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Preface

This text is an outgrowth of lectures given at the University of Windsor,
Canada. One of our main objectives is updating the undergraduate analysis
as a rigorous postcalculus course. While such excellent books as Dieudonné’s
Foundations of Modern Analysis are addressed mainly to graduate students,
we try to simplify the modern Bourbaki approach to make it accessible to
sufficiently advanced undergraduates. (See, for example, §4 of Chapter 5.)

On the other hand, we endeavor not to lose contact with classical texts,
still widely in use. Thus, unlike Dieudonné, we retain the classical notion of a
derivative as a number (or vector), not a linear transformation. Linear maps
are reserved for later (Volume II) to give a modern version of differentials.
Nor do we downgrade the classical mean-value theorems (see Chapter 5, §2) or
Riemann—Stieltjes integration, but we treat the latter rigorously in Volume II,
inside Lebesgue theory. First, however, we present the modern Bourbaki theory
of antidifferentiation (Chapter 5, §5 ff.), adapted to an undergraduate course.

Metric spaces (Chapter 3, §11 ff.) are introduced cautiously, after the n-
space E™, with simple diagrams in E? (rather than E?), and many “advanced
calculus”-type exercises, along with only a few topological ideas. With some
adjustments, the instructor may even limit all to E™ or E? (but not just to the
real line, E''), postponing metric theory to Volume II. We do not hesitate to
deviate from tradition if this simplifies cumbersome formulations, unpalatable
to undergraduates. Thus we found useful some consistent, though not very
usual, conventions (see Chapter 5, §1 and the end of Chapter 4, §4), and
an early use of quantifiers (Chapter 1, §1-3), even in formulating theorems.
Contrary to some existing prejudices, quantifiers are easily grasped by students
after some exercise, and help clarify all essentials.

Several years’ class testing led us to the following conclusions:

(1) Volume I can be (and was) taught even to sophomores, though they only
gradually learn to read and state rigorous arguments. A sophomore often
does not even know how to start a proof. The main stumbling block
remains the e, §-procedure. As a remedy, we provide most exercises with
explicit hints, sometimes with almost complete solutions, leaving only
tiny “whys” to be answered.

(2) Motivations are good if they are brief and avoid terms not yet known.
Diagrams are good if they are simple and appeal to intuition.
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Flexibility is a must. One must adapt the course to the level of the class.
“Starred” sections are best deferred. (Continuity is not affected.)

“Colloquial” language fails here. We try to keep the exposition rigorous
and increasingly concise, but readable.

It is advisable to make the students preread each topic and prepare ques-
tions in advance, to be answered in the context of the next lecture.

Some topological ideas (such as compactness in terms of open coverings)
are hard on the students. Trial and error led us to emphasize the se-
quential approach instead (Chapter 4, §6). “Coverings” are treated in
Chapter 4, §7 (“starred”).

To students unfamiliar with elements of set theory we recommend our
Basic Concepts of Mathematics for supplementary reading. (At Windsor,
this text was used for a preparatory first-year one-semester course.) The
first two chapters and the first ten sections of Chapter 3 of the present
text are actually summaries of the corresponding topics of the author’s
Basic Concepts of Mathematics, to which we also relegate such topics as
the construction of the real number system, etc.

For many valuable suggestions and corrections we are indebted to H. Atkin-
son, F. Lemire, and T. Traynor. Thanks!

Publisher’s Notes

Text passages in blue are hyperlinks to other parts of the text.

Chapters 1 and 2 and §§1-10 of Chapter 3 in the present work are summaries
and extracts from the author’s Basic Concepts of Mathematics, also published
by the Trillia Group. These sections are numbered according to their appear-
ance in the first book.

Several annotations are used throughout this book:

*

This symbol marks material that can be omitted at first reading.

= This symbol marks exercises that are of particular importance.
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Chapter 1
Set Theory

§81-3. Sets and Operations on Sets. Quantifiers

A set is a collection of objects of any specified kind. Sets are usually denoted
by capitals. The objects belonging to a set are called its elements or members.
We write z € A if x is a member of A, and = ¢ A if it is not.

A ={a, b, c, ...} means that A consists of the elements a, b, ¢, .... In
particular, A = {a, b} consists of a and b; A = {p} consists of p alone. The
empty or void set, (), has no elements. Equality (=) means logical identity.

If all members of A are also in B, we call A a subset of B (and B a superset
of A), and write A C B or B D A. It is an axiom that the sets A and B are
equal (A = B) if they have the same members, i.e.,

AC B and B C A.

If, however, A C B but B Z A (i.e., B has some elements not in A), we call A
a proper subset of B and write A C B or B D A. “C” is called the inclusion
relation.

Set equality is not affected by the order in which elements appear. Thus
{a, b} = {b, a}. Not so for ordered pairs (a, b).> For such pairs,

(a,b) = (x,y) iff? a=zandb=y,
but not if a = y and b = x. Similarly, for ordered n-tuples,
(a1, ag, ..., an) = (1, o, ..., x,) iff ax=zp, k=1,2,..., n.

We write {x | P(z)} for “the set of all x satisfying the condition P(z).”
Similarly, {(z, y) | P(x, y)} is the set of all ordered pairs for which P(x, y)
holds; {x € A | P(x)} is the set of those x in A for which P(x) is true.

1 See Problem 6 for a definition.
2 Short for if and only if; also written <=
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For any sets A and B, we define their union A U B, intersection A N B,
difference A — B, and Cartesian product (or cross product) A x B, as follows:

AU B is the set of all members of A and B taken together:
{r|rcAorzecB}?
AN B is the set of all common elements of A and B:
{r € A|z € B}
A — B consists of those z € A that are not in B:
{re A|z ¢ B}.
A x B is the set of all ordered pairs (x, y), with z € A and y € B:
{(z,y) |z € A, y € B}.

Similarly, A; X Ag X -+ x A, is the set of all ordered n-tuples (z1, ..., x,) such
that z € Ak, k=1, 2, ..., n. We write A” for A x A x ---x A (n factors).

A and B are said to be disjoint iff AN B = () (no common elements).
Otherwise, we say that A meets B (AN B # (). Usually all sets involved are
subsets of a “master set” S, called the space. Then we write —X for S — X,
and call —X the complement of X (in S). Various other notations are likewise
in use.

Examples.
Let A={1, 2,3}, B=1{2, 4}. Then
AuB={1,2,34}, AnB={2}, A-B={1,3},
AxB={(12), (1,4), (2, 2), (2,4), (3, 2), (3, 4)}.
If N is the set of all naturals (positive integers), we could also write

A={x e N |z <4}

Theorem 1.

(a) AUA=A; ANA=A;

(b) AUB=BUA, ANB=BnNA;

(¢c) (AUB)UC =AU(BUC); (ANB)NC=An(BNCQC);
(d) (AuUB)NC =(ANC)u(BNCO);
(e) (ANB)UC =(AUuC)N(BUCQ).

3 The word “or” is used in the inclusive sense: “P or Q” means “P or Q or both.”
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The proof of (d) is sketched in Problem 1. The rest is left to the reader.

Because of (c), we may omit brackets in AU BUC and AN BN C; similarly
for four or more sets. More generally, we may consider whole families of sets,
i.e., collections of many (possibly infinitely many) sets. If M is such a family,
we define its union, | J M, to be the set of all elements x, each belonging to at
least one set of the family. The intersection of M, denoted (.M, consists of
those x that belong to all sets of the family simultaneously. Instead, we also
write

U{X | X € M} and ﬂ{X | X € M}, respectively.
Often we can number the sets of a given family:
Ay, Ay oo Ap, e

More generally, we may denote all sets of a family M by some letter (say, X)
with indices i attached to it (the indices may, but need not, be numbers). The
family M then is denoted by {X;} or {X; | i € I}, where i is a variable index
ranging over a suitable set I of indices (“index notation”). In this case, the
union and intersection of M are denoted by such symbols as

U{X¢|i€I}=UX¢=UXi=UX¢;

ﬂ{Xi|i€I}:mXi:ﬂXi:ﬂXi.

i€l

If the indices are integers, we may write

m o0 m
U Xn, | X, [ Xa, ete
n=1 n=1 n==k

Theorem 2 (De Morgan’s duality laws). For any sets S and A; (i € I), the
following are true:

@) 5= {Jai =05 =4); (1) $ = (45 = (S - 40).

(If S is the entire space, we may write —A; for S — A;, —|J A; for S —J A4,
etc.)
Before proving these laws, we introduce some useful notation.

Logical Quantifiers. From logic we borrow the following abbreviations.

“WzeA) ...” means “For each member z of A, it is true that ....”
“(3x € A) ...” means “There is at least one x in A such that ....”

“(AMzeA) ...” means “There is a unique = in A such that ....”
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The symbols “(Vx € A)” and “(dx € A)” are called the universal and
existential quantifiers, respectively. If confusion is ruled out, we simply write
“Wx),” “(Jx),” and “(I'z)” instead. For example, if we agree that m, n
denote naturals, then

“Wn) (3m) m>n"

means “For each natural n, there is a natural m such that m > n.” We give
some more examples.

Let M = {A; | i € I} be an indexed set family. By definition, = € |J A;
means that = is in at least one of the sets A;, i € I. In other words, there is at
least one index © € I such that x € A;; in symbols,

(Fiel) zeA,.
Thus we note that
velJA iff [Fiel)ze Al

Similarly,
re()A iff [(Viel)xe A

Also note that « ¢ |J A; iff  is in none of the A;, i.e.,
(Vi) x ¢ A,.
Similarly, = ¢ () A; iff x fails to be in some A;, i.e.,
(i) x¢ A;. (Why?)
We now use these remarks to prove Theorem 2(i). We have to show that

S — |JA; has the same elements as ()(S — A;), ie., that z € S —JA; iff
x € (S — A;). But, by our definitions, we have

zeS—|JAi=[zes v¢|]A]
— Vi) [z €S, x & A
— (Vi) x € S — A;
= ae)S- A,
as required.

One proves part (ii) of Theorem 2 quite similarly. (Exercise!)

We shall now dwell on quantifiers more closely. Sometimes a formula P(x)
holds not for all z € A, but only for those with an additional property Q(z).
This will be written as

(Vo e A[Q(x)) P(x),
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where the vertical stroke stands for “such that.” For example, if N is again
the naturals, then the formula

(VzeN|x>3) >4 (1)

means “for each x € N such that x > 3, it is true that x > 4.” In other words,
for naturals, z > 3 = = > 4 (the arrow stands for “implies”). Thus (1) can
also be written as

(VzeN) z>3=x>4.

In mathematics, we often have to form the negation of a formula that starts
with one or several quantifiers. It is noteworthy, then, that each universal
quantifier is replaced by an existential one (and vice versa), followed by the
negation of the subsequent part of the formula. For example, in calculus, a real
number p is called the limit of a sequence x1, x2, ..., T,, ... iff the following
is true:

For every real € > 0, there is a natural k£ (depending on ¢) such that, for
all natural n > k, we have |z,, — p| < e.

If we agree that lower case letters (possibly with subscripts) denote real num-
bers, and that n, k denote naturals (n, k € N), this sentence can be written
as

(Ve>0) 3k) (Vn>k) |on—p| <e. (2)

Here the expressions “(Ve > 0)” and “(Vn > k)” stand for “(Ve | € > 0)”
and “(Vn | n > k)”, respectively (such self-explanatory abbreviations will also
be used in other similar cases).

Now, since (2) states that “for all € > 0” something (i.e., the rest of (2)) is
true, the negation of (2) starts with “there is an € > 0” (for which the rest of
the formula fails). Thus we start with “(3¢ > 0)”, and form the negation of
what follows, i.e., of

(Fk) (Vn>k) |z, —p|<e.

This negation, in turn, starts with “(Vk)”, etc. Step by step, we finally arrive
at

(e >0) (Vk) 3n>k) |z,—p|>e

Note that here the choice of n > k may depend on k. To stress it, we often
write ny for n. Thus the negation of (2) finally emerges as

(FJe>0) (Vk) 3ng > k) |zn, —p| > e (3)

The order in which the quantifiers follow each other is essential. For exam-
ple, the formula

(Vne N)(ImeN) m>n
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(“each n € N is exceeded by some m € N”) is true, but
(3me N) (VneN) m>n

is false. However, two consecutive universal quantifiers (or two consecutive
existential ones) may be interchanged. We briefly write

“Wax,yec A) for “(Vz € A) (Vy € A),

and
“Jz,y € A) for “(Jx € A) (Jy € A),” etc.

We conclude with an important remark. The universal quantifier in a for-
mula

(VzeA) P(x)

does not imply the existence of an z for which P(x) is true. It is only meant
to imply that there is no x in A for which P(x) fails.

The latter is true even if A = (); we then say that “(Vz € A) P(x)” is
vacuously true. For example, the formula () C B, i.e.,

(Vzel) zeB,

is always true (vacuously).

Problems in Set Theory

1. Prove Theorem 1 (show that x is in the left-hand set iff it is in the
right-hand set). For example, for (d),

r€(AUB)NC <= [x € (AUB) and z € C]
[(
[(

x€AorzxzeB), and z € C]

=
< [(reA,zeC)or(reB,zel)).

2. Prove that
(i) =(=4) =4
(ii) ACBiff —-B C —A.
3. Prove that
A—-B=AnNn(-B)=(-B)—(-4)=—-[(-A)UB|.

Also, give three expressions for ANB and AUB, in terms of complements.

4. Prove the second duality law (Theorem 2(ii)).
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5. Describe geometrically the following sets on the real line:

(i) {z |z <O} (ii) {z | || <1}
(iii) {z | |z — a|] < }; (iv) {z | a < z < b};
(v) {z | |z] < 0}.

6. Let (a, b) denote the set
{{a}, {a, b}}
(Kuratowski’s definition of an ordered pair).

(i) Which of the following statements are true?

(a) a € (a, b); (b) {a} € (a, b);
(c) (a, a) = {a}; (d) b€ (a, b);
(e) {b} € (a, b); (f) {a, b} € (a, b).

(ii) Prove that (a, b) = (u, v) iff a = u and b = v.
[Hint: Consider separately the two cases a = b and a # b, noting that {a, a} =
{a}. Also note that {a} # a.]

7. Describe geometrically the following sets in the zy-plane.

(1) {(z,y) |z <y}

(i) {(z,y) |2 +y> <1}

(itt) {(z, y) | max(|z, [y]) < 1};

(iv) {(z, y) |y > 27}

(v) {(z, 9) [ ||+ |yl < 4};

(vi) {(z,y) | (x—2)*+ (y+5)* <9}
(vii) {(z, y) |z =0};
(vii)) {(z, y) | 2% — 22y +y* < O};

(i) {(z,y) | 2* = 2zy +y* = 0}.

8. Prove that
(i) (AUB)xC=(AxC)U(B xC);
(ii) (ANB)x (CND)=(AxC)Nn(B x D);
(iii) (X xY)= (X' xY)=[(XNnX)x (Y -Y)U[(X—-X")xY].

[Hint: In each case, show that an ordered pair (x, y) is in the left-hand set iff it is
in the right-hand set, treating (z, y) as one element of the Cartesian product.]

9. Prove the distributive laws
(i) AnUX: =UANX;);
(i) AUNX: =N(AUX,);
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(i) (NX;) —A=N(X; — A);
(iv) (UX:) —A=U(X; — A);

(v) NXUNY; =N (XU Yt
(vi)

10. Prove that

UXimUYj = Uzg(szYJ)

i) (U4:) x B=U(4; x B);
6 (1A 5= (183
(i) (N, 4) * (N By) = N, (4 x B
(iv) (U; 4i) x (Uj Bj) = U, ;(Ai x By)

§84-7. Relations. Mappings

In §81-3, we have already considered sets of ordered pairs, such as Cartesian
products A x B or sets of the form {(z, y) | P(x, y)} (cf. §§1-3, Problem 7).
If the pair (x, y) is an element of such a set R, we write

(z,y) €R,

treating (z, y) as one thing. Note that this does not imply that = and y taken
separately are members of R (in which case we would write z, y € R). We call
x, y the terms of (x, y).

In mathematics, it is customary to call any set of ordered pairs a relation.
For example, all sets listed in Problem 7 of §§1-3 are relations. Since relations
are sets, equality R = S for relations means that they consist of the same
elements (ordered pairs), i.e., that

(r,y) € R~ (z,y) €S.

If (x,y) € R, we call y an R-relative of x; we also say that y is R-related
to x or that the relation R holds between x and y (in this order). Instead of
(z, y) € R, we also write Ry, and often replace “R” by special symbols like
<, ~, etc. Thus, in case (i) of Problem 7 above, “xRy” means that x < y.

Replacing all pairs (z, y) € R by the inverse pairs (y, x), we obtain a new
relation, called the inverse of R and denoted R~'. Clearly, xR~ 'y iff yRz:
thus

R~ ={(z,y) | yRz} = {(y, x) | xRy}

4 Here we work with two set families, {X; | i € I} and {Y; | j € J}; similarly in other
such cases.
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Hence R, in turn, is the inverse of R~1; i.e.,
(R"H™' =R,

For example, the relations < and > between numbers are inverse to each other;
so also are the relations C and DO between sets. (We may treat “C” as the name
of the set of all pairs (X, Y) such that X CY in a given space.)

If R contains the pairs (z, '), (y, v'), (2, 2’), ..., we shall write

[z oy =z ), (1 4 1 3
R_(ZC/ y/ Z/ )’e'g'7R_<2 2 1 1) (1)

To obtain R~!, we simply interchange the upper and lower rows in (1).

Definition 1.

The set of all left terms z of pairs (z, y) € R is called the domain of R,
denoted Dpg. The set of all right terms of these pairs is called the range
of R, denoted DY,. Clearly, x € Dy iff xRy for some y. In symbols,

x € Dg <= (Jy) zRy; similarly, y € Dy < (3x) zRy.

In (1), Dp is the upper row, and D is the lower row. Clearly,

Dp-1 = D and D1 = Dp.

1 4 1
R_(z 2 1)’

Dp =D, ={1,4} and Dy, = Dp— = {1, 2}.

For example, if

then

Definition 2.

The image of a set A under a relation R (briefly, the R-image of A) is the
set of all R-relatives of elements of A, denoted R[A]. The inverse image
of A under R is the image of A under the inverse relation, i.e., R™1[A].
If A consists of a single element, A = {z}, then R[A] and R™![A] are also
written R[x] and R™![z], respectively, instead of R[{z}] and R™[{z}].

Example.
Let

1 112233337
R_<1 34534135 1)aA—{1,2},B—{2,4}.
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Then

R[1] =11, 3, 4}; R[2] = {3, 5}; R[3] ={1, 3, 4, 5}
R[5] = 0; R1]={1,3,7} R'[2]=0;

R3] ={1,2,3 R[4 ={1,3} R[A]={1, 3, 4, 5};

R YA =1{1,3,7}; R[B]={3,5).

By definition, R|x] is the set of all R-relatives of x. Thus
y € R[z] iff (x,y) € R;ie., zRy.
More generally, y € R[A] means that (x, y) € R for some x € A. In symbols,
y€ R[A] <= (Fz € A) (z,y) € R.
Note that R[A] is always defined.

We shall now consider an especially important kind of relation.

Definition 3.

A relation R is called a mapping (map), or a function, or a transfor-
mation, iff every element z € Dg has a unique R-relative, so that R[z]
consists of a single element. This unique element is denoted by R(x) and
is called the function value at x (under R). Thus R(x) is the only member
of R[z].!

If, in addition, different elements of Dy have different images, R is called a
one-to-one (or one-one) map. In this case,

x#y (¢, y € D) implies R(z) # R(y);

equivalently,
R(z) = R(y) implies z = y.

In other words, no two pairs belonging to R have the same left, or the same
right, terms. This shows that R is one to one iff R™!, too, is a map.? Mappings
are often denoted by the letters f, g, h, F, 1, etc.

! Equivalently, R is a map iff (z, y) € R and (=, z) € R implies that y = z. (Why?)
2 Note that R~! always exists as a relation, but it need not be a map. For example,

(1 2 3 4
f_(2338)

o (2338
1 2 3 4

is not. (Why?) Here f is not one to one.

is a map, but
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A mapping f is said to be “from A to B” iff Dy = A and D; C B; we then
write

f:A—= B (“f maps A into B”).

If, in particular, Dy = A and D} = B, we call f a map of A onto B, and we
write

f:A— B (“f maps A onto B”).

onto

If f is both onto and one to one, we write

f:A«— B

onto

(f: A <+— B means that f is one to one).

All pairs belonging to a mapping f have the form (z, f(x)) where f(x) is
the function value at z, i.e., the unique f-relative of x, x € D;. Therefore, in
order to define some function f, it suffices to specify its domain Dy and the
function value f(x) for each x € Dy. We shall often use such definitions. It is
customary to say that f is defined on A (or “f is a function on A”) iff A = Dy.

Examples.
(a) The relation
R = {(z, y) | = is the wife of y}
is a one-to-one map of the set of all wives onto the set of all husbands.

R~ is here a one-to-one map of the set of of all husbands (= D) onto
the set of all wives (= Dg).

(b) The relation
f=A{(z, y) | y is the father of x}

is a map of the set of all people onto the set of their fathers. It is not one
to one since several persons may have the same father (f-relative), and

so  # z' does not imply f(z) # f(a').

(c) Let
/1 2 3 4
9=\2 2 3 8)"

Then g is a map of Dy = {1, 2, 3, 4} onto D} = {2, 3, 8}, with

9(1) =2, g(2) =2, g(3) =3, g(4) =8.

(As noted above, these formulas may serve to define g.) It is not one to
one since g(1) = g(2), so g~! is not a map.
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(d) Consider
f: N — N, with f(x) = 2z for each z € N.?

By what was said above, f is well defined. It is one to one since = # y
implies 2z # 2y. Here Dy = N (the naturals), but D’ consists of even
naturals only. Thus f is not onto N (it is onto a smaller set, the even
naturals); f~! maps the even naturals onto all of N.

The domain and range of a relation may be quite arbitrary sets. In partic-
ular, we can consider functions f in which each element of the domain Dy is
itself an ordered pair (x, y) or n-tuple (z1, 2, ..., ). Such mappings are
called functions of two (respectively, n) variables. To any n-tuple (x1, ..., ,)
that belongs to Dy, the function f assigns a unique function value, denoted by
f(x1, ..., ;). It is convenient to regard x1, xs, ..., T, as certain variables;
then the function value, too, becomes a variable depending on the x1, ..., z,.
Often Dy consists of all ordered n-tuples of elements taken from a set A,
i.e., Df = A™ (cross-product of n sets, each equal to A). The range may
be an arbitrary set B; so f: A" — B. Similarly, f: A x B — C is a function
of two variables, with Dy = A x B, D} ccC.

Functions of two variables are also called (binary) operations. For example,
addition of natural numbers may be treated as a map f: N x N — N, with

[l y)=z+y.
Definition 4.
A relation R is said to be
(i) reflexive iff we have xRz for each = € Dp;
(ii) symmetric iff xRy always implies yRx;

(iii) transitive iff x Ry combined with yRz always implies zRz.

R is called an equivalence relation on a set A iff A = Dgr and R has all the
three properties (i), (ii), and (iii). For example, such is the equality relation on
A (also called the identity map on A) denoted

Ia={(z,y) |z €A, z=y}

Equivalence relations are often denoted by special symbols resembling equality,
such as =, ~, ~, etc. The formula xRy, where R is such a symbol, is read

“r is equivalent (or R-equivalent) to y,”

3 This is often abbreviated by saying “consider the function f(x) = 2z on N.” However,
one should remember that f(z) is actually not the function f (a set of ordered pairs) but
only a single element of the range of f. A better expression is “f is the map x — 2x on N”
or “f carries x into 2z (x € N).”



§84-7. Relations. Mappings 13

and R[z] = {y | zRy} (i.e., the R-image of z) is called the R-equivalence class
(briefly R-class) of x in A; it consists of all elements that are R-equivalent to
x and hence to each other (for xRy and xRz imply first yRx, by symmetry,
and hence yRz, by transitivity). Each such element is called a representative
of the given R-class, or its generator. We often write [x] for R[z].

Examples.

(a’) The inequality relation < between real numbers is transitive since
r <y and y < z implies = < z;
it is neither reflexive nor symmetric. (Why?)

(b’) The inclusion relation C between sets is reflexive (for A C A) and tran-
sitive (for A C B and B C C implies A C (), but it is not symmetric.

(¢’) The membership relation € between an element and a set is neither re-
flexive nor symmetric nor transitive (r € A and A € M does not imply

r eM).

(d’) Let R be the parallelism relation between lines in a plane, i.e., the set of
all pairs (X, Y), where X and Y are parallel lines. Writing || for R, we
have X || X, X || Y implies Y || X, and (X || Y and Y || Z) implies
X || Z, so R is an equivalence relation. An R-class here consists of all
lines parallel to a given line in the plane.

(¢/) Congruence of triangles is an equivalence relation. (Why?)
Theorem 1. If R (also written =) is an equivalence relation on A, then all
R-classes are disjoint from each other, and A is their union.

Proof. Take two R-classes, [p] # [q]. Seeking a contradiction, suppose they
are not disjoint, so

(z) =z € [p] and z € [q¢];
i.e., p =2 = q and hence p = ¢q. But then, by symmetry and transitivity,
yepley=pey=qeyeEld;

i.e., [p] and [q] consist of the same elements y, contrary to assumption [p| # [q].
Thus, indeed, any two (distinct) R-classes are disjoint.

Also, by reflexivity,
Vzed) z=u,

i.e., x € [x]. Thus each x € A is in some R-class (namely, in [z]); so all of A is
in the union of such classes,

AC UR[IE]
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Conversely,
(vz) Rlz]C A

since
y € Rlz] = 2Ry = yRx = (y,x) € R=y € Dr = A,

by definition. Thus A contains all R[x], hence their union, and so

A= JRz]

Problems on Relations and Mappings

1. For the relations specified in Problem 7 of §§1-3, find Dg, D, and R™1.
Also, find R[A] and R™[A] if

(a) A= {3} (b) A={1};
(c) A={0}; (d) A=0;
(e) A= {0, 3, —15}; (f) A={3,4,7,0, -1, 6};

(g) A={z| -20 <z <5}
2. Prove that if A C B, then R[A] C R[B]. Disprove the converse by a
counterexample.

3. Prove that
(i) R[AUB R[A]UR

] = [
(ii) R[AN B] C R[A]N R]
(iti) R[A— B] D R[A] — R[B].

Disprove reverse inclusions in (ii) and (iii) by examples. Do (i) and (ii)
with A, B replaced by an arbitrary set family {4; | i € I}.

BJ;
]

B .

Y

4. Under which conditions are the following statements true?
(i) Rlz] = 0; (i) R~ [2] = 0;
(iii) R[A] = 0; (iv) R™'[A] = 0.
5. Let f: N - N (N = {naturals}). For each of the following functions,

specify f[N], i.e., D}, and determine whether f is one to one and onto
N, given that for all x € N,

(1) flz)=2% (i) f(z) = 1; (i) f(x) = |2 +3;
(iv) fz) =a%  (v) fz) =4z +5.

Do all this also if N denotes

(a) the set of all integers;
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6.

10.

(b) the set of all reals.

Prove that for any mapping f and any sets A, B, A; (i € I),

(a) fTHAUB] = ‘1[ Ju Bl
(b) f7HANB] = f~HA]n f~[B];
(c) f7HA =Bl =f~1A] - f7'[B];

(d) f UA]—Uf[]
(e) f7HM; Ail =M £ A

Compare with Problem 3.
[Hint: First verify that z € f~1[A] iff z € Dy and f(z) € A]

'
'
I
a

Let f be a map. Prove that

(a) FIfHA] C 4

(b) fIf7HAll=Aif AC Dy

(c) if AC Dy and f is one to one, A = f~1[f[A]].
Is f[A|INB C fl[AN f~1B]]?

Is R an equivalence relation on the set .J of all integers, and, if so, what
are the R-classes, if

(a) R={(z, y) |z —y is divisible by a fixed n};
(b) R={(z,) | = —ys odd);
(¢) R={(x,y) |z —y is a prime}.
(z, y, n denote integers.)
Is any relation in Problem 7 of §§1-3 reflexive? Symmetric? Transitive?

Show by examples that R may be

(a) reflexive and symmetric, without being transitive;
(b) reflexive and transitive without being symmetric.

Does symmetry plus transitivity imply reflexivity? Give a proof or
counterexample.

§8. Sequences!

By an infinite sequence (briefly sequence) we mean a mapping (call it u) whose
domain is N (all natural numbers 1, 2, 3, ...); D, may also contain 0.

I This section may be deferred until Chapter 2, §13.
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A finite sequence is a map u in which D, consists of all positive (or non-

negative) integers less than a fized integer p. The range D! of any sequence u
may be an arbitrary set B; we then call u a sequence of elements of B, or in

B. For example,
12 3 4 ... n ...
“‘(2 46 8 ... 2n ) (1)

D,=N=1{1,2,3,...}

is a sequence with

and with function values
u(l) =2, u(2) =4, u(n)=2n, n=1,2,3,....

Instead of u(n) we usually write wu,, (“index notation”), and call u,, the nth
term of the sequence. If n is treated as a variable, u,, is called the general term
of the sequence, and {u,} is used to denote the entire (infinite) sequence, as
well as its range D!, (whichever is meant, will be clear from the context). The
formula {u,} C B means that D] C B, i.e., that u is a sequence in B. To
determine a sequence, it suffices to define its general term u,, by some formula
or rule.? In (1) above, u, = 2n.

Often we omit the mention of D,, = N (since it is known) and give only the
range D! . Thus instead of (1), we briefly write

2,4,6,...,2n, ...

or, more generally,

U, U2y ooy Up,y + v ..

Yet it should be remembered that u is a set of pairs (a map).

If all u,, are distinct (different from each other), u is a one-to-one map. How-
ever, this need not be the case. It may even occur that all u,, are equal (then u
is said to be constant); e.g., u,, = 1 yields the sequence 1, 1, 1, ..., 1, ..., i.e.,

1 2 3 ... n ...
“_(1 11 .01 ) @)
Note that here u is an infinite sequence (since D, = N), even though its
range D! has only one element, D! = {1}. (In sets, repeated terms count
as one element; but the sequence u consists of infinitely many distinct pairs

(n, 1).) If all u,, are real numbers, we call u a real sequence. For such sequences,
we have the following definitions.

2 However, such a formula may not exist; the u, may even be chosen “at random.”
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Definition 1.

A real sequence {u,, } is said to be monotone (or monotonic) iff it is either
nondecreasing, i.e.,
(Vn)  un < upqr,

or nonincreasing, i.e.,
(VYn)  Up > Upyq-

Notation: {u,}1 and {u,}], respectively. If instead we have the strict
inequalities u,, < up41 (respectively, u, > u,41), we call {u,} strictly
monotone (increasing or decreasing).

A similar definition applies to sequences of sets.
Definition 2.

A sequence of sets Ay, As, ..., A,, ... is said to be monotone iff it is
either expanding, i.e.,

(v n) An g An—l—la

or contracting, i.e.,
(Vn) A, 2D Ay

Notation: {4, }1 and {A,}], respectively. For example, any sequence of
concentric solid spheres (treated as sets of points), with increasing radii,
is expanding; if the radii decrease, we obtain a contracting sequence.

Definition 3.

Let {u,} be any sequence, and let
Ny <ng < - - <N < -+

be a strictly increasing sequence of natural numbers. Select from {u,}
those terms whose subscripts are ny, no, ..., ng, .... Then the sequence
{tn, } so selected (with kth term equal to u,, ), is called the subsequence
of {u,}, determined by the subscripts nx, k =1, 2, 3, ....

Thus (roughly) a subsequence is any sequence obtained from {u,} by drop-
ping some terms, without changing the order of the remaining terms (this is
ensured by the inequalities ny < ng < --- < ni < --- where the njg are the
subscripts of the remaining terms). For example, let us select from (1) the
subsequence of terms whose subscripts are primes (including 1). Then the
subsequence is

2,4, 6, 10, 14, 22, ...,

ie.,
Uy, U2, U3, Us, U7, U11,y - .-
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All these definitions apply to finite sequences accordingly. Observe that
every sequence arises by “numbering” the elements of its range (the terms): u;
is the first term, us is the second term, and so on. By so numbering, we put
the terms in a certain order, determined by their subscripts 1, 2, 3, ... (like
the numbering of buildings in a street, of books in a library, etc.). The question
now arises: Given a set A, is it always possible to “number” its elements by
integers? As we shall see in §9, this is not always the case. This leads us to
the following definition.

Definition 4.

A set A is said to be countable iff A is contained in the range of some
sequence (briefly, the elements of A can be put in a sequence).

If, in particular, this sequence can be chosen finite, we call A a finite
set. (The empty set is finite.)

Sets that are not finite are said to be infinite.

Sets that are not countable are said to be uncountable.

Note that all finite sets are countable. The simplest example of an infinite
countable set is N = {1, 2, 3, ... }.

§9. Some Theorems on Countable Sets?!

We now derive some corollaries of Definition 4 in §8.
Corollary 1. If a set A is countable or finite, so is any subset B C A.
For if A C D!, for a sequence u, then certainly B C A C D/,.
Corollary 2. If A is uncountable (or just infinite), so is any superset B D A.
For, if B were countable or finite, so would be A C B, by Corollary 1.
Theorem 1. If A and B are countable, so is their cross product A X B.

Proof. If A or Bis (), then A x B = (), and there is nothing to prove.

Thus let A and B be nonvoid and countable. We may assume that they fill
two infinite sequences, A = {a,}, B = {b,} (repeat terms if necessary). Then,
by definition, A x B is the set of all ordered pairs of the form

(an, bm), m, mée N.

Call n+m the rank of the pair (a,, b;,). For each r € N, there are r — 1 pairs
of rank r:

(CLl, br—1)7 (CLQ, br_g), coey (CLr_l, bl) (1)

I This section may be deferred until Chapter 5, §4.
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We now put all pairs (a,, b,,) in one sequence as follows. We start with

(a1, b1)

as the first term; then take the two pairs of rank three,

(a1, b2), (az, by);

then the three pairs of rank four, and so on. At the (r — 1)st step, we take all
pairs of rank 7, in the order indicated in (1).

Repeating this process for all ranks ad infinitum, we obtain the sequence of
pairs
(ala b1)7 (a17 b2)7 ((1/2, b1)7 (ala b3)7 (a27 b2)7 ((1/3, b1)7 sy
in which Up = (al, bl), Uy = (al, bg), etc.
By construction, this sequence contains all pairs of all ranks r, hence all pairs

that form the set A x B (for every such pair has some rank r and so it must
eventually occur in the sequence). Thus A x B can be put in a sequence. [J

Corollary 3. The set R of all rational numbers? is countable.

Proof. Consider first the set ) of all positive rationals, i.e.,
n
fractions —, with n, m € N.
m

We may formally identify them with ordered pairs (n, m), i.e., with N x N.
We call n + m the rank of (n, m). As in Theorem 1, we obtain the sequence
11 2 1 2 3 1 2 3 4
1727173 2 17473 271 777
By dropping reducible fractions and inserting also 0 and the negative rationals,
we put R into the sequence

1 1 1 1
0, ]_, —]_, 5, —5, 2, —2, g, —g, 3, —3, ..., as required. O
Theorem 2. The union of any sequence {A,} of countable sets is countable.

Proof. As each A, is countable, we may put
A =A{an1, an2, -+, Gumy -+ -}

(The double subscripts are to distinguish the sequences representing different
sets A,,.) As before, we may assume that all sequences are infinite. Now, J,, 4,
obviously consists of the elements of all A,, combined, i.e., all apy, (n, m € N).
We call n + m the rank of a,,, and proceed as in Theorem 1, thus obtaining

UAn = {CL11, ai2, a1, 13, a22, A31, }
n

2 A number is rational iff it is the ratio of two integers, p/q, q¢ # 0.
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Thus |J,, A, can be put in a sequence. [J

Note 1. Theorem 2 is briefly expressed as
“Any countable union of countable sets is a countable set.”

(The term “countable union” means “union of a countable family of sets”, i.e., a
family of sets whose elements can be put in a sequence {A,}.) In particular,
if A and B are countable, so are AU B, AN B, and A — B (by Corollary 1).

Note 2. From the proof it also follows that the range of any double se-
quence {apm} is countable. (A double sequence is a function u whose domain
D, is N x N;say, u: N x N — B. If n,m € N, we write uy,, for u(n, m);
here Upm = Apm-)

To prove the existence of uncountable sets, we shall now show that the
interval

0,1)={z|0<z <1}

of the real axis is uncountable.

We assume as known the fact that each real number = € [0, 1) has a unique
infinite decimal expansion

0.x1, 2, ..., Ty, ...,

where the z,, are the decimal digits (possibly zeros), and the sequence {x, }
does not terminate in nines (this ensures uniqueness).3

Theorem 3. The interval [0, 1) of the real axis is uncountable.

Proof. We must show that no sequence can comprise all of [0, 1). Indeed,
given any {uy}, write each term u,, as an infinite decimal fraction; say,

Up = 0.Ap1, Gn2, -y Gpamy - - -
Next, construct a new decimal fraction
z=0.21, %2, ..., Tp, ...,

choosing its digits z,, as follows.

If ay,y, (i.e., the nth digit of u,) is 0, put z,, = 1; if, however, a,, # 0, put
x, = 0. Thus, in all cases, x,, # ann, i.€., z differs from each u,, in at least one
decimal digit (namely, the nth digit). It follows that z is different from all u,,
and hence is not in {u,}, even though z € [0, 1).

Thus, no matter what the choice of {u,} was, we found some z € [0, 1) not
in the range of that sequence. Hence no {u,} contains all of [0, 1). O

Note 3. By Corollary 2, any superset of [0, 1), e.g., the entire real axis, is
uncountable. See also Problem 4 below.

3 For example, instead of 0.49999. .., we write 0.50000.. ..
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Note 4. Observe that the numbers a,,, used in the proof of Theorem 3 form
the diagonal of the infinitely extending square composed of all a,,,,. Therefore,
the method used above is called the diagonal process (due to G. Cantor).

*6.

Problems on Countable and Uncountable Sets
Prove that if A is countable but B is not, then B — A is uncountable.
[Hint: If B — A were countable, so would be

(B—A)UADB. (Why?)

Use Corollary 1.]
Let f be a mapping, and A C Dy. Prove that

(i) if A is countable, so is f[A];

(ii) if f is one to one and A is uncountable, so is f[A].
[Hints: (i) If A = {uy}, then

flA] = {f(u1), f(u2), ..., f(un), ... }.
(ii) If f[A] were countable, so would be f~1[f[A]], by (i). Verify that
FHfA = A

here; cf. Problem 7 in §§4-7.]
Let a, b be real numbers (a < b). Define a map f on [0, 1) by

flx)=a+z(b—a).

Show that f is one to one and onto the interval [a, b) = {z | a < = < b}.
From Problem 2, deduce that [a, b) is uncountable. Hence, by Problem
1, sois (a, b) ={z | a <z < b}.

Show that between any real numbers a, b (a < b) there are uncountably
many irrationals, i.e., numbers that are not rational.

[Hint: By Corollary 3 and Problems 1 and 3, the set (a, b) — R is uncountable.
Explain in detail.]

Show that every infinite set A contains a countably infinite set, i.e., an
infinite sequence of distinct terms.

[Hint: Fix any a1 € A; A cannot consist of a1 alone, so there is another element
az € A—{a1}. (Why?)

Again, A # {a1, as}, so there is an a3 € A — {a1, as}. (Why?) Continue thusly ad
infinitum to obtain the required sequence {an,}. Why are all a,, distinct?]

From Problem 5, prove that if A is infinite, there is a map f: A — A
that is one to one but not onto A.

[Hint: With a, as in Problem 5, define f(an) = an+1. If, however, x is none of the
an, put f(x) = x. Observe that f(z) = a1 is never true, so f is not onto A. Show,
however, that f is one to one.]
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*7. Conversely (cf. Problem 6), prove that if there is a map f: A — A that
is one to one but not onto A, then A contains an infinite sequence {a,, }
of distinct terms.

[Hint: As f is not onto A, there is a1 € A such that a1 ¢ f[A]. (Why?) Fix a1 and
define
a2 = f(a1), ag = f(a2), ..., ant1 = f(an), ... ad infinitum.

To prove distinctness, show that each an, is distinct from all ay, with m > n. For a1,
this is true since a1 ¢ f[A], whereas ap, € f[A] (m > 1). Then proceed inductively.]



Chapter 2
Real Numbers. Fields

§81-4. Axioms and Basic Definitions

Real numbers can be constructed step by step: first the integers, then the
rationals, and finally the irrationals.! Here, however, we shall assume the
set of all real numbers, denoted E', as already given, without attempting to
reduce this notion to simpler concepts. We shall also accept without definition
(as primitive concepts) the notions of the sum (a + b) and the product, (a - b)
or (ab), of two real numbers, as well as the inequality relation < (read “less
than”). Note that z € E* means “z is in E,” i.e., “x is a real number.”

It is an important fact that all arithmetic properties of reals can be deduced
from several simple axioms, listed (and named) below.

AXIOMS OF ADDITION AND MULTIPLICATION

I (closure laws). The sum x + vy, and the product xy, of any real numbers
are real numbers themselves. In symbols,

(Vz,y € EY) (x+y) € E' and (vy) € E*.
IT (commutative laws).
Vz,y€ EY) z+y=y+xand oy = yz.
ITI (associative laws).
Va,y, 2€ EY) (z+y)+z=xa+ (y+2) and (zy)z = z(y2).

IV (existence of neutral elements).

(a) There is a (unique) real number, called zero (0), such that, for all
real x, T + 0 = x.

1 See the author’s Basic Concepts of Mathematics, Chapter 2, §15.
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(b) There is a (unique) real number, called one (1), such that 1 # 0
and, for all real x, x -1 = x.

In symbols,
(a) (3'0€e BY) Ve e BY) z+4+0=u;
(b) M1 e EYY (Ve eFE) z-1=2,1#0.

(The real numbers 0 and 1 are called the neutral elements of addition and
multiplication, respectively.)

(existence of inverse elements).

(a) For every real x, there is a (unique) real, denoted —x, such that
x+ (—x)=0.

(b) For every real x other than 0, there is a (unique) real, denoted x~*,
such that x -z~ ' = 1.

In symbols,
(a) Vxe B') (A —z e E) z+ (—z)=0;
(b) (Vze E'|2#0) 3zt e EY) zx =1

(The real numbers —z and x~! are called, respectively, the additive in-
verse (or the symmetric) and the multiplicative inverse (or the reciprocal)
of z.)

(distributive law).

Vz,y,z€ BY) (z+y)z=2z+yz

AxX10MS OF ORDER

(trichotomy). For any real  and y, we have
eitherx <y ory<x orx=y
but never two of these relations together.
(transitivity).
Va,y,z€ EY) x <y andy < z implies x < z.

(monotonicity of addition and multiplication). For any z, y, 2 € E', we
have
(a) x <y implies x4+ z < y + z;

(b) z <y and z > 0 implies zz < yz.

An additional axiom will be stated in §§8-9.
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Note 1. The uniqueness assertions in Axioms IV and V are actually re-
dundant since they can be deduced from other axioms. We shall not dwell on
this.

Note 2. Zero has no reciprocal; i.e., for no x is Ox = 1. In fact, 0x = 0.
For, by Axioms VI and 1V,

0x 4+ 0z = (0 + 0)x = 0x = 0z + 0.

Cancelling 0z (i.e., adding —0x on both sides), we obtain 0x = 0, by Axioms III
and V(a).

Note 3. Due to Axioms VII and VIII, real numbers may be regarded as
given in a certain order under which smaller numbers precede the larger ones.
(This is why we speak of “axioms of order.”) The ordering of real numbers can
be visualized by “plotting” them as points on a directed line (“the real axis”)
in a well-known manner. Therefore, E'! is also often called “the real azis,” and
real numbers are called “points”; we say “the point x” instead of “the number

{L,.”

Observe that the axioms only state certain properties of real numbers without
specifying what these numbers are. Thus we may treat the reals as just any
mathematical objects satisfying our axioms, but otherwise arbitrary. Indeed,
our theory also applies to any other set of objects (numbers or not), provided
they satisfy our axioms with respect to a certain relation of order (<) and
certain operations (+) and (-), which may, but need not, be ordinary addition
and multiplication. Such sets exist indeed. We now give them a name.

Definition 1.

A field is any set F' of objects, with two operations (+) and () defined
in it in such a manner that they satisfy Axioms I-VI listed above (with
E! replaced by F, of course).

If F'is also endowed with a relation < satisfying Axioms VII to IX, we
call F' an ordered field.

In this connection, postulates I to IX are called axioms of an (ordered) field.

By Definition 1, E! is an ordered field. Clearly, whatever follows from the
axioms must hold not only in E' but also in any other ordered field. Thus
we shall henceforth state our definitions and theorems in a more general way,
speaking of ordered fields in general instead of E'! alone.

Definition 2.

An element z of an ordered field is said to be positive if z > 0 or negative
if x <0.

Here and below, “xr > y” means the same as “y < x.” We also write
“x <y” for “o <y orx=y”; similarly for “x > y.”



26 Chapter 2. Real Numbers. Fields

Definition 3.

For any elements x, y of a field, we define their difference
r—y=xz+(-y)
If y # 0, we also define the quotient of x by y

T
- = Zl'fy_l,
Yy

also denoted by z/y.

Note 4. Division by 0 remains undefined.

Definition 4.

For any element x of an ordered field, we define its absolute value,
1z T if x > 0 and
€Tl =
—x ifz <O.
It follows that |x| > 0 always; for if x > 0, then
|z| =z > 0;

and if x < 0, then
|| = —2 > 0. (Why?)

Moreover,
—‘ZL‘| <z < |IE‘,
for,
if x > 0, then |z| = z;
and

if x < 0, then = < |z| since |z| > 0.
Thus, in all cases,
x < |z|.
Similarly one shows that

—lz| < .

As we have noted, all rules of arithmetic (dealing with the four arithmetic
operations and inequalities) can be deduced from Axioms I through IX and
thus apply to all ordered fields, along with E'. We shall not dwell on their
deduction, limiting ourselves to a few simple corollaries as examples.?

2 For more examples, see the author’s Basic Concepts of Mathematics, Chapter 2, §§34.
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Corollary 1 (rule of signs).
(i) a(=b) = (=a)b = —(ad);
(ii) (—a)(—=b) = ab.
Proof. By Axiom VI,
a(—b) +ab=al(-b)+ b =a-0=0.

Thus
a(—b) +ab = 0.

By definition, then, a(—b) is the additive inverse of ab, i.e.,
a(—b) = —(ab).

Similarly, we show that

(—a)b = —(ab)

and that

—(—a) = a.

Finally, (ii) is obtained from (i) when a is replaced by —a. O
Corollary 2. In an ordered field, a # 0 implies
a’=(a-a) > 0.
(Hence 1 =12 > 0.)
Proof. If a > 0, we may multiply by a (Axiom IX(b)) to obtain
a-a>0-a=0,ie,a’>0.

If a < 0, then —a > 0; so we may multiply the inequality a < 0 by —a and
obtain
a(—a) < 0(—a) = 0;

i.e., by Corollary 1,
—a? < 0,

whence

a>>0. O

§85—6. Natural Numbers. Induction

The element 1 was introduced in Axiom IV (b). Since addition is also assumed
known, we can use it to define, step by step, the elements

2=1+4+1,3=2+1,4=3+1, etc.
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If this process is continued indefinitely, we obtain what is called the set N of
all natural elements in the given field F. In particular, the natural elements of
E!l are called natural numbers. Note that

(VneN) n+1€eN.

* A more precise approach to natural elements is as follows.! A subset S of
a field F' is said to be inductive iff

(i) 1€ S and
(i) VzeS)z+1eS.

Such subsets certainly exist; e.g., the entire field F' is inductive since
le Fand (Vx e F)x+ 1€ F.

Define N as the intersection of all inductive sets in F'.

*Theorem 1. The set N so defined is inductive itself. In fact, it is the “small-
est” inductive subset of F' (i.e., contained in any other such subset).

Proof. We have to show that
(i) 1 € N, and
(i) (Vze N)z+1€ N.

Now, by definition, the unity 1 is in each inductive set; hence it also belongs
to the intersection of such sets, i.e., to N. Thus 1 € N, as claimed.

Next, take any « € N. Then, by our definition of N, x is in each inductive
set S; thus, by property (ii) of such sets, also = + 1 is in each such S; hence
x + 1 is in the intersection of all inductive sets, i.e.,

r+1€eN,

and so N is inductive, indeed.

Finally, by definition, N is the common part of all such sets and hence
contained in each. [J

For applications, Theorem 1 is usually expressed as follows.

Theorem 1’ (first induction law). A proposition P(n) involving a natural n
holds for all n € N in a field F if

(i) it holds for n =1, i.e., P(1) is true; and
(ii) whenever P(n) holds for n = m, it holds for n =m +1, i.e.,

P(m) = P(m+1).

L At a first reading, one may omit all “starred” passages and simply assume Theorems 1’
and 2’ below as additional axioms, without proof.
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“Proof. Let S be the set of all those n € N for which P(n) is true,
S={neN]|P(n)}.

We have to show that actually each n € N isin S, i.e., N C S.

First, we show that S is inductive.

Indeed, by assumption (i), P(1) is true; so 1 € S.

Next, let € S. This means that P(z) is true. By assumption (ii), however,
this implies P(x + 1), i.e., z +1 € S. Thus

leSand (VzeS)z+1eS;

S is inductive.
Then, by Theorem 1 (second clause), N C S, and all is proved. O
This theorem is used to prove various properties of N “by induction.”

Examples.

(a) If m, n € N, then also m +n € N and mn € N.
To prove the first property, fix any m € N. Let P(n) mean

m+neN (neN).

Then

(i) P(1) is true, for as m € N, the definition of N yields m +1 € N,
ie., P(1).

(ii) P(k) = P(k+1) for k € N. Indeed,
Pky=m+keN=(m+k)+1€eN
=m+(k+1)eN=Pk+1).
Thus, by Theorem 1’, P(n) holds for all n; i.e.,
(VneN) m+neN

for any m € N.
To prove the same for mn, we let P(n) mean

mne€N (né€N)

and proceed similarly.

(b) Ifne N, thenn—1=0orn—1€N.
For an inductive proof, let P(n) mean

n—1=0orn—1€N (neN).

Then proceed as in (a).



30 Chapter 2. Real Numbers. Fields

(¢) In an ordered field, all naturals are > 1.
Indeed, let P(n) mean that
n>1 (né€N).
Then
(i) P(1) holds since 1 = 1.
(ii) P(m)= P(m+ 1) for m € N, since
Pm)=m>1=(m+1)>1= P(m+1).

Thus Theorem 1’ yields the result.

(d) In an ordered field, m, n € N and m > n impliesm —n € N.
For an inductive proof, fix any m € N and let P(n) mean

m—-—n<0OQorm—-né&eN (neN).
Use (b).
(e) In an ordered field, m, n € N and m < n+ 1 implies m < n.
For, by (d), m > n would imply m —n € N, hence m —n > 1, or
m > n+ 1, contrary to m < n + 1.
Our next theorem states the so-called well-ordering property of N.

Theorem 2 (well-ordering of N). In an ordered field, each nonvoid set A C N
has a least member (i.e., one that exceeds no other element of A).

Proof outline.? Given ) # A C N, let P(n) be the proposition “Any subset
of A containing elements < n has a least member” (n € N). Use Theorem 1’
and Example (e). O

This theorem yields a new form of the induction law.

Theorem 2’ (second induction law). A proposition P(n) holds for alln € N
in an ordered field if

(i") P(1) holds and

(ii") whenever P(n) holds for all naturals less than some m € N, then P(n)
also holds for n = m.

Proof. Assume (i') and (ii’). Seeking a contradiction, suppose there are some
n € N (call them “bad”) for which P(n) fails. Then these “bad” naturals form
a nonwvoid subset of N, call it A.

2 For a more detailed proof, see Basic Concepts of Mathematics, Chapter 2, §5, Theo-
rem 2.

3 We are using a “proof by contradiction” or “indirect proof.” Instead of proving our
assertion directly, we show that the opposite is impossible, being contradictory.
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By Theorem 2, A has a least member m. Thus m is the least natural for
which P(n) fails. It follows that all n less than m do satisfy P(n). But then,
by our assumption (ii’), P(n) also holds for n = m, which is impossible for, by
construction, m is “bad” (it is in A). This contradiction shows that there are
no “bad” naturals. Thus all is proved. [

Note 1. All the preceding arguments hold also if, in our definition of N
and all formulations, the unity 1 is replaced by 0 or by some k (£k € N).
Then, however, the conclusions must be changed to say that P(n) holds for all
integers n > k (instead of “n > 1”). We then say that “induction starts with
k:.??

An analogous induction law also applies to definitions of concepts C(n).
A notion C(n) involving a natural n is regarded as defined for each n € N

(in BY) if
(i) it is defined for n =1 and
(ii) some rule is given that expresses C'(n + 1) in terms of C(1), ..., C(n).

(Note 1 applies here, too.)
C(n) itself need not be a number; it may be of quite general nature.

We shall adopt this principle as a kind of logical axiom, without proof
(though it can be proved in a similar manner as Theorems 1’ and 2’). The un-
derlying intuitive idea is a “step-by-step” process—first, we define C'(1); then,
as C(1) is known, we may use it to define C'(2); next, once both are known,
we may use them to define C'(3); and so on, ad infinitum. Definitions based
on that principle are called inductive or recursive. The following examples are
important.

Examples (continued).

(f) For any element z of a field, we define its nth power x™ and its n-multiple
nx by

(i) 2! =1z = x;
(i) "™ = 2"z (respectively, (n + 1)z = nx + x).
We may think of it as a step-by-step definition:

z! = x, z? = xlx, z2 = xQx, etc.
(g) For each natural number n, we define its factorial n! by

=1 (n+D=n!(n+1);

e.g., 2 =11(2) =2, 3! = 2!(3) = 6, etc. We also define 0! = 1.
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(h) The sum and product of n field elements x1, x2, ..
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., Tp, denoted by

n n
g i and H Tk
k=1 k=1

or

r1+xo+---+x, and x122 - - - x,, respectively,

are defined recursively.
Sums are defined by

1+ xo + 3 = (21 + x2) + T3,

x1+ 22 + 23 + 24 = (v1 + 22 + x3) + 14, ete.

Products are defined by

() I 2x =1

k=1
n+1 n
(ii) H T = (H xk) Tpa1
k=1 k=1
(i) Given any objects x1, xa, ..., Ty,
(w1, 22, ..

is defined inductively by

..., the ordered n-tuple

'7{1’177,)

(i) (z1) = z1 (i-e., the ordered “one-tuple” (z1) is x; itself) and

(ii) (1, z2, ..

o Tnt1) = ((z1, ..

.y Tn)y Tpa), 1.e., the ordered (n+1)-

tuple is a pair (y, ,+1) in which the first term y is itself an ordered

n-tuple, (z1, ...,

xn); for example,

(z1, T2, v3) = ((z1, T2), x3), etc.

Problems on Natural Numbers and Induction

1. Complete the missing details in Examples (a), (b), and (d).

2. Prove Theorem 2 in detail.
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3. Suppose zx < yr, k=1, 2, ..., in an ordered field. Prove by induction
on n that

(a) Ziﬂk < Z?ﬂc;
k=1 k=1

(b) if all xg, y are greater than zero, then
H T < H Yk -
k=1 k=1

4. Prove by induction that
(i) 1" =1
(i) a<b=a”<b"ifa>0.
Hence deduce that
(iii) 0<a”"<1if0<a<1;
(iv) a™ < b™ = a < bif b > 0; proof by contradiction.
5. Prove the Bernoulli inequalities: For any element e of an ordered field,
(i) (1+e)">1+neife > —1;
(i) (I1—-g)">1—neife<lyn=1,2,3,....

6. For any field elements a, b and natural numbers m, n, prove that

(i) a™a"=a""" (if) (a™)" =a™;
(iii) (ab)™ = a"bd"™; (iv) (m+n)a=ma+na;
(v) n(ma)= (nm)-a; (vi) n(a+b) =na-+ nbd.

[Hint: For problems involving two natural numbers, fix m and use induction on n].

7. Prove that in any field,
a"tt — T = (q — D) Zakb”_k, n=123,....
k=0

Hence for r # 1
1 —pntt

n

E arfF =g ———
1—7r

k=0

(sum of n terms of a geometric series).

8. For n > 0 define
M g<k<
(”): Mn—kp C=F=m

0, otherwise.
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Then prove by induction on n that

Verify Pascal’s law,

(i) (Vk|0<k<n) (Z)GN;and

(ii) for any field elements a and b,

n

(a+b)" = Z (Z) a®b"7 k. n € N (the binomial theorem).
k=0

What value must 0° take for (ii) to hold for all a and b?

9. Show by induction that in an ordered field F' any finite sequence
x1, ..., T, has a largest and a least term (which need not be z; or
x,). Deduce that all of N is an infinite set, in any ordered field.

10. Prove in E' that

Zl{:— n(n +1);

(ii) ZkQ n(n+1)(2n + 1);
(iii) Zk3 = %nQ(n +1)%

(iv) Zk4 —n (n+1)(2n + 1)(3n* 4+ 3n — 1).

§7. Integers and Rationals

All natural elements of a field F', their additive inverses, and 0 are called the
integral elements of F, briefly integers.

An element x € F is said to be rational iff x = P for some integers p and q
(q #0); x is irrational iff it is not rational. q

We denote by J the set of all integers, and by R the set of all rationals, in
F. Every integer p is also a rational since p can be written as p/q with ¢ = 1.
Thus

RO JDN.
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In an ordered field,
N={zeJ|z>0} (Why?)
Theorem 1. If a and b are integers (or rationals) in F, so are a+ b and ab.

Proof. For integers, this follows from Examples (a) and (d) in §§5-6; one only
has to distinguish three cases:

(i) a, b€ N;
(i) —a € N, b€ N;
(ili) a € N, =b € N.

The details are left to the reader (see Basic Concepts of Mathematics, Chap-
ter 2, §7, Theorem 1).

Now let a and b be rationals, say,

r
a=2and b= -,
q s
where p, q, r, s € J and q, s # 0. Then, as is easily seen,
s+ qgr r
aib:p d andab:p—,
qs qs

where gs # 0; and ¢s and pr are integers by the first part of the proof (since
p,q,r,sEJ).

Thus a +b and ab are fractions with integral numerators and denominators.
Hence, by definition, a +b € R and ab € R. [

Theorem 2. In any field F, the set R of all rationals is a field itself, under
the operations defined in F, with the same neutral elements 0 and 1. Moreover,
R is an ordered field if F' is. (We call R the rational subfield of F.)

Proof. We have to check that R satisfies the field axioms.

The closure law I follows from Theorem 1.

Axioms II, ITI, and VI hold for rationals because they hold for all elements
of F'; similarly for Axioms VII to IX if F' is ordered.

Axiom IV holds in R because the neutral elements 0 and 1 belong to R;
indeed, they are integers, hence certainly rationals.

To verify Axiom V, we must show that —z and ! belong to R if x does.
If, however,

p
ng (p7q€']7Q%0)7
then
_—p
—r = —,
q

where again —p € J by the definition of J; thus —x € R.
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If, in addition, z # 0, then p # 0, and

T = P implies 271 =
q

. (Why?)

IR

Thus z=' ¢ R. O

Note. The representation
r== (p,q€J)
is not unique in general; in an ordered field, however, we can always choose
qg>0,ie., g€ N (take p<0ifx <0).

Among all such ¢ there is a least one by Theorem 2 of §§5-6. If x = p/q,
with this minimal ¢ € N, we say that the rational x is given in lowest terms.

§88-9. Upper and Lower Bounds. Completeness Axiom

A subset A of an ordered field F' is said to be bounded below (or left bounded)
iff there is p € F' such that

(Vexe A p<u
A is bounded above (or right bounded) iff there is ¢ € F such that
(Vexe A) x<gq.

In this case, p and ¢ are called, respectively, a lower (or left) bound and an
upper (or right) bound, of A. If both exist, we simply say that A is bounded
(by p and ¢). The empty set ) is regarded as (“vacuously”) bounded by any p
and ¢ (cf. the end of Chapter 1, §3).

The bounds p and ¢ may, but need not, belong to A. If a left bound p
is itself in A, we call it the least element or minimum of A, denoted min A.
Similarly, if A contains an upper bound ¢, we write ¢ = max A and call ¢ the
largest element or mazimum of A. However, A may well have no minimum or
maximum.

Note 1. A finite set A # () always has a minimum and a maximum
(see Problem 9 of §55-6).

Note 2. A set A can have at most one maximum and at most one minimum.
For if it had fwo maxima ¢, ¢/, then

q<q
(since ¢ € A and ¢’ is a right bound); similarly

q <gq;
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so ¢ = ¢' after all. Uniqueness of min A is proved in the same manner.

Note 3. If A has one lower bound p, it has many (e.g., take any p’ < p).
Similarly, if A has one upper bound ¢, it has many (take any ¢’ > q).

Geometrically, on the real axis, all lower (upper) bounds lie to the left (right)
of A; see Figure 1.

! A /
p p q q
u v
Ficure 1
Examples.
(1) Let
A=A{1, -2, T}

Then A is bounded above (e.g., by 7,8, 10, ...) and below (e.g., by
9, -5, 12, ...).
We have min A = —2, max A = 7.

(2) The set N of all naturals is bounded below (e.g., by 1,0, 3, =1, ...),

and 1 = min N; N has no maximum, for each q¢ € N is exceeded by some
neN (eg,n=q+1).
(3) Given a, b € F (a <b), we define in F the open interval
(a,b) ={z |a <z < b};
the closed interval
[a, b] ={z | a <z <b};
the half-open interval
(a, b ={z | a <z <b};
and the half-closed interval
la, b) ={x | a <z <b}.

Clearly, each of these intervals is bounded by the endpoints a and b;
moreover, a € [a, b and a € [a, b) (the latter provided [a, b) # 0, i.e., a <

b), and a = min|a, b] = min|a, b); similarly, b = max[a, b] = max(a, b)].
But [a, b) has no maximum, (a, b] has no minimum, and (a, b) has neither.
(Why?)

Geometrically, it seems plausible that among all left and right bounds of A
(if any) there are some “ closest” to A, such as v and v in Figure 1, i.e., a least



38 Chapter 2. Real Numbers. Fields

upper bound v and a greatest lower bound u. These are abbreviated
lub A and glb A
and are also called the supremum and infimum of A, respectively; briefly,
v=supA, u=inf A.

However, this assertion, though valid in E', fails to materialize in many
other fields such as the field R of all rationals (cf. §§11-12). Even for E', it
cannot be proved from Axioms I through IX.

On the other hand, this property is of utmost importance for mathematical
analysis; so we introduce it as an aziom (for E'), called the completeness
axiom. It is convenient first to give a general definition.

Definition 1.
An ordered field F is said to be complete iff every nonvoid right-bounded
subset A C F has a supremum (i.e., a lub) in F'.
Note that we use the term “complete” only for ordered fields.

With this definition, we can give the tenth and final axiom for E*.

X (completeness axiom). The real field E* is complete in the above sense.
That is, each right-bounded set A C E' has a supremum (sup A) in E!,
provided A # ().

The corresponding assertion for infima can now be proved as a theorem.

Theorem 1. In a complete field F (such as E'), every nonvoid left-bounded
subset A C F has an infimum (i.e., a glb).

Proof. Let B be the (nonvoid) set of all lower bounds of A (such bounds exist
since A is left bounded). Then, clearly, no member of B exceeds any member
of A, and so B is right bounded by an element of A. Hence, by the assumed
completeness of F', B has a supremum in F, call it p.

We shall show that p is also the required infimum of A, thus completing the
proof.

Indeed, we have
(i) p is a lower bound of A. For, by definition, p is the least upper bound of
B. But, as shown above, each € A is an upper bound of B. Thus
(Vee A p<u.

(ii) p is the greatest lower bound of A. For p = sup B is not exceeded by any
member of B. But, by definition, B contains all lower bounds of A; so p
is not exceeded by any of them, i.e.,

p=glbA=inf A. [
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Note 4. The lub and glb of A (if they exist) are unique. For inf A is,
by definition, the maximum of the set B of all lower bounds of A, and hence
unique, by Note 2; similarly for the uniqueness of sup A.

Note 5. Unlike min A and max A, the glb and lub of A need not belong to
A. For example, if A is the interval (a, b) in E' (a < b) then, as is easily seen,

a =inf A and b = sup A,

though a, b ¢ A. Thus sup A and inf A may exist, though max A and min A do
not.

On the other hand, if
g =max A (p=min A),
then also
g=supA (p=inf A). (Why?)

Theorem 2. In an ordered field F', we have g =sup A (A C F) iff

(i) VzeA) x<qand

(ii) each field element p < q is exceeded by some x € A; i.e.,

(Vp<q) 3z e A) p<u.

Equivalently,
(ii") (Ve>0) (Jze€ed) g—e<z; (e€F).
Similarly, p = inf A iff
VexeA) p<z and (Ve>0)(3xecA) p+e>u.

Proof. Condition (i) states that ¢ is an upper bound of A, while (ii) implies
that no smaller element p is such a bound (since it is exceeded by some x in
A). When combined, (i) and (ii) state that ¢ is the least upper bound.

Moreover, any element p < g can be written as ¢ —e (¢ > 0). Hence (ii) can
be rephrased as (ii’).
The proof for inf A is quite analogous. [

Corollary 1. Let b € F and A C F in an ordered field F. If each element
x of A satisfies © < b (x > b), so does sup A (inf A, respectively), provided it
exists in F'.

In fact, the condition
VzeA) z<b

means that b is a right bound of A. However, sup A is the least right bound,
so sup A < b; similarly for inf A.
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Corollary 2. In any ordered field, ) # A C B implies
sup A < sup B and inf A > inf B,

as well as
inf A <supA,

provided the suprema and infima involved exist.

Proof. Let p =inf B and ¢ = sup B.
As ¢ is a right bound of B,

x < q for all x € B.
But A C B, so B contains all elements of A. Thus
reEA=rxeB=x<gq;

so, by Corollary 1, also
sup A < g =sup B,

as claimed.
Similarly, one gets inf A > inf B.
Finally, if A # (), we can fix some x € A. Then

inf A<z <supA,

and all is proved. [

Problems on Upper and Lower Bounds

1. Complete the proofs of Theorem 2 and Corollaries 1 and 2 for infima.
Prove the last clause of Note 4.

2. Prove that F' is complete iff each nonvoid left-bounded set in F' has an
infimum.

3. Prove that if Ay, Ao, ..., A, are right bounded (left bounded) in F', so

is .
LJ A
k=1
4. Prove that if A = (a, b) is an open interval (a < b), then
a = inf A and b = sup A.

5. In an ordered field F, let ) # A C F. Let ¢ € F and let cA denote the
set of all products cx (z € A); i.e.,

cA={cx|x e A}.
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Prove that
(i) if ¢ > 0, then
sup(cA) = c¢-sup A and inf(cA) = ¢ - inf A;
(ii) if ¢ < 0, then
sup(cA) = c-inf A and inf(cA) = ¢ - sup A.
In both cases, assume that the right-side sup A (respectively, inf A) ex-
ists.

6. From Problem 5(ii) with ¢ = —1, obtain a new proof of Theorem 1.
[Hint: If A is left bounded, show that (—1)A is right bounded and use its supremum.]

7. Let A and B be subsets of an ordered field F'. Assuming that the
required lub and glb exist in F', prove that

(i) if (Vz e A) (Vy € B) x <y, then sup A < inf B;
(ii) if (Vz € A) (3y € B) x <y, then sup A < sup B;
(iii) if (Vy € B) (Jz € A) z <y, then inf A < inf B.
[Hint for (i): By Corollary 1, (Vy € B) sup A < y, so sup A < inf B. (Why?)]

8. For any two subsets A and B of an ordered field F', let A + B denote
the set of all sums x + y with z € A and y € B; i.e.,

A+B={z+y|lzecA, ye B}
Prove that if sup A = p and sup B = ¢ exist in F', then
p+q=sup(A+ B);

similarly for infima.
[Hint for sup: By Theorem 2, we must show that
(i) (Vze€e A) Vy € B) z+y < p+ g (which is easy) and
(ii’) (Ve>0)(FzecA) ByeB)z+y>(p+q)—-=
Fix any € > 0. By Theorem 2,
(3xze€A) (Jye B) p—g<mandq—%<y. (Why?)

Then
T+y> ( —§)+ (q—g) =(+q9 —¢
as required.]

9. In Problem 8 let A and B consist of positive elements only, and let
AB ={zy |z € A, y € B}.
Prove that if sup A = p and sup B = ¢ exist in F', then
pq = sup(AB);
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similarly for infima.
[Hint: Use again Theorem 2(ii’). For sup(AB), take

0 <e < (p+q)min{p, ¢}

and

€ €
T >p— andy >q— ——
p+4q

p+q

show that
2

£
+ = >Ppg—c¢
(p+9)?

Ty >pq—¢

For inf(AB), let s = inf B and r = inf A; choose d < 1, with

0o<d< ———.
1+r+s

Now take z € A and y € B with
r<r+dandy<s+d,

and show that
rxy <rs+e.

Explain!]

Prove that
(i) if (Ve >0) a>b— ¢, then a > b;
(ii) if (Ve >0) a < b+e, then a <b.

. Fields

Prove the principle of nested intervals: If [a,,, b,] are closed intervals in

a complete ordered field F, with

[an7 bn] 2 [an+17 bn+1]7 n= ]-7 27 s

then
() [an, ba] # 0.

n=1
[Hint: Let
A={a1,a2,...,an, ... }.
Show that A is bounded above by each by,.
Let p = sup A. (Does it exist?)
Show that
(Vn) an <p < bn,

ie.,
pE [an, b’n«]]
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12. Prove that each bounded set A # () in a complete field F' is contained
in a smallest closed interval [a, b] (so [a, b] is contained in any other
[, d] D A).
Show that this fails if “closed” is replaced by “open.”
[Hint: Take a = inf A, b = sup A].

13. Prove that if A consists of positive elements only, then ¢ = sup A iff
(i) (Vx € A) z <qand
(i) (Vd>1) (Fzxz e A) q¢/d<x.
[Hint: Use Theorem 2.]

§10. Some Consequences of the Completeness Axiom

The ancient Greek geometer and scientist Archimedes was first to observe that
even a large distance y can be measured by a small yardstick x; one only has
to mark z off sufficiently many times. Mathematically, this means that, given
any x > 0 and any y, there is an n € N such that nxz > y. This fact, known as
the Archimedean property, holds not only in E' but also in many other ordered
fields. Such fields are called Archimedean. In particular, we have the following
theorem.

Theorem 1. Any complete field F (e.g., E') is Archimedean.

That is, given any z, y € F (x > 0) in such a field, there is a naturaln € F
such that nx > y.

Proof by contradiction. Suppose this fails. Thus, given y, z € F (z > 0),
assume that there is no n € N with nx > y.

Then
(VneN) nzx<y;

i.e., y is an upper bound of the set of all products nx (n € N). Let
A={nz|neN}

Clearly, A is bounded above (by y) and A # ); so, by the assumed com-
pleteness of F', A has a supremum, say, ¢ = sup A.

As ¢ is an upper bound, we have (by the definition of A) that nx < ¢ for all
n € N, hence also (n+ 1)z < ¢; i.e.,

nr<qg—=x

for allm € N (sincen € N =n+1¢€ N).

I However, there also are incomplete Archimedean fields (see Note 2 in §§11-12).
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Thus g — x (which is less than ¢ for x > 0) is another upper bound of all nz,
i.e., of the set A.

This is impossible, however, since ¢ = sup A is the least upper bound of A.
This contradiction completes the proof. [

Corollary 1. In any Archimedean (hence also in any complete) field F, the
set N of all natural elements has no upper bounds, and the set J of all integers
has neither upper nor lower bounds. Thus

VyeF)(@3m,neN) —m<y<n.

Proof. Given any y € F, one can use the Archimedean property (with z = 1)
to find an n € N such that

n-1>y, ie,n>uy.
Similarly, there is an m € N such that
m > —y, e, —m < y.

This proves our last assertion and shows that no y € F' can be a right bound
of N (for y <n € N), or a left bound of J (for y > —m € J). O

Theorem 2. In any Archimedean (hence also in any complete) field F', each
left (right) bounded set A of integers () # A C J) has a minimum (mazimum,
respectively).

Proof. Suppose () # A C J, and A has a lower bound y.
Then Corollary 1 (last part) yields a natural m, with —m < y, so that

VeeAd) —m<u,

and so x +m > 0.

Thus, by adding m to each z € A, we obtain a set (call it A+m) of naturals.?

Now, by Theorem 2 of §§5—-6, A + m has a minimum; call it p. As p is the
least of all sums = +m, p—m is the least of all z € A; so p—m = min A exists,
as claimed.

Next, let A have a right bound z. Then look at the set of all additive inverses
—ux of points x € A; call it B.

Clearly, B is left bounded (by —z), so it has a minimum, say, « = min B.
Then —u = max A. (Verify!) O

In particular, given any x € F' (F' Archimedean), let [x] denote the great-
est integer < x (called the integral part of ). We thus obtain the following
corollary.

2 This is the main point—geometrically, we have “shifted” A to the right by m, so that
its elements became positive integers: A +m C N.
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Corollary 2. Any element x of an Archimedean field F' has an integral part
[x]. It is the unique integer n such that

n<xr<n+l1.

(It exists, by Theorem 2.)
Any ordered field has the so-called density property:
If a <bin F, there is x € F such that a < = < b; e.g., take
a+b

Tr = .

2

We shall now show that, in Archimedean fields, x can be chosen rational,
even if a and b are not. We refer to this as the density of rationals in an
Archimedean field.

Theorem 3 (density of rationals). Between any elements a and b (a < b) of
an Archimedean field F (such as E'), there is a rational r € F with

a<r<hb.

Proof. Let p = [a] (the integral part of a). The idea of the proof is to start
with p and to mark off a small “yardstick”

1
—<b-—a
n

several (m) times, until
p+ ™ lands inside (a, b);
n

then 7 = p + 7= is the desired rational.

We now make it precise. As F is Archimedean, there are m, n € N such
that

n(b—a)>1andm<%> >a—p.

We fix the least such m (it exists, by Theorem 2 in §§5-6). Then

m—1

m
a—p<z, but <a—p

(by the minimality of m). Hence
m 1
a<p+—<a+—<a+(b—a),
n n

since % < b — a. Setting

r=p+

m
DR
n
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we find
a<r<a+b—a=0b 0O

Note. Having found one rational rq,
a<ry<b,
we can apply Theorem 3 to find another ro € R,
ry <rg <b,
then a third r3 € R,
ro < rgz < b,

and so on. Continuing this process indefinitely, we obtain infinitely many
rationals in (a, b).

§811-12. Powers With Arbitrary Real Exponents. Irrationals

In complete fields, one can define a” for any a > 0 and r € E! (for r € N, see
§85-6, Example (f)). First of all, we have the following theorem.

Theorem 1. Given a > 0 in a complete field F, and a natural number n € E*,
there always is a unique element p € F', p > 0, such that

n

p" = a.
It is called the nth root of a, denoted

Va or o'/,
(Note that {/a > 0, by definition.)

A direct proof, from the completeness axiom, is sketched in Problems 1 and
2 below. We shall give a simpler proof in Chapter 4, §9, Example (a). At
present, we omit it and temporarily take Theorem 1 for granted. Hence we
obtain the following result.

Theorem 2. Every complete field F' (such as E') has irrational elements,
1.e., elements that are not rational.

In particular, /2 is irrational !

Proof. By Theorem 1, F' has the element
p =2 with p? = 2.

I As usual, we write \/a for ¥a.
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Seeking a contradiction, suppose v/2 is rational, i.e.,

Va="

n

for some m, n € N in lowest terms (see §7, final note).
Then m and n are not both even (otherwise, reduction by 2 would yield a
smaller n). From m/n = /2, we obtain

so m?2 is even.

2

Only even elements have even squares, however.© Thus m itself must be

even; i.e., m = 2r for some r € N. It follows that

4r? =m? = 2n2, ie., 22 = n?

and, by the same argument, n must be even.

This contradicts the fact that m and n are not both even, and this contra-
diction shows that v/2 must be irrational. [

Note 1. Similarly, one can prove the irrationality of /a where a € N and
a is not the square of a natural. See Problem 3 below for a hint.

Note 2. Theorem 2 shows that the field R of all rationals is not com-
plete (for it contains no irrationals), even though it is Archimedean (see Prob-

lem 6). Thus the Archimedean property does not imply completeness (but see
Theorem 1 of §10).

Next, we define a” for any rational number r > 0.
Definition 1.

Given a > 0 in a complete field F', and a rational number

r=" (m,n € N C E'),
n

we define

Here we must clarify two facts.
(1) If n =1, we have

a"=a™' = am =am,
2 For if m is odd, then m = 2g — 1 for some ¢ € N, and hence

m?=2¢—1)2=4¢> —4qg+1=4q(q—1) +1

is an odd number.
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If m=1, we get

Thus Definition 1 agrees with our previous definitions of ¢ and a
(m,n e N).
If r is written as a fraction in two different ways,

m p

r=— = —

n q

Y

then, as is easily seen,
va™ = vaP =a",

and so our definition is unambiguous (independent of the particular rep-
resentation of ).

Indeed,

P _
— = = implies mq = np,
n.oq

whence
amq — a/pTL,

B (@™ = (@)

cf. §65-6, Problem 6.
By definition, however,

(Vam™)" = a™ and (VaP)? = aP.
Substituting this in (a™)? = (aP
(Vam)" = (ar)™,

)", we get

whence
va™ = v/aP.
Thus Definition 1 is valid, indeed.

By using the results of Problems 4 and 6 of §§5-6, the reader will easily
obtain analogous formulas for powers with positive rational exponents, namely,

ata® = ar-i—s; (ar)s — ars; (ab>r — arbr; a’ < asif 0 <a<landr> s:

(1)

a<biff a” <b" (a,b,7>0); a" >a*ifa>1landr >s; 1" =1

Henceforth we assume these formulas known, for rational r, s > 0.

Next, we define a” for any real » > 0 and any element a > 1 in a complete
field F.
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Let A, denote the set of all members of F' of the form a®, with z € R and
0<x<r;ie.,
Agr = {a” | 0 <z <r, x rational}.

By the density of rationals in E* (Theorem 3 of §10), such rationals x do exist;
thus A, # 0.

Moreover, A, is right bounded in F'. Indeed, fix any rational number y > r.
By the formulas in (1), we have, for any positive rational z < r,

a¥ = gt W) — qTay—T 5 4%
since ¢ > 1 and y — « > 0 implies
a?”% > 1.
Thus a¥ is an upper bound of all a® in Ag,.
Hence, by the assumed completeness of F', sup A, exists. So we may define
a” = sup 4,2

We also put

If 0 < a <1 (so that L > 1), we put

1N\ -7 1
a" = <—) and a”" = —,

a a

where )
<_> = sup Al/a,r7
a

as above.
Summing up, we have the following definitions.

Definition 2.
Given a > 0 in a complete field F', and r € E', we define the following.
(i) If r > 0 and a > 1, then

a" =sup Agr = sup{a” | 0 <z <r, z rational}.
(ii) If r >0 and 0 < a < 1, then a" = W, also written (1/a)~".
(iii) a=" = 1/a". (This defines powers with negative exponents as well.)
3 Note that, if r is a positive rational itself, then a” is the largest a® with < r (where a”

and a” are as in Definition 1); thus a” = max Agr = sup Aqr, and so our present definition
agrees with Definition 1. This excludes ambiguities.
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We also define 0" = 0 for any real r > 0, and a® = 1 for any a € F, a # 0;
0% remains undefined.

The power a” is also defined if @ < 0 and r is a rational 7> with n odd
because a” = {/a™ has sense in this case. (Why?) This does not work for
other values of r. Therefore, in general, we assume a > 0.

Again, it is easy to show that the formulas in (1) remain also valid for powers
with real exponents (see Problems 8-13 below), provided F' is complete.

Problems on Roots, Powers, and Irrationals

The problems marked by => are theoretically important. Study them!

1. Let n € N in E'; let p > 0 and a > 0 be elements of an ordered field F.
Prove that

(i) if p" > a, then (3z € F) p >z >0 and 2" > q;
(ii) if p” < @, then (Jz € F) x > p and z" < a.
[Hint: For (i), put
r=p-—d, with 0 <d < p.
Use the Bernoulli inequality (Problem 5(ii) in §§5-6) to find d such that
" =(p-d)" >a,

ie.

(l_g)n>;%'

Solving for d, show that this holds if

n

0<d< 2 9%~ p. (Why does such a d exist?)
npn—l
For (ii), if p™ < a, then
1 1
p"a

Use (i) with a and p replaced by 1/a and 1/p.]
2. Prove Theorem 1 assuming that
(i) a > 1;
(ii) 0 < a <1 (the cases a =0 and a = 1 are trivial).

[Hints: (i) Let
A={zeFlz>1, 2" > a}.
Show that A is bounded below (by 1) and A # 0 (e.g., a +1 € A—why?).
By completeness, put p = inf A.
Then show that p” = a (i.e., p is the required ¥/a).
Indeed, if p™ > a, then Problem 1 would yield an x € A with

x < p=inf A. (Contradiction!)
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Similarly, use Problem 1 to exclude p™ < a.
To prove uniqueness, use Problem 4(ii) of §§5—6.

Case (ii) reduces to (i) by considering 1/a instead of a.]

3. Prove Note 1.
[Hint: Suppose first that a is not divisible by any square of a prime, i.e.,
a4 =PpipP2 - Pm;

where the py are distinct primes. (We assume it known that each a € N is the
product of [possibly repeating] primes.) Then proceed as in the proof of Theorem 2,
replacing “even” by “divisible by pg.”

The general case, a = p2b, reduces to the previous case since \/a = p\/g]

4. Prove that if r is rational and ¢ is not, then r + ¢ is irrational; so also
are rq, q/r, and r/q if r # 0.

[Hint: Assume the opposite and find a contradiction.]
=5. Prove the density of irrationals in a complete field F: Ifa < b (a, b € F),
there is an irrational x € F with

a<xr<b

(hence infinitely many such irrationals x). See also Chapter 1, §9,
Problem 4.
[Hint: By Theorem 3 of §10,

(3reR) aV2<r<bV/2, r#0. (Why?)
Put = = r/+/2; see Problem 4].

6. Prove that the rational subfield R of any ordered field is Archimedean.
[Hint: If

Tr = andy:— (kam)p)qu)’

k
m
then nx > y for n = mp + 1].

7. Verify the formulas in (1) for powers with positive rational exponents
r, S.

8. Prove that
(i) a™** = a"a® and
(ii) a"=* =a"/a® forr, s € E' and a € F (a > 0).
[Hints: For (i), if r, s > 0 and a > 1, use Problem 9 in §§8-9 to get
a"a® = sup Agr sup Ags = sup(AarAas)-
41In Problems 813, F is assumed complete. In a later chapter, we shall prove the formulas

in (1) more simply. Thus the reader may as well omit their present verification. The problems
are, however, useful as exercises.
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Verify that
AarAas:{axay|CL‘,y€R, O<zx <, O<y§s}
={a*|2€R, 0<2<r+s}=Aq, rts-

Hence deduce that

a"a® =sup(Aq, rts) = a"ts

by Definition 2.
For (ii), if » > s > 0 and a > 1, then by (i),

SO

For the cases 1 < 0 or s < 0, or 0 < a < 1, use the above results and Defini-
tion 2(ii)(iii).]

From Definition 2 prove that if » > 0 (r € E'), then

a>1l<a >1

for a € F (a > 0).
Prove for r, s € E' that

(i) r<sead <a®ifa>1;

(i) r<sead >a®if0<a< 1.
[Hints: (i) By Problems 8 and 9,

@ = a5 = g > o
since a®*~" > 1ifa>1and s —7r > 0.
(ii) For the case 0 < a < 1, use Definition 2(ii).]

Prove that

(a-b)" =a"b" and (%)r S

for r € E' and positive a, b € F.
[Hint: Proceed as in Problem 8.]

Given a, b > 0 in F and r € E', prove that
(i) a>bsa” >b"ifr >0, and
(i) a>bea” <bif r <O0.
(Hint:
a>b<:>%>1<:>(%)r>l

if r > 0 by Problems 9 and 11].
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13. Prove that
(aT)S — a?"S

forr,s € E' and a € F (a > 0).
[Hint: First let r, s > 0 and a > 1. To show that
(a")® =a"® =sup Aq, rs =sup{a™ | z,y € R, 0 < 2y < rs},
use Problem 13 in §§8-9. Thus prove that
(i) Vz,y € R|0<ay <rs) a® < (a”)*®, which is easy, and
(ii) Vd>1) (3z,ye R|0<zy <rs) (a")° < da™.
Fix any d > 1 and put b = a". Then
(a")® =b° =sup Aps =sup{t? |y e R, 0 <y < s}.
Hence there is some y € R, 0 < y < s such that
(a")* < d3(a”)¥. (Why?)
Fix that y. Now
a” =sup Agr =sup{a® |z € R, 0 <z <71}
SO )
(3zeR|0<z<r) a <dwa®. (Why?)
Combining all and using the formulas in (1) for rationals x, y, obtain
(a")® < dz (a")¥ < dz (dﬁ a®)¥ = da™,

thus proving (ii)].

813. The Infinities. Upper and Lower Limits of Sequences

I. The Infinities. As we have seen, a set A # () in E' has a lub (glb) if A
is bounded above (respectively, below), but not otherwise.

In order to avoid this inconvenient restriction, we now add to E' two new
objects of arbitrary nature, and call them “minus infinity” (—oo) and “plus
infinity” (400), with the convention that —oo < 400 and —oco < x < +oo for
all z € B

It is readily seen that with this convention, the laws of transitivity and
trichotomy (Axioms VII and VIII) remain valid.

The set consisting of all reals and the two infinities is called the extended
real number system. We denote it by E* and call its elements extended real
numbers. The ordinary reals are also called finite numbers, while 400 are the
only two infinite elements of E*. (Caution: They are not real numbers.)

At this stage we do not define any operations involving +oo. (This will
be done later.) However, the notions of upper and lower bound, maximum,
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minimum, supremum, and infimum are defined in E* exactly as in E'. In
particular,

—oo0 = min E* and + co = max E™.

Thus in E* all sets are bounded.

It follows that in E* every set A # 0 has a lub and a glb. For if A has none
in B!, it still has the upper bound +oco in E*, which in this case is the unique
(hence also the least) upper bound; thus sup A = +o00.! Similarly, inf A = —oco
if there is no other lower bound.? As is readily seen, all properties of lub and glb
stated in §88-9 remain valid in E* (with the same proof). The only exception
is Theorem 2(ii’) in the case ¢ = +oo (respectively, p = —o0) since +o0o0 — ¢
and —oo + € make no sense. Part (ii) of Theorem 2 is valid.

We can now define intervals in E* exactly as in E' (§§8-9, Example (3)),

allowing also infinite values of a, b, x. For example,
(—0,a)={r €E*| —c<z<a}={r € E'|r<a};
(a, +oo) {x e E'|a <z}
(-0, +o0) ={z € E* | —00 < x < +o0} = E*;
[—o0, +o0] ={z € E* | —o0 <z < +o0}; etc.

Intervals with finite endpoints are said to be finite; all other intervals are called
infinite. The infinite intervals

(—OO, (Z), (_007 (Z], ((I, +OO>: [(I, +OO)7 ac E17
are actually subsets of E', as is (—oo, +00). Thus we shall speak of infinite

intervals in E' as well.

I1. Upper and Lower Limits.® In Chapter 1, §§1-3 we already mentioned
that a real number p is called the limit of a sequence {x,} C E' (p = limz,,)
iff

(Ve>0) (Fk) (Vn>k) |z,—pl<e ie,p—e<z,<p+e, (1)

where ¢ € E' and n, k € N.
This may be stated as follows:

For sufficiently large n (n > k), z,, becomes and stays as close to p as we
like (“e-close”).

I This is true unless A consists of —oo alone, in which case sup A = —oo.
2Tt is also customary to define sup ) = —oco and inf ) = +00. This is the only case where
sup A < inf A.

3 This topic may be deferred until Chapter 3, §14. It presupposes Chapter 1, §8.
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We also define (in E! and E*)

le Ty, =400 <= (Va€ EY) (3k) (Vn>k) z,>aand (2)
li_)rn T, =—00 <= (Vbe EY) 3 k) (Vn>k) z,<b. (3)

Note that (2) and (3) make sense in E', too, since the symbols oo do not
occur on the right side of the formulas. Formula (2) means that x,, becomes
arbitrarily large (larger than any a € E' given in advance) for sufficiently large
n (n > k). The interpretation of (3) is analogous. A more general and unified
approach will now be developed for E* (allowing infinite terms x,,, too).

Let {z,} be any sequence in E*. For each n, let A,, be the set of all terms
from x,, onward, i.e.,

{Zn, Tpy1, -}
For example,
Ay =A{x1, x9, ...}, Ag = {x9, x3, ...}, etc.
The A, form a contracting sequence (see Chapter 1, §8) since
A DAy 2.
Now, for each n, let
pn, = inf A,, and ¢, = sup 4,,,
also denoted
P = kléli rr and ¢, = 21>11;)ka

(These infima and suprema always exist in E*, as noted above.) Since 4,, D
Ap+1, Corollary 2 of §88-9 yields

inf A, <inf 4,11 <supA,+1 <supA,.
Thus
P1Ep2<- <P <Pnt1 < < @ny1 <@ < - < @2 <@, (4)
and so {p, }1, while {¢,}| in E*. We also see that each q,, is an upper bound
of all p, and hence
Gm > sup p, (= lub of all p,).

This, in turn, shows that this sup (call it L) is a lower bound of all q,, and so

L < inf gy,.

We put B
inf ¢, = L.
m
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Definition 1.
For each sequence {x,} C E*, we define its upper limit L and its lower

ltmit L, denoted

L =limz, =limsupz, and L = limzx, = liminfz,,,
n—00 n—0o0

as follows.
We put (Vn)

¢n = sup xj and p,, = inf xy,
k>n k>n

as before. Then we set

L =limz, = inf g, and L = limz,, = sup p,,, all in E*. (4)

Here and below, inf,, g, is the inf of all ¢,,, and sup,, p,, is the sup of all p,,.

Corollary 1. For any sequence in E*,

inf z, <limz, < lim z,, < sup z,.
n n

For, as we noted above,
L =supp, <infgq,, = L.
n m
Also,
L>p, =inf A, > inf Ay = inf z,, and
L <gq, =supA, <supA; =supz,,
n

with A,, as above.

Examples.
(a) Let
1
T, = —.
n
Here
1 1 1 1
QI:SHP{17§7"'7E7 }:17 q2_27 dn =
Hence
- . ) 1 1
L:qun:mf{l, = ey — ...}zO,
n 2 n

as easily follows by Theorem 2 in §§8-9 and the Archimedean property.

(Verify!) Also,
1
=0, ..., p, = inf — =0.

207 P2 = ion k

| =

— inf
D1 éle
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Since all p,, are 0, so is L = sup,, p,. Thus here L = L = 0.

(b) Consider the sequence

1, -1, 2 1 !
— —_ ..., n, ——
) ) ) 27 9y ) n?
Here
1 1
p1=—1=pmp3=—§=p%-~;p%—r=——=pm-
n
Thus
1 1
limx, =supp, = Sup{—l, —— e, ——, } =0.
— n 2 n

On the other hand, ¢, = +oo for all n. (Why?) Thus

limz,, = inf g, = +o0.
n

Theorem 1.

(i) If x,, > b for infinitely many n, then
limz, >b as well.
(ii) If z,, < a for all but finitely many n,* then
limz, <a as well.

Similarly for lower limits (with all inequalities reversed).
Proof.
(i) If 2, > b for infinitely many n, then such n must occur in each set
A =A{Tm, Tmg1, .-}
Hence
(Vm)  gm = sup Ay, > b;
so L = inf ¢,, > b, by Corollary 1 of §§8-9.

i) If Tn <a except nitely man n, let o be the last of these “exceptional”
Y Y
values of n.

Then for n > ng, z, < a, i.e., the set
An - {xﬁn Tn+1y - - }

4In other words, for all except (at most) a finite number of terms x,. This is stronger
than just “infinitely many n” (allowing infinitely many exceptions as well). Caution: Avoid
confusing “all but finitely many” with just “infinitely many.”
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is bounded above by a; so

(VYn>ng) g, =supA, <a.

Hence certainly L = infq, <a. O
n

Corollary 2.

(i) If limx, > a, then x, > a for infinitely many n.

(ii) If lima, < b, then z,, < b for all but finitely many n.
Similarly for lower limits (with all inequalities reversed).

Proof. Assume the opposite and find a contradiction to Theorem 1. [

To unify our definitions, we now introduce some useful notions.

By a neighborhood of p, briefly G,,° we mean, for p € E', any interval of
the form

(p—e,p+e), e>0.
If p = 400 (respectively, p = —o0), G, is an infinite interval of the form
(a, +00] (respectively, [~oo, b)), with a, b € E*.

We can now combine formulas (1)—(3) into one equivalent definition.

Definition 2.

An element p € E* (finite or not) is called the limit of a sequence {z,,} in
E* iff each G, (no matter how small it is) contains all but finitely many
Zn, l.e. all z,, from some zp onward. In symbols,

(VGp) (k) (Yn>k) x,¢€ Gp. (5)
We shall use the notation

p=limzx, or lim z,.
n—oo

Indeed, if p € £, then z,, € G, means
p—e<zy <p+tEe,
as in (1). If, however, p = +oo, it means
xn > a (respectively, z, < b),

as in (2) and (3).

5 This terminology and notation anticipates some more general ideas in Chapter 3, §11.



§13. The Infinities. Upper and Lower Limits of Sequences 59

Theorem 2. We have ¢ = limz,, in E* iff

(i") each neighborhood G, contains x,, for infinitely many n, and

(i) if g < b, then x,, > b for at most finitely many n.b

Proof. If ¢ = limx,, Corollary 2 yields (ii’).
It also shows that any interval (a, b), with a < ¢ < b, contains infinitely
many x, (for there are infinitely many x,, > a, and only finitely many x,, > b,

by (it')).

Now if ¢ € E*,

Gq = (q_€7 q+€)

is such an interval, so we obtain (i’). The cases ¢ = +oo are analogous; we
leave them to the reader.

Conversely, assume (i') and (ii).

Seeking a contradiction, let ¢ < L; say,

g <b<limz,.

Then Corollary 2(i) yields z,, > b for infinitely many n, contrary to our as-
sumption (ii’).

Similarly, ¢ > lim z,, would contradict (i').

Thus necessarily ¢ = limz,,. O

Theorem 3. We have ¢ = limx,, in E* iff

limz,, = limx, = q.

Proof. Suppose
limz, = limz, = q.
If ¢ € F', then every G, is an interval (a, b), a < ¢ < b; therefore, Corol-
lary 2(ii) and its analogue for lim z,, imply (with ¢ treated as both lim z,, and
lim x,,) that
a < x, <b for all but finitely many n.

Thus by Definition 2, ¢ = lim z,,, as claimed.

Conversely, if so, then any G4 (no matter how small) contains all but finitely
many x,. Hence so does any interval (a, b) with a < q < b, for it contains some
small G.

Now, exactly as in the proof of Theorem 2, one excludes
q # limz, and q # limz,,.

This settles the case ¢ € E'. The cases ¢ = +o0o are quite analogous. [

6 A similar theorem (with all inequalities reversed) holds for lim z,.
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Problems on Upper and Lower Limits of Sequences in E*

1. Complete the missing details in the proofs of Theorems 2 and 3, Corol-
lary 1, and Examples (a) and (b).

2. State and prove the analogues of Theorems 1 and 2 and Corollary 2 for
lim z,,.

3. Find lim z,, and lim x,, if
(a) x, = c (constant);
(b) xp = —n;
(¢) =, =n; and
(d) z, =(-1)"n —n.
Does lim z,, exist in each case?

=4. A sequence {z,} is said to cluster at ¢ € E*, and q is called its cluster
point, iff each G contains z,, for infinitely many values of n.

Show that both L and L are cluster points (L the least and L the
largest).
[Hint: Use Theorem 2 and its analogue for L.

To show that no p < L (or q > f) is a cluster point, assume the opposite and
find a contradiction to Corollary 2.]

=-5. Prove that
(i) lim(-x,) = —limx,, and
(i) lim(ar,) =a-limz, if 0 < a < +oc0.
6. Prove that .
limz, <400 (limz, > —o0)
iff {x,,} is bounded above (below) in E*.
7. Prove that if {z,,} and {y,} are bounded in E', then
lim z,, + limy, > lim(x, + y,) > limx,, + limy,
> lim(zy, +yn) > limx, + limy,.
[Hint: Prove the first inequality and then use that and Problem 5(i) for the others.]

=8. Prove that if p = limz,, in E', then
lim(z, + yn) = p+ limyn;
similarly for L.

=9. Prove that if {z,} is monotone, then limz,, exists in E*. Specifically,
if {z,}T, then

lim x,, = sup z,,
n
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and if {z,,}{, then
limz,, = inf z,,.
n

=-10. Prove that

(i) if imx,, = 400 and (Vn) x, < y,, then also limy,, = +oo, and

(i) if limx,, = —o0 and (Vn) y, < z,, then also limy, = —oc.

11. Prove that if z,, <y, for all n, then

limz,, <limy, and limz,, <limy,.
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Chapter 3
Vector Spaces. Metric Spaces

§81-3. The Euclidean n-Space, E™

By definition, the FEuclidean n-space E™ is the set of all possible ordered n-
tuples of real numbers, i.e., the Cartesian product

E'x E' x --- x E' (n times).
In particular, E? = E* x E' = {(z,y) | z, y € E'},
E’=E'x E' x B! = {(z,y, 2) | 2, y, z € B'},

and so on. E! itself is a special case of E" (n = 1).

In a familiar way, pairs (z, y) can be plotted as points of the zy-plane, or
as “vectors” (directed line segments) joining (0, 0) to such points. Therefore,
the pairs (z, y) themselves are called points or vectors in E?; similarly for E3.

In E™ (n > 3), there is no actual geometric representation, but it is con-
venient to use geometric language in this case, too. Thus any ordered n-tuple
(1, x2, ..., x,) of real numbers will also be called a point or vector in E™, and
the single numbers z1, zo, ..., x, are called its coordinates or components. A
point in E™ is often denoted by a single letter (preferably with a bar or an
arrow above it), and then its n components are denoted by the same letter,
with subscripts (but without the bar or arrow). For example,

T=(x1,...,2Tn), U= (U1, ..., Up), €tc;

7 = (0, —1, 2, 4) is a point (vector) in E* with coordinates 0, —1, 2, and 4
(in this order). The formula z € E™ means that £ = (x4, ..., x,) is a point
(vector) in E™. Since such “points” are ordered n-tuples,  and y are equal
(z = gy) iff the corresponding coordinates are the same, i.e., x1 = y1, T2 = Yo,
.vvy Ty = Y, (see Problem 1 below).

The point whose coordinates are all 0 is called the zero-vector or the origin,
denoted 0 or 0. The vector whose kth component is 1, and the other components
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are 0, is called the kth basic unit vector, denoted €. There are exactly n such
vectors,

e1=(1,0,0,...,0), e&=(0,1,0,...,0), ..., € =(0,...,0,1).

In E3, we often write 4, j, and k for &1, €, €3, and (x, y, 2) for (z1, 22, 3).
Similarly in E2. Single real numbers are called scalars (as opposed to vectors).

Definitions.

Given z = (21, ..., x,) and ¥ = (y1, ..., Yn) in E™, we define the fol-
lowing.

1. The sum of z and 7,
T4+7=(x1+y1, x2+yo2, ..., Tn +yn) (hence z +0=z).!
2. The dot product, or inner product, of  and v,
T-Yy=z1Y1 +22y2 + -+ TnYn-
3. The distance between z and v,
p(Z, ) = V(@1 —y1)? + (22 — y2)? + - + (@0 — ya)?.

4. The absolute value, or length, of T,

- X

Kl

7 = \fal + )+ + a2 = p(z, 0) =
(three formulas that are all equal by Definitions 2 and 3).
5. The inverse of z,
—T = (-1, —X2, ..., —Tp).
6. The product of = by a scalar ¢ € E*,
cx = xc = (cxy, o, ..., CTy);
in particular, (-1)z = (—z1, —22, ..., —¥,) = —Z, 1Z = Z, and 0z = 0.
7. The difference of x and y,
T—F=yr = (T1 — Y1, T2 — Y2, -+, Tn — Yn)-
In particular, T — 0=z and 0 — 7 = —z. (Verify!)
