifter structure that Middle Khmer
may need.

W

Middle Khmer introduces the need for adhoc downshifting where a ZWj is used to force a downshift where
one would not normally occur. But this means that while a ZW) can precede any consonant shifter, it
cannot follow a downshifting shifter. This complicates the structural regular expression.

S = (((7?<=SF CNB{0,2} | BNB (SCF CNB? | CNB? SCF)) ZWNJ 17CA
contains a first series and no BA => 17CA goes down

| (?<=SS SCNF{0,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9

contains a second series => 17C9 goes down

| (?<=SNF SCNF{0,2}) ZWJ 17CA # not first series stays up @
| (?<=SNS SCNS{0,2}) ZWJ 17C9) # not second series stays up @
(?=[17B7-17BA 17BE 17DD] | 17B6 17C6) # if followed by upper vowel
| ¢ (?<=SS SCNF{0,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9
| (?2<=SNS SCNS{0,2}) zZWJ 17C9) # not second series stays up @
(?=17D0) # if followed by samyok sannya
| (?<=SF CNB{0,2} | BNB (SCF CNB? | CNB? SCF)) ZWJ 17CA
(?=[*17B6-17BA 17BE 17DD] | 17B6 [*17C61]) # first series elsewhere stays up @
| (?<=SS SCNF{0,2} | SNF (SCS SCNF? | SCNF SCS)) ZWJ 17C9
(?=[*17B6-17BA 17BE 17D0@ 17DD] | 17B6 [*17C61]) # second series stays up @
| [17C9 17CAT) # or no ZW(N)J
SCNS = (17D2 SNS) # Shifter Coeng Not Second series
SNS = [1780-1783 1785-1788 178A-1793 1795-1797 179B 179E-17A2] # Shifter Not Second series
ZWJ = 200D

Within the context of an upper vowel that downshifts shifters, if the consonant context is not first series,
then the triisap will stay up and a ZWJ can be used to push it down @. Likewise for second series
consonants @. If the downshifting is caused by a samyok sannya then second series would be downshifted
and so non second series would stay up and a ZWJ will downshift them . What about clusters with first
and second series but outside the context of a downshifting diacritic (upper vowel or samyok sannya)? In
@ we match the consonant cluster context for a downshifting triisap, but the ‘vowel’ context is the
negative of what would cause downshifting. Likewise for second series, where we also include the absence
of samyok sannya @.

Inversion

The complexity of this regular expression is such that it may be easier to implement negatively. What
would the rules look like if we were to accept the basic sequence ((zZWJ|zWNJ)? [17C9 17CA]) and then use
replacement rules to replace any illegal ZwJ and zZWNJ with 25CC (dotted circle)?

(?<=SNF R? SCNF{@,23}) ZWNJ (?=17CA [17B7-17BA 17BE 17D@ 17DD] | 17B6 17C6) > 25CC
(?7<=SNS R? SCNS{@,2}) ZWNJ (?=17C9 [17B7-17BA 17BE 17DD] | 17B6 17C6) » 25CC

ZWNJ (?=[17CA 17C9] ([*17B6-17BA 17BE 17D@ 17DD] | 17B6 [*17C6]) » 25CC

ZWNJ (?=17C9 17D@) » 25CC
(?<=SF R? CNB{©0,2} | BNB R? (SCF CNB? | CNB SCF)) ZWJ (?=17CA [17B7-17BA 17BE 17DD] | 17B6 17C6) -
25CC
(?7<=SS R? SCNF{@,2} | SNF R? (SCS SCNF? | SCNF SCS)) zwJ (?=17C9 [17B7-17BA 17BE 17D@ 17DD] | 17B6
17C6) » 25CC

15

Middle Khmer

In order to arrive at a syllable structure that can support all data needs, it is necessary to analyse all the
orthographies that use Khmer script. For the most part, the minority language use of the Khmer script is
conservative with few innovations. Any such innovations are discussed in the main text. But there is one
other major set of orthographies that use the Khmer script and these are often lumped under the
simplified names of Old Khmer and Middle Khmer, even though they cover many different orthography
and language stages in the development of Khmer from Old Khmer in the 7th-8th century, Angkor Khmer
and Middle Khmer. Upon examination of these different orthographies, it is the Middle Khmer period,
leading into the Modern Khmer period, that requires the greatest complexity in encoding. During this
period, there is a growth in orthographic complexity along with little or no standardised spelling.

The concern here is to ensure that they can be adequately encoded. Again the principles of a single
encoding for a single graphical representation are necessary. This carries with it an implication that the
encoding does not need to directly represent the linguistic structure of the syllable. For example, syllable
final coengs (following a vowel) do not necessarily have to be encoded after the vowel.

The first step in such an analysis is to find examples of words that do not fit the currently proposed Khmer
encoded syllable structure and see what they say to us. There may be a way to make them fit into the
current model or they may call for a change of the model. Care must be taken that the needs of historic
data do not overwhelm the far more prevalent modern data. The conversation needs to be one of mutual
respect and concern.

Final Coengs

Final coengs occur after the vowel as a final sound in a linguistic syllable and they are often visually
indistinguishable from prevowel coengs. There are some contexts in which the final coeng is visually
contrastive with a before vowel coeng and some not. The table shows - if data exists and is not visually
contrastive between the coeng occurring before or after the vowel, and + if it is visually contrastive. ?
Indicates no examples have been found.

Coeng/Vowel Left Left Above Left Right Right Above Below
Coeng Left - ? ? - - -
Coeng Below - - ? + - ?
Coeng Right - - + + + ¥

We examine some examples in detail:

1. Where the vowel is spacing, final spacing coengs are clearly contrastive. Consider: - UTj 17A0
17D2 179B 17B6 17D2 1799. Thus we do need to encode spacing final coengs after most vowels.
Spacing coengs have no visual contrast following pre vowels.

2. In Modern Khmer, a spacing coeng may take a vowel over it, indicating the vowel comes after the
coeng: mj 1796 17D2 1799 17B8. In Middle Khmer, the vowel may render over the consonant,

indicating the spacing coeng comes after the vowel: EJ ﬁJ 1796 17B8 17D2 1799. Therefore there
is a visual contrast between an initial and a final spacing coeng with an above vowel. Where the
coeng is initial, the vowel occurs over the coeng, slightly to the right of the base. For a final coeng
the vowel is positioned directly over the consonant. Not all fonts show this, but that is because in
modern Khmer there is no contrast necessary. But for a Middle Khmer font, such contrast is
required.

3. For lower vowels (-u, -uu) the visual contrast is akin to that between multiple coengs, where the

-u/-uu vowel interacts just like a non-spacing coeng would in a coeng sequence: 20 §j 1798 17BC
17D2 1799. For comparison, the corresponding Modern Khmer encoding of this sequence would

16

be: §j 1798 17D2 1799 17BC, which looks different and would sound different. Therefore, we
cannot simply say that the Modern Khmer spelling with the coeng before the vowel is sufficient.
4. There are final coengs that are indistinguishable from the corresponding coeng before the vowel:
= A1 1780 1788 17D2 178A, which is visually indistinguishable from the corresponding Modern
Khmer encoding: 1780 17D2 178A 17B8. There is one base for which there is a visual distinction:

g m 1789 17C6 17D2 1784 contrasts with the Modern Khmer encoding: I?U 1789 17D2 1784 17C6.
Typically the lower swash under the base is removed in Modern Khmer when a coeng occurs after
it. But this swash is not removed if the coeng comes after a vowel.

5. With a spacing vowel, a non-spacing coeng may or may not have contrastive positioning. For
example: = = g‘l 1791 17B6 17C6 17D2 1784. These two examples are not contrastive with the
second being a stylistic variant of the first and so the Modern Khmer encoding of 1791 17D2 1784

17B6 17C6 could be used. But @ 011794 17B6 17D2 1791 is contrastive and so a contrast is

necessary.
It is evident that number 1 above requires a contrastive encoding. Also number 4 has no visual contrast
and therefore requires there not be different encodings. Whether contrastive encodings should be used
for numbers 2 and 3 is dependent on regular usage. Most Khmer fonts show a visual contrast between a
coeng before or after a non spacing vowel. Number 5 has the confusion of whether a contrast is necessary.
It is reasonable to expect this context to show a visual contrast. One complexity is that there can be no
visual contrast for a spacing coeng before or after a pre vowel [17C1-17C3].

Throughout this analysis, our aim is to have only one encoding for one visual representation. This
complicates the syllable description, but is essential:

CR = 17D2 [1783 1788 178D 1794 1799 179E 179F 17A1] # Right spacing coeng
Syl = B R? C{0,2} S? (VP MS? | VF MS? C? | V? MS? CR? DS?) | O

VP = [17C1-17C3]

VF = [17B6 17C4 17C5]

vV = [17B7-17C1]

Multiple Vowels

While Unicode has encoded all the modern Khmer vowels as units, there are vowel combinations in Middle
Khmer that are not available as a unit in Unicode.
These need reviewing since most of them only have one occurrence and come from OCR®.

3. 1788 17D2 1798 17BB 1786 17C7 il

4 1&n 1791 17€1 1787 179 S

5. s 1785 17D2 179A 17€1 17B9 1793 &

6. Iin 1798 17C1 17BA 1784 D=

7. UUINm 179F 17D2 179A 1798 17C1 17BB 1789 Erenyey
g s 1793 17€2 1786 17C7 Uhe

9. I8 1793 17€0 17B8 1799

3 See Valy D., et al.
17

D

12. [S:] 1793 17C3 17D2 1799 17C6

13. me 1796 17B6 17D2 1799 17B6 1794 17CB

In considering the first 3 examples (1-3) involving a spacing vowel, the question is whether any positional
contrast is required for the diacritic vowel in the sequence. The first two examples look nearly identical
and do not call for any visual contrast. Likewise the third example looks to not be careful in its diacritic
vowel placement, implying its position not carrying meaning. Thus a fixed order is sufficient and storing
the non spacing vowel before the spacing vowel is most natural and fits with existing shaping engines.

The other examples are simply pre vowel plus diacritic sequences for which there is no corresponding split
vowel code. Again a simple fixed order of pre vowel first will suffice.

We analyse examples 3 and 7 as downshifted consonant shifters. But the sequences do not contain the
necessary above diacritic to require downshifting. Therefore, there needs to be a way to indicate that
downshifting should occur when it would not happen automatically. If ZWN]J can be used to inhibit
downshifting, then ZWJ can be used to cause it. But again, ZW) may only be used in the opposite context to
ZWNJ, where downshifting would not occur. The impact on the structure is examined in the section on
Downshifting Consonant Shifters.

The last examples (12-13) are noticeable because, in effect, they have two syllables in one, with two vowels
separated by a coeng. This raises the spectre of fully chained syllables. Whereby a new full syllable is built
on a final coeng. There are various options in how to address this:
e Fully recursive definition whereby the final coeng is also treated as the initial of another full
syllable. Thus FinalC would be something like CF Rhyme?.
e Chain syllables by allowing the final coeng sign character (17D2) to hang as the last of the previous
syllable, then its consonant becomes the start of the next syllable.
e List out all the possible options for a limited single extra syllable.
The first option is hard to implement. Recursive regular expressions are nigh on impossible to work with.
The second option is merely a way of removing the recursion while keeping the full chaining. The third
option is easiest to implement but only supports a very limited following syllable structure with no further
chaining. Given there is no evidence of any more extensive chaining than the last example above, we
choose the simplest option. For this we allow final spacing coengs to take some limited vowel or signs.

Chuon Nath uses a double pre vowel 17C1 17C1 to represent the corresponding Thai vowel. There are two
options on how to handle this:

1. Add 17C1 17C1 to the syllable structure

2. Encode a new codepoint for the double letter as per Thai.
The first is a minimal engineering cost. The second involves a full proposal. While both are possible and
acceptable solutions, solution 1 is probably the simpler, given that it doesn't involve changing existing data
or fonts.

Combining vowel sequence constraints with final coeng constraints and the regular expression starts to
become rather complex..

Syl = B R? C{0,2} S? Rhyme MF? | 0
Rhyme = VP? (VA | VB)? VF MS? FinalC?
| Vsplit (VA | VB)? MS? FinalC?
| (VP? (VA | VB) | VPA) MS? CR?
| (VP | VO | VPP)? MS?
| (?7<=1789 S?) VA CN
FinalC = (CR (VA | VB | VF)? MS? | CN S?)

spacing vowel => any final coeng

spacing vowel component => any final coeng
diacritic vowel => spacing final coeng

no final coeng

special case (not drop flourish)

o o o

CR
CN

17D2 [1783 1788 178D 1794 1799 179F] # Right spacing coeng [AW fJ U W §U]
17D2 [1780-1782 1784-1787 1789-178C 178E-1793 1795-1798 179A-179E 17A0-17A2]

18

VP = [17C1-17C3]
VA = [17B7-17BA]
VB = [17BB-17BD]
VF = [17B6]

VO = [17BF 17C@]

Vsplit = [17C4 17C5]
VPA = 17BE
VPP = 17C1 17C1

The Vo category consists of split vowels that have a final component that originated from coeng yo. They
do not take any other final coeng.

Non spacing coengs [fi-fi #1-Ti (N-§ AN-8 H§-¥ i-U U1-H]

#

HoH ¥ H H ¥ H

Pre vowel [} i T] o

Above diacritic vowel []

Below diacritic vowel LU]

Following spacing vowel [1]

Split vowel with coeng yo final component Ii]:]]
Split vowel with final vowel component N1
Pre + diacritic vowel ﬁlf 1

Doubled vowel from Thai

Notice that we do not allow both an upper and lower vowel together, since that is used to visually mark a
consonant shifter in conjunction with an upper vowel.

It may be tempting when faced with all this complexity to simply say: allow VP? (VA | VB)? VF? | VO and
simplify the rhyme. But the aim is to ensure only one way to encode one visual sequence and to do that

we need to disallow sequences that look identical to other sequences.

Diacritics

Robat

There is some disagreement about where Robat (17CC) renders in relation to the -aa vowel (17B6): =

- fgfﬂ 179F 17BD 1782 17B6 17CC, which does not help in deciding whether the robat should go early
in the sequence or late.

Triisap

In addition to its function as a consonant shifter, in Middle Khmer triisap may also represent the
consonant 11 (1784 NGO) super joined above another base. This is akin to robat or kinzi in Myanmar script.
Thus #3iJ (179F 1783 17CA) may be written more conventionally as ﬁjijuj (179F 1784 17D2 1783).

More Examples

Handwritten 1899 Luke*

Ik2a /@, [Lﬁ‘lJ

Ik2b i ki

lk3a oo SAM

Ik3b @ Lf{}J

k4 pid W N
4 BFBS 1899

1780 17D2 179A 17C4 17D2 1799

17A2 17B6 1794 17CA 17B8 17D2 1799 Syllable chaining with

17C9 17B6

1793 200D 17C9 178E 17B6

muusikatoan on the ‘final

’

ya'.

Variant downshifted
muusikatoan.

179F 17D2 179A 17B8 17D2 1799

1794 17B6 179B 17C9 17B6 17C6 1784 Muusikatoan on rU and

stays up

19

Ik6 17A5 17D2 1799

,
=

z
1k8 /‘77271‘ m “2:‘ 1780 17B6 179B 17D2 1793 17C9 17B6
Ik43a @Z/ 128 179F 17D2 179A 17B6 17D2 1799
1k43b A% ggg 1787 1793 17D2 1787 17BC 17CB 1793 Novel context for bantoc
et 4 with a double acting final.
Ik50 BN L‘ﬁij 1794 200C 17C9 17B6 17C6 1784 Muusikatoan stays up
5
k63 Foatos auh 179F 200C 17CA 17B8 1798 17C9 17BB Triisap stays up
i Y 1784
k104 55@;‘ b} 179F 200C 17CA 17B8 17D2 1799 Triisap stays up
k127 }/g(; y) g [38] 1780 17BC 1793 17D2 1793 17C9 17BE Muusikatoan stays up
' 1799
k311 Wé@‘;[ATrT§ 1796 17B7 1799 17C9 17C2 179A Muusikatoan goes down

Of particular note is 1k43b. The bantoc (U+17CB) is rendered above the second base consonant to indicate
that it is the final of the syllable and that, therefore, the following coeng is the start of the next syllable.
Linguistically, therefore, the Bantoc comes before the coeng. But visually it comes after the sequence of
base + coeng + vowel, in keeping with its position as a diacritic in the syllable structure. While this is not
the most convenient place for it, linguistically, it is in an unambiguous position and its function, therefore,
is clear. It marks the base consonant as a final.

Ik3a shows an alternative form of the pushed down muusikatoan. The basis for this analysis comes from
Bernard (Bernard, 1902) in which he states:

signes dont nous venons de parler; le signe » peut étre placé sur ou sous le caractere, se-

lon la commodité graphique. Ex:fy AN (U I (U (U etc... so séa i si sk si ..
! v

U‘; U:h US L;-), ho hés W M . . . P . .

An approximate translation states that the muusikatoan is sometimes placed above or below the character
according to the graphical context. This implies that the lower double vertical stroke is merely a stylistic
variant of a downshifted consonant shifter (since either shifter may resolve to this form) and is therefore
in the realm of font variation. The problem here is that there is no upper vowel in this example. So either
this is another vowel (or doubled -u), or it is a phantom downshifted shifter for which we need a way of
encoding, perhaps using ZWJ. Until further analysis resolves the quandary, we assume ZWJ.

Khom Thai

The first writing system used for writing Thai was based on Khmer script. The ‘Khom’ (Thai for Khmer) Thai
script has a long history which is not of concern here. The issue is how Khom Thai may be encoded using
the Khmer Unicode block. It seems most natural to encode Khom Thai using Khmer characters due to the
similarities in the writing systems. Many of the characters look very similar and Khom Thai has coengs
which the Thai script does not. The main extensions needed are:

20

e Addition of Thai tones as diacritics, to Khmer. This can either be done through encoding extra
characters or by allowing the sharing of Thai tone marks to be shared with the Khmer script using
script extensions.

e Extra vowel combinations and/or extra characters.

There are a number of characters needed to encode Khom Thai in Unicode using the Khmer block. Analysis
is required for these. As it stands a further Unicode proposal will be necessary to enable Khom Thai to be
adequately encoded in Unicode. Such a proposal will also need to include any changes to the Middle
Khmer orthographic syllable structure to ensure it facilitates the encoding of Khom Thai.

Outstanding Questions

e Do we really need ZW]J to push consonant shifters down or is there another analysis for those
words?
e Should we differentiate Middle and Modern Khmer syllable structures by language tag?

Conclusion

The final all encompassing syllable structure is:

Syl = B R? C{0,2} S? Rhyme MF? | O
= (

Rhyme VP? (VA | VB)? VF MS? FinalC? # spacing vowel => any final coeng
| Vsplit (VA | VB)? MS? FinalC? # spacing vowel component => any final coeng
| (vP? (VA | VB) | VPA) MS? CR? # diacritic vowel => spacing final coeng
| (VP | VPP| VO)? MS?) # no final coeng

FinalC = (CR S? (VA | VB | VF)? MS? | CN S?)
S = (((?<=SF CNB{0,2} | BNB (SCF CNB? | CNB? SCF)) ZWNJ 17CAS
contains a first series and no BA => 17CA goes down
| (?<=SS SCNF{0,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9
contains a second series => 17C9 goes down

| (?<=SNF SCNF{0,2}) ZWJ 17CA # not first series stays up
| (?<=SNS SCNS{0,2}) ZWJ 17C9) # not second series stays up
(?=[17B7-17BA 17BE 17DD] | 17B6 17C6) # all if followed by upper vowel
| ¢ (?<=SS SCNF{0,2} | SNF (SCS SCNF? | SCNF SCS)) ZWNJ 17C9 # second series goes down
| (?<=SNS SCNS{0,2}) ZWJ 17C9) # not second series stays up
(?=17D0) # both if followed by samyok sannya
| (?<=SF CNB{0,2} | BNB (SCF CNB? | CNB? SCF)) ZWJ 17CA
(?=[~17B6-17BA 17BE 17DD] | 17B6 [*17C6]) # first series elsewhere stays up
| (?<=SS SCNF{@,2} | SNF (SCS SCNF? | SCNF SCS)) ZWJ 17C9
(?=[~17B6-17BA 17BE 17D@ 17DD] | 17B6 [*17C61]) # second series stays up
| [17C9 17CAD) # or no ZW(N)J
B = [1780-17B3] # Base consonant [fi-51]
BNB = [1780-1793 1795-17A2] # Consonant no BA [fi-S N-H]
C =17D2 B # Coeng
CR = 17D2 [1783 1788 178D 1794 1799 179F] # Right spacing coeng [1J RUJ AJ U WY £J]
CN = 17D2 [1780-1782 1784-1787 1789-178C 178E-1793 1795-1798 179B-179E 17A0-17A2]

Non spacing Coeng (excl rho)
[A8H AGHO MUUG ANKGEHS HNAY UIRY UIGH]

CNB = (17D2 BNB) # Coeng no BA

MF = [17C7 17C8] # Modifier Final [o :]

MS = [17C6 17CB 17CD-17D1 17D3 17DD] # Modifier Sign [uﬂc]

0 = [17D4-17DC 17E0-17F9 19EQ-19FF] # Symbols and digits [1- 0-]
R = 17CC # Robat

S = [17C9 17CA]

SCF = (17D2 SF) # Shifter Coeng First series

SCNF = (17D2 SNF) # Shifter Coeng Not First series

> Character sequences that are not contextual are highlighted to support easier reading of the regular
expression.

21

SCNS = (17D2 SNS) # Shifter Coeng Not Second series
SCS = (17D2 [1784 1789 1798-179A 179C 179D1) # Shifter Coeng Second series [i1 (1) Wi 1 @]

SF = [179E 179F 17A0 17A2] # Shifter First series [fU U1 H]
SNF = [1780-179D 17A1] # Shifter Not First series [fi-RA GJ]
SNS = [1780-1783 1785-1788 178A-1793 1795-1797 179B 179E-17A2] # Shifter Not Second series

[ACAW GRNUAU HUSMANAGENHS HOA U BoUIGH]

SS = [1784 1789 1794 1798-179A 179C 179D] # Shifter Second series [l [U HUI § &]
VA = [17B7-17BA] # Above Vowel []

VB = [17BB-17BD] # Below Vowel [Eu]

VF = [17B6] # Following Vowel []

VO = [17BF-17C0] # Split vowel with coeng final [:|:| 1
VP = [17C1-17C3] # Pre Vowel [FT1 1)

VPA = 17BE # Pre + diacritic vowel []

VPP = 17C1 17C1 # Doubled vowel from Thi'L

VS = [17B7-17BA] # Downshifting vowels [1

Vsplit = [17C4 17C5] # Split vowel with final vowel [113
ZWNJ = 200C # Zero Width Non-Joiner

ZWJ = 200D # Zero Width Joiner

This expression is way more complex than the one in the introduction. But it has one major benefit. This
expression will not match two strings that should look the same. There is only one match for one visual
form. Strictly speaking, though, this is not entirely correct and the few exceptional cases are covered in the
next section on confusables where an added list of banned sequences is given.

Exceptions

The syllable definition is not complete in that some visually identical strings get through. The following
regular expressions describe sub sequences within a syllable, that the syllable definition should not pass:

17BB (17D@ | 17B6 17C6)
17D2 179A 17D2

17C1 [17B6 17BA]

17CC [17C9 17CA]

consonant shifter ambiguity (Middle Khmer)
coeng ro comes last

units as sequences (Middle Khmer)

robat may not occur with consonant shifter

H oH ¥ =

22

Confusability

There are two levels of confusability with regard to the Khmer script. There is formal confusability where
two different strings render identically. Then there is visual confusability where due to the small size of
visual features, users often confuse one character or cluster for another. This is particularly prevalent with
non spacing coengs.

Coeng Da (' U+17D2 U+178A) and coeng Ta (' ' U+17D2 U+178F)

In modern Khmer script, coeng da and coeng ta look identical. One might expect that users know which
one to enter and there should be no problem. But, as Appendix 1 shows, confusion is rife. Users regularly
type the wrong one. Since they look identical, it is not possible for a user to see how they have mistyped
just by looking at the text. This issue arises every so often in the Khmer press: "Method for distinguishing
coeng da and coeng ta to avoid confusion" and “Beware confusing coeng da and coeng ta".

One solution would be for a keyboard input method to analyse the context and store the right coeng even
if a user typed the wrong one. The problem is that the rules are too complex, with too many special cases
for a keyboard to do that.

Because there are two ways of encoding the same visual representation here, we need to resolve this. The
easiest solution is to just use a single underlying code for the two coengs. There are no minimal contrasts
between the two coengs and therefore there is no need for contrastive encoding. Since both coengs look
identical, it is impossible for someone looking at a text to tell whether two different encodings or a single
encoding has been used. When it comes to keyboard entry, the keyboard still allows users to type a coeng
da or coeng ta as before. The only difference is that it stores one of the two possible encodings, and the
user is none the wiser. The user does not have to change their behaviour and they have the advantage that
they can't type the wrong one by accident.

The preferred encoding is that both coeng da and coeng ta are stored as 17D2 178F (coeng ta). The storage
of coeng da (17D2 178A) is not disallowed in Middle Khmer where there is a visual contrast. But where the
text is known to be Modern Khmer, coeng da should never be stored, in favour of coeng ta. Keyboards for
Modern Khmer should only output coeng ta and never coeng da. For Old or Middle Khmer where there
may be a visual contrast, then both may be used, but fonts need to show a visual contrast between the
two.

Other processes working on Khmer text, such as spelling checkers and text-to-speech systems, will have to
be aware of the linguistic ambiguity that has been introduced by folding the two characters together.

Formally and Informally Confusable

Khmer script has many opportunities for visual similarity, especially between coengs. These similarities
often confuse users and it can help if a keyboard can resolve them where appropriate. We class these as
informally confusable sequences. In addition, there are formally confusable characters and sequences
which should not occur and are best marked as erroneous. In effect they are part of the syllable
description as being invalid, but it would make the regular expression impossibly complex to exclude them
there. So we keep a separate list below. Formally confusable characters and sequences imply a canonical
equivalence between the two confusables. But canonical equivalence implies that both sequences may be
stored. The point here is that the confusable sequence should never be stored and so be marked as
erroneous, specifically to distinguish it from something that it might be presumed to be canonical
equivalent to.

Informally confusable sequences, on the other hand, may occur, but should not, and that some visual
distinction is needed between the sequence and what it is confusable with.

The list lists sequences that must or should not occur in Khmer text. For example 1791 17D2 1794 should
not occur, instead 17A1 is recommended. In this case it is not structurally illegal but a font would do well to
show some visual distinction, with the former sequence perhaps not looking as good as the single
character. On the other hand 17BB 17D@ may not occur and a shaping engine should show an error when it

23

https://thmeythmey.com/m/?page=detail&id=41610
https://thmeythmey.com/m/?page=detail&id=41610
https://thmeythmey.com/?page=detail&id=60748

occurs.

Formally confusable

17C1 1788 # use 17BE (If=If)

17C1 17B6 # use 17C4 (Im=Im)

17D2 179A 17D2 # coeng rho must be the last coeng

17BB 17D0 # samyok sannya causes downshifting so cannot occur with -u (i§=ﬁ)
17D2 178A # Map to 17D2 178F (not in Middle Khmer)

Informally confusable

17A3 # deprecated and confusable with 17A2

17A4 # deprecated and confusable with 17A2 17B6

17A8 # deprecated. Use 17A7 1780

17B4 # deprecated invisible character. Remove

17B5 # deprecated invisible character. Remove

17E2 17D3 # deprecated. Use 19E0Q

17D8 # deprecated. Use 17D4 179B 17D4 (10U 1)

1791 17D2 1794 # confusable with 17A1 (ﬁj=§j)

17BE 17D2 1799° # confusable with 17BF ([ﬁj=[?ﬂ)

17C1 17B8 17D2 1799 # confusable with 17BF ([ﬁl=[ﬁ)

17D2 1799 17BE # confusable with 17BF (Ifjj=If})

17C1 17D2 1799 # confusable with 17C0 ([ﬁj=[ﬁ)

1794 17D2 1789 # confusable with 17AB (U=U)

17AD 17B6 # confusable with 1789 (fM=M)

17AE 17B6 # confusable with 1789 (M=)

1796 17D2 1789 # confusable with 17AD (Q=ﬂ

1796 17B6 17D2 1789 # confusable with 1789 (fN=(M)

1796 17D2 178B # confusable with 1780 (£)=f))

[178A 1791] 17D2 178B # confusable with 17D2 1792 (ij=§ §=%) o
1796 17D0? 1793 17D2 178B # confusable with 17D2 1792&(FU§=F]§ £]§=F]§)
[17AA 1783] 17D2 1799 # confusable with 17B1 17D2 1799 (4j=g] g1=an
17A7 [17B7 17CC 17CD] # confusable with 17B1 (8=8=8=8)

178A 17D2 1792 # confusable with 178A 17D2 178B (§=Q)

1789 17D2 179C # confusable with 1796 17D2 179C 17B6 (ﬂg=g1)

Yuukaleapintu (“:" U+17C8) vs colon (")

These two characters are very similar and widely misused. We believe that confusability for spoofing is less
of an issue as punctuation cannot typically be used in places where spoofing is a problem (e.g. urls, file
paths).

To help distinguish, in common use of colon in Khmer, users insert a space before the colon. The keyboard
should do this automatically to help assist users in avoiding ambiguity.

® The use of final coengs here, presupposes the later analysis from Middle Khmer.

24

Transition

Having a shiny new syllable structure is all very well, but there is a lot of existing data already in existence
and systems based around the various existing Unicode orthographic syllable structures specified over
various versions of the standard. Will this be just another such structure, to be ignored or half
implemented by systems implementers and what is to be done with existing data?

Compatibility

There are two approaches that can be taken in transitioning correct data to the new structure:
e Require data to be transformed because currently correct data is not correct in the new structure.
e Change the new structure, if needed, to ensure that existing correct data does not need to be
transformed.
The latter is much preferred, because requiring the re-encoding of all existing data would be an
unacceptably costly activity. Therefore we need to compare the new structure with the existing. We only
need to do this for Modern Khmer and minority orthographies and so we can take a simplified view of the
new structure:

SyIN = B R? C{0,2} S? V? MS? MF? | O

There are a number of existing syllable structures both in standards and implementations. We examine
them in terms of the classes and structures already defined. The mappings are not precise, but sufficient
for our analysis. SylE is the specification from the introduction. SylU is the current Unicode standard (v14).
SyIMS is the Microsoft Khmer shaper specification. SylH is the Harfbuzz Khmer shaper implementation.

SylE = B (R | (ZWNJ? SC)) Cx (ZWNJ? SC)? (ZWNJ? V)? (MS | MF)? (ZWJ C)?
Sylu = B (R | SC) (C R?)* (Z? V)? (MS | MF)? C?
SyIMS = B C{0,2} (VP | VB)? SC? VA? MS? VF? MF?
SylH = B Z? (SC | R)? (C (Z? (SC | R))?)=*
(ZMS* VP? ZMS* VB? ZMSx (Z? VA)? ZMSx VF? ZMS* C? MFx | 17D2)

Z = [200C 200D] # ZWIN)T

ZMS = (Z* MSNR) # ZW(N)J plus modifier sign
R = 17CC # Robat

SC = [17C9 17CA] # Shifter Character

From the description above, the SylMS syllable structure should not support the strings that its
implementation actually does. We assume that the specification is out of date with respect to the
implementation. Lindenber (2019) provides a more detailed survey of how implementations actually
validate Khmer syllables, at that time.

In order to decide whether we can transition without having to transform existing good data, we need to
examine the intersection between these syllable structures and the one defined earlier. Are there required
strings that are not in that intersection? There are a number of places:
e Unicode doesn't currently allow a consonant shifter after a coeng. But it is unique in that.
e The Microsoft shaper allows a consonant shifter only after a pre or below vowel. This is a very
strange place to put one.
e 7WN]J is stored before the consonant shifter.

Incompatibilities

Shifter order: very often a shifter is stored before the coeng when it is now required after.

25

Canonical Combining Classes

Khmer gets off lightly with regard to non zero canonical combining classes (CCC). These are problematic
because once set they can never be changed and so any sequences that would be reordered during
normalization due to canonical combining classes have to be reanalyzed and the syllable structure
changed to ensure that normalized strings, stored in combining canonical order, conform to the syllable

structure.

The only two characters with non zero CCC values are U+17D2 (Coeng) CCC=9 and U+17DD (Atthacan)
CCC=230. Since U+17D2 and U+17DD are never adjacent as specified in the syllable structure, there is no

problem.

Comparing with Current Unicode

Discuss things like zwnj before vowels.

Normalization

Here we describe normalization actions (not normalization as defined in UAX #15) where sequences in

currently conformant Unicode orders are folded into a single sequence using the structure described here.

Reference Implementation

The enclosed reference implementation normalizes Modern Khmer text to the encoding described here in
such a way that it looks the same as the input text. Thus if there is bad spelling in the original (for example
inappropriate multiple vowels), this code does not fix that or mark an error, it simply passes it on for other
processes to handle appropriately. For brevity, only formal confusables are resolved. Informal confusables
are left as an extra step for those wanting to formalise them. Without informal confusable expansion, the

output string is never longer than the input string.

The reference implementation is in python3 using only core modules and is written to be easily
translatable into other languages. The code is not written for speed, but for clarity.

#!/usr/bin/python3

Copyright (c) 2021, SIL International.

Licensed under MIT license: https://opensource.org/licenses/MIT

import enum, re

class Cats(enum.Enum):

Other = @; Base = 1; Robat = 2; Coeng = 3; Z = 4
=6; MS=17; MF = 8

Shift = 5; Vowel

categories = ([Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.
[Cats.

+ + 4+ + + + + + 4+ + +

Base] * 52
Vowel] * 18
MS]

MF] % 2
Shift] = 2
MS]

Robat]

MS]1 * 5
Coeng]

MS]

Other] * 9
MS])

HoH K HF H ¥ HF K ¥ H K HE

1780-17B3
17B4-17C5
17C6
17C7-17C8
17C9-17CA
17CB
17CC
17CD-17D1
17D2
17D3
17D4-17DC
170D

khres = { # useful regular sub expressions used later

"BNB": "[\u1780-\u1793\u1795-\ul7A2]",
"SF": "[\U179E-\u17A0\u17A2]1",
"SNF": "[\u1780-\ul179D\u17A11",

26

def

def

if

"Sst: "[\u1784\u1789\u1793\u1794\u1798-\u179D1",
"VA": "[\u17B7-\u17BA\u17BE\u17D@\u17DD]|\u17B6\u17C6",

charcat(c):

""" Returns the Khmer character category for a single char string

o = ord(c)

if 0x1780 <= o <= 0x17DD:
return categories[0-0x1780]

elif o in (@x200C, 0x200D):
return Cats.Z

return Cats.Other

khnormal(txt):
""" Returns khmer normalised string, without fixing or marking errors'''
categorise every character in the string

charcats = [charcat(c) for ¢ in txt]

Recategorise base — coeng after coeng char
for i in range(len(charcats)-1, 0, -1):
if charcats[i-1] == Cats.Coeng and charcats[i] == Cats.Base:
charcats[i] = Cats.Coeng

find subranges of base+non other and sort components in the subrange

i=o0
res = []

while i < len(charcats):
¢ = charcats[il]
if ¢ != Cats.Base:
res.append(txt[i])

i+=1

continue
scan for end of syllable
j=1i+1

while j < len(charcats) and charcats[j].value > Cats.Base.value:

j+=

1

sort syllable based on character categories
sort the char indices by category then position in string

newindices =

replaces = ""
replaces = re
replaces = re
replaces = re.
replaces = re
replaces = re.
replaces = re
replaces = re.
replaces = re
replaces = re.
replaces = re.

sorted(range(i, j), key=lambda e:(charcats[e].value, e))
.join(txt[n] for n in newindices)

.sub("([\u200C\u200D1)[\u200C\u200D1+", r"\1", replaces) # remove multiple ZW(N)J
.sub("\u17C1(\u17BB?)\u17B8", "\\1\u17BE", replaces) # compose split vowels

sub("\u17C1(\u17BB?)\u17B6", "\\1\u17C4", replaces)

.sub("\u17B8(\u17BB?)\u17C1", "\\1\u17BE", replaces)

sub("\u17B6(\u17BB?)\u17C1", "\\1\u17C4", replaces)

.sub("({VAY)(\u17BB)".format(xxkhres), r"\2\1", replaces) # reorder u before VA

sub (" ({SF3(?:\u17D2{BNB}){{0, 23} [{BNB}(?:\u17D2{SF}(?:\u17D2{BNB})?"
" |\u17D2{BNB}\u17D2{SF}))\u17BB({VA})" . format (**khres),
"\\1\u17CA\\2", replaces) # Upshifting triisap

.sub (" ({SS}(?:\u17D2{SNF}){{0, 23} [{SNF}(?:\u17D2{SS}(?:\u17D2{SNF})?"

"[\u17D2{SNF}\u17D2{SS}))\u17BB({VA})".format (**khres),
"\\1\u17C9\\2", replaces) # Upshifting muusikatoan
sub("(\u17D2\u179A) (\u17D2[\u1780-\u17B31)", r"\2\1", replaces) # coengro 2nd
sub("(\u17D2)\u178A", "\\1\u178F", replaces) # coengda— ta

res.append(replaces)

i=3
return "".join(res)

__name__ == "__main__":
import sys

27

if len(sys.argv) < 2:
print("khnormal infile [outfile]")
sys.exit(1)
infile = open(sys.argv[1], encoding="utf-8")
outfile = open(sys.argv[2], "w", encoding="utf-8") if len(sys.argv) > 2 else sys.stdout
for 1 in infile.readlines():
outfile.write(khnormal(l))

28

Shaping and Font Development

The only real concern of the font is that there be a visual distinction between any two different strings.
While the regular expression describes what constitutes a ‘legal’ sequence, it gives no indication of how
illegal sequences are to be indicated. Where should a dotted circle be inserted? This section does not
distinguish responsibilities between the shaper and the font. In effect it says that ensuring good rendering,
including marking of errors, is the responsibility of the font, and behind that any shaping engine that helps
the font do its work. The reason for this is that at the time of writing, shaping support for Khmer can be
very different across different shapers and it is unknown what shaping support will be available to fonts in
the future

An important consideration is the difference in shaping needs between Modern Khmer and Middle Khmer.
Middle Khmer allows such things as multiple vowels and final coengs. These are problematic in Modern
Khmer. There are various options in how to deal with the contrast:

1. Unify the syllable descriptions and have one shaper for both orthography families.

2. Distinguish syllable structures of Modern and Middle Khmer and allow vowel sequences and final

coengs only in Middle Khmer.

These each have costs and benefits.
Option 1 is simpler to implement. But it comes with a huge cost and that is that font designers have to
ensure and test their fonts for Middle Khmer as well as Modern Khmer, even if they have no interest in
supporting Middle Khmer. In addition, while it is anticipated that most of the heavy lifting of hiding the
encoding complexities from users will be done by the keyboard implementation, it is probable that there
will be simple keyboards produced that do not do the necessary work and will push the cognitive load on
users. This is not good, but is made much worse if they do not constrain users from typing sequences that
are not legal for Modern Khmer but are for Middle Khmer and yet are assumed to be in Modern Khmer. It
would place an immense burden on font developers of Modern Khmer fonts to handle the erroneous
sequences in the font rather than having the necessary shaper support..
Option 2 uses some mechanism to distinguish Modern and Middle Khmer. This cannot be done by
analysis of the text data itself precisely because a Modern Khmer shaper has to mark strings that a Middle
Khmer shaper would accept as illegal. So saying: ‘aha this string has Middle Khmer type structures in it,
does nobody any service to identify the text as Middle Khmer when it should be marked as illegal Modern
Khmer. The current approach is to use language marking of text. Thus text would either be identified as
Modern Khmer (and if unmarked) or as Middle Khmer. This places a burden on the far smaller Middle
Khmer user community to mark their text for language.
The issue is that the concept of changing shapers (or such radical shaping behaviour as the grapheme
cluster analysis) based on language rather than script alone, is novel and will require engineering support.
Another advantage of option 2 is that it allows a font designer only interested in supporting Modern Khmer
to indicate that in their font and for the shaper to ensure that all data the font renders is interpreted as
Modern Khmer.
To enable this option, a suitable language tag would need to be agreed for Middle Khmer and also a
mapping to an OpenType language tag. Notice that the only ISO639 codes for Khmer are: kh for Modern
Khmer, kxm for Northern Khmer (a minority language that can use Khmer script) and okz for Old Khmer.
Middle Khmer is not considered a different language to Modern Khmer, although its orthography is very
different. This would probably result in a language tag with a variant against a different 1ISO639 code.

Shaping
The description here does not attempt to use any existing shaping specification. Instead it outlines the

needs of a shaper without specifying the actual implementation.

The primary issue in creating a font is to ensure that no two different strings look the same. This is a
shared responsibility between the shaping engine and the font. There is a tendency to not want to
overburden the shaping engine with a lot of detailed rules, but equally to provide helpful support to the

29

font.

The full disambiguating regular expression is large and complex. But it is unlikely that the regular
expression will be implemented directly, and would be expressed in code in a different way. This is
especially true since most regular expression engines cannot handle variable length zero width look
behind assertions. That is one way of identifying ‘illegal’ strings. But another way allows for a more
nuanced insertion of error marks. This approach is to do a very basic syllable analysis and then use
negative rules to identify and mark bad strings.

Consonant Shifters

As an example, let’s consider the consonant shifter. The regular expression for this particular part of the
string is certainly complex. How might a font (in conjunction with a shaper) handle this? It already has to
address such sequences to identify when the shifter downshifts, so perhaps we can do all of the work of
downshifting and error marking together. The examples below will use the FEA syntax and presumes no
shaper support.

For the sake of this example, we will identify all base forms by their unicode value with glyph names such
as u179A. Notice that at this point we are dealing with glyphs and not codepoints. In addition, every
consonant has a coeng form: the glyph that is used when the consonant is preceded by a coeng (17D2) and
this is named as a variant glyph: thus u179A. coeng. We also presume that each of the classes in the regular
expression has a corresponding class of glyphs. If the class is preceded by a coeng (17D2), then the class is
simply a class of .coeng forms. Thus:

@SCS = (u1784.coeng u1789.coeng u1799.coeng ul79A.coeng ul179C.coeng ul179D.coeng)
@SS = (u1784 u1789 u1798 u1799 ul179A u179C u179D)

The task of the lookup we are to write is to process u17¢9 and u17CA. There are two actions we can take: we
can convert the shifter into a -u vowel (u17BB) or insert a dotted circle before it (u25CC). There is also a
lookup to strip the zwj or zwnij. In the case of zwnj, if it is legal, then it is downshifting and we replace it
with a -u glyph, whereas with zwj we leave the consonant shifter in place.

lookup shiftu {
sub u17C9 by u17BB;
sub u17CA by ul17BB;
} shiftu;

lookup shifterr {
sub u17C9 by u25CC ul17C9;
sub u17CA by u25CC ul7CA;
} shifterr;

lookup shiftstrip {
sub u200D ul17C9 by ul17C9;
sub u200D u17CA by ul7CA;
sub u200C ul17C9 by ul17BB;
sub u200C ul7CA by ul7BB;
} shiftstrip;

These lookups are ‘called’ from a contextual chaining lookup that uses strings of glyphs to call the
appropriate lookup on the shifter. Because of the size of this lookup here, we only consider u17CA.
Handling u17C9 is left as an exercise for the reader. We also leave out the u17B6 u17C6 vowel context
after the first few example rules.

lookup doshift {
unmarked downshift

30

sub @SF ul17CA’ lookup shiftu @VS;

sub @SF ul17CA’ lookup shiftu ul17B6 ul7C6;

sub @B @SCF ul17CA’ lookup shiftu @VS;

sub @ @SCF u17CA’ lookup shiftu ul17B6 u17C6;

sub @B @SCF @C ul7CA’ lookup shiftu @VS;

sub @B @SCNF @SCF u17CA’ lookup shiftu @VS;

ZWNJ stops downshift

sub @SF u200C’ lookup shiftstrip ul7CA’ @VS;

sub @B @SCF u200C’ lookup shiftstrip ul7CA’ @VS;

sub @B @SCF @C u200C’ lookup shiftstrip ul7CA’ @VS;
sub @B @SCNF @SCF u200C’ lookup shiftstrip ul7CA’ @VsS;
ZWJ should not occur

sub @SF u200D’ lookup shifterr ul7CA’ @VS;

sub @ @SCF u200D’ lookup shifterr ul7CA’ @VS;

sub @ @SCF @C u200D’ lookup shifterr ul7CA’ @VS;
sub @B @SCNF @SCF u200D’ lookup shifterr ul7CA’ @VS;

we only get here if all the other rules fail, so our classes can be vague.
explicit ZWJ downshifts
sub @ u200D’ lookup shiftu ul7CA’ @VS;
sub @B @C u200D’ lookup shiftu ul7CA’ @VS;
sub @ @C @C u200D’ lookup shiftu ul7CA’ @Vs;
explicit ZWNJ should not occur
sub @ u200C’ lookup shifterr ul7CA’ @VS;
sub @B @C u200C’ lookup shifterr ul7CA’ @VS;
sub @ @C @C u200C’ lookup shifterr ul7CA’ @VS;
} doshift;

Tests

e Ensure coeng sequences are contrastive based on order (reversing the order should resultin a
different rendering)
Coeng ta and coeng da should render contrastively.
If a coeng ro is stored first in a coeng sequence, the font should show a visual contrast (however
ugly that may be) compared to the coeng ro coming second.

e If a consonant shifter precedes a spacing coeng, the font (or ideally the shaper) should show a
visual contrast compared to when the consonant shifter is after the coeng.

Design Issues

Coeng Stacking

The stacking of below diacritics is a particular design issue for Khmer fonts. Long stacks of say two coengs
and a lower diacritic vowel do exist, but they are rare. A typesetter does not want to allocate lots of space
below the baseline just for the rare cases that may occur once or twice in a book. Therefore there is a
desire by font designers to want to reduce the height of the lower diacritic stack. For example, stacking
lower diacritics horizontally across the bottom of the base character. But this flies in the face of readability
where readers need to know the order of the coengs in order to read well. In addition, fonts need to show
coeng order so that they show a visual distinction for a different character sequence.

If a font designer wants to design with horizontal stacking, they need to ensure that reversing the order of
the coengs in the stack leads to a different visual representation. Such stacks occur with borrowed words.

Thus ‘Florida’: Wi "? Wim? §it? Or “free’: {], or ‘three’: (. Another good example is § §jAinA.
Some other examples of the problems of combining coengs show the problems that users face on various

” Note that this document was written in Google docs and there are no known fonts available in Google
Fonts, that render these words correctly.

31

platforms.

P~
n 'h §‘j U] ﬁ Noto Sans Khmer Ul (Android)
<1 RPU

su

ﬁ“lj mq] EJ_U E_E Leelawadee Ul (Windows)

(=%] u

Independent Vowels and Coengs

The definition of bases includes independent vowels. This means that independent vowels should be able
to take coengs. But some of the independent vowels have below baseline components which are
problematic when combining with coengs. But there are no known cases of such sequences occurring in
any use of the Khmer script. Thus font designers are free to make such sequences render poorly, either
through collision or inserting a dotted circle, for example. The only independent vowel and coeng
sequences which occur are [17B1 17B2] 17D2 1799. This problem also applies to 17A1 although there are a
rare examples of coengs applying to 17A1: ¢ ‘.?:j‘ﬁmfl. It is unknown whether Middle Khmer has
independent vowels with coengs. "

32

Acknowledgements

The research and development of this document was done because a number of technical experts saw key
technical problems with the Khmer encoding. This document is written to provide input both to the
Unicode Technical Committee and also to the Cambodian Government. Thanks are due to SIL International
and the National Polytechnic Institute of Cambodia Language Software Development Unit (NPIC LSDU) for
their authorship. Martin Hosken’s research is also undertaken under the auspices of the Payap University
Linguistics Institute, ChiangMai Thailand. Most of the underlying research was undertaken in conjunction
with Makara Sok and Didi Kanjahn and based on the encoding proposed by Javier Sola (Open Institute).
Thanks are also due to the following people for their technical contributions and review: Peter Constable,
Sovichet Tep, Nathan Willis and in particular Norbert Lindenberg who generously gave thorough testing.
Trent Walker (Stanford University) reviewed and contributed to the section on Middler Khmer.

33

Appendix 1 - Current Confusion

The problem that the Khmer script faces is that there is often more than one way to encode a visual string
and it be valid, and yet only one way is the ‘correct’ way. For those very experienced in understanding how
the Khmer script is stored in Unicode, and with a strong linguistic awareness, there seems to be no
problem. But for many users there are problems. Here we present some simple statistics taken from page
counts in Google for different encodings of the same word.

Example Words

"'Woman’

The word {fJ “woman" consists of 4 characters. The initial consonant is not in confusion. The coeng ta is
confusible with coeng da and the 3 characters following the base consonant may occur in any order. The
result is 12 possible ways of encoding the word. They are listed here along with the number of pages
Google found of that spelling, in popularity order. Notice that the most popular spelling is not the ‘correct’
spelling. The best that someone searching for this word can hope for is 53% by typing their search term
wrongly.

Text Romanised Popularity
i3] srti 8,950,000
Lﬁ§ stri 4,950,000 (correct spelling)
i3] srdi 1,340,000
i3] sdri 893,000
i3] srit 620,000
By, stir 25,900
i3] srid 19,600

fi g, sdir 6,190

ﬁ:i L sitr 10

fJ g, sidr 3

iy sirt 1

iy sird 1

‘Detect/investigate’

[f{}lU ‘to detect/investigate’ consists of a confusable vowelﬂ(17BE) and a consonant shifter (" 17CA) which
is down shifted to be a glyph which looks like that of 17BB in this context. There are 15 possible ways of
typing this word. The two most noticeable errors are (1) 17BE is perceived as a combination of two
separate vowels, i.e. 17C1 and 17B8 and (2) 17CA is thought to be 17BB because of how it looks.

Text Sequences Popularity

[ffjtj U 759,000 (correct spelling)
U U 38,500

13U AR 11,800

U VR 11,600 *

U Ui u 6,410

34

U g U 5,120
U UL U 30
ety Ul u 21
QY] VRN 14
RS U VY] 1%
Iy U 8
U iU 8 *
QY lii; LU 6*
U B LU 5
Iy B 1y 3

Entries marked with * are not automatically fixed by the reference normalization code.

‘Eat’

Here, there is considerable downshifting confusion.

Text Sequences Popularity

ffj Sl 3,250,000 (correct spelling)
Y] fu 3,040,000

) ey” 632,000 *

Y] i 400,000

Q) B 364

80 g 9*

Entries marked with * are not automatically fixed by the reference normalization code.

‘Bread’

More downshifting confusion with a less common word.

Text Sequences Popularity

it Ui 34,700

ffifl g i 26,400 (correct spelling)
it g i 16,700

‘One sort’

For the most part people realise that the downshifter goes after the coeng.

Text Sequences Popularity

H1 CAERE" 2,530,000 (correct spelling)
g4 CIRRY 480,000

‘Don’t’

People tend not to have a problem with typing a vowel before a final.

Text

Sequences

Popularity

35

o,

6,050,000 (correct spelling)

e DR

o,

284,000

‘Wait’
People tend not to fall into the trap of typing ‘am’ the Thai way.
Text Sequences Popularity
o) 'R 5,860,000 (correct spelling)
6} Kl 208,000
‘Mr’
Most people only use one vowel for split vowels.
Text Sequences Popularity
[U A 8,190,000 (correct spelling)
93800 U A 422,000
FUNER FUN IR 15,600
‘Khmer’
People do well at spelling the language name correctly.
Text Sequences Popularity
igi g 11 29,100,000 (correct spelling)
igi g i1 372,000

Coeng Ta vs Coeng Da

Here we see some example words and their various popularities for the confusion between coeng ta and
coeng da. In each case the ‘correct’ spelling is emboldened.

il spelling

i popularity i1 spelling i1 popularity
AnMm 2,120,000 Anm 3,550,000
A 1,660,000 A 3,560,000
eyl 445,000 b 903,000

While students are taught the correct usage of coeng ta and coeng da, it does not mean that the lessons
are always remembered into adulthood.

36

Bibliography

Antelme, Michel, 2007 "INVENTAIRE PROVISOIRE DES CARACTERES ET DIVERS SIGNES DES ECRITURES
KHMERES PRE-MODERNES ET MODERNES EMPLOYES POUR LA NOTATION DU
KHMER, DU SIAMOIS, DES DIALECTES THAIS MERIDIONAUX, DU SANSKRIT ET DU
PALIL *" (Projet “Corpus des inscriptions khméres” —CIK), url:
https://web.archive.org/web/20190814131541/http://aefek.free.fr/iso album/antel
me_bis.pdf

Bernard, J. B., 1902 “Dictionnaire Cambodgien-Francais” (HongKong)

British and Foreign Bible Society, 1899 “The Gospel According to Luke”, url:
https://books.google.com.kh/books?id=ZrQUAAAAYAA]

Chuon Nath, 1967 “Khmer Dictionary” (Buddhist Institute 5th ed, 1967/68), url: windows version

-0 0, 0, 0, 0, 0, 0, 0,

%93%E1%9E%B6%E1%9E%9I3%E1%IE%BB%E1%IE%B0%E1%IF%I2%E1%IEY%IA
%E1%9E%98%E2%80%8B%E1%9IE%81%E1%9IF%I2%E1%IE%IB%ET%IF%B82%ET %
9E%9A.html#.YLmnD kvPIU, online version http://dictionary.tovnah.com/help

Sok, Makara, 2016 “Phonological Principles and Automatic Phonemic and Phonetic Transcription of
Khmer Words” (Payap University, MA Thesis, 2016), url:

https://drive.google.com/file/d/1c_EXNy90pv06StsBMQz4Rzk87ulMgXyM/view?usp
=sharing
Lindenberg, Norbert, 2019: Issues in Khmer syllable validation. (Lindenberg Software, 2019), url:
https://lindenbergsoftware.com/en/notes/issues-in-khmer-syllable-validation/
Sol3, Javier, 2004 “Issues in Khmer Unicode 4.0" (Open Forum of Cambodia, version 2.0,
21/0ct/2004), url:

https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20
script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20

Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download

Valy, D., Verleysen, M., Chhun, S., & Burie, J. C, 2017 “A New Khmer Palm Leaf Manuscript Dataset for
Document Analysis and Recognition - SleukRith Set” (In 4th International
Workshop on Historical Document Imaging and Processing (HIP), DOI

10.1145/3151509.3151510, Data: https://github.com/donavaly/SleukRith-Set).

37

https://web.archive.org/web/20190814131541/http://aefek.free.fr/iso_album/antelme_bis.pdf
https://web.archive.org/web/20190814131541/http://aefek.free.fr/iso_album/antelme_bis.pdf
https://books.google.com.kh/books?id=ZrQUAAAAYAAJ
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
http://dictionary.tovnah.com/help
https://drive.google.com/file/d/1c_FXNy90pv06StsBMQz4Rzk87ulMqXyM/view?usp=sharing
https://drive.google.com/file/d/1c_FXNy90pv06StsBMQz4Rzk87ulMqXyM/view?usp=sharing
https://lindenbergsoftware.com/en/notes/issues-in-khmer-syllable-validation/
https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download
https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download
https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download
https://github.com/donavaly/SleukRith-Set

