g f A Avd
COMMUN. STATIST.-SIMULA. CPFRU" ¢,ﬁ;;£gﬁ;$%%F§§M (1982)

nformasjon

i wolO

A DISTRIBUTION-FREE APPROACH TO INDUCING RANK
CORRELATION AMONG INPUT VARIABLES

Ronald L. Iman W. J. Conover
Sandia National Laboratories College of Business Admin.
Albuquerque, NM 87185 Texas Tech University

Lubbock, TX 79409

Key Words and Phrases: rank correlation; computer models; multi-

variate distribution; large-scale computer codes; dependences;

distribution free.

ABSTRACT

A method for inducing a desired rank correlation matrix on a
multivariate input random variable for use in a simulation study
is introduced in this paper. This method is simple to use, is
distribution free, preserves the exact form of the marginal dis-
tributions on the input variables, and may be used with any type
of sampling scheme for. which correlation of input variables is a
meaningful concept. A Monte Carlo study provides an estimate of
the bias and variability associated with the method. Input vari-
ables used in a model for study of geologic disposal of radio-
active waste provide an example of the usefulness of this proce-

dure. A textbook example shows how the output may be affected by
the method presented in this paper.

1. INTRODUCTION

Computer models are used widely to simulate the intricate

relationships among variables in economic, social, and physical
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312 IMAN AND CONOVER

environments, in order to estimate unknown quantities or predict
future events. The ever expanding capability and capacity of com-
puters has allowed the complexity of these models to increase
dramatically. It is not uncommon to find models which have per-
haps several hundred input variables and may take several hours of
computer time to generate a single output observation. Investi-
gation of techniques for selecting input values has led to the
development of efficient sampling techniques by McKay, Conover and
Beckman (1979). Procedures for looking at the effect of different
distributional assumptions on input variables have been examined
in Iman and Conover (1980).

While much effort has been expended toward development of new
statistical techniques for computer modeling, relatively little
attention has been given to the problem of incorporating the de-
pendences that may exist among the input variables. Typically the
model input variables are assumed to be independent (Iman, Helton,
and Campbell, 1981a, 1981b). A study presently underwdy at Sandia
National Laboratories is examining mechanisms by which radio-
nuclides might escape a waste depository in bedded salt (Campbell
and Cranwell, 1980). The assumption of independence among input
. variables may not be appropriate for the models used in this
study. For example, significant correlations are expected to
exist between hydraulic properties in the vicinity of the disposal
site and the time for circulating groundwater to contact radio-
active waste.

One approach to incorporating dependences is to consider
1inear combinations of independent random variables to achieve a
desired correlation structure. In the case of normal random vari-
ables and random sampling this approach is well known to produce a
multivariate normal input vector. However, if the samples are
obtained using a stratified sampling scheme, then this approach
will destroy the integrity of the stratified sample. That is, the
values obtained from a linear combination will no longer map back

into each of the original strata which collectively span the range
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RANK CORRELATION AMONG INPUT VARIABLES 313

of each input variable. In addition, the linear combinations of
non-normal random variables will adversely affect both the random
sample and the stratified sample, as the marginal distributions
may no longer resemble the original marginal distributions desired
on the input variables.

Another approach to incorporating dependences has been
developed by Johnson and Ramberg (1977). By viewing the marginal
distributions as transformations of normal distributions, a corre-
lation structure can be imposed as follows. An original normal
independently distributed input vector is first transformed to a
correlated multivariate normal vector as described above. The
appropriate transformation is then used to obtain the desired mar-
ginal distributions. However, the means, variances and corre-
lations of the transformed variables are difficult to control.
Johnson and Ramberg show how to control these moments in the bi-
variate case for lognormal and inverse hyperbolic sine distri-
butions, but the mathematics becomes intractable for one other
distribution they considered, and appears to be equally difficult
for other distributions.

In this paper we present a method based on rank correla-
tions which is intended to induce the desired rank dependence
among the input variables. The method has the following de-
sirable properties.

1) It is distribution free. That is, it may be used with
equé] facility on all types of input distribution
functions.

2) It is simple. No unusual mathematical techniques are
required to implement the method.

. 3) It can be applied to any sampling scheme for which cor-
related input variables could logically be considered,
while preserving the intent of the sampling scheme. That
is, the same numbers originally selected as input values
are retained; only their pairing is affected to achieve

the desired rank correlation. This means that in Latin
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hypercube sampling the integrity of the intervals is
maintained. If some lattice structure is used for
selection of values, that same structure is retained.

4) The marginal distributions remain intact.

Our approach is based on the premise that rank correlation is
a meaningful way to define dependences among input variables.

That is, a correlation coefficient computed on raw data may lose
meaning and interpretation with non-normal data or in the presence
of outliers. On the other hand, rank correlation coefficients

can be quite meaningful in most modeling situations, even when the
data are normal.

In Section 2 we explain the proposed method for inducing de-
pendences among the input variables, and provide an example of the
method. Section 3 presents the results of a Monte Carlo study.

An application is discussed in Section 4. An example is presented
in Section 5 to show how output may be affected by use of the
method. The final section contains a discussion and summary.

2. THE METHOD

Suppose that a random row vector X has a correlation matrix
1. That is, the elements of X are uncorrelated. Let C be the
desired correlation matrix of some transformation of X. Because
C is positive definite and symmetric, C may be written as C = PP’
where P is a lower triangular matrix (Scheuer and Stoller, 1962).
Then the transformed vector XP' has the desired correlation matrix
C. This is the theoretical basis for our method.

Our objective is for the Spearman rank correlation matrix M of
the input vectors to be close to the target rank correlation matrix
C* supplied by the user, while preserving certain important pro-
perties of the input vectors such as marginal distributions and
properties of the sampling scheme used to obtain the input vectors.
[t does not appear possible to find a transformation matrix which
results in the target rank correlation matrix, so we use scores

{a(i)}, for which the correlation matrix C and the rank

correlation matrix M will be close to each other after the trans-
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RANK CORRELATION AMONG INPUT VARIABLES 315

formation by P. Thus by setting C equal to C*, a transformation
matrix P is obtained which will result in a rank correlation
matrix M close to the desired rank correlation matrix C*.

Let the number of input variables be denoted by K, and let N
be the sample size. Let R be an NxK matrix whose columns repre-
sent K independent permutations of an arbitrary set {a(i)},
i=1,...,N, of N numbers, referred to as "scores." The columns
should be checked to insure that there are no perfect rank corre-
lations among.the scores. Each row of R, say Ri, has K indepen-
dent components where each component assumes One of the values
a(i), i=1,...,N with equal probability. Then the row vector Rj
has population correlation matrix I.

Let C* be the user supplied target rank correlation matrix
and set C = C*. Let P be a matrix such that PP' = C. As sug-
gested earlier, the Cholesky factorization scheme used by Scheuer
and Stoller (1962) may be used to obtain a lower triangular matrix
P such that PP' = C. Multiplication by P', RiP', results in a
vector which has the desired population correlation matrix C.
Multiplication of the entire matrix R by P', RP' = R*, gives a
matrix R* whose rows have the same multivariate distribution as
RiP'. The rank correlation matrix M of R* should be close to C.

For the rank correlation matrix of the input values to be
approximately equal to C, the values in each column of the NxK
input matrix are rearranged so that they will have the same
ordering as the corresponding column of R*. Thus the input values
have the same sample rank correlation matrix that R* has. A
numerical example will now be given to illustrate the method.

Suppose the rank correlation matrix C* is desired for 6 input
variables. A lower triangular matrix P such that PP' = ¢ = C* 1s
found by the Cholesky factorization of C. The scores {a(i)} in
this example are the van der Waerden scores o-1(i/(N+1)), where
o-1 is the inverse function of the standard normal distribution
function. For a sample of size N=15 the matrix R has a random mix

of the van der Waerden scores @‘](1/]6),1=1,...,15 in each column.
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[ 1 0 0 0 0 0]
0 1 0 0 0 0
cx =] 0 0 1 0 0 0
N 0 0 0 1 75 -.70
0 0 0 .75 1 -.95
0 0 0 -.70 -.95 1
[ 0 0 0 0 0]
0 1 0 0 0 0
S 0 1 0 0 0
- 0 0 0 1 0 0
0 0 0 .75 .6614 0
0 0 0 -.70 -.6425 317 |
[ 1.534 1.534  -1.534  -1.534 .489 -.319 |
-.887 -.489 .887 -.887 _.157 .674
-.489 .674 -.489 1.150 1.534 -.489
.887 0.000 _.674 .319 0.000  -1.534
1.150 -.319 .489 .674 157 1.150
157 -1.534 -.887 -.674 -.319 .157
-1.150 -.674 -.157 157 -1.534 _.157
R = 0.000 -.887 .157 ~.319 -.674 °  .887
.319 -.157 .674 .887 .674 1.534
-.319 .157 2319 -1.150 1.150 -.887
~1.534 .887 1.150 1.534 -.489  -1.150
-.157  -1.150 1.534 -157  -1.150 -.674
.489 489 -1.150 .489 -.887 0.000
674 .319 .319 0.000 .887 .319
| -.674 1.150 0.000 -.489 .319 489
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The sample correlation matrix I for R is given for the inter-
est of the reader although it is not used in the method.

[1.0000 .0969  -.4667 -.2335 .2614 .1748]

.0969  1.0000  -.3129 .0710 .4838  -.2270

7= |-.4667  -.3129  1.0000 3377 -.1970 .1902
~ -.2335 .0710 .3377  1.0000 -.0412  -.0298
.2614 .43  -.1970  -.0412  1.0000 .0522

| .1748 -.2270 .1902  -.0298 .0522  1.0000]

The matrix R* is found as RP'. The Spearman rank correlation
matrix M of R* can be compared with the desired rank correlation
matrix C*. The non-zero target correlations agree closely with
the desired values while some of the zero target correlations are
rather large, e.g. - .5107. The primary reason for this variation
is that any particular realization r* of R* will have a sample
correlation that estimates C. That is, if the sample correlation
matrix T associated with R is exactly equal to I, then the sample
correlation matrix of R* would be C, and the rank correlation
matrix of R* would be approximately equal to C = c*.

It only remains to generate the NxK matrix of input vectors,
according to any desired method or distribution, as if the K input
random variables were independent of each other. Then the values
of the variable in each column are arranged so they have the same
order (rank) as the corresponding column in R*. Thus the sample
Spearman rank correlation of the input vectors will be the same as
the sample Spearman rank correlation of R*, given by M for this
example. Also, the identity of the original marginal distributions
on the input variables has been maintained, as the procedure
explained above merely provides a means for pairing the variables
and does not change the numbers themselves.
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[ 1.534
_.887
-.489
.887
1.150
157
1.150
0.000
.319
-.319
1.534
-.157
.489
674
-.674

-
]
1

[1.0000
.0607
M= |-.4036
-.0821

.0964
| -.1179

1.534
-.489
.674
0.000
-.319
-1.534
-.674
-.887
-.157
.157
.887
-1.150
.489
319
1.150

.0607
1.0000
-.2857

.1321

.4107
-.5107

-1.534
.887
-.489
-.674
.489
-.887
-.157
.157
.674
-.319
1.150
1.534
-1.150
319
0.000

-.4036
-.2857
1.0000
.2714
.1429
-.0571

-1.534
-.887
1.150

.319
.674
-.674
.157
-.319
.887

-1.150
1.534
-.157

.489
0.000
-.489

-.0821
.1321
2714

1.0000
.6714

-.7036
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-.827 .660
-.769 .932
1.877  -1.943

239 -.70]
609 -.214
A .726
-.897 .827
-.685 .933
1.111  -.576
-.102 -.210
.827  -1.118
-.878 .639
-.220 .228
.587  -.47]
-.156 .290 |
.0964  -.1179]
4107 -.5107
1429 -.0571
6714  -.7036
1.0000  -.8679
-.8679  1.0000

Note that the transformation matrix P depends only on (. As

a result, random variation in the sample correlation matrix of R

carries through the transformation, so that the sample correlation

matrix of RP' may not be close enough to C for all applications of

this procedure.

This concern led to the development of a variance

reduction technique in which the transformation matrix is adjusted

so that the final sample correlation matrix will be much closer to

C. This variance reduction technique considerably decreases the
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variability of the sample correlation matrix and could be used
with the method in situations where it is desired to have the
uncorrelated variables nearly orthogonal. Another application of
this variation of the method would be associated with time con-
suming computer models where only a 1imited number of computer
runs can be made and the user wants the actual rank correlation
matrix of the input variables to be very close to that which he
specifies.

In order to avoid the problem associated with R not neces-
sarily having a sample correlation matrix equal to I, and thus the
sample correlation matrix of R* not being close enough to C to
satisfy the user, a matrix 3 is found such that §l§: = G where T
is the sample correlation matrix associated with R. Consider
only realizations of R which have distinct (non-identical) columns,
so that T is positive definite and symmetric. The Cholesky fac-
torization may be used to find a lower triangular matrix Q such
that T = QQ'. This along with the fact that ¢ = PP' allows the
equation involving § to be rewritten as SQQ's’ = PP' for which one
solution is $Q = P or 3 = PQ~ -1. Note that S is also lower trian-
gular. The matrix BB = RS' has a correlation matrix exactly

~

equal to C.

Continuing with the above example a lower triangu]ar matrix
Q is found by the Cholesky factorization such that QQ The
matrix S is found as ~Q, This method defines RB as RS'
Finally, the Spearman rank correlation matrix Mg of RB can be
found and compared with M and the desired rank correlation matrix
C*.. This comparison shows the non-zero target correlations again
to be in close agreement with the desired values while the zero
target correlations are as a whole much closer to zero than
appeared in the matrix M. In the next section we present a short
Monte Carlo study to compare the method and the variation more
closely and to see what bias may be involved with van def Waerden
scores and with this particular matrix C*.
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[ 1.0000
.0969
-.4667
-.2335
.2614
.1748

[ 1.0000

-.0974
.5228
.0924

-.1207

.0217

[ 1.5340

-.8870
-.4890
.8870
1.1500
.1570
-1.1500
0.0000
.3190
-.3190
-1.5340
-.1570
.4890
.6740
-.6740

1.0000
.0214
.0464
.0357
.21798

-.0786

0.0000

.9953

-.2689

.0941
.4606

-.2451

0.0000
1.0047

. 3207

-.2079
-.5400

5971

.3919

-.4050

.7248

-.0864

.4325
.5565

-.5652
-.8912
-.1888

.1888
.0405
.1402
.4437
.2549
L2211

.0214
.0000
.0643
.0821
.0143
.0500

0.0000
0.0000
.8425
.3015
.0580
.2443

0.0000
0.0000
1.1869
-.3891
-.3593

.2374

-.5267
.4322
-.6199
~.3362
1.0794
-1.4627
1.0038
-.0981
.9164
-.4951
.8474
1.3698
-.9524
.8333
.0164

.0464
.0643

1.0000

.0786
.0536
.1143

0.0000
0.0000
0.0000

.9196
-.0446
-.0431

0.0000
0.0000
0.0000
1.0874

.8535
-.7844

-1.2483
-1.2900
1.2554
6911
.7153
-.0543
. 2656
-.2235
.7644
-1.1885
.8943
-.5430
.9228
-.1281
-.8332

.0357
.0821
-.0786
1.0000
. 7286
-.7036

0.0000
0.0000
0.0000
0.0000
.8451
.1223

.0000
.0000
.0000
.0000
.71827
-.8097

o O o O

-1.3888
-.8275

2.0529 .

.4074
.5559
.3032
-.5075
-.3772
1.0887
-.0131
.2194
-.9453
-.1867
.3260
-.7073

.2179
-.0143
.0536
.7286
1.0000
-.8893

o o O O O

o o o O o

—

.0000
.0000
.0000
.0000
.0000
L9126

.0000 |
.0000
.0000
.0000
.0000
.3415

-
. 2836

.9524
.0354
.9149
.3125
.2826
.6006
.6065
.6444
.3209
.4308
.4982
.3642
.3284
.9644

.0786
.0500
.1143
.7036
.8893

.0000 |
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3. MONTE CARLO RESULTS

The brief Monte Carlo study reported in this section examines
the sampling behavior of the Spearman sample rank correlation
matrices M and Mg of the previous section, using the van der
Waerden scores as before. The target correlation matrix is C* of
Section 2 and sample sizes considered are N = 15, 25, 50 and 100.
The Monte Carlo results are based on 100 repetitions, with the
method reported in Table 1 and the variation of the method in
Table 2. -“The Monte Carlo results in these tables show that the
bias, if any, is small. The observed mean rank correlations for
100 repetitions are close to the desired values in almost every
case, i.e., within one or two standard deviations (sy = s//Tﬁb).
The estimates improve, that is, the bias and the standard devia-
tions get smaller, as N gets larger, which one might expect. The
variance estimates in both tables decrease at a rate close to N;
however, the variance estimates for the variation of the method

are roughly 12 to 15 times smaller than those for the method
itself.

4. AN APPLICATION

This section presents an application of the method to a model
used to estimate the risk associated with geologic disposal of
radioactive waste. Input to this model includes time to ground-
water contact with radioactive waste which is correlated with
other input variables such as hydraulic, thermal, and mechanical
properties of several rock types near the waste depository. Thus
it is necessary to define a target correlation structure between
properties of the rock units near the depository and the time to
groundwater contact with radioactive waste. In this example, 15
variables are defined including the ones just mentioned. Thus
the desired correlation matrix is a 15 x 15 symmetric matrix which
must be positive definite. The nonzero target correlations are
indicated in parentheses in Table 3, along with the actual rank

correlation structure generated using the variation of the method
of Section 2 with N = 100.
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Examination of the entries in Table 3 shows excellent agree-
ment with the target correlation matrix even though no attempt was
made to improve on the entries by considering other matrices
resulting from a new 100 x 15 matrix of scores R. That is, the
user of this method is free to generate as many rank correlation
matrices as desired before beginning the actual computer model
runs, but for this example, we considered only one such matrix.

It is worth noting that the largest difference between the sample
correlations and the target correlations is .0518, out of 105
pairs of variables.

5. AN EXAMPLE SHOWING HOW OUTPUT IS AFFECTED

Thus far in this paper the emphasis has been on methodology
for making the distribution of the input variables in a simu-
lation study resemble more closely the desired multivariate input
distribution, by matching, in some sense, the correlation matrix.
Intuitively it seems reasonable to expect that the output from
such a simulation study would also resemble more closely the true
output, more closely that is than if this method had not been used
as inputs. However reasonable such a result might seem, it is not
easy (perhaps not possible) to show such a result analytically.

Therefore a brief textbook example is used to see if such a modi-

~fication of the input does in fact result in improved output -

improved from the standpoint of being closer to the true answer
than if independent input random variables had been used.

For this textbook example a four component random variable
from a multivariate normal distribution with y' = (1,2,2,3) and

1 8 3 .6 ]
L= |.8 1 4 .9

.3 .4 1 .7

.6 9 7 1|

was used as input to the function
Y = X3 + XpX3 - X2In| Xy + exp(Xg4/4)
The multivariate normal distribution was used because it is about
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the only multivariate distripution that can be handled in a simu-
Tation study, without using approximate methods such as introduced
in this paper. The particular values for u, L and the function

Y were arbitrarily selected to create an example.

Output was considered to be the distribution function of Y
and the first four moments of Y. The “true" answers were obtained
by taking a random sample of size 1000 from the multivariate
normal distribution and examining the output. This was compared
with the output obtained using the following four cases:

1. A Latin hypercube sample of size 50 was obtained.

That is, the univariate normal distributions N(1,1),
N(Z2,1), N(2,1) and N(3,1) were used to obtain 50 obser-
vations from each, independently of the others. The
variation of the method in Section 2 was used with these
observations to induce a Spearman rank correlation matrix

resembling Z.

2. Random samples were used in place of Latin hypercube
samples in case 1.

3. The same values used in case 1 above were randomly mixed
to remove correlation; that is, an uncorrelated Latin
hypercube sample was created by generating a random
pairing of the values used in case 1.

4. The same values used in case 2 were paired randomly,
as in case 3, to obtain uncorrelated random variables.

These samples of size 50 were replicated 10 times to see how the
procedures compared with the standard.

Table 4 contains a summary of the estimates of the first four
moments of Y. The population values are compared with the values ’
obtained using the four cases. The average of the ten replica-
tions, and the standard deviation computed over the ten reps, is -
given. Note that the use of the method in Section 2 (cases 1 and
2) results in closer estimates of three of the four moments, on
the average, and that the standard deviations of the estimates
associated with use of the method are smaller in all four cases. {

In particular, the more interesting estimates are the first two
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TABLE 4

Summary of Moments Over Reps

U S M3 Mg
Population

Values 7.29 3.91 40.85 965.9
Case Estimates of Moments and Their Standard Deviations
1 LHS 7.39(.06) 3.91(.21) 30.96(17.86) 787.4(334.4)
2 RS 7.50(.60) 3.92(.47) 35.48(25.23) 878.0(652.9)
3 LHS 7.98(.65) 3.70(.50) 43.00(25.47) 725.9(535.7)
4 RS 7.92(.78) 3.62(.72) 42.15(38.62) 728.7(609.4)

moments, which are considerably improved using the method of
Section 2.

The c.d.f. of the output is estimated from the empirical
c.d.f.'s in Figures 1 and 2 using the first replication. Figure
1(a) compared the "true" c.d.f. with cases 1 and 2. Both cases
appear to.fo11ow the true curve closely. On the other hand, cases
3 and 4, as depicted in Figure 1(b), appear to underestimate the
true c.d.f. for small values of Y. To see if this was a chance
occurrence the fen replications were considered again and the
average c.d.f.'s were plotted in Figure 2. The same pattern indi-
cated in Figures 1(a) and (b) shows up in Figures 2(a) and (b).
That is, results based on the method in Section 2 give a better
estimate of the c.d.f. than is obtained using independent input
variables, for both random sampling and Latin hypercube sampling -
at least for this simple example. Additionally the c.d.f.s in
Figure 2(b) are outside of the 95% Kolmogorov bound of .060.

6. SUMMARY AND DISCUSSION

A method for pairing observations on independent random vari-
ables in order to induce a desired rank correlation structure is

given in this paper. This method, unlike methods based on 1inear
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combinations of random variables, preserves the exact marginal
distributions, may be used with any distributions, is simple to
use, and may be applied to any sampling scheme for which correlated
variables could logically be considered. Monte Carlo studies and
the application in a computer model with many variables indicate
that the expected value of the rank correlation matrix obtained
using this procedure is very close to the desired form. We

should point out that if the sample rank correlation obtained is
not satisfactory to the user, nothing prevents the prospective
user from generating several matrices of scores, computing the
Spearman rank correlation matrix for each one, and choosing that
matrix R that provides the most preferred rank correlations. This
approach would permit a pairing of values of input variables that
would yield rank correlations as close to the desired structure
as the user thinks is necessary. It is worth noting that even if
the desired correlation matrix is 1, the variation of the method
in Section 2 will produce a sample rank correlation matrix which
more closely resembles orthogonal input than one would have using
a strictly random input.

Although this paper used van der Waerden scores in the
examples, we used other scores in order to see what the relative
merits of several types of scores might be. If ranks are used
as scores, i.e., a(i) = i, the variation as expressed in Tables 2
and 3 is smaller than that obtained using van der Waerden scores.
However, pairwise plots of the input variables did not appear as
"natural," in our opinion, as when van der Waerden scores were
used. That is, the resulting bivariate scatter diagrams formed
elliptical patterns when van der Waerden scores were used, but
appeared to be pinched in the middle and spread out in the tails
when ranks were used. The use of random normal deviates instead ‘
of scores (a different set for each sample) did not change the
bivariate plots noticeably, but resulted in the highest standard
deviations of the sample rank correlations of the three types of

scores. The intuitive appeal of van der Waerden scores is that
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they resemble values of normal random variables, for which the
relationship between correlation of the ranks and correlation of
the data, even after a linear transformation, is well behaved with
a correlation approaching Y3/m as the sample size in&reases
without bound.

In any type of computer modeling involving random sampling of
the input variables, whether it is simple random sampling, strati-
fied sampling, or Latin hypercube sampling, the validity of the
model output depends to a great extent on how closely the sampled
joint distribution of the input variables agrees with the true
joint distribution. That is, if a correlation structure exists
among the input variables, but the actual sampling takes place as
if the input variables were independent, the theoretical prop-
erties of the statistics formed from the output may no longer be
valid. Estimators intended to be unbiased or consistent may not
be. The procedure presented in this paper can be expected to
bring the joint distribution of the input variables closer to the
true joint distribution than would be attained under the assump-
tion of independence. It should be recognized, however, that by
matching marginal distributions and the correlation matrix, one
does not match the entire joint distribution function of the input
variables, and therefore there is no guarantee that the output
will be any closer to the true form than if this methodology were
not used at all. That is, the unmatched characteristics of the
input distribution may be the dominating characteristics for some
aspects of the output. A brief example was used to help alleviate
fears of this happening. However, other examples may be invented
which possibly show this methodology to be ineffective in
improving the output.

While it is true that there is much more to a multivariate
input distribution than a mere collection of marginal distribu-
tions and a covariance matrix, it is usually not possible to
obtain more rigid specifications than those. In fact, it is more

usual to find only the marginal input distributions specified,
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with the correlation matrix defaulted to the identity matrix for
simplicity. Since the immediate objective of the simulation study
s to come as close to realism as possible, the methods in this
paper should be used whenever correlation is appropriate. Of
course, if more complete information about the multivariate input
distribution is available, it should be used in the sampling
scheme if methods are available for incorporating that informa-
tion.

A recent technical report by Iman, Davenport, and Zeigler
(1980) at Sandia National Laboratories provides a user's manual
and computer listings for implementing the methods presented in
this paper. A copy of this report can be obtained from the first
Tisted author on this paper. In addition the variation of the
method in Section 2 has been used in a paper by Iman and Davenport
(1982) to provide bivariate plots of correlated random variables

with various combinations of marginal distributions and rank
correlations.
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