
Image Based Rendering of

Iterated Function Systems

J.J. van Wijk a,∗, D. Saupe b

aTechnische Universiteit Eindhoven, Dept. of Mathematics and Computer Science,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

bUniversität Konstanz, Dept. of Computer Science, Box D697, D-78457 Konstanz,

Germany

Abstract

A fast method to generate fractal imagery is presented. Iterated Function Systems

(IFS) are based on repeatedly copying transformed images. We show that this can

be directly translated into standard graphics operations: Each image is generated

by texture mapping and blending copies of the previous image. Animations of dy-

namic IFS codes are generated at fifty frames per second on a notebook PC, using

commodity graphics hardware. Various extensions and variations are presented.

Key words: Fractal imagery, iterated function systems, hardware acceleration

∗ Corresponding author.

Email addresses: vanwijk@win.tue.nl (J.J. van Wijk),

dietmar.saupe@uni-konstanz.de (D. Saupe).

Preprint submitted to Computer & Graphics 9 March 2004

1 Introduction

Fractal imagery is one of the most fascinating topics in computer graphics.

With only a few lines of code, highly intricate images with details on all scales

can be generated. We consider one class of these images: The well-known

deterministic fractals produced by two-dimensional Iterated Function Systems

(IFS’s). One example is the Black Spleenwort Fern image, devised by Michael

Barnsley, which is defined by only a few numbers and a compact algorithm.

In the next section we give a very short overview of IFS’s and algorithms to

generate imagery; a very readable introduction can be found in [1], in [2] an

in-depth treatment can be found.

In section 3 we present a new technique to generate images of IFS’s using

graphics hardware acceleration. We show that the definition of the attractor

can be translated almost directly into graphics operations. Several extensions

and variations, i.e., the use of colour, dynamic IFS’s, and the visualization

of the space surrounding of the attractor, are presented. The performance of

the method is discussed in section 4 and compared to results with a standard

algorithm. Thanks to the acceleration by graphics hardware a frame rate of 50

frames per second can be achieved for animations of dynamic IFS’s. Finally,

conclusions are drawn.

2 Background

An Iterated Function System (IFS) code with probabilities consists of a set of

transformations {w1, w2, · · · , wN} and associated positive probabilities {p1, p2, · · · , pN}

with
∑N

i=1 pi = 1 . We consider affine and contractive two-dimensional trans-

2

formations wi : R
2 → R

2, defined by

wi

















x

y

















=

















ai bi

ci di

































x

y

















+

















ei

fi

















.

Given an IFS code, there exists a unique associated geometrical object, de-

noted by A, a compact subset of R
2, called the attractor of the IFS. The

attractor is defined as the set of points for which

A =
N
⋃

i=1

wi(A).

Informally, the attractor can be understood as a result of an iteration as

follows. Suppose that initially a sufficiently large domain (e.g., a square Q with

wi(Q) ⊂ Q for i = 1, . . . , N) is covered with an (infinitely fine) powder, such

that the amount of mass that covers each point is the same. In one iteration

each transformation wi moves a portion pi of mass around as specified by the

corresponding affine mapping. Now, points that remain covered with mass in

the long run belong to the attractor. The set A is controlled by the affine maps

wi and does not depend on the choice of the probabilities. Furthermore, an

IFS code has an associated measure denoted by µ, which is governed by the

probabilities pi. Intuitively, some areas will be covered with more mass than

other areas. The measure of a subset B of A can be defined (informally) as

the weight of the mass which lies upon B.

Various algorithms have been developed to produce images of A. The deter-

ministic algorithm follows almost directly from the definition of A. Choose a

3

compact set A0 ⊂ R
2. Next, generate a sequence Ak, k = 1, 2, · · · according to

Ak+1 =
N
⋃

i=1

wi(Ak).

This sequence will converge to A. The algorithm can be implemented in a

straightforward way to generate a sequence of binary images Fk that approach

an image F of A. For simplicity, we assume that the domain of the image is

the unit square (2), we adopt the convention that a value of 0 denotes black

(background) and a value of 1 denotes white (A), and we assume that the

image is discretized in square pixels. Obviously, images are bounded, outside

a fixed rectangle the image is assumed to be 0. In each iteration of Barnsley’s

implementation of the deterministic algorithm the new image is set to zero

first, next all pixels are scanned. For pixels (u, v) that are white in the old

image, the coordinates wi(u, v) are calculated and the corresponding pixels

are set to white.

The most well-known algorithm is the random iteration algorithm. It relies on

the generation of a sequence of points xn, n = 0, 1, · · ·. Starting from an arbi-

trary point x0, each next point is picked from the set {w1(xn−1), w2(xn−1), · · · , wN(xn−1)},

where the propability of the event xn = wi(xn−1) is pi. The first, say ten, points

are discarded, plotting the remaining points gives an image that approaches

A again. A variation of this algorithm is to count how many points fall inside

each pixel. In the limit this count, suitably weighted, gives an image of the

measure µ of each pixel.

Another algorithm is the escape time algorithm. For each point of the im-

age pre-images are calculated recursively. If all pre-images remain within a

bounded area, the initial point is in A; if not, the maximal number of itera-

4

tions until all preimages of the point leave an a priori defined bounding box

of the attractor provides a measure for the distance to A (larger counts cor-

respond to smaller distances). Mapped to a colour scale an intriguing image

of the attractor and its environment results.

The deterministic algorithm is a brute force algorithm, the random iteration

algorithm requires sometimes millions of points to be evaluated before pixels

are covered with enough points to obtain a detailed and stable image of µ, the

escape time algorithm also involves a lot of computation. Several other algo-

rithms have been developed [3,5,4,9,10] that are more efficient. For example,

it is possible to limit the number of calculated points that fall into any given

pixel.

We present an alternative approach to improve the efficiency: We exploit

graphics hardware, as can be found in todays commodity consumer PCs.

3 Method

How can we use graphics hardware to render images of IFS codes? Instead of

point based calculations as used, e.g., in the random iteration algorithm, we

propose an image based approach that lends itself for an implementation with

graphics primitives supported by graphics hardware. Consider the following

sequence of images:

F0 = 1;

Fk = min(1,
∑N

i=1 siwi(Fk−1)), k = 1, 2,

5

Here w(F) denotes the image F , warped by transformation w. The minimum

is taken pointwise, and 1 is here the image with uniform maximal intensity 1.0.

Furthermore, si denotes a weight factor for the transformed image wi(Fk−1).

As described later on, different values for these weights can be used to select

either rendering of the attractor or of the measure. Each image Fk is generated

via operations on complete images, each next image is defined as the sum of

intensity scaled and geometrically transformed copies of the previous image.

The intensity of the image is clamped to 1, to account for the limited dynamic

range of images. An example is shown in figure 1. The transformations are

defined as the mapping from a base frame (yellow) to sub frames (white).

The figure shows the result after 1 to 5 steps and the final result. For the

intermediate steps here a low value for the weight factors si was used to show

the separate images of the original square more clearly. The process converges

quickly. Image Fk contains Nk copies of the original image. The largest copy

has size (maxi=1,...,N Di)
k, where Di is the area of a unit square transformed

by wi, i.e., Di = |aidi − bici|. Hence, if we render an M ×M size image, after

− log M/ log(maxi=1,...,N Di) iterations the copies are smaller than a pixel in

area. Likewise the diameters of the copies shrink and converge to zero.

Various settings for the weight factors si can be used. If all si = 1, the result

will be an image of the attractor, assuming that all wi are non-singular, i.e.,

all Di > 0. If we use si = pi/Di (and omit the clamping to the maximal

intensity 1.0) an image of the measure µ will result. The division by Di denotes

the contraction of mass as a result of the transformation. It is necessary to

include this here because warping in the graphics sense does not preserve

measure in the mathematical sense. A standard setting for the probabilities,

such that mass is transported ”uniformly” over the transformed images is to

6

set pi = Di/
∑

Di.

This algorithm can be translated almost directly into graphics operations: A

sequence of images is generated by blending transformed copies of the previous

image. The current image F is stored in the frame buffer. The algorithm now

proceeds as follows:

Fill F with white;

repeat

Copy F to texture memory;

Clear F with black;

for i := 1, 2, · · · , N do

Calculate a quadrilateral R = wi(2);

Render R, texture mapped with the previous image

and scaled with si, and accumulate into F .

This algorithm can be implemented using standard OpenGL1.1 calls [6]. The

scale factors si can be larger than 1. In OpenGL the scale factors for intensities

are restricted to values between 0 and 1, but this can easily be handled by

rendering R multiple times.

Does this algorithm lead to a stable image? One condition for this is that

in the long run mass, i.e., the sum of all pixel values, has to be conserved.

Unfortunately, mass can leak away as a result of several effects. Firstly, in-

tensities are clamped to 1, excess intensities are lost. However, for images of

µ this has a positive effect. Mass leaks away until the maximum values are

1, thereby optimally using the dynamic range of the display. Mathematically,

the resulting image displays an intensity scaled version of the measure.

7

Secondly, if A is disconnected, i.e., a cloud of points, the image will be black

in the end. A bright point is mapped to darker points, because of the weigths

si or because of the linear interpolation used during texture mapping. As a

result, the image slowly turns black. However, this can be easily compensated

for by multiplying the si’s with an extra factor f , typically 1.01 . Thirdly,

the transformations wi can be singular, i.e., |aidi − bici| = 0. As a result, an

image is mapped to an infinitely thin line or even a point, which cannot be

handled properly by the graphics hardware. One example where this happens

is in Barnsley’s IFS code for the Black Spleenwort fern [2]: The stems are

the result of such a singular transformation. One remedy is to perturb such

transformations slightly, such that they are no longer singular.

Fourthly, and most problematic: mass may be transported outside the view-

port. Parts of R can be located outside the image, and mass transported

outside will not be reused in the next iteration. One remedy is simply to stick

to IFS codes such that the attractor A fits completely within the screen. A

second option is to render only subsets of A that do fit inside the image. This

can be done by using, e.g., a set of conjugate transformations w′

i = w◦wi◦w−1

where w denotes a suitably chosen composition of affine IFS maps wi such that

w(A) fits within the screen.

Given these limitations, are there positive aspects as well? Fortunately there

are. In the following sections we present a number of variations and extensions.

8

3.1 Colour

We discussed so far gray scale imagery. However, all graphics procedures op-

erate on (red, green, blue) tuples. We can exploit this, like others have done

before also, by using different values for si per colour component, or, in other

words, to show different probability distributions in a single image. Specifi-

cally, we implemented this by assigning a user definable colour (Ri, Gi, Bi) to

each transformation. The weights sRi for red are now defined by

sRi = f
Ri

∑N
i=1 Ri

/|aidi − bici|,

for the other components similarly. An example is shown in figure 2. An IFS

code with five transformations is used. On the left a gray scale image is shown,

using white for all transformations. In the center image we switched three

transformations to red, green, and blue, as shown by the colour of the local

origin of the frame. Parts of the attractor disappear (combinations of coloured

transformations), and the remaining effect of each coloured transformation is

clearly visible. The use of desaturated colours, shown on the right, gives a

more subtle effect.

3.2 Dynamic IFS’s

So far we assumed that the transformations wi were given and static, but

these transformations can be dynamic as well. One application is educational.

We have implemented an IFS modelling system, where the user can define

transformations by dragging, rotating, and scaling frames. This can be used to

illustrate for instance the collage theorem. Another application is recreational.

9

Standard algorithms for rendering A generate each image from scratch. The

method presented here however exploits frame to frame coherence. The attrac-

tor A is continuously dependent on the transformations wi, i.e., small changes

of wi lead to small changes of A [2]. If a good guess is available for A, the

iteration will converge quickly. If we now use a time varying set of wi’s while

generating images, the result is a smoothly varying sequence of images.

Automatically changing transformations lead to fascinating animations of frac-

tal imagery. It is hard to capture this in static images, an attempt is shown in

figure 3. Animations can be found on the web [8]. The animation was gener-

ated simply by rotating each sub frame slowly with a different speed. The snap

shots shown are taken with an interval of 25 images. Hence, at fifty frames

per second the image on the left smoothly transforms into the image on the

right in one second.

3.3 Condensation

In order to visualize the IFS-attractor A in an even stronger fashion, one

may colour its surroundings in a meaningful way. The area outside A is not

uniform: Some points will be closer to A than others. Usually, the escape time

algorithm is used to visualize this. Similar images can easily be generated with

our method by using:

Fk := min(1, G +
N

∑

i=1

siwi(Fk−1)),

where G is a fixed image. A closely related concept (except for the clamping)

are IFS’s with condensation [2]. In graphics terms, each time after clearing

the screen we render some image on the screen. As a result, the screen will be

10

covered by the sum of a hierarchy of transformed copies of G:

F = G +
N

∑

i=1

siwi(G) +
N

∑

i=1

siwi





N
∑

j=1

sjwj(G)



 + · · · .

Different images G give different effects, especially, the continuity of G deter-

mines the continuity of the resulting image F . Figure 4 shows examples. On

the left the attractor of a two transformation IFS code is shown. For the image

in the center we used for G a large circle, black on the boundary and inter-

polating linearly to dark orange in the center. The resulting image is smooth,

only discontinuities in the first derivative show up. For the image on the right

we used a circle again, but now with the colours reversed. As a result, the

discontinuities in intensity clearly stand out.

4 Results

We have implemented the preceding methods in an interactive system. The

application was implemented in Delphi 5, using ObjectPascal. It consists of

about 2,000 lines of code, most of which concerned user interfacing. Example

animations and a copy of this program with example files can be downloaded

[8]. In table 1 we enumerate the transformations used for the various exam-

ples shown, as well as the scaling factors used, split up in the three color

components ri, gi, and bi.

All images presented were made on a Dell Inspiron 8100 notebook PC, running

Windows 2000, with a Pentium III 866 MHz processor, 256 MB memory, and a

nVidia GeForce2Go graphics card with 32 MB memory. The typical framerate

that we achieve is 50 frames per second for 512× 512 images for up to twelve

11

transformations. This high performance comes from three factors. Firstly, all

steps are expressed in graphics operations which can be performed quickly by

nowadays hardware. Secondly, frame to frame coherence is exploited. Finally,

only a few commands per image have to be passed from the CPU to the

graphics hardware, hence the bandwidth between CPU and graphics hardware

is not a bottleneck.

For comparison purposes we have made a straightforward implementation of

the random iteration algorithm to produce images of the measure. Note that

for images of the attractor far more efficient algorithms have been developed

(see section 2). Some results are shown in table 2. Obviously, timings depend

on implementation details, but nevertheless, they point out some tendencies.

Firstly, not only calculation of the points, but also filling the array with 0’s

and normalizing the result take time (first row, 50.0 fps) as well as sending the

image to the graphics board (second row, 18,9 fps). The image quality depends

on the number of points used. We used the example of figure 2 here, and found

that here about 5,000,000 points were needed to obtain an optically stable

image. The frame rate then drops to below one frame per second. Our method

required about 20-30 iterations for a stable image, starting from scratch, so in

this case the order of performance is comparable. However, for dynamic IFS’s

each new frame is a good approximation, hence a much higher performance is

achieved here.

5 Conclusion

We have shown how the rendering of fractal imagery can be accelerated using

commodity graphics hardware. For dynamic IFS codes a frame rate of fifty

12

512×512 frames per second can be achieved on a notebook PC. Furthermore,

the algorithm can easily be implemented using standard OpenGL1.1 calls, and

a variety of effects, such as the use of colour to visualize different subsets of

A and the rendering of the neighborhood of A can be realized. A limitation

is that zooming is limited, the complete attractor has to fit in the image.

An alternative route for the future is to exploit the capabilities of programmable

graphics hardware. Olano and Lastra [7] have shown how the Mandelbrot set

can be computed using pixel shaders and multiple passes. IFS attractors could

also be calculated similarly. This would remove the limitation on zooming, at

the expense of a more involved and less portable implementation.

Many fractal images have been generated and shown since the 1980’ies, and

it seems that many people have seen already enough of them. However, an-

imations of high resolution dynamic fractal imagery, displayed in real time

under user control, are novel and highly fascinating to watch. Furthermore,

the technique is very suitable for educational purposes. Watching the effect

of changes to transformation in real-time enables students to understand the

underlying concepts more easily.

Furthermore, we see this work as a first step towards other applications of

commodity graphics hardware to accelerate fractal based operations, such as

image compression and texture synthesis.

References

[1] M. Barnsley. Fractal modelling of real world images. In H.-O. Peitgen and

D. Saupe, editors, The Science of Fractal Images, pages 219–242. Springer-

13

Verlag, 1988.

[2] M. Barnsley. Fractals Everywhere. Academic Press, 1988.

[3] S. Dubuc and A. Elqortobi. Approximations of fractal sets. Journal of

Computational and Applied Mathematics, 29:79–89, 1990.

[4] D. Hepting and J.C. Hart. The escape buffer: Efficient computation of escape

time for linear fractals. In Proceedings Graphics Interface’95, pages 204–214,

May 1991.

[5] D. Hepting, P. Prusinkiewicz, and D. Saupe. Rendering methods for iterated

function systems. In H.-O. Peitgen, J. M. Henriques, and L. F. Peneda, editors,

Fractals in the Fundamental and Applied Sciences. North-Holland, Amsterdam,

1991.

[6] M.Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL(R) Programming Guide,

Version 1.2 (3rd Edition). Addison-Wesley, 1999.

[7] M. Olano and A. Lastra. A shading language on graphics hardware: The

pixelflow shading system. In Proceedings of SIGGRAPH’98, pages 159–168,

1998.

[8] J.J. van Wijk. http://www.win.tue.nl/~vanwijk/ibifs, 2003.

[9] N. Wadströmer. Coding of Fractal Binary Images with Contractive Set

Mappings Composed of Affine Transformations. PhD thesis, Linköping

University, 2001. Linköping Studies in Science and Technology, Dissertation

No. 700.

[10] N. Wadströmer. An automatization of barnsley’s algorithm for the inverse

problem of iterated function systems. IEEE Transactions on Image Processing,

12(11):1388–1397, 2003.

14

Fig. 1. Iterated mapping of an image

Fig. 2. Coloured transformations

Fig. 3. Dynamic transformations

15

Fig. 4. Insertion of a background image

Example i ai bi ci di ei fi ri gi bi

Fig. 2c 1 0.6416 0.3591 -0.3591 0.6416 0.1480 0.3403 1.1901 1.2867 1.3398

2 0.1906 -0.2554 0.2554 0.1906 0.4162 0.6122 1.1901 1.2867 0.0000

3 0.1681 -0.2279 0.2279 0.1681 0.4531 -0.0205 1.1901 0.4087 0.4256

4 -0.2848 -0.0141 0.0141 -0.2848 0.3362 0.8164 0.3780 0.4087 1.3398

5 0.3672 0.0051 -0.0051 0.3672 0.0776 0.1726 1.1901 1.2867 1.3398

Fig. 3b 1 0.7155 -0.4589 0.4589 0.7155 0.3412 -0.0939 0.9988 1.0624 1.1281

2 0.2362 -0.1849 0.1849 0.2362 0.2160 0.0852 0.9988 1.0624 0.4910

3 0.2819 0.1849 0.1025 -0.3205 0.5670 0.3792 0.9988 0.4625 0.4910

4 0.1080 0.2799 -0.2799 0.1080 0.3303 0.9098 0.9988 1.0624 1.1281

Fig. 4 a 1 -0.2960 0.0469 -0.0469 -0.2960 0.3791 0.5687 1.0602 1.0602 1.0602

2 0.8302 0.4091 -0.4091 0.8302 -0.0674 0.3319 1.0602 1.0602 1.0602

Table 1

Transformations and scaling for examples

16

fps description

50.0 0 points, initialization, no rendering

19.8 0 points, initialization and rendering

11.9 100,000 points

3.0 1,000,000 points

0.7 5,000,000 points

Table 2

Frames per second, 512×512 images, random iteration

17

