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Chapter 1
Basic definitions and first results

1.1 The model

The simplest version of a population size model which sets out at the level of in-
dividuals may be informally described as follows: All individuals behave indepen-
dently and have equally distributed random lifetimes and random numbers of chil-
dren (offspring). In other words, if an individual v has lifetime Tv and produces Nv

children, then the pairs (Tv,Nv) are drawn from a family of iid random variables.
Population size may be measured either in real time, that is, by counting the number
of living individuals at any time t ∈R≥, or over generations n∈N0, that is by count-
ing the numbers of individuals with the same number of ancestors. In the following,
the latter, genealogical perspective is adopted, which does not care about lifetimes
and leads to the most classical model in theory of branching processes

Definition 1.1. Let (Zn)n≥0 be a sequence of integer-valued random variables,
recursively defined by

Zn =
Zn−1

∑
k=1

Xn,k, n≥ 1, (1.1)

where {Xn,k : n,k ≥ 1} forms a family of iid integer-valued random variables
with common distribution (pn)n≥0 and independent of Z0. For each n ≥ 0,
the random variable Zn is interpreted as the size of the nth generation of a
given population. Then (Zn)n≥0 is called a simple Galton-Watson process or
just Galton-Watson process (GWP) with offspring distribution (pn)n≥0 and Z0
ancestors.

As one can easily see, the distribution of (Zn)n≥0 is completely determined by
two input parameters, the offspring distribution (pn)n≥0 and the (ancestral) distribu-
tion of Z0. In fact, (Zn)n≥0 constitutes a temporally homogeneous Markov chain on
N0 with transition matrix (pi j)i, j≥0, given by
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pi j = P(Zn+1 = j|Zn = i) = p∗ij , (1.2)

where (p∗in )n≥0 denotes the i-fold convolution of (pn)n≥0, which equals the Dirac
measure at 0 in the case i = 0. In other words, the simple GWP may also be char-
acterized as a Markov chain on the nonnegative integers with the special transition
structure specified by (1.2).

As common in the theory of Markov chains, we may study (Zn)n≥0 within the
following standard model: Let Z0 and all Xn,k be defined on a measurable space
(Ω ,A) together with a family of probability measures {Pi : i ∈ N0} such that the
Xn,k are iid with common distribution (pn)n≥0 under each Pi, while Pi(Z0 = i) = 1.
In view of the recursive definition (1.1) it is useful to define the filtration

F0 := σ(Z0) and Fn := σ(Z0,{X j,k : 1≤ j ≤ n, k ≥ 1}) for n≥ 1

and to note that (Zn)n≥0 is Markov-adapted to (Fn)n≥0, that is, each Zn is Fn-
measurable and

P(Zn+1 = j|Fn) = P(Zn+1 = j|Zn) a.s.

where ”a.s.” means ”Pi-a.s. for all i ∈ N0”.
Due to the independence assumptions, it is intuitively clear and confirmed by the

next lemma that a GWP with i ancestors is just the sum of i independent GWP’s
with one ancestor. This worth to be pointed out because it will allow us in many
places to reduce our further analysis to the case where Z0 = 1.

Lemma 1.2. Every GWP (Zn)n≥0 with k ancestors is the sum of k indepen-
dent GWP’s (Z(i)

n )n≥0, 1 ≤ i ≤ k, with one ancestor and the same offspring
distribution. If (Zn)n≥0 is given in a standard model, this may also be stated
as

Pk((Zn)n≥0 ∈ ·) = P1((Zn)n≥0 ∈ ·)∗k

for all k ≥ 0.

1.2 The model behind: genealogical structure and random trees

Behind any GWP with one ancestor there is a more informative model describing
the genealogy of the considered population in terms of a suitable random tree, called
Galton-Watson tree. This is done by assigning a suitable label to each individual that
reflects the ancestral structure and by interpreting each label as a node in the tree. A
common way is via embedding in the so-called Ulam-Harris tree with vertex set

V =
⋃
n≥0

Nn,
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where N0 := {∅} consists of the root. Each vertex v= (v1, ...,vn)∈V\{∅}, shortly
written as v1...vn hereafter, is connected to the root via the unique shortest path

∅ → v1 → v1v2 → ... → v1...vn. (1.3)

Let |v| denote the length (generation) of v, thus |v1...vn|= n and particularly |∅|= 0.
Further let uv = u1...umv1...vn denote the concatenation of two vectors u= u1...um
and v = v1...vn.

∅

1

11

111 112

12

121

2

21 22

221 222 223

Fig. 1.1 A Galton-Watson tree with Ulam-Harris labeling.

The Galton-Watson tree GW associated with (Zn)n≥0 may now be defined in the
following inductive manner as a random subtree of V: First, the ancestor gets the
label ∅. Second, given that an individual of the population has been labeled by v
and gives birth to Xv children, label its offspring by v1, ...,vXv [+ Figure 1.1]. Then
it is clear that any individual of generation n gets a label v = v1...vn with |v| = n,
thus

Zn = |{v ∈ GW : |v|= n},

and that the shortest path (1.3) from the root ∅ to v provides us with the ancestral
line of v where v1...vn−1 denotes its mother, v1...vn−2 its grandmother, etc. The
offspring numbers Xv are iid with common distribution (pn)n≥0 and Zn may also be
written as

Zn = ∑
v∈GW:|v|=n−1

Xv

for each n≥ 1.
We refrain at this point from a precise formalization of random trees as random

elements on a suitable probability space and refer instead to Chapter 4.

1.3 Generating functions and moments

We have already pointed out that, apart from the number of ancestors, the distri-
bution of a GWP (Zn)n≥0 is completely determined by its offspring distribution
(pn)n≥0, which in turn is uniquely determined by its generating function (gf)
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f (s) = ∑
n≥0

pnsn, s ∈ [−1,1].

As we will see, many of the subsequent results are based on a thorough analysis of
gf’s. Their most important properties are therefore collected in Appendix A.1.

In the following, let (Zn)n≥0 be given in a standard model in which expectation
and variance under Pi are denoted as Ei and Vari, respectively. Instead of P1,E1 and
Var1 we also write P,E and Var , respectively. Obviously,

f (s) = EisXn,k

for all i ∈ N0 and k,n ∈ N, in particular f (s) = EsZ1 .
Our first task is to determine, for each n ∈ N0, the gf of Zn under P as a function

of f . This will be accomplished by the next lemma and also provide us with EZn
and VarZn via differentiation.

Lemma 1.3. Let T,X1,X2, ... be independent, integer-valued random vari-
ables such that X1,X2, ... are further identically distributed with common gf
f , mean µ and variance σ2 (if it exists). Let g be the gf of T . Then

Y =
T

∑
k=1

X j [:= 0 on {T = 0}]

has gf EsY = g◦ f (s) and mean

EY = µ ET. (1.4)

Furthermore, if µ and ET are both finite (thus σ2 exists), then

VarY = σ
2ET +µ

2VarT. (1.5)

Proof. Under the stated conditions and by making use of the multiplication lemma
for gf’s, we infer for each s ∈ [−1,1]

EsY = P(T = 0)+ ∑
k≥1

∫
{T=k}

sX1+...+Xk dP

= P(T = 0)+ ∑
k≥1

P(T = k)EsX1+...+Xk

= ∑
k≥0

P(T = k) f (s)k

= E f (s)T

= g( f (s)),
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which is the first assertion. The remaining ones (1.4) and (1.5) are now easily ob-
tained via differentiation of g( f (s)) and by letting s ↑ 1. The details are left to the
reader. ut

The gf of Zn as well as its mean and its variance are now directly obtained by
means of Lemma 1.3. Let

m = EZ1 = ∑
k≥1

kpk = f ′(1)

denote the expected number of children per individual, called offspring mean or
reproduction mean. It always exists, but may be infinite. If m is finite, we may
further define

σ
2 = VarZ1 = ∑

k≥1
k2 pk−m2 = f ′′(1)+ f ′(1)(1− f ′(1)), (1.6)

called offspring or reproduction variance.

Proposition 1.4. For each n∈N, the gf fn of Zn under P is given by the n-fold
composition of f , i.e.

fn = f ◦n := f ◦ ...◦ f . (1.7)

Moreover, Zn has mean EZn =mn and variance

VarZn =


σ2mn−1(mn−1)

m−1
, if m 6= 1,

nσ2, if m= 1,
(1.8)

provided that m is finite.

Proof. Since Xn,1,Xn,2, ... are iid with common gf f and independent of Zn−1 and
since Zn = ∑

Zn−1
k=1 Xn,k, we infer from Lemma 1.3 that fn = fn−1 ◦ f for each n ∈

N and thereupon (1.7). The same lemma further gives EZn = mEZn−1 for each n
and thus EZn =mn. Assuming m< ∞ and defining Wn =m−nZn, a straightforward
calculation yields

VarWn =
σ2

mn+1 +VarWn−1 (1.9)

for each n ∈ N. To derive (1.8) from this recursion is left as an exercise. ut

Problems

Problem 1.5. Complete the proof of Prop. 1.4 by showing (1.9) and (1.8). Give also
a closed form expression for VarWn.
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Problem 1.6. Show that Lemma 1.3 may be generalized as follows: If ceteris
paribus X1,X2, ... take values in R≥ and have Laplace transform (LT) ϕ , then the
LT ψ of Y satisfies ψ = g◦ϕ .

1.4 Back to the genesis: the extinction probability

We turn to the problem that leads back to the early days of branching processes, viz.
the computation of the probability that a population described by a GWP eventu-
ally dies out. The solution presented here is essentially the historical one given by
Watson and based on gf’s.

So let (Zn)n≥0 be a GWP in a standard model with offspring distribution (pn)n≥0
having gf f . The extinction probability under Pi is denoted as q(i), in the case i = 1
also as q. Since the event of extinction is an absorbing event, that is, Zn = 0 implies
Zn+k = 0 for all k ≥ 1, we infer

q(i) = Pi

(⋃
k≥0

{Zk = 0}

)
= lim

n→∞
Pi

(
n⋃

k=1

{Zk = 0}

)
= lim

n→∞
Pi(Zn = 0). (1.10)

Furthermore, by Lemma 1.2, we have

Pi(Zn = 0) = Pi(Z
( j)
n = 0 for each 1≤ j ≤ i) = P(Zn = 0)i

for all i,n ≥ 1 and thus q(i) = qi. Therefore it suffices to find q, the extinction
probability of (Zn)n≥0 under P= P1.

Because of the trivial implications

p0 = 0 =⇒ q = 0,
p0 + p1 = 1, 0 < p0 < 1 =⇒ q = 1,

we may confine ourselves hereafter to the case where

0 < p0 ≤ p0 + p1 < 1. (1.11)

Keeping the notation of the previous section, we are now able to prove the following
result.

Theorem 1.7. The extinction probability q is given as the smallest fixed point
of f in [0,1], i.e., the smallest solution to the equation f (s) = s in this interval.
Provided that (1.11), f possesses exactly one fixed point in [0,1) if m> 1, and
none if m≤ 1. Hence p0 < q < 1 in the first case and q = 1 in the second one.
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So we have the intuitive result that a nontrivial GWP (i.e. p1 6= 1) has a positive
chance of survival iff the mean number of offspring per individual is bigger than
one.

Proof. By (1.10), q = limn→∞P(Zn = 0) = limn→∞ fn(0). Since f is continuous on
[0,1] and fn+1 = f ◦ fn for all n≥ 1, it follows that

f (q) = lim
n→∞

f ◦ fn(0) = lim
n→∞

fn+1(0) = q,

i.e., the fixed point property of q. Let a∈ [0,1] be an arbitrary fixed point of f . Using
the monotonicity of all fn on [0,1], we obtain

a = f (a) = fn(a) ≥ fn(0)

for all n≥ 1 and therefore a≥ limn→∞ fn(0) = q. So we have shown that q is indeed
the smallest fixed point of f in [0,1].

From now on assume (1.11) in which case f must be strictly increasing and
strictly convex on [0,1]. We define g(s) = f (s)− s and note that g(0) = p0 > 0 and
g(1) = 0.

Since f ′(s) < f ′(1) = m for all s ∈ [0,1), we have g′(s) = f ′(s)− 1 < 0 for all
s ∈ [0,1) if m≤ 1.

Now suppose that m > 1 in which case f (s) grows faster than s in a left neigh-
borhood of 1, for g′(1) = m− 1 > 0 and g′ is continuous. On the other hand,
f (s) > s hold strue in a right neighborhood of 0, for g(0) > 0 and g is contin-
uous. By an appeal to the intermediate value theorem, there exists at least one
fixed point s1 of f in (0,1). If there were a second one s2, wlog s1 < s2 < 1, we
would infer g(s1) = g(s2) = g(1) = 0 and thereupon the existence of a,b ∈ (0,1),
s1 < a < s2 < b < 1, with g′(a) = g′(b) = 0 or, equivalently, f ′(a) = f ′(b) (Rolle’s
theorem), a contradiction to the strict convexity of f . Hence q is the unique fixed
point of f in (0,1) and further satisfies q > p0 because

q ≥ P(Z1 = 0)+P(Z1 > 0,Z2 = 0) ≥ p0 + pn pn
0

for any n ∈ N so large that pn > 0. This completes the proof of the theorem. ut

Figure 1.2 illustrates the situation in each of the cases m< 1, m= 1 and m> 1.
In the last case, it seems natural to find q by solving the equation f (s) = s if f is
explicitly known. Unfortunately, this can only be done in a few special cases two of
which are considered in Problems 1.10, 1.12 and the next section. On the other hand,
approximative computation of q via iteration of f provides us with an alternative that
is easy and even fast, as shown by the following corollary and illustrated in Figure
1.3.
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m< 1 m= 1 m> 1
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Fig. 1.2 The generating function f in the cases m<,=,> 1.

Corollary 1.8. Suppose that (1.11) holds true. Then fn(s)↗ q uniformly for
s ∈ [0,q] and fn(s)↘ q for s ∈ [q,1). The last convergence is uniform in s on
any compact subset of [q,1). Furthermore,

0 < q− fn(s) ≤ f ′(q)n (1.12)

for all n ∈ N and s ∈ [0,q). If m 6= 1, then f ′(q)< 1.

Proof. Since f is increasing on [0,1], s < f (s)< f (q) = q holds true for s ∈ [0,q).
Now iterate to obtain

s < f1(s)< f2(s)< ... < fn(s)< fn(q) = q

for all n ≥ 1 and thereby fn(s)↗ q̂ ≤ q. But fn(0) ≤ fn(s) together with fn(0) =
P(Zn = 0)↗ q ensures q̂ = q as well as the asserted uniform convergence on [0,q].

If s ∈ [q,1), thus m> 1, a similar argument shows that fn(s)↘ q̂ ∈ [q,1). But q̂
must be a fixed point of f and thus q̂ = q by Theorem 1.7, because

q̂ = lim
n→∞

fn+1(s) = f
(

lim
n→∞

fn(s)
)

= f (q̂).

Furthermore, 0≤ fn(s)−q≤ fn(t)−q for all n≥ 1, t ∈ (q,1) and s ∈ [q, t] implies
that the convergence is uniform on any compact subset of [q,1).

Finally, the convexity of f implies that

0 <
q− f (s)

q− s
≤ f ′(q)

for each s ∈ [0,q). Hence, we infer (1.12) from

0 <
q− fn(s)

q− s
=

n−1

∏
k=0

q− f ( fk(s))
q− fk(s)

≤ f ′(q)n
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for all n≥ 1 and s∈ [0,q), where f0(s) := s. Cleary, f ′(q) =m< 1 in the subcritical
case. But if m> 1 and thus 0≤ q < 1, we have

f ′(q) <
f (1)− f (q)

1−q
= 1

by the strict convexity of f . ut

q xf(x)f(f(x)) 1

q

0.5

1

x f(x) f(f(x)) q=1

0.5

1

Fig. 1.3 Approximation of q via the iteration sequence fn(x), n ∈ N0.

The last result of this section shows a fundamental dichotomy for GWP’s, which
is actually typical for any branching process with independent reproduction and
known as the extinction-explosion principle.

Theorem 1.9. [Extinction-explosion principle] Every GWP (Zn)n≥0 satisfy-
ing P(Z1 = 1) 6= 1 is bound to either extinction or explosion, i.e.

P(Zn = 0 eventually) + P(Zn→ ∞) = 1.

Proof. An equivalent formulation of the extinction-explosion principle in the frame-
work of Markov chains is that 0 is an absorbing state while all other states k ∈ N
are transient. As before, let (pn)n≥0 be the offspring distribution of (Zn)n≥0, thus
p1 6= 1. For any k ∈ N, we then infer

Pk(Zn 6= k for all n≥ 1) ≥

{
pk

0, if p0 > 0
1− pk

1, if p0 = 0

}
> 0

which proves the asserted transience of k. ut
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The extinction-explosion principle naturally calls for a more detailed description
of the asymptotic behavior of Zn on the two disjoint events of extinction and explo-
sion. As it turns out, this leads to quite different results for the three cases m < 1,
m= 1 and m> 1. Due to this fact, (Zn)n≥0 is called

• subcritical, if m< 1,
• critical, if m= 1,
• supercritical, if m> 1.

For each of the three cases, Figure 1.4 shows 100 simulated trajectories of a GWP
with Poissonian offspring distribution and a glance suffices to see that they exhibit
a quite different behavior.

Problems

The notation of the previous sections is kept. In particular, (Zn)n≥0 always denotes
a GWP with one ancestor, offspring distribution (pn)n≥0 having gf f and mean m,
and extinction probability q.

Problem 1.10 (Cell splitting). Find the extinction probability of a cell splitting pro-
cess, described by a GWP (Zn)n≥0 with offspring distribution of the simple form

p0, p2 > 0, p1 ∈ [0,1) and pn = 0 otherwise.

In the case p1 = 0, one may think of a cell population whose members either split
or die at the end of their life cycles.

Problem 1.11. Show that

p0

1− p1
≤ q ≤ p0

1− p0− p1
(1.13)

holds true under the convention that 0
0 := 1.

Problem 1.12. [This is an example of a linear fractional distribution to be discussed
in full generality in the next section] Find the extinction probability of a supercritical
GWP with geometric offspring distribution, that is

pn =
1

m+1

(
m

m+1

)n

for n ∈ N0.

Compare your result (as a function of m) graphically with the bounds

h1(m) =
m+1

(m+1)2−m
and h2(m) =

m+1
m2

derived from (1.13).
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Problem 1.13. Let (pn)n≥0 be a Poisson distribution with mean m > 1, i.e., pn =
e−mmn/n! for n ∈ N0.

(a) Show that q <m−1 and f ′(q)≤ f ′(m−1)< 1. By Corollary 1.8, this provides
us with the error bound f ′(m−1)n when approximating q by fn(0).

(b) Compare the bound h3(m) =m−1 for q (as a function of m) graphically with
the bounds

h1(m) =
e−m

1−me−m
and h2(m) =

e−m

1− (1+m)e−m

derived from (1.13).
(c) Use iteration to compute q up to an error of at most 10−4 for the cases m =

1.1, 1.2, ..., 3.0 and show your results graphically together with hi(m) for
i = 1,2,3.

Problem 1.14. Let (pn)n≥0 be a binomial distribution with parameters N and m/N
for some N ∈ N and 1 < m ≤ N, thus pn =

(N
n

)
(m/N)n(1− (m/N))N−n for n =

0, ...,N and pn = 0 otherwise.

(a) Show that, as in the Poisson case, q < m−1 but f ′(q) ≤ f ′(m−1) > 1 for
sufficiently small m> 1.

(b) Use iteration to compute q up to an error of at most 10−4 for N = 3 and
m= 1.1, 1.2, ..., 2.0. Show your results graphically together with the bounds

h1(m) =
(1− (m/N))N

1−m(1− (m/N))N−1 and

h2(m) =
(1− (m/N))N

1− (1+m(1−1/N))(1− (m/N))N−1

derived from (1.13) and h3(m) =m−1 (range 1≤m≤ 3).
(c) Do the same as in (b), but for N = 2. [This is the cell splitting case and thus

q explicitly known from Problem 1.10].

Problem 1.15. Let pn = 1/[(n+1)(n+2)] for n ∈ N0. Find the gf of this offspring
distribution with infinite mean and, via iteration, an approximation of the pertinent
extinction probability.

Problem 1.16. Prove or give a counterexample for the assertion that q ≤ m−1 for
any supercritical GWP (Zn)n≥0.

Problem 1.17. Prove or give a counterexample for the assertion that any two super-
critical GWP’s with one ancestor, the same offspring mean and extinction probabil-
ity are already stochastically equivalent, that is, have the same offspring distribution.
[Note that this is obviously false for two critical GWP’s].

Problem 1.18. Let {(pn(N))n≥0 : N ≥ 1} be a family of offspring distributions such
that
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lim
N→∞

pn(N) = pn for all n≥ 0.

Show that, if q(N) denotes the extinction probability associated with (pn(N))n≥0,
then limN→∞ q(N) = q.

1.5 The linear fractional case

The following offspring distribution, called linear fractional due to the form (1.14)
of its gf f , constitutes one of the few nontrivial examples for which all iterations fn
can be computed in closed form. The subsequent derivation is taken from [4, I.4].

Given parameters b, p ∈ (0,1), b+ p≤ 1, let

pn = bpn−1 for n ∈ N and p0 = 1−∑
n≥1

pn =
1−b− p

1− p
.

If b = p(1− p), this is the familiar geometric distribution with parameter 1− p. The
gf f of (pn)n≥0 is easily seen to be of the form

f (s) = 1− b
1− p

+
bs

1− ps
(1.14)

with mean value
m = f ′(1) =

b
(1− p)2 . (1.15)

Note that, as a power series, f has radius of convergence p−1 > 1. Since (1.14) is
not yet the appropriate form for a computation of fn, we will proceed with a number
of transformations. For arbitrary u,v < p−1, we have

f (s)− f (u)
f (s)− f (v)

=

(
s−u
s− v

)(
1− pv
1− pu

)
, (1.16)

and the task is now to choose u and v in a useful manner. Towards this end, let 1 and
q̂ denote the two fixed points of f which are possible equal. Indeed, q̂ = 1 if m= 1,
while q̂ = q < 1 if m> 1, and q = 1 < q̂ if m< 1.

Suppose first m 6= 1. Then, choosing u = q̂ and v = 1 in (1.16), we obtain

1− p
1− pq̂

= lim
s↑1

(
f (s)− q̂

s− q̂

)(
f (s)−1

s−1

)−1

=
1

f ′(1)
=

1
m

(1.17)

and thus in (1.16)
f (s)− q̂
f (s)−1

=
s− q̂

m(s−1)
.

This relation may now easily be iterated to yield
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fn(s)− q̂
fn(s)−1

=
s− q̂

mn(s−1)

for each n≥ 1. Finally solving for fn(s), we arrive at the following result.

Lemma 1.19. Let f be the gf of a linear fractional distribution with mean
m 6= 1 and fixed points 1, q̂. Then

fn(s) = 1−mn
(

1− q̂
mn− q̂

)
+

mn
(

1− q̂
mn− q̂

)2

s

1−
(
mn−1
mn− q̂

)
s

(1.18)

for each n≥ 1.

Moreover, we infer from (1.15) and (1.17) in the case m> 1 that

q = q̂ =
1−b− p
(1− p)p

=
p0

p
. (1.19)

There is a one-to-one correspondence between the pairs (m,q) ∈ (1,∞)× [0,1)
and (p,b) ∈ (0,1)2, p+ b < 1, i.e., for each reproduction mean m and extinction
probability q < 1, there exists exactly one linear fractional distribution with mean
m and extinction probability q. Namely, by (1.15) and (1.19),

p =
m−1
m−q

and b =
m(1−q)2

(m−q)2 .

Turning to the critical case m = 1, we have b = (1− p)2 by (1.15) and thus (+
(1.14))

f (s) =
p− (2p−1)s

1− ps
. (1.20)

Unlike the noncritical case, this relation may directly be iterated to give the follow-
ing result.

Lemma 1.20. Let f be the gf of a linear fractional distribution with mean
m= 1. Then

fn(s) =
np− ((n+1)p−1)s
(n−1)p+1−nps

(1.21)

for each n≥ 1.

Based on the census in the United States in 1920, LOTKA [19, 20, 21] stud-
ied the extinction probability of white American families when restricting to male
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members. He found a good fit of empirical reproduction probabilities by a linear
fractional distribution with parameters b = 0.2126 and p = 0.5892, which entails
p0 = 0.4825. These values may be found in [21] and differ slightly from those of
his earlier contributions. Using a GWP as the underlying model, the theoretical ex-
tinction probability equals q = 0.819.

Problems

Problem 1.21. This extension of the linear fractional case is taken from [13, p. 10].

(a) Let f be a gf, fn its nth iteration and h an injective function on [0,1] such that
g := h−1 ◦ f ◦ h constitutes a gf as well. Show that the nth iteration of g is
given by gn = h−1 ◦ fn ◦h for each n≥ 1.

(b) Consider the special case that f (s) = (m− (m−1)s)−1s for some m> 1 and
h(s) = sk for some k ∈N. Show that f and g = h−1 ◦ f ◦h are both gf and that

gn(s) =
s

(mn− (mn−1)sk)1/k

for each n≥ 1.

Problem 1.22. Let f (s) = 1− p(1− s)α for arbitrary p,α ∈ (0,1). Show that f is a
gf with iterations

fn(s) = 1− p1+α+...+αn−1
(1− s)αn

for each n≥ 1.

1.6 A martingale and first limit theorems

Having provided a classification of simple GWP’s as to their chance of survival,
which turned out to be positive only in the supercritical case, the natural question
to be addressed next is about the growth behavior of a GWP if it survives. We will
give an answer at this time only under the restriction of finite reproduction variance
because the general situation is more complicated and therefore requiring a deeper
analysis that must wait until Section 2.1

We keep the notation from before and let (Zn)n≥0 denote a GWP in a standard
model with offspring distribution (pn)n≥0 and mean m = ∑n≥1 npn ∈ R>. Recall
from Section 1.1 that F0 = σ(Z0) and Fn = σ(Z0,{X j,k : 1 ≤ j ≤ n, k ≥ 1}) for
n≥ 1. Put also F∞ = σ(Fn, n≥ 0).

In view of EZn =mn for each n≥ 0 it is natural to study the normalized process

Wn =
Zn

mn , n≥ 0,
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we have already encountered in the proof of Prop. 1.4 and which is next shown to
be a nonnegative and thus a.s. convergent martingale.

Proposition 1.23. The normalized sequence (Wn,Fn)n≥0 forms a nonnega-
tive martingale under each Pi, i∈N0, and thus converges a.s. to a nonnegative
random variable W satisfying EiW ≤ i. Furthermore,

Pi(W ∈ ·) = P(W ∈ ·)∗i (1.22)

and particularly Pi(W = 0) = P(W = 0)i.

Proof. By (1.1), Zn = ∑
Zn−1
k=1 Xn,k, where Zn−1 is Fn−1-measurable and independent

of the iid Xn,k, k≥ 1, with common distribution (pn)n≥0. As m ∈R>, it follows that

E(Zn|Fn−1) = E(Zn|Zn−1) = Zn−1EZ1 = mZn−1 Pi-a.s.

and thus the martingale property of (Wn,Fn)n≥0 under each Pi. Almost sure con-
vergence is ensured by the martingale convergence theorem, while Fatou’s lemma
ensures that

EiW = Ei lim
n→∞

Wn ≤ lim
n→∞

EiWn = EiW0 = i

for each i ∈ N0. A proof of the remaining assertions is left as an exercise [+ Prob-
lem 1.27]. ut

It must be noted that this result is of relatively limited use because it provides
satisfactory information on the growth behavior of (Zn)n≥0 only on {W > 0}, which
has probability zero if m≤ 1 and p1 6= 1. In the supercritical case m> 1, we would
like to infer that {W > 0} = {Zn→ ∞} a.s., for this would mean that mn is always
the ”right” normalization of Zn on the event of survival, but in general only the
obvious inclusion {W > 0} ⊂ {Zn→ ∞} holds true. Indeed, the next lemma shows
that, if the inclusion is strict, we already have W = 0 a.s.

Lemma 1.24. The following dichotomy holds true for the martingale limit W
in Theorem 1.23. Either W = 0 Pi-a.s. for each i ∈ N, or

Pi(W > 0) = Pi(Zn→ ∞) for each i ∈ N. (1.23)

If m≤ 1 and p1 6= 1, the first alternative occurs.

Proof. In view of the valid inclusion {W > 0} ⊂ {Zn→∞}, it suffices to prove that
ρi := Pi(W = 0) either equals 1 or Pi(Zn = 0 eventually) = qi for each i. It further
suffices to consider i = 1, for ρi = ρ i

1 for each i ∈ N by Theorem 1.23.
Towards this end, put ρ = ρ1 and note first that



1.6 A martingale and first limit theorems 19

Zn+1 =
Z1

∑
j=1

Zn( j), n≥ 0, (1.24)

where (Zn( j))n≥0 denotes the GWP which pertains to the subpopulation originating
from the jth child of the ancestor ∅ [+ also Problem 1.28]. Clearly, Z1 is indepen-
dent of the family {(Zn( j))n≥0 : j ≥ 1}. After normalization and letting n tend to
infinity, we obtain from (1.24) the identity

W =
1
m

Z1

∑
j=1

W ( j) a.s. (1.25)

where W (1),W (2), ... are independent copies of W and also independent of Z1. Con-
sequently,

ρ = P(W ( j) = 0 for j = 1, ...,Z1)

= ∑
n≥0

P(Z1 = n)P(W (1) = ...=W (n) = 0) = ∑
n≥0

pnρ
n = f (ρ)

and so ρ ∈ {q,1}. This proves the asserted dichotomy and finishes the proof because
the last assertion is trivial. ut

Remark 1.25. Let us point out that (1.25) provides an example of a so-called distri-
butional equation of the general form

X d
= Φ(X1,X2, ...) (1.26)

for some random function Φ independent of the iid X1,X2, ..., which in turn are
copies of X . Here d

= means equality in distribution. Any distribution Q such that
(1.26) holds true with X d

= Q is called a solution to this equation, although in slight
abuse of language we sometimes call the random variable X a solution as well.
Distributional equations will be met frequently throughout this text because many
limiting distributions in connection with branching processes are characterized by
them, owing to the recursive structure of these processes that is reflected in these
equations. Typically, these limiting distributions cannot be identified explicitly and
all information about them must therefore be drawn from the pertinent distributional
equation they solve. A first example for this procedure has been provided by the
proof of the previous lemma. A more sophisticated one can be found in Section 2.1
where it will shown that the distribution of W if nontrivial is absolutely continuous
with continuous density.

As for (1.25), we finally note that the random function Φ is given by Φ(x1,x2, ...)=

m−1
∑

Z1
k=1 xk. Moreover, the distributional equality even appears in the stronger form

of a ”physical” equality of random variables.

Lemma 1.24 calls for a further investigation of the question under which condi-
tion (1.23) holds true in the supercritical case. The bad news is that 1 <m< ∞ does
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not suffice as was first note by LEVINSON [18]. The highly nontrivial task of provid-
ing an answer in form of a necessary and sufficient condition will be accomplished
in Section 2.1. Here we content ourselves with a sufficient condition that allows
the desired conclusion by resorting to a standard result from martingale theory. By
(1.22), it suffices to consider the case of one ancestor.

Theorem 1.26. Suppose that (Zn)n≥0 is a supercritical GWP with one ances-
tor and finite reproduction variance σ2. Then

lim
n→∞

E(Wn−W )2 = 0, (1.27)

EW = 1 and VarW =
σ2

m(m−1)
, (1.28)

P(W = 0) = q. (1.29)

Proof. Since (Zn)n≥0 has finite reproduction variance σ2, we infer from (1.9) in the
proof of Prop. 1.4 that [+ Problem 1.5]

VarWn =
σ2(1−m−n)

m(m−1)
for each n≥ 1.

Hence, (Wn)n≥0 is an L2-bounded martingale and thus convergent in L2 to W as
claimed [+ [12, Cor. 2.2]]. Furthermore, EW = 1 and VarW = limn→∞VarWn =
(m(m−1))−1σ2, which shows (1.28). Finally, as P(W > 0) is positive it must equal
1−q by Lemma 1.24. ut

Problems

Problem 1.27. Let (Zn)n≥0 be a GWP in a standard model and (kn)n≥0 a normal-
izing sequence of positive reals such that W ∗n = k−1

n Zn converges Pi-a.s. for each
i ∈ N0 to a random variable W ∗ taking values in [0,∞]. Show that

(a) (1.22) holds true for W ∗;
(b) If k−1

n kn+1→m< ∞, then W ∗ satisfies the distributional equation (1.25) and
thus Lemma 1.24 as well. Moreover, κ := P(W ∗ < ∞) is a fixed point of f
and thus either equals q or 1.

Problem 1.28. Consider the genealogical model described in Section 1.2 and let,
for any u ∈ V, GW(u) be the Galton-Watson random tree emanating from u as the
root and based on the {Xuv : v ∈ V}. Then define the associated GWP (Zn(u))n≥0
with ancestor u by
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Zn(u) = |{uv ∈ GW(u) : |v|= n} = ∑
v∈V:|v|=n−1 and uv∈GW(u)

Xuv

for n ≥ 1. Finally, put Zn = Zn(∅), W ∗n = k−1
n Zn and W ∗n (u) = k−1

n Zn(u) for a nor-
malizing sequence (kn)n≥0 of positive reals. Show that:

(a) W ∗j+n = (k j/k j+n)∑u∈GW:|u|=n W ∗j (u) for each j ≥ 1;
(b) If W ∗n converges a.s. to a random variable W ∗ taking values in [0,∞] and

k−1
n kn+1→m< ∞, then W ∗ satisfies the distributional equation

W ∗ =
1
mn ∑

u∈GW:|u|=n
W ∗(u) a.s. (1.30)

for each n≥ 1, where the W ∗(u) have the obvious meaning and are indepen-
dent of Zn. Notice that this particularly implies

W ∗ d
=

1
mn

Zn

∑
k=1

W ∗k (1.31)

for each n ≥ 1 if W ∗1 ,W
∗
2 , ... denote iid copies of W ∗ that are independent of

(Zn)n≥0.

Problem 1.29. Show that, under the general conditions stated at the beginning of
this section,

P(W ∈ ·|Fn) = P(W ∈ ·|Zn) Pi-a.s. (1.32)

for all i,n ∈ N0.




