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Preface

This text is an outgrowth of lectures given at the University of Windsor,
Canada. One of our main objectives is updating the undergraduate analysis
as a rigorous postcalculus course. While such excellent books as Dieudonné’s
Foundations of Modern Analysis are addressed mainly to graduate students,
we try to simplify the modern Bourbaki approach to make it accessible to
sufficiently advanced undergraduates. (See, for example, §4 of Chapter 5.)

On the other hand, we endeavor not to lose contact with classical texts,
still widely in use. Thus, unlike Dieudonné, we retain the classical notion of a
derivative as a number (or vector), not a linear transformation. Linear maps
are reserved for later (Volume II) to give a modern version of differentials .
Nor do we downgrade the classical mean-value theorems (see Chapter 5, §2) or
Riemann–Stieltjes integration, but we treat the latter rigorously in Volume II,
inside Lebesgue theory. First, however, we present the modern Bourbaki theory
of antidifferentiation (Chapter 5, §5 ff.), adapted to an undergraduate course.

Metric spaces (Chapter 3, §11 ff.) are introduced cautiously, after the n-
space En, with simple diagrams in E2 (rather than E3), and many “advanced
calculus”-type exercises, along with only a few topological ideas. With some
adjustments, the instructor may even limit all to En or E2 (but not just to the
real line, E1), postponing metric theory to Volume II. We do not hesitate to

deviate from tradition if this simplifies cumbersome formulations , unpalatable
to undergraduates. Thus we found useful some consistent , though not very

usual , conventions (see Chapter 5, §1 and the end of Chapter 4, §4), and
an early use of quantifiers (Chapter 1, §1–3), even in formulating theorems.
Contrary to some existing prejudices, quantifiers are easily grasped by students
after some exercise, and help clarify all essentials.

Several years’ class testing led us to the following conclusions:

(1) Volume I can be (and was) taught even to sophomores, though they only
gradually learn to read and state rigorous arguments. A sophomore often
does not even know how to start a proof. The main stumbling block
remains the ε, δ-procedure. As a remedy, we provide most exercises with
explicit hints, sometimes with almost complete solutions, leaving only
tiny “whys” to be answered.

(2) Motivations are good if they are brief and avoid terms not yet known.
Diagrams are good if they are simple and appeal to intuition.
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(3) Flexibility is a must. One must adapt the course to the level of the class.
“Starred” sections are best deferred. (Continuity is not affected.)

(4) “Colloquial” language fails here. We try to keep the exposition rigorous
and increasingly concise, but readable.

(5) It is advisable to make the students preread each topic and prepare ques-
tions in advance, to be answered in the context of the next lecture.

(6) Some topological ideas (such as compactness in terms of open coverings)
are hard on the students. Trial and error led us to emphasize the se-
quential approach instead (Chapter 4, §6). “Coverings” are treated in
Chapter 4, §7 (“starred”).

(7) To students unfamiliar with elements of set theory we recommend our
Basic Concepts of Mathematics for supplementary reading. (AtWindsor,
this text was used for a preparatory first-year one-semester course.) The
first two chapters and the first ten sections of Chapter 3 of the present
text are actually summaries of the corresponding topics of the author’s
Basic Concepts of Mathematics , to which we also relegate such topics as
the construction of the real number system, etc.

For many valuable suggestions and corrections we are indebted to H. Atkin-
son, F. Lemire, and T. Traynor. Thanks!

Publisher’s Notes

Text passages in blue are hyperlinks to other parts of the text.

Chapters 1 and 2 and §§1–10 of Chapter 3 in the present work are summaries
and extracts from the author’s Basic Concepts of Mathematics , also published
by the Trillia Group. These sections are numbered according to their appear-
ance in the first book.

Several annotations are used throughout this book:
∗ This symbol marks material that can be omitted at first reading.

⇒ This symbol marks exercises that are of particular importance.

http://www.trillia.com/zakon1.html
http://www.trillia.com/zakon1.html
http://www.trillia.com/zakon1.html
http://www.trillia.com
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Chapter 1

Set Theory

§§1–3. Sets and Operations on Sets. Quantifiers

A set is a collection of objects of any specified kind. Sets are usually denoted
by capitals. The objects belonging to a set are called its elements or members .
We write x ∈ A if x is a member of A, and x 6∈ A if it is not.

A = {a, b, c, . . . } means that A consists of the elements a, b, c, . . . . In
particular, A = {a, b} consists of a and b; A = {p} consists of p alone. The
empty or void set, ∅, has no elements. Equality (=) means logical identity .

If all members of A are also in B, we call A a subset of B (and B a superset

of A), and write A ⊆ B or B ⊇ A. It is an axiom that the sets A and B are

equal (A = B) if they have the same members , i.e.,

A ⊆ B and B ⊆ A.

If, however, A ⊆ B but B 6⊆ A (i.e., B has some elements not in A), we call A
a proper subset of B and write A ⊂ B or B ⊃ A. “⊆” is called the inclusion

relation.

Set equality is not affected by the order in which elements appear. Thus
{a, b} = {b, a}. Not so for ordered pairs (a, b).1 For such pairs,

(a, b) = (x, y) iff2 a = x and b = y,

but not if a = y and b = x. Similarly, for ordered n-tuples ,

(a1, a2, . . . , an) = (x1, x2, . . . , xn) iff ak = xk, k = 1, 2, . . . , n.

We write {x | P (x)} for “the set of all x satisfying the condition P (x).”
Similarly, {(x, y) | P (x, y)} is the set of all ordered pairs for which P (x, y)
holds; {x ∈ A | P (x)} is the set of those x in A for which P (x) is true.

1 See Problem 6 for a definition.
2 Short for if and only if ; also written ⇐⇒.
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For any sets A and B, we define their union A ∪ B, intersection A ∩ B,
difference A−B, and Cartesian product (or cross product) A×B, as follows:

A ∪B is the set of all members of A and B taken together :

{x | x ∈ A or x ∈ B}.3

A ∩B is the set of all common elements of A and B:

{x ∈ A | x ∈ B}.

A−B consists of those x ∈ A that are not in B:

{x ∈ A | x 6∈ B}.

A×B is the set of all ordered pairs (x, y), with x ∈ A and y ∈ B:

{(x, y) | x ∈ A, y ∈ B}.

Similarly, A1×A2×· · ·×An is the set of all ordered n-tuples (x1, . . . , xn) such
that xk ∈ Ak, k = 1, 2, . . . , n. We write An for A×A× · · · × A (n factors).

A and B are said to be disjoint iff A ∩ B = ∅ (no common elements).
Otherwise, we say that A meets B (A ∩ B 6= ∅). Usually all sets involved are
subsets of a “master set” S, called the space. Then we write −X for S −X ,
and call −X the complement of X (in S). Various other notations are likewise
in use.

Examples.

Let A = {1, 2, 3}, B = {2, 4}. Then
A ∪B = {1, 2, 3, 4}, A ∩B = {2}, A−B = {1, 3},
A×B = {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)}.

If N is the set of all naturals (positive integers), we could also write

A = {x ∈ N | x < 4}.

Theorem 1.

(a) A ∪ A = A; A ∩ A = A;

(b) A ∪B = B ∪A, A ∩B = B ∩A;
(c) (A ∪B) ∪ C = A ∪ (B ∪ C); (A ∩B) ∩ C = A ∩ (B ∩ C);
(d) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);
(e) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

3 The word “or” is used in the inclusive sense: “P or Q” means “P or Q or both .”
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The proof of (d) is sketched in Problem 1. The rest is left to the reader.

Because of (c), we may omit brackets in A∪B ∪C and A∩B ∩C; similarly
for four or more sets. More generally, we may consider whole families of sets,
i.e., collections of many (possibly infinitely many) sets. IfM is such a family,
we define its union,

⋃M, to be the set of all elements x, each belonging to at

least one set of the family. The intersection of M, denoted
⋂M, consists of

those x that belong to all sets of the family simultaneously . Instead, we also
write

⋃

{X | X ∈M} and
⋂

{X | X ∈M}, respectively.

Often we can number the sets of a given family:

A1, A2, . . . , An, . . . .

More generally, we may denote all sets of a familyM by some letter (say, X)
with indices i attached to it (the indices may, but need not , be numbers). The
familyM then is denoted by {Xi} or {Xi | i ∈ I}, where i is a variable index
ranging over a suitable set I of indices (“index notation”). In this case, the
union and intersection ofM are denoted by such symbols as

⋃

{Xi | i ∈ I} =
⋃

i

Xi =
⋃

Xi =
⋃

i∈I

Xi;

⋂

{Xi | i ∈ I} =
⋂

i

Xi =
⋂

Xi =
⋂

i∈I

Xi.

If the indices are integers , we may write

m
⋃

n=1

Xn,
∞
⋃

n=1

Xn,
m
⋂

n=k

Xn, etc.

Theorem 2 (De Morgan’s duality laws). For any sets S and Ai (i ∈ I), the
following are true:

(i) S −
⋃

i

Ai =
⋂

i

(S − Ai); (ii) S −
⋂

i

Ai =
⋃

i

(S − Ai).

(If S is the entire space, we may write −Ai for S−Ai, −
⋃

Ai for S−
⋃

Ai,
etc.)

Before proving these laws, we introduce some useful notation.

Logical Quantifiers. From logic we borrow the following abbreviations.

“(∀x ∈ A) . . .” means “For each member x of A, it is true that . . . .”

“(∃x ∈ A) . . .” means “There is at least one x in A such that . . . .”

“(∃! x ∈ A) . . . ” means “There is a unique x in A such that . . . .”
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The symbols “(∀x ∈ A)” and “(∃x ∈ A)” are called the universal and
existential quantifiers , respectively. If confusion is ruled out, we simply write
“(∀x),” “(∃x),” and “(∃ ! x)” instead. For example, if we agree that m, n
denote naturals , then

“(∀n) (∃m) m > n”

means “For each natural n, there is a natural m such that m > n.” We give
some more examples.

Let M = {Ai | i ∈ I} be an indexed set family. By definition, x ∈ ⋃

Ai

means that x is in at least one of the sets Ai, i ∈ I. In other words, there is at

least one index i ∈ I such that x ∈ Ai; in symbols,

(∃ i ∈ I) x ∈ Ai.

Thus we note that

x ∈
⋃

i∈I

Ai iff [(∃ i ∈ I) x ∈ Ai].

Similarly,

x ∈
⋂

i

Ai iff [(∀ i ∈ I) x ∈ Ai].

Also note that x /∈ ⋃

Ai iff x is in none of the Ai, i.e.,

(∀ i) x /∈ Ai.

Similarly, x /∈ ⋂

Ai iff x fails to be in some Ai, i.e.,

(∃ i) x /∈ Ai. (Why?)

We now use these remarks to prove Theorem 2(i). We have to show that
S − ⋃

Ai has the same elements as
⋂

(S − Ai), i.e., that x ∈ S − ⋃

Ai iff
x ∈ ⋂

(S − Ai). But, by our definitions, we have

x ∈ S −
⋃

Ai ⇐⇒ [x ∈ S, x /∈
⋃

Ai]

⇐⇒ (∀ i) [x ∈ S, x 6∈ Ai]

⇐⇒ (∀ i) x ∈ S − Ai

⇐⇒ x ∈
⋂

(S − Ai),

as required.

One proves part (ii) of Theorem 2 quite similarly. (Exercise!)

We shall now dwell on quantifiers more closely. Sometimes a formula P (x)
holds not for all x ∈ A, but only for those with an additional property Q(x).
This will be written as

(∀x ∈ A | Q(x)) P (x),
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where the vertical stroke stands for “such that.” For example, if N is again
the naturals, then the formula

(∀x ∈ N | x > 3) x ≥ 4 (1)

means “for each x ∈ N such that x > 3, it is true that x ≥ 4.” In other words,
for naturals, x > 3 =⇒ x ≥ 4 (the arrow stands for “implies”). Thus (1) can
also be written as

(∀x ∈ N) x > 3 =⇒ x ≥ 4.

In mathematics, we often have to form the negation of a formula that starts
with one or several quantifiers. It is noteworthy, then, that each universal

quantifier is replaced by an existential one (and vice versa), followed by the
negation of the subsequent part of the formula. For example, in calculus, a real
number p is called the limit of a sequence x1, x2, . . . , xn, . . . iff the following
is true:

For every real ε > 0, there is a natural k (depending on ε) such that, for
all natural n > k, we have |xn − p| < ε.

If we agree that lower case letters (possibly with subscripts) denote real num-
bers, and that n, k denote naturals (n, k ∈ N), this sentence can be written
as

(∀ ε > 0) (∃ k) (∀n > k) |xn − p| < ε. (2)

Here the expressions “(∀ ε > 0)” and “(∀n > k)” stand for “(∀ ε | ε > 0)”
and “(∀n | n > k)”, respectively (such self-explanatory abbreviations will also
be used in other similar cases).

Now, since (2) states that “for all ε > 0” something (i.e., the rest of (2)) is
true, the negation of (2) starts with “there is an ε > 0” (for which the rest of
the formula fails). Thus we start with “(∃ ε > 0)”, and form the negation of
what follows, i.e., of

(∃ k) (∀n > k) |xn − p| < ε.

This negation, in turn, starts with “(∀ k)”, etc. Step by step, we finally arrive
at

(∃ ε > 0) (∀ k) (∃n > k) |xn − p| ≥ ε.

Note that here the choice of n > k may depend on k. To stress it, we often
write nk for n. Thus the negation of (2) finally emerges as

(∃ ε > 0) (∀ k) (∃nk > k) |xnk
− p| ≥ ε. (3)

The order in which the quantifiers follow each other is essential . For exam-
ple, the formula

(∀n ∈ N) (∃m ∈ N) m > n
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(“each n ∈ N is exceeded by some m ∈ N”) is true, but

(∃m ∈ N) (∀n ∈ N) m > n

is false. However, two consecutive universal quantifiers (or two consecutive

existential ones) may be interchanged. We briefly write

“(∀x, y ∈ A)” for “(∀x ∈ A) (∀ y ∈ A),”

and

“(∃x, y ∈ A)” for “(∃x ∈ A) (∃ y ∈ A),” etc.

We conclude with an important remark. The universal quantifier in a for-
mula

(∀x ∈ A) P (x)

does not imply the existence of an x for which P (x) is true. It is only meant
to imply that there is no x in A for which P (x) fails .

The latter is true even if A = ∅; we then say that “(∀x ∈ A) P (x)” is
vacuously true. For example, the formula ∅ ⊆ B, i.e.,

(∀x ∈ ∅) x ∈ B,

is always true (vacuously).

Problems in Set Theory

1. Prove Theorem 1 (show that x is in the left-hand set iff it is in the
right-hand set). For example, for (d),

x ∈ (A ∪B) ∩ C ⇐⇒ [x ∈ (A ∪B) and x ∈ C]
⇐⇒ [(x ∈ A or x ∈ B), and x ∈ C]
⇐⇒ [(x ∈ A, x ∈ C) or (x ∈ B, x ∈ C)].

2. Prove that

(i) −(−A) = A;

(ii) A ⊆ B iff −B ⊆ −A.

3. Prove that

A−B = A ∩ (−B) = (−B)− (−A) = −[(−A) ∪B].

Also, give three expressions forA∩B and A∪B, in terms of complements.

4. Prove the second duality law (Theorem 2(ii)).
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5. Describe geometrically the following sets on the real line:

(i) {x | x < 0}; (ii) {x | |x| < 1};
(iii) {x | |x− a| < ε}; (iv) {x | a < x ≤ b};
(v) {x | |x| < 0}.

6. Let (a, b) denote the set
{{a}, {a, b}}

(Kuratowski’s definition of an ordered pair).

(i) Which of the following statements are true?

(a) a ∈ (a, b); (b) {a} ∈ (a, b);

(c) (a, a) = {a}; (d) b ∈ (a, b);

(e) {b} ∈ (a, b); (f) {a, b} ∈ (a, b).

(ii) Prove that (a, b) = (u, v) iff a = u and b = v.
[Hint: Consider separately the two cases a = b and a 6= b, noting that {a, a} =

{a}. Also note that {a} 6= a.]

7. Describe geometrically the following sets in the xy-plane.

(i) {(x, y) | x < y};
(ii) {(x, y) | x2 + y2 < 1};
(iii) {(x, y) | max

(

|x|, |y|
)

< 1};
(iv) {(x, y) | y > x2};
(v) {(x, y) | |x|+ |y| < 4};
(vi) {(x, y) | (x− 2)2 + (y + 5)2 ≤ 9};
(vii) {(x, y) | x = 0};
(viii) {(x, y) | x2 − 2xy + y2 < 0};
(ix) {(x, y) | x2 − 2xy + y2 = 0}.

8. Prove that

(i) (A ∪B)× C = (A× C) ∪ (B × C);
(ii) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D);

(iii) (X × Y )− (X ′ × Y ′) = [(X ∩X ′)× (Y − Y ′)] ∪ [(X −X ′)× Y ].

[Hint: In each case, show that an ordered pair (x, y) is in the left-hand set iff it is

in the right-hand set, treating (x, y) as one element of the Cartesian product.]

9. Prove the distributive laws

(i) A ∩⋃

Xi =
⋃

(A ∩Xi);

(ii) A ∪⋂

Xi =
⋂

(A ∪Xi);
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(iii)
(
⋂

Xi

)

−A =
⋂

(Xi −A);
(iv)

(
⋃

Xi

)

−A =
⋃

(Xi −A);
(v)

⋂

Xi ∪
⋂

Yj =
⋂

i, j(Xi ∪ Yj);4

(vi)
⋃

Xi ∩
⋃

Yj =
⋃

i, j(Xi ∩ Yj).

10. Prove that

(i)
(
⋃

Ai

)

×B =
⋃

(Ai ×B);

(ii)
(
⋂

Ai

)

×B =
⋂

(Ai ×B);

(iii)
(
⋂

iAi

)

×
(
⋂

j Bj

)

=
⋂

i,j(Ai ×Bi);

(iv)
(
⋃

iAi

)

×
(
⋃

j Bj

)

=
⋃

i, j(Ai ×Bj).

§§4–7. Relations. Mappings

In §§1–3, we have already considered sets of ordered pairs , such as Cartesian
products A × B or sets of the form {(x, y) | P (x, y)} (cf. §§1–3, Problem 7).
If the pair (x, y) is an element of such a set R, we write

(x, y) ∈ R,
treating (x, y) as one thing. Note that this does not imply that x and y taken
separately are members of R (in which case we would write x, y ∈ R). We call
x, y the terms of (x, y).

In mathematics, it is customary to call any set of ordered pairs a relation.
For example, all sets listed in Problem 7 of §§1–3 are relations. Since relations
are sets , equality R = S for relations means that they consist of the same
elements (ordered pairs), i.e., that

(x, y) ∈ R⇐⇒ (x, y) ∈ S.

If (x, y) ∈ R, we call y an R-relative of x; we also say that y is R-related
to x or that the relation R holds between x and y (in this order). Instead of
(x, y) ∈ R, we also write xRy, and often replace “R” by special symbols like
<, ∼, etc. Thus, in case (i) of Problem 7 above, “xRy” means that x < y.

Replacing all pairs (x, y) ∈ R by the inverse pairs (y, x), we obtain a new
relation, called the inverse of R and denoted R−1. Clearly, xR−1y iff yRx;
thus

R−1 = {(x, y) | yRx} = {(y, x) | xRy}.

4 Here we work with two set families, {Xi | i ∈ I} and {Yj | j ∈ J}; similarly in other

such cases.
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Hence R, in turn, is the inverse of R−1; i.e.,

(R−1)−1 = R.

For example, the relations < and > between numbers are inverse to each other;
so also are the relations ⊆ and ⊇ between sets. (We may treat “⊆” as the name
of the set of all pairs (X, Y ) such that X ⊆ Y in a given space.)

If R contains the pairs (x, x′), (y, y′), (z, z′), . . . , we shall write

R =

(

x y z
x′ y′ z′

· · ·
)

; e.g., R =

(

1 4 1 3
2 2 1 1

)

. (1)

To obtain R−1, we simply interchange the upper and lower rows in (1).

Definition 1.

The set of all left terms x of pairs (x, y) ∈ R is called the domain of R,
denoted DR. The set of all right terms of these pairs is called the range

of R, denoted D′
R. Clearly, x ∈ DR iff xRy for some y. In symbols,

x ∈ DR ⇐⇒ (∃ y) xRy; similarly, y ∈ D′
R ⇐⇒ (∃x) xRy.

In (1), DR is the upper row, and D′
R is the lower row. Clearly,

DR−1 = D′
R and D′

R−1 = DR.

For example, if

R =

(

1 4 1
2 2 1

)

,

then

DR = D′
R−1 = {1, 4} and D′

R = DR−1 = {1, 2}.

Definition 2.

The image of a set A under a relation R (briefly, the R-image of A) is the
set of all R-relatives of elements of A, denoted R[A]. The inverse image

of A under R is the image of A under the inverse relation, i.e., R−1[A].
If A consists of a single element, A = {x}, then R[A] and R−1[A] are also
written R[x] and R−1[x], respectively, instead of R[{x}] and R−1[{x}].

Example.

Let

R =

(

1 1 1 2 2 3 3 3 3 7
1 3 4 5 3 4 1 3 5 1

)

, A = {1, 2}, B = {2, 4}.
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Then

R[1] = {1, 3, 4}; R[2] = {3, 5}; R[3] = {1, 3, 4, 5}
R[5] = ∅; R−1[1] = {1, 3, 7}; R−1[2] = ∅;
R−1[3] = {1, 2, 3}; R−1[4] = {1, 3}; R[A] = {1, 3, 4, 5};
R−1[A] = {1, 3, 7}; R[B] = {3, 5}.

By definition, R[x] is the set of all R-relatives of x. Thus

y ∈ R[x] iff (x, y) ∈ R; i.e., xRy.
More generally, y ∈ R[A] means that (x, y) ∈ R for some x ∈ A. In symbols,

y ∈ R[A]⇐⇒ (∃x ∈ A) (x, y) ∈ R.
Note that R[A] is always defined.

We shall now consider an especially important kind of relation.

Definition 3.

A relation R is called a mapping (map), or a function, or a transfor-

mation, iff every element x ∈ DR has a unique R-relative, so that R[x]
consists of a single element. This unique element is denoted by R(x) and
is called the function value at x (under R). Thus R(x) is the only member
of R[x].1

If, in addition, different elements of DR have different images, R is called a
one-to-one (or one-one) map. In this case,

x 6= y (x, y ∈ DR) implies R(x) 6= R(y);

equivalently,

R(x) = R(y) implies x = y.

In other words, no two pairs belonging to R have the same left, or the same
right, terms. This shows that R is one to one iff R−1, too, is a map.2 Mappings
are often denoted by the letters f , g, h, F , ψ, etc.

1 Equivalently, R is a map iff (x, y) ∈ R and (x, z) ∈ R implies that y = z. (Why?)
2 Note that R−1 always exists as a relation, but it need not be a map. For example,

f =

(
1 2 3 4

2 3 3 8

)

is a map, but

f−1 =

(
2 3 3 8
1 2 3 4

)

is not. (Why?) Here f is not one to one.
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A mapping f is said to be “from A to B” iff Df = A and D′
f ⊆ B; we then

write

f : A→ B (“f maps A into B”).

If, in particular, Df = A and D′
f = B, we call f a map of A onto B, and we

write

f : A −→
onto

B (“f maps A onto B”).

If f is both onto and one to one, we write

f : A←→
onto

B

(f : A←→ B means that f is one to one).

All pairs belonging to a mapping f have the form (x, f(x)) where f(x) is
the function value at x, i.e., the unique f -relative of x, x ∈ Df . Therefore, in
order to define some function f , it suffices to specify its domain Df and the

function value f(x) for each x ∈ Df . We shall often use such definitions. It is
customary to say that f is defined on A (or “f is a function on A”) iff A = Df .

Examples.

(a) The relation

R = {(x, y) | x is the wife of y}

is a one-to-one map of the set of all wives onto the set of all husbands.
R−1 is here a one-to-one map of the set of of all husbands (= D′

R) onto
the set of all wives (= DR).

(b) The relation

f = {(x, y) | y is the father of x}

is a map of the set of all people onto the set of their fathers. It is not one
to one since several persons may have the same father (f -relative), and
so x 6= x′ does not imply f(x) 6= f(x′).

(c) Let

g =

(

1 2 3 4
2 2 3 8

)

.

Then g is a map of Dg = {1, 2, 3, 4} onto D′
g = {2, 3, 8}, with

g(1) = 2, g(2) = 2, g(3) = 3, g(4) = 8.

(As noted above, these formulas may serve to define g.) It is not one to
one since g(1) = g(2), so g−1 is not a map.
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(d) Consider

f : N → N , with f(x) = 2x for each x ∈ N .3

By what was said above, f is well defined. It is one to one since x 6= y
implies 2x 6= 2y. Here Df = N (the naturals), but D′

f consists of even

naturals only. Thus f is not onto N (it is onto a smaller set, the even

naturals); f−1 maps the even naturals onto all of N .

The domain and range of a relation may be quite arbitrary sets. In partic-
ular, we can consider functions f in which each element of the domain Df is
itself an ordered pair (x, y) or n-tuple (x1, x2, . . . , xn). Such mappings are
called functions of two (respectively , n) variables . To any n-tuple (x1, . . . , xn)
that belongs to Df , the function f assigns a unique function value, denoted by
f(x1, . . . , xn). It is convenient to regard x1, x2, . . . , xn as certain variables;
then the function value, too, becomes a variable depending on the x1, . . . , xn.
Often Df consists of all ordered n-tuples of elements taken from a set A,
i.e., Df = An (cross-product of n sets, each equal to A). The range may
be an arbitrary set B; so f : An → B. Similarly, f : A × B → C is a function
of two variables, with Df = A×B, D′

f ⊆ C.
Functions of two variables are also called (binary) operations . For example,

addition of natural numbers may be treated as a map f : N × N → N , with
f(x, y) = x+ y.

Definition 4.

A relation R is said to be

(i) reflexive iff we have xRx for each x ∈ DR;

(ii) symmetric iff xRy always implies yRx;

(iii) transitive iff xRy combined with yRz always implies xRz.

R is called an equivalence relation on a set A iff A = DR and R has all the
three properties (i), (ii), and (iii). For example, such is the equality relation on
A (also called the identity map on A) denoted

IA = {(x, y) | x ∈ A, x = y}.
Equivalence relations are often denoted by special symbols resembling equality,
such as ≡, ≈, ∼, etc. The formula xRy, where R is such a symbol, is read

“x is equivalent (or R-equivalent) to y,”

3 This is often abbreviated by saying “consider the function f(x) = 2x on N .” However,

one should remember that f(x) is actually not the function f (a set of ordered pairs) but
only a single element of the range of f . A better expression is “f is the map x → 2x on N”

or “f carries x into 2x (x ∈ N).”
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and R[x] = {y | xRy} (i.e., the R-image of x) is called the R-equivalence class

(briefly R-class) of x in A; it consists of all elements that are R-equivalent to
x and hence to each other (for xRy and xRz imply first yRx, by symmetry,
and hence yRz, by transitivity). Each such element is called a representative

of the given R-class, or its generator . We often write [x] for R[x].

Examples.

(a′) The inequality relation < between real numbers is transitive since

x < y and y < z implies x < z;

it is neither reflexive nor symmetric. (Why?)

(b′) The inclusion relation ⊆ between sets is reflexive (for A ⊆ A) and tran-
sitive (for A ⊆ B and B ⊆ C implies A ⊆ C), but it is not symmetric.

(c′) The membership relation ∈ between an element and a set is neither re-
flexive nor symmetric nor transitive (x ∈ A and A ∈ M does not imply
x ∈M).

(d′) Let R be the parallelism relation between lines in a plane, i.e., the set of
all pairs (X, Y ), where X and Y are parallel lines. Writing ‖ for R, we
have X ‖ X , X ‖ Y implies Y ‖ X , and (X ‖ Y and Y ‖ Z) implies
X ‖ Z, so R is an equivalence relation. An R-class here consists of all
lines parallel to a given line in the plane.

(e′) Congruence of triangles is an equivalence relation. (Why?)

Theorem 1. If R (also written ≡) is an equivalence relation on A, then all

R-classes are disjoint from each other, and A is their union.

Proof. Take two R-classes, [p] 6= [q]. Seeking a contradiction, suppose they
are not disjoint, so

(∃x) x ∈ [p] and x ∈ [q];

i.e., p ≡ x ≡ q and hence p ≡ q. But then, by symmetry and transitivity,

y ∈ [p]⇔ y ≡ p⇔ y ≡ q ⇔ y ∈ [q];

i.e., [p] and [q] consist of the same elements y, contrary to assumption [p] 6= [q].
Thus, indeed, any two (distinct) R-classes are disjoint.

Also, by reflexivity,

(∀x ∈ A) x ≡ x,

i.e., x ∈ [x]. Thus each x ∈ A is in some R-class (namely, in [x]); so all of A is
in the union of such classes,

A ⊆
⋃

x

R[x].
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Conversely,
(∀x) R[x] ⊆ A

since
y ∈ R[x]⇒ xRy ⇒ yRx⇒ (y, x) ∈ R⇒ y ∈ DR = A,

by definition. Thus A contains all R[x], hence their union, and so

A =
⋃

x

R[x]. �

Problems on Relations and Mappings

1. For the relations specified in Problem 7 of §§1–3, find DR, D
′
R, and R

−1.
Also, find R[A] and R−1[A] if

(a) A = { 1
2
}; (b) A = {1};

(c) A = {0}; (d) A = ∅;
(e) A = {0, 3, −15}; (f) A = {3, 4, 7, 0, −1, 6};
(g) A = {x | −20 < x < 5}.

2. Prove that if A ⊆ B, then R[A] ⊆ R[B]. Disprove the converse by a
counterexample.

3. Prove that

(i) R[A ∪B] = R[A] ∪R[B];

(ii) R[A ∩B] ⊆ R[A] ∩R[B];

(iii) R[A−B] ⊇ R[A]−R[B].

Disprove reverse inclusions in (ii) and (iii) by examples. Do (i) and (ii)
with A, B replaced by an arbitrary set family {Ai | i ∈ I}.

4. Under which conditions are the following statements true?

(i) R[x] = ∅; (ii) R−1[x] = ∅;
(iii) R[A] = ∅; (iv) R−1[A] = ∅.

5. Let f : N → N (N = {naturals}). For each of the following functions,
specify f [N ], i.e., D′

f , and determine whether f is one to one and onto
N , given that for all x ∈ N ,

(i) f(x) = x3; (ii) f(x) = 1; (iii) f(x) = |x|+ 3;

(iv) f(x) = x2; (v) f(x) = 4x+ 5.

Do all this also if N denotes

(a) the set of all integers;



§§4–7. Relations. Mappings 15

(b) the set of all reals.

6. Prove that for any mapping f and any sets A, B, Ai (i ∈ I),
(a) f−1[A ∪B] = f−1[A] ∪ f−1[B];

(b) f−1[A ∩B] = f−1[A] ∩ f−1[B];

(c) f−1[A−B] = f−1[A]− f−1[B];

(d) f−1[
⋃

iAi] =
⋃

i f
−1[Ai];

(e) f−1[
⋂

iAi] =
⋂

i f
−1[Ai].

Compare with Problem 3.
[Hint: First verify that x ∈ f−1[A] iff x ∈ Df and f(x) ∈ A.]

7. Let f be a map. Prove that

(a) f [f−1[A]] ⊆ A;
(b) f [f−1[A]] = A if A ⊆ D′

f ;

(c) if A ⊆ Df and f is one to one, A = f−1[f [A]].

Is f [A] ∩B ⊆ f [A ∩ f−1[B]]?

8. Is R an equivalence relation on the set J of all integers, and, if so, what
are the R-classes, if

(a) R = {(x, y) | x− y is divisible by a fixed n};
(b) R = {(x, y) | x− y is odd};
(c) R = {(x, y) | x− y is a prime}.

(x, y, n denote integers .)

9. Is any relation in Problem 7 of §§1–3 reflexive? Symmetric? Transitive?

10. Show by examples that R may be

(a) reflexive and symmetric, without being transitive;

(b) reflexive and transitive without being symmetric.

Does symmetry plus transitivity imply reflexivity? Give a proof or
counterexample.

§8. Sequences1

By an infinite sequence (briefly sequence) we mean a mapping (call it u) whose
domain is N (all natural numbers 1, 2, 3, . . . ); Du may also contain 0.

1 This section may be deferred until Chapter 2, §13.
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A finite sequence is a map u in which Du consists of all positive (or non-
negative) integers less than a fixed integer p. The range D′

u of any sequence u
may be an arbitrary set B; we then call u a sequence of elements of B, or in

B. For example,

u =

(

1 2 3 4 . . . n . . .
2 4 6 8 . . . 2n . . .

)

(1)

is a sequence with

Du = N = {1, 2, 3, . . . }

and with function values

u(1) = 2, u(2) = 4, u(n) = 2n, n = 1, 2, 3, . . . .

Instead of u(n) we usually write un (“index notation”), and call un the nth
term of the sequence. If n is treated as a variable, un is called the general term
of the sequence, and {un} is used to denote the entire (infinite) sequence, as
well as its range D′

u (whichever is meant, will be clear from the context). The
formula {un} ⊆ B means that D′

u ⊆ B, i.e., that u is a sequence in B. To
determine a sequence, it suffices to define its general term un by some formula
or rule.2 In (1) above, un = 2n.

Often we omit the mention of Du = N (since it is known) and give only the
range D′

u. Thus instead of (1), we briefly write

2, 4, 6, . . . , 2n, . . .

or, more generally,

u1, u2, . . . , un, . . . .

Yet it should be remembered that u is a set of pairs (a map).

If all un are distinct (different from each other), u is a one-to-one map. How-
ever, this need not be the case. It may even occur that all un are equal (then u
is said to be constant); e.g., un = 1 yields the sequence 1, 1, 1, . . . , 1, . . . , i.e.,

u =

(

1 2 3 . . . n . . .
1 1 1 . . . 1 . . .

)

. (2)

Note that here u is an infinite sequence (since Du = N), even though its
range D′

u has only one element, D′
u = {1}. (In sets , repeated terms count

as one element; but the sequence u consists of infinitely many distinct pairs

(n, 1).) If all un are real numbers, we call u a real sequence. For such sequences,
we have the following definitions.

2 However, such a formula may not exist; the un may even be chosen “at random.”
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Definition 1.

A real sequence {un} is said to be monotone (or monotonic) iff it is either
nondecreasing , i.e.,

(∀n) un ≤ un+1,

or nonincreasing , i.e.,

(∀n) un ≥ un+1.

Notation: {un}↑ and {un}↓, respectively. If instead we have the strict

inequalities un < un+1 (respectively, un > un+1), we call {un} strictly

monotone (increasing or decreasing).

A similar definition applies to sequences of sets .

Definition 2.

A sequence of sets A1, A2, . . . , An, . . . is said to be monotone iff it is
either expanding , i.e.,

(∀n) An ⊆ An+1,

or contracting , i.e.,
(∀n) An ⊇ An+1.

Notation: {An}↑ and {An}↓, respectively. For example, any sequence of
concentric solid spheres (treated as sets of points), with increasing radii,
is expanding; if the radii decrease, we obtain a contracting sequence.

Definition 3.

Let {un} be any sequence, and let

n1 < n2 < · · · < nk < · · ·
be a strictly increasing sequence of natural numbers. Select from {un}
those terms whose subscripts are n1, n2, . . . , nk, . . . . Then the sequence
{unk

} so selected (with kth term equal to unk
), is called the subsequence

of {un}, determined by the subscripts nk, k = 1, 2, 3, . . . .

Thus (roughly) a subsequence is any sequence obtained from {un} by drop-
ping some terms, without changing the order of the remaining terms (this is
ensured by the inequalities n1 < n2 < · · · < nk < · · · where the nk are the
subscripts of the remaining terms). For example, let us select from (1) the
subsequence of terms whose subscripts are primes (including 1). Then the
subsequence is

2, 4, 6, 10, 14, 22, . . . ,

i.e.,
u1, u2, u3, u5, u7, u11, . . . .
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All these definitions apply to finite sequences accordingly. Observe that
every sequence arises by “numbering” the elements of its range (the terms): u1
is the first term, u2 is the second term, and so on. By so numbering, we put
the terms in a certain order , determined by their subscripts 1, 2, 3, . . . (like
the numbering of buildings in a street, of books in a library, etc.). The question
now arises: Given a set A, is it always possible to “number” its elements by

integers? As we shall see in §9, this is not always the case. This leads us to
the following definition.

Definition 4.

A set A is said to be countable iff A is contained in the range of some
sequence (briefly, the elements of A can be put in a sequence).

If, in particular, this sequence can be chosen finite, we call A a finite

set. (The empty set is finite.)

Sets that are not finite are said to be infinite.

Sets that are not countable are said to be uncountable.

Note that all finite sets are countable. The simplest example of an infinite
countable set is N = {1, 2, 3, . . . }.

§9. Some Theorems on Countable Sets1

We now derive some corollaries of Definition 4 in §8.
Corollary 1. If a set A is countable or finite, so is any subset B ⊆ A.

For if A ⊂ D′
u for a sequence u, then certainly B ⊆ A ⊆ D′

u.

Corollary 2. If A is uncountable (or just infinite), so is any superset B ⊇ A.

For, if B were countable or finite, so would be A ⊆ B, by Corollary 1.

Theorem 1. If A and B are countable, so is their cross product A×B.

Proof. If A or B is ∅, then A×B = ∅, and there is nothing to prove.

Thus let A and B be nonvoid and countable. We may assume that they fill

two infinite sequences, A = {an}, B = {bn} (repeat terms if necessary). Then,
by definition, A×B is the set of all ordered pairs of the form

(an, bm), n, m ∈ N.
Call n+m the rank of the pair (an, bm). For each r ∈ N , there are r− 1 pairs
of rank r:

(a1, br−1), (a2, br−2), . . . , (ar−1, b1). (1)

1 This section may be deferred until Chapter 5, §4.



§9. Some Theorems on Countable Sets 19

We now put all pairs (an, bm) in one sequence as follows. We start with

(a1, b1)

as the first term; then take the two pairs of rank three,

(a1, b2), (a2, b1);

then the three pairs of rank four, and so on. At the (r − 1)st step, we take all
pairs of rank r, in the order indicated in (1).

Repeating this process for all ranks ad infinitum, we obtain the sequence of
pairs

(a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), (a3, b1), . . . ,

in which u1 = (a1, b1), u2 = (a1, b2), etc.

By construction, this sequence contains all pairs of all ranks r, hence all pairs
that form the set A × B (for every such pair has some rank r and so it must
eventually occur in the sequence). Thus A×B can be put in a sequence. �

Corollary 3. The set R of all rational numbers2 is countable.

Proof. Consider first the set Q of all positive rationals, i.e.,

fractions
n

m
, with n, m ∈ N .

We may formally identify them with ordered pairs (n, m), i.e., with N × N .
We call n+m the rank of (n, m). As in Theorem 1, we obtain the sequence

1

1
,
1

2
,
2

1
,
1

3
,
2

2
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
, . . . .

By dropping reducible fractions and inserting also 0 and the negative rationals,
we put R into the sequence

0, 1, −1, 1

2
, −1

2
, 2, −2, 1

3
, −1

3
, 3, −3, . . . , as required. �

Theorem 2. The union of any sequence {An} of countable sets is countable.

Proof. As each An is countable, we may put

An = {an1, an2, . . . , anm, . . . }.
(The double subscripts are to distinguish the sequences representing different
sets An.) As before, we may assume that all sequences are infinite. Now,

⋃

nAn

obviously consists of the elements of all An combined , i.e., all anm (n, m ∈ N).
We call n+m the rank of anm and proceed as in Theorem 1, thus obtaining

⋃

n

An = {a11, a12, a21, a13, a22, a31, . . . }.

2 A number is rational iff it is the ratio of two integers, p/q, q 6= 0.
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Thus
⋃

nAn can be put in a sequence. �

Note 1. Theorem 2 is briefly expressed as

“Any countable union of countable sets is a countable set .”

(The term“countable union” means “union of a countable family of sets”, i.e., a
family of sets whose elements can be put in a sequence {An}.) In particular,
if A and B are countable, so are A ∪B, A ∩B, and A−B (by Corollary 1).

Note 2. From the proof it also follows that the range of any double se-

quence {anm} is countable. (A double sequence is a function u whose domain
Du is N × N ; say, u : N × N → B. If n, m ∈ N , we write unm for u(n, m);
here unm = anm.)

To prove the existence of uncountable sets, we shall now show that the
interval

[0, 1) = {x | 0 ≤ x < 1}
of the real axis is uncountable.

We assume as known the fact that each real number x ∈ [0, 1) has a unique
infinite decimal expansion

0.x1, x2, . . . , xn, . . . ,

where the xn are the decimal digits (possibly zeros), and the sequence {xn}
does not terminate in nines (this ensures uniqueness).3

Theorem 3. The interval [0, 1) of the real axis is uncountable.

Proof. We must show that no sequence can comprise all of [0, 1). Indeed,
given any {un}, write each term un as an infinite decimal fraction; say,

un = 0.an1, an2, . . . , anm, . . . .

Next, construct a new decimal fraction

z = 0.x1, x2, . . . , xn, . . . ,

choosing its digits xn as follows.

If ann (i.e., the nth digit of un) is 0, put xn = 1; if, however, ann 6= 0, put
xn = 0. Thus, in all cases, xn 6= ann, i.e., z differs from each un in at least one

decimal digit (namely, the nth digit). It follows that z is different from all un
and hence is not in {un}, even though z ∈ [0, 1).

Thus, no matter what the choice of {un} was, we found some z ∈ [0, 1) not
in the range of that sequence. Hence no {un} contains all of [0, 1). �

Note 3. By Corollary 2, any superset of [0, 1), e.g., the entire real axis, is
uncountable. See also Problem 4 below.

3 For example, instead of 0.49999 . . . , we write 0.50000 . . . .
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Note 4. Observe that the numbers ann used in the proof of Theorem 3 form
the diagonal of the infinitely extending square composed of all anm. Therefore,
the method used above is called the diagonal process (due to G. Cantor).

Problems on Countable and Uncountable Sets

1. Prove that if A is countable but B is not, then B − A is uncountable.
[Hint: If B − A were countable, so would be

(B − A) ∪ A ⊇ B. (Why?)

Use Corollary 1.]

2. Let f be a mapping, and A ⊆ Df . Prove that

(i) if A is countable, so is f [A];

(ii) if f is one to one and A is uncountable, so is f [A].

[Hints: (i) If A = {un}, then

f [A] = {f(u1), f(u2), . . . , f(un), . . . }.

(ii) If f [A] were countable, so would be f−1[f [A]], by (i). Verify that

f−1[f [A]] = A

here; cf. Problem 7 in §§4–7.]

3. Let a, b be real numbers (a < b). Define a map f on [0, 1) by

f(x) = a+ x(b− a).
Show that f is one to one and onto the interval [a, b) = {x | a ≤ x < b}.
From Problem 2, deduce that [a, b) is uncountable. Hence, by Problem
1, so is (a, b) = {x | a < x < b}.

4. Show that between any real numbers a, b (a < b) there are uncountably

many irrationals , i.e., numbers that are not rational.
[Hint: By Corollary 3 and Problems 1 and 3, the set (a, b) − R is uncountable.
Explain in detail.]

5. Show that every infinite set A contains a countably infinite set, i.e., an
infinite sequence of distinct terms.
[Hint: Fix any a1 ∈ A; A cannot consist of a1 alone, so there is another element

a2 ∈ A− {a1}. (Why?)

Again, A 6= {a1, a2}, so there is an a3 ∈ A− {a1, a2}. (Why?) Continue thusly ad
infinitum to obtain the required sequence {an}. Why are all an distinct?]

∗6. From Problem 5, prove that if A is infinite, there is a map f : A → A
that is one to one but not onto A.
[Hint: With an as in Problem 5, define f(an) = an+1. If, however, x is none of the
an, put f(x) = x. Observe that f(x) = a1 is never true, so f is not onto A. Show,

however, that f is one to one.]
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∗7. Conversely (cf. Problem 6), prove that if there is a map f : A→ A that
is one to one but not onto A, then A contains an infinite sequence {an}
of distinct terms.
[Hint: As f is not onto A, there is a1 ∈ A such that a1 /∈ f [A]. (Why?) Fix a1 and

define

a2 = f(a1), a3 = f(a2), . . . , an+1 = f(an), . . . ad infinitum.

To prove distinctness, show that each an is distinct from all am with m > n. For a1,

this is true since a1 /∈ f [A], whereas am ∈ f [A] (m > 1). Then proceed inductively.]



Chapter 2

Real Numbers. Fields

§§1–4. Axioms and Basic Definitions

Real numbers can be constructed step by step: first the integers, then the
rationals, and finally the irrationals.1 Here, however, we shall assume the
set of all real numbers, denoted E1, as already given, without attempting to
reduce this notion to simpler concepts. We shall also accept without definition
(as primitive concepts) the notions of the sum (a+ b) and the product , (a · b)
or (ab), of two real numbers, as well as the inequality relation < (read “less
than”). Note that x ∈ E1 means “x is in E1,” i.e., “x is a real number .”

It is an important fact that all arithmetic properties of reals can be deduced
from several simple axioms, listed (and named) below.

Axioms of Addition and Multiplication

I (closure laws). The sum x + y, and the product xy, of any real numbers

are real numbers themselves. In symbols,

(∀x, y ∈ E1) (x+ y) ∈ E1 and (xy) ∈ E1.

II (commutative laws).

(∀x, y ∈ E1) x+ y = y + x and xy = yx.

III (associative laws).

(∀x, y, z ∈ E1) (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

IV (existence of neutral elements).

(a) There is a (unique) real number , called zero (0), such that , for all

real x, x+ 0 = x.

1 See the author’s Basic Concepts of Mathematics , Chapter 2, §15.

http://www.trillia.com/zakon1.html
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(b) There is a (unique) real number , called one (1), such that 1 6= 0
and , for all real x, x · 1 = x.

In symbols,

(a) (∃! 0 ∈ E1) (∀x ∈ E1) x+ 0 = x;

(b) (∃! 1 ∈ E1) (∀x ∈ E1) x · 1 = x, 1 6= 0.

(The real numbers 0 and 1 are called the neutral elements of addition and
multiplication, respectively.)

V (existence of inverse elements).

(a) For every real x, there is a (unique) real , denoted −x, such that

x+ (−x) = 0.

(b) For every real x other than 0, there is a (unique) real , denoted x−1,
such that x · x−1 = 1.

In symbols,

(a) (∀x ∈ E1) (∃!−x ∈ E1) x+ (−x) = 0;

(b) (∀x ∈ E1 | x 6= 0) (∃! x−1 ∈ E1) xx−1 = 1.

(The real numbers −x and x−1 are called, respectively, the additive in-

verse (or the symmetric) and the multiplicative inverse (or the reciprocal)
of x.)

VI (distributive law).

(∀x, y, z ∈ E1) (x+ y)z = xz + yz.

Axioms of Order

VII (trichotomy). For any real x and y, we have

either x < y or y < x or x = y

but never two of these relations together .

VIII (transitivity).

(∀x, y, z ∈ E1) x < y and y < z implies x < z.

IX (monotonicity of addition and multiplication). For any x, y, z ∈ E1, we

have

(a) x < y implies x+ z < y + z;

(b) x < y and z > 0 implies xz < yz.

An additional axiom will be stated in §§8–9.
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Note 1. The uniqueness assertions in Axioms IV and V are actually re-
dundant since they can be deduced from other axioms. We shall not dwell on
this.

Note 2. Zero has no reciprocal ; i.e., for no x is 0x = 1. In fact, 0x = 0.

For, by Axioms VI and IV,

0x+ 0x = (0 + 0)x = 0x = 0x+ 0.

Cancelling 0x (i.e., adding −0x on both sides), we obtain 0x = 0, by Axioms III
and V(a).

Note 3. Due to Axioms VII and VIII, real numbers may be regarded as
given in a certain order under which smaller numbers precede the larger ones.
(This is why we speak of “axioms of order .”) The ordering of real numbers can
be visualized by “plotting” them as points on a directed line (“the real axis”)
in a well-known manner. Therefore, E1 is also often called “the real axis ,” and
real numbers are called “points”; we say “the point x” instead of “the number

x.”

Observe that the axioms only state certain properties of real numbers without
specifying what these numbers are. Thus we may treat the reals as just any

mathematical objects satisfying our axioms, but otherwise arbitrary. Indeed,
our theory also applies to any other set of objects (numbers or not), provided
they satisfy our axioms with respect to a certain relation of order (<) and
certain operations (+) and (·), which may, but need not, be ordinary addition
and multiplication. Such sets exist indeed. We now give them a name.

Definition 1.

A field is any set F of objects, with two operations (+) and (·) defined
in it in such a manner that they satisfy Axioms I–VI listed above (with
E1 replaced by F , of course).

If F is also endowed with a relation < satisfying Axioms VII to IX, we
call F an ordered field .

In this connection, postulates I to IX are called axioms of an (ordered) field .

By Definition 1, E1 is an ordered field. Clearly, whatever follows from the
axioms must hold not only in E1 but also in any other ordered field. Thus
we shall henceforth state our definitions and theorems in a more general way,
speaking of ordered fields in general instead of E1 alone.

Definition 2.

An element x of an ordered field is said to be positive if x > 0 or negative
if x < 0.

Here and below, “x > y” means the same as “y < x.” We also write
“x ≤ y” for “x < y or x = y”; similarly for “x ≥ y.”
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Definition 3.

For any elements x, y of a field, we define their difference

x− y = x+ (−y).

If y 6= 0, we also define the quotient of x by y

x

y
= xy−1,

also denoted by x/y.

Note 4. Division by 0 remains undefined .

Definition 4.

For any element x of an ordered field, we define its absolute value,

|x| =
{

x if x ≥ 0 and

−x if x < 0.

It follows that |x| ≥ 0 always ; for if x ≥ 0, then

|x| = x ≥ 0;

and if x < 0, then

|x| = −x > 0. (Why?)

Moreover,

−|x| ≤ x ≤ |x|,
for,

if x ≥ 0, then |x| = x;

and

if x < 0, then x < |x| since |x| > 0.

Thus, in all cases,

x ≤ |x|.

Similarly one shows that

−|x| ≤ x.

As we have noted, all rules of arithmetic (dealing with the four arithmetic
operations and inequalities) can be deduced from Axioms I through IX and
thus apply to all ordered fields, along with E1. We shall not dwell on their
deduction, limiting ourselves to a few simple corollaries as examples.2

2 For more examples, see the author’s Basic Concepts of Mathematics , Chapter 2, §§3–4.

http://www.trillia.com/zakon1.html
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Corollary 1 (rule of signs).

(i) a(−b) = (−a)b = −(ab);
(ii) (−a)(−b) = ab.

Proof. By Axiom VI,

a(−b) + ab = a[(−b) + b] = a · 0 = 0.

Thus
a(−b) + ab = 0.

By definition, then, a(−b) is the additive inverse of ab, i.e.,

a(−b) = −(ab).

Similarly, we show that
(−a)b = −(ab)

and that
−(−a) = a.

Finally, (ii) is obtained from (i) when a is replaced by −a. �

Corollary 2. In an ordered field , a 6= 0 implies

a2 = (a · a) > 0.

(Hence 1 = 12 > 0.)

Proof. If a > 0, we may multiply by a (Axiom IX(b)) to obtain

a · a > 0 · a = 0, i.e., a2 > 0.

If a < 0, then −a > 0; so we may multiply the inequality a < 0 by −a and
obtain

a(−a) < 0(−a) = 0;

i.e., by Corollary 1,
−a2 < 0,

whence
a2 > 0. �

§§5–6. Natural Numbers. Induction

The element 1 was introduced in Axiom IV(b). Since addition is also assumed
known, we can use it to define, step by step, the elements

2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, etc.
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If this process is continued indefinitely, we obtain what is called the set N of
all natural elements in the given field F . In particular, the natural elements of
E1 are called natural numbers . Note that

(∀n ∈ N) n+ 1 ∈ N.
∗A more precise approach to natural elements is as follows.1 A subset S of

a field F is said to be inductive iff

(i) 1 ∈ S and

(ii) (∀x ∈ S) x+ 1 ∈ S.
Such subsets certainly exist; e.g., the entire field F is inductive since

1 ∈ F and (∀x ∈ F ) x+ 1 ∈ F.
Define N as the intersection of all inductive sets in F .

∗Theorem 1. The set N so defined is inductive itself . In fact , it is the “small-

est” inductive subset of F (i .e., contained in any other such subset).

Proof. We have to show that

(i) 1 ∈ N , and

(ii) (∀x ∈ N) x+ 1 ∈ N .

Now, by definition, the unity 1 is in each inductive set; hence it also belongs
to the intersection of such sets, i.e., to N . Thus 1 ∈ N , as claimed.

Next, take any x ∈ N . Then, by our definition of N , x is in each inductive
set S; thus, by property (ii) of such sets, also x + 1 is in each such S; hence
x+ 1 is in the intersection of all inductive sets, i.e.,

x+ 1 ∈ N,
and so N is inductive, indeed.

Finally, by definition, N is the common part of all such sets and hence
contained in each. �

For applications, Theorem 1 is usually expressed as follows.

Theorem 1′ (first induction law). A proposition P (n) involving a natural n
holds for all n ∈ N in a field F if

(i) it holds for n = 1, i .e., P (1) is true; and

(ii) whenever P (n) holds for n = m, it holds for n = m+ 1, i .e.,

P (m) =⇒ P (m+ 1).

1 At a first reading, one may omit all “starred” passages and simply assume Theorems 1′

and 2′ below as additional axioms, without proof.
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∗Proof. Let S be the set of all those n ∈ N for which P (n) is true,

S = {n ∈ N | P (n)}.
We have to show that actually each n ∈ N is in S, i.e., N ⊆ S.

First, we show that S is inductive.

Indeed, by assumption (i), P (1) is true; so 1 ∈ S.
Next, let x ∈ S. This means that P (x) is true. By assumption (ii), however,

this implies P (x+ 1), i.e., x+ 1 ∈ S. Thus
1 ∈ S and (∀x ∈ S) x+ 1 ∈ S;

S is inductive.

Then, by Theorem 1 (second clause), N ⊆ S, and all is proved. �

This theorem is used to prove various properties of N “by induction.”

Examples.

(a) If m, n ∈ N , then also m+ n ∈ N and mn ∈ N .

To prove the first property, fix any m ∈ N . Let P (n) mean

m+ n ∈ N (n ∈ N).

Then

(i) P (1) is true, for as m ∈ N , the definition of N yields m + 1 ∈ N ,
i.e., P (1).

(ii) P (k)⇒ P (k + 1) for k ∈ N . Indeed,

P (k)⇒ m+ k ∈ N ⇒ (m+ k) + 1 ∈ N
⇒ m+ (k + 1) ∈ N ⇒ P (k + 1).

Thus, by Theorem 1′, P (n) holds for all n; i.e.,

(∀n ∈ N) m+ n ∈ N
for any m ∈ N .

To prove the same for mn, we let P (n) mean

mn ∈ N (n ∈ N)

and proceed similarly.

(b) If n ∈ N , then n− 1 = 0 or n− 1 ∈ N .

For an inductive proof, let P (n) mean

n− 1 = 0 or n− 1 ∈ N (n ∈ N).

Then proceed as in (a).
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(c) In an ordered field , all naturals are ≥ 1.

Indeed, let P (n) mean that

n ≥ 1 (n ∈ N).

Then

(i) P (1) holds since 1 = 1.

(ii) P (m)⇒ P (m+ 1) for m ∈ N , since

P (m)⇒ m ≥ 1⇒ (m+ 1) > 1⇒ P (m+ 1).

Thus Theorem 1′ yields the result.

(d) In an ordered field , m, n ∈ N and m > n implies m− n ∈ N .

For an inductive proof, fix any m ∈ N and let P (n) mean

m− n ≤ 0 or m− n ∈ N (n ∈ N).

Use (b).

(e) In an ordered field , m, n ∈ N and m < n+ 1 implies m ≤ n.
For, by (d), m > n would imply m − n ∈ N , hence m − n ≥ 1, or

m ≥ n+ 1, contrary to m < n+ 1.

Our next theorem states the so-called well-ordering property of N .

Theorem 2 (well-ordering of N). In an ordered field , each nonvoid set A ⊆ N
has a least member (i .e., one that exceeds no other element of A).

Proof outline.2 Given ∅ 6= A ⊆ N , let P (n) be the proposition “Any subset

of A containing elements ≤ n has a least member” (n ∈ N). Use Theorem 1′

and Example (e). �

This theorem yields a new form of the induction law.

Theorem 2′ (second induction law). A proposition P (n) holds for all n ∈ N
in an ordered field if

(i′) P (1) holds and

(ii′) whenever P (n) holds for all naturals less than some m ∈ N , then P (n)
also holds for n = m.

Proof. Assume (i′) and (ii′). Seeking a contradiction,3 suppose there are some
n ∈ N (call them “bad”) for which P (n) fails . Then these “bad” naturals form
a nonvoid subset of N , call it A.

2 For a more detailed proof, see Basic Concepts of Mathematics , Chapter 2, §5, Theo-

rem 2.
3 We are using a “proof by contradiction” or “indirect proof.” Instead of proving our

assertion directly , we show that the opposite is impossible, being contradictory.

http://www.trillia.com/zakon1.html
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By Theorem 2, A has a least member m. Thus m is the least natural for
which P (n) fails. It follows that all n less than m do satisfy P (n). But then,
by our assumption (ii′), P (n) also holds for n = m, which is impossible for, by
construction, m is “bad” (it is in A). This contradiction shows that there are
no “bad” naturals. Thus all is proved. �

Note 1. All the preceding arguments hold also if, in our definition of N
and all formulations, the unity 1 is replaced by 0 or by some k (±k ∈ N).
Then, however, the conclusions must be changed to say that P (n) holds for all
integers n ≥ k (instead of “n ≥ 1”). We then say that “induction starts with
k.”

An analogous induction law also applies to definitions of concepts C(n).

A notion C(n) involving a natural n is regarded as defined for each n ∈ N
(in E1) if

(i) it is defined for n = 1 and

(ii) some rule is given that expresses C(n+ 1) in terms of C(1), . . . , C(n).

(Note 1 applies here, too.)

C(n) itself need not be a number ; it may be of quite general nature.

We shall adopt this principle as a kind of logical axiom, without proof
(though it can be proved in a similar manner as Theorems 1′ and 2′). The un-
derlying intuitive idea is a “step-by-step” process—first, we define C(1); then,
as C(1) is known, we may use it to define C(2); next, once both are known,
we may use them to define C(3); and so on, ad infinitum. Definitions based
on that principle are called inductive or recursive. The following examples are
important.

Examples (continued).

(f) For any element x of a field, we define its nth power xn and its n-multiple

nx by

(i) x1 = 1x = x;

(ii) xn+1 = xnx (respectively, (n+ 1)x = nx+ x).

We may think of it as a step-by-step definition:

x1 = x, x2 = x1x, x3 = x2x, etc.

(g) For each natural number n, we define its factorial n! by

1! = 1, (n+ 1)! = n! (n+ 1);

e.g., 2! = 1! (2) = 2, 3! = 2! (3) = 6, etc. We also define 0! = 1.
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(h) The sum and product of n field elements x1, x2, . . . , xn, denoted by

n
∑

k=1

xk and
n
∏

k=1

xk

or

x1 + x2 + · · ·+ xn and x1x2 · · ·xn, respectively,
are defined recursively.

Sums are defined by

(i)
1

∑

k=1

xk = x1;

(ii)
n+1
∑

k=1

xk =

( n
∑

k=1

xk

)

+ xn+1, n = 1, 2, . . . .

Thus
x1 + x2 + x3 = (x1 + x2) + x3,

x1 + x2 + x3 + x4 = (x1 + x2 + x3) + x4, etc.

Products are defined by

(i)
1
∏

k=1

xk = x1;

(ii)
n+1
∏

k=1

xk =

( n
∏

k=1

xk

)

· xn+1.

(i) Given any objects x1, x2, . . . , xn, . . . , the ordered n-tuple

(x1, x2, . . . , xn)

is defined inductively by

(i) (x1) = x1 (i.e., the ordered “one-tuple” (x1) is x1 itself) and

(ii) (x1, x2, . . . , xn+1) = ((x1, . . . , xn), xn+1), i.e., the ordered (n+1)-
tuple is a pair (y, xn+1) in which the first term y is itself an ordered
n-tuple, (x1, . . . , xn); for example,

(x1, x2, x3) = ((x1, x2), x3), etc.

Problems on Natural Numbers and Induction

1. Complete the missing details in Examples (a), (b), and (d).

2. Prove Theorem 2 in detail.
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3. Suppose xk < yk, k = 1, 2, . . . , in an ordered field. Prove by induction
on n that

(a)
n
∑

k=1

xk <
n
∑

k=1

yk;

(b) if all xk, yk are greater than zero, then

n
∏

k=1

xk <

n
∏

k=1

yk.

4. Prove by induction that

(i) 1n = 1;

(ii) a < b⇒ an < bn if a > 0.

Hence deduce that

(iii) 0 ≤ an < 1 if 0 ≤ a < 1;

(iv) an < bn ⇒ a < b if b > 0; proof by contradiction.

5. Prove the Bernoulli inequalities : For any element ε of an ordered field,

(i) (1 + ε)n ≥ 1 + nε if ε > −1;
(ii) (1− ε)n ≥ 1− nε if ε < 1; n = 1, 2, 3, . . . .

6. For any field elements a, b and natural numbers m, n, prove that

(i) aman = am+n; (ii) (am)n = amn;

(iii) (ab)n = anbn; (iv) (m+ n)a = ma+ na;

(v) n(ma) = (nm) · a; (vi) n(a+ b) = na+ nb.

[Hint: For problems involving two natural numbers, fix m and use induction on n].

7. Prove that in any field,

an+1 − bn+1 = (a− b)
n
∑

k=0

akbn−k, n = 1, 2, 3, . . . .

Hence for r 6= 1
n
∑

k=0

ark = a
1− rn+1

1− r

(sum of n terms of a geometric series).

8. For n > 0 define

(

n

k

)

=







n!

k! (n− k)! , 0 ≤ k ≤ n,

0, otherwise.
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Verify Pascal’s law ,
(

n+ 1

k + 1

)

=

(

n

k

)

+

(

n

k + 1

)

.

Then prove by induction on n that

(i) (∀ k | 0 ≤ k ≤ n)
(

n

k

)

∈ N ; and

(ii) for any field elements a and b,

(a+ b)n =

n
∑

k=0

(

n

k

)

akbn−k, n ∈ N (the binomial theorem).

What value must 00 take for (ii) to hold for all a and b?

9. Show by induction that in an ordered field F any finite sequence
x1, . . . , xn has a largest and a least term (which need not be x1 or
xn). Deduce that all of N is an infinite set, in any ordered field.

10. Prove in E1 that

(i)

n
∑

k=1

k =
1

2
n(n+ 1);

(ii)
n
∑

k=1

k2 =
1

6
n(n+ 1)(2n+ 1);

(iii)

n
∑

k=1

k3 =
1

4
n2(n+ 1)2;

(iv)
n
∑

k=1

k4 =
1

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1).

§7. Integers and Rationals

All natural elements of a field F , their additive inverses, and 0 are called the
integral elements of F , briefly integers .

An element x ∈ F is said to be rational iff x =
p

q
for some integers p and q

(q 6= 0); x is irrational iff it is not rational.

We denote by J the set of all integers, and by R the set of all rationals, in
F . Every integer p is also a rational since p can be written as p/q with q = 1.
Thus

R ⊇ J ⊃ N.
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In an ordered field,

N = {x ∈ J | x > 0}. (Why?)

Theorem 1. If a and b are integers (or rationals) in F , so are a+ b and ab.

Proof. For integers, this follows from Examples (a) and (d) in §§5–6; one only
has to distinguish three cases:

(i) a, b ∈ N ;

(ii) −a ∈ N , b ∈ N ;

(iii) a ∈ N , −b ∈ N .

The details are left to the reader (see Basic Concepts of Mathematics, Chap-
ter 2, §7, Theorem 1).

Now let a and b be rationals, say,

a =
p

q
and b =

r

s
,

where p, q, r, s ∈ J and q, s 6= 0. Then, as is easily seen,

a± b = ps± qr
qs

and ab =
pr

qs
,

where qs 6= 0; and qs and pr are integers by the first part of the proof (since
p, q, r, s ∈ J).

Thus a± b and ab are fractions with integral numerators and denominators.
Hence, by definition, a± b ∈ R and ab ∈ R. �

Theorem 2. In any field F , the set R of all rationals is a field itself , under
the operations defined in F , with the same neutral elements 0 and 1. Moreover ,
R is an ordered field if F is . (We call R the rational subfield of F .)

Proof. We have to check that R satisfies the field axioms.

The closure law I follows from Theorem 1.

Axioms II, III, and VI hold for rationals because they hold for all elements
of F ; similarly for Axioms VII to IX if F is ordered.

Axiom IV holds in R because the neutral elements 0 and 1 belong to R;
indeed, they are integers, hence certainly rationals.

To verify Axiom V, we must show that −x and x−1 belong to R if x does.
If, however,

x =
p

q
(p, q ∈ J, q 6= 0),

then

−x =
−p
q
,

where again −p ∈ J by the definition of J ; thus −x ∈ R.

http://www.trillia.com/zakon1.html
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If, in addition, x 6= 0, then p 6= 0, and

x =
p

q
implies x−1 =

q

p
. (Why?)

Thus x−1 ∈ R. �

Note. The representation

x =
p

q
(p, q ∈ J)

is not unique in general; in an ordered field, however, we can always choose
q > 0, i.e., q ∈ N (take p ≤ 0 if x ≤ 0).

Among all such q there is a least one by Theorem 2 of §§5–6. If x = p/q,
with this minimal q ∈ N , we say that the rational x is given in lowest terms .

§§8–9. Upper and Lower Bounds. Completeness Axiom

A subset A of an ordered field F is said to be bounded below (or left bounded)
iff there is p ∈ F such that

(∀x ∈ A) p ≤ x;
A is bounded above (or right bounded) iff there is q ∈ F such that

(∀x ∈ A) x ≤ q.
In this case, p and q are called, respectively, a lower (or left) bound and an
upper (or right) bound, of A. If both exist, we simply say that A is bounded

(by p and q). The empty set ∅ is regarded as (“vacuously”) bounded by any p
and q (cf. the end of Chapter 1, §3).

The bounds p and q may, but need not , belong to A. If a left bound p
is itself in A, we call it the least element or minimum of A, denoted minA.
Similarly, if A contains an upper bound q, we write q = maxA and call q the
largest element or maximum of A. However, A may well have no minimum or
maximum.

Note 1. A finite set A 6= ∅ always has a minimum and a maximum
(see Problem 9 of §§5–6).

Note 2. A set A can have at most one maximum and at most one minimum.
For if it had two maxima q, q′, then

q ≤ q′

(since q ∈ A and q′ is a right bound); similarly

q′ ≤ q;
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so q = q′ after all. Uniqueness of minA is proved in the same manner.

Note 3. If A has one lower bound p, it has many (e.g., take any p′ < p).

Similarly, if A has one upper bound q, it has many (take any q′ > q).

Geometrically, on the real axis, all lower (upper) bounds lie to the left (right)
of A; see Figure 1.

p′ p

u

q q′

v
Figure 1

A
︷ ︸︸ ︷

Examples.

(1) Let

A = {1, −2, 7}.
Then A is bounded above (e.g., by 7, 8, 10, . . . ) and below (e.g., by
−2, −5, −12, . . . ).

We have minA = −2, maxA = 7.

(2) The set N of all naturals is bounded below (e.g., by 1, 0, 1
2 , −1, . . . ),

and 1 = minN ; N has no maximum, for each q ∈ N is exceeded by some
n ∈ N (e.g., n = q + 1).

(3) Given a, b ∈ F (a ≤ b), we define in F the open interval

(a, b) = {x | a < x < b};
the closed interval

[a, b] = {x | a ≤ x ≤ b};
the half-open interval

(a, b] = {x | a < x ≤ b};
and the half-closed interval

[a, b) = {x | a ≤ x < b}.
Clearly, each of these intervals is bounded by the endpoints a and b;
moreover, a ∈ [a, b] and a ∈ [a, b) (the latter provided [a, b) 6= ∅, i.e., a <
b), and a = min[a, b] = min[a, b); similarly, b = max[a, b] = max(a, b].
But [a, b) has no maximum, (a, b] has no minimum, and (a, b) has neither.
(Why?)

Geometrically, it seems plausible that among all left and right bounds of A
(if any) there are some “ closest” to A, such as u and v in Figure 1, i.e., a least
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upper bound v and a greatest lower bound u. These are abbreviated

lubA and glbA

and are also called the supremum and infimum of A, respectively; briefly,

v = supA, u = inf A.

However, this assertion, though valid in E1, fails to materialize in many
other fields such as the field R of all rationals (cf. §§11–12). Even for E1, it
cannot be proved from Axioms I through IX.

On the other hand, this property is of utmost importance for mathematical
analysis; so we introduce it as an axiom (for E1), called the completeness

axiom. It is convenient first to give a general definition.

Definition 1.

An ordered field F is said to be complete iff every nonvoid right-bounded
subset A ⊂ F has a supremum (i.e., a lub) in F .

Note that we use the term “complete” only for ordered fields.

With this definition, we can give the tenth and final axiom for E1.

X (completeness axiom). The real field E1 is complete in the above sense.
That is , each right-bounded set A ⊂ E1 has a supremum (supA) in E1,
provided A 6= ∅.

The corresponding assertion for infima can now be proved as a theorem.

Theorem 1. In a complete field F (such as E1), every nonvoid left-bounded

subset A ⊂ F has an infimum (i .e., a glb).

Proof. Let B be the (nonvoid) set of all lower bounds of A (such bounds exist
since A is left bounded). Then, clearly, no member of B exceeds any member
of A, and so B is right bounded by an element of A. Hence, by the assumed
completeness of F , B has a supremum in F , call it p.

We shall show that p is also the required infimum of A, thus completing the
proof.

Indeed, we have

(i) p is a lower bound of A. For, by definition, p is the least upper bound of
B. But, as shown above, each x ∈ A is an upper bound of B. Thus

(∀x ∈ A) p ≤ x.

(ii) p is the greatest lower bound of A. For p = supB is not exceeded by any
member of B. But, by definition, B contains all lower bounds of A; so p
is not exceeded by any of them, i.e.,

p = glbA = inf A. �
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Note 4. The lub and glb of A (if they exist) are unique. For inf A is,
by definition, the maximum of the set B of all lower bounds of A, and hence
unique, by Note 2; similarly for the uniqueness of supA.

Note 5. Unlike minA and maxA, the glb and lub of A need not belong to
A. For example, if A is the interval (a, b) in E1 (a < b) then, as is easily seen,

a = inf A and b = supA,

though a, b /∈ A. Thus supA and inf A may exist , though maxA and minA do

not .

On the other hand, if

q = maxA (p = minA),

then also

q = supA (p = inf A). (Why?)

Theorem 2. In an ordered field F , we have q = supA (A ⊂ F ) iff

(i) (∀x ∈ A) x ≤ q and

(ii) each field element p < q is exceeded by some x ∈ A; i .e.,

(∀ p < q) (∃x ∈ A) p < x.

Equivalently ,

(ii′) (∀ ε > 0) (∃x ∈ A) q − ε < x; (ε ∈ F ).
Similarly , p = inf A iff

(∀x ∈ A) p ≤ x and (∀ ε > 0) (∃x ∈ A) p+ ε > x.

Proof. Condition (i) states that q is an upper bound of A, while (ii) implies
that no smaller element p is such a bound (since it is exceeded by some x in
A). When combined, (i) and (ii) state that q is the least upper bound.

Moreover, any element p < q can be written as q− ε (ε > 0). Hence (ii) can
be rephrased as (ii′).

The proof for inf A is quite analogous. �

Corollary 1. Let b ∈ F and A ⊂ F in an ordered field F . If each element

x of A satisfies x ≤ b (x ≥ b), so does supA (inf A, respectively), provided it

exists in F .

In fact, the condition

(∀x ∈ A) x ≤ b
means that b is a right bound of A. However, supA is the least right bound,
so supA ≤ b; similarly for inf A.
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Corollary 2. In any ordered field , ∅ 6= A ⊆ B implies

supA ≤ supB and inf A ≥ inf B,

as well as

inf A ≤ supA,

provided the suprema and infima involved exist .

Proof. Let p = inf B and q = supB.

As q is a right bound of B,

x ≤ q for all x ∈ B.

But A ⊆ B, so B contains all elements of A. Thus

x ∈ A⇒ x ∈ B ⇒ x ≤ q;
so, by Corollary 1, also

supA ≤ q = supB,

as claimed.

Similarly, one gets inf A ≥ inf B.

Finally, if A 6= ∅, we can fix some x ∈ A. Then
inf A ≤ x ≤ supA,

and all is proved. �

Problems on Upper and Lower Bounds

1. Complete the proofs of Theorem 2 and Corollaries 1 and 2 for infima.
Prove the last clause of Note 4.

2. Prove that F is complete iff each nonvoid left-bounded set in F has an
infimum.

3. Prove that if A1, A2, . . . , An are right bounded (left bounded) in F , so
is

n
⋃

k=1

Ak.

4. Prove that if A = (a, b) is an open interval (a < b), then

a = inf A and b = supA.

5. In an ordered field F , let ∅ 6= A ⊂ F . Let c ∈ F and let cA denote the
set of all products cx (x ∈ A); i.e.,

cA = {cx | x ∈ A}.
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Prove that

(i) if c ≥ 0, then

sup(cA) = c · supA and inf(cA) = c · inf A;

(ii) if c < 0, then

sup(cA) = c · inf A and inf(cA) = c · supA.

In both cases, assume that the right-side supA (respectively, inf A) ex-
ists.

6. From Problem 5(ii) with c = −1, obtain a new proof of Theorem 1.
[Hint: If A is left bounded, show that (−1)A is right bounded and use its supremum.]

7. Let A and B be subsets of an ordered field F . Assuming that the
required lub and glb exist in F , prove that

(i) if (∀x ∈ A) (∀ y ∈ B) x ≤ y, then supA ≤ inf B;

(ii) if (∀x ∈ A) (∃ y ∈ B) x ≤ y, then supA ≤ supB;

(iii) if (∀ y ∈ B) (∃x ∈ A) x ≤ y, then inf A ≤ inf B.

[Hint for (i): By Corollary 1, (∀ y ∈ B) supA ≤ y, so supA ≤ inf B. (Why?)]

8. For any two subsets A and B of an ordered field F , let A + B denote
the set of all sums x+ y with x ∈ A and y ∈ B; i.e.,

A+B = {x+ y | x ∈ A, y ∈ B}.
Prove that if supA = p and supB = q exist in F , then

p+ q = sup(A+B);

similarly for infima.
[Hint for sup: By Theorem 2, we must show that

(i) (∀x ∈ A) (∀ y ∈ B) x+ y ≤ p+ q (which is easy) and

(ii′) (∀ ε > 0) (∃ x ∈ A) (∃ y ∈ B) x+ y > (p+ q)− ε.

Fix any ε > 0. By Theorem 2,

(∃ x ∈ A) (∃ y ∈ B) p− ε

2
< x and q − ε

2
< y. (Why?)

Then

x+ y >
(

p− ε

2

)

+
(

q − ε

2

)

= (p+ q)− ε,

as required.]

9. In Problem 8 let A and B consist of positive elements only, and let

AB = {xy | x ∈ A, y ∈ B}.
Prove that if supA = p and supB = q exist in F , then

pq = sup(AB);
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similarly for infima.
[Hint: Use again Theorem 2(ii′). For sup(AB), take

0 < ε < (p+ q)min{p, q}

and

x > p− ε

p+ q
and y > q − ε

p+ q
;

show that

xy > pq − ε+
ε2

(p+ q)2
> pq − ε.

For inf(AB), let s = inf B and r = inf A; choose d < 1, with

0 < d <
ε

1 + r + s
.

Now take x ∈ A and y ∈ B with

x < r + d and y < s+ d,

and show that

xy < rs + ε.

Explain!]

10. Prove that

(i) if (∀ ε > 0) a ≥ b− ε, then a ≥ b;
(ii) if (∀ ε > 0) a ≤ b+ ε, then a ≤ b.

11. Prove the principle of nested intervals : If [an, bn] are closed intervals in
a complete ordered field F , with

[an, bn] ⊇ [an+1, bn+1], n = 1, 2, . . . ,

then
∞
⋂

n=1

[an, bn] 6= ∅.

[Hint: Let

A = {a1, a2, . . . , an, . . . }.

Show that A is bounded above by each bn.

Let p = supA. (Does it exist?)

Show that

(∀n) an ≤ p ≤ bn,

i.e.,

p ∈ [an, bn].]
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12. Prove that each bounded set A 6= ∅ in a complete field F is contained
in a smallest closed interval [a, b] (so [a, b] is contained in any other
[c, d] ⊇ A).

Show that this fails if “closed” is replaced by “open.”
[Hint: Take a = inf A, b = supA].

13. Prove that if A consists of positive elements only, then q = supA iff

(i) (∀x ∈ A) x ≤ q and

(ii) (∀ d > 1) (∃ x ∈ A) q/d < x.

[Hint: Use Theorem 2.]

§10. Some Consequences of the Completeness Axiom

The ancient Greek geometer and scientist Archimedes was first to observe that
even a large distance y can be measured by a small yardstick x; one only has
to mark x off sufficiently many times. Mathematically, this means that, given
any x > 0 and any y, there is an n ∈ N such that nx > y. This fact, known as
the Archimedean property , holds not only in E1 but also in many other ordered
fields. Such fields are called Archimedean. In particular, we have the following
theorem.

Theorem 1. Any complete field F (e.g ., E1) is Archimedean.1

That is , given any x, y ∈ F (x > 0) in such a field , there is a natural n ∈ F
such that nx > y.

Proof by contradiction. Suppose this fails. Thus, given y, x ∈ F (x > 0),
assume that there is no n ∈ N with nx > y.

Then

(∀n ∈ N) nx ≤ y;

i.e., y is an upper bound of the set of all products nx (n ∈ N). Let

A = {nx | n ∈ N}.

Clearly, A is bounded above (by y) and A 6= ∅; so, by the assumed com-
pleteness of F , A has a supremum, say, q = supA.

As q is an upper bound, we have (by the definition of A) that nx ≤ q for all
n ∈ N , hence also (n+ 1)x ≤ q; i.e.,

nx ≤ q − x
for all n ∈ N (since n ∈ N ⇒ n+ 1 ∈ N).

1 However, there also are incomplete Archimedean fields (see Note 2 in §§11–12).
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Thus q−x (which is less than q for x > 0) is another upper bound of all nx,
i.e., of the set A.

This is impossible, however, since q = supA is the least upper bound of A.

This contradiction completes the proof. �

Corollary 1. In any Archimedean (hence also in any complete) field F , the
set N of all natural elements has no upper bounds , and the set J of all integers

has neither upper nor lower bounds . Thus

(∀ y ∈ F ) (∃ m, n ∈ N) −m < y < n.

Proof. Given any y ∈ F , one can use the Archimedean property (with x = 1)
to find an n ∈ N such that

n · 1 > y, i.e., n > y.

Similarly, there is an m ∈ N such that

m > −y, i.e., −m < y.

This proves our last assertion and shows that no y ∈ F can be a right bound
of N (for y < n ∈ N), or a left bound of J (for y > −m ∈ J). �

Theorem 2. In any Archimedean (hence also in any complete) field F , each
left (right) bounded set A of integers (∅ 6= A ⊂ J) has a minimum (maximum,
respectively).

Proof. Suppose ∅ 6= A ⊆ J , and A has a lower bound y.

Then Corollary 1 (last part) yields a natural m, with −m < y, so that

(∀x ∈ A) −m < x,

and so x+m > 0.

Thus, by addingm to each x ∈ A, we obtain a set (call it A+m) of naturals .2

Now, by Theorem 2 of §§5–6, A +m has a minimum; call it p. As p is the
least of all sums x+m, p−m is the least of all x ∈ A; so p−m = minA exists,
as claimed.

Next, let A have a right bound z. Then look at the set of all additive inverses
−x of points x ∈ A; call it B.

Clearly, B is left bounded (by −z), so it has a minimum, say, u = minB.
Then −u = maxA. (Verify!) �

In particular, given any x ∈ F (F Archimedean), let [x] denote the great-
est integer ≤ x (called the integral part of x). We thus obtain the following
corollary.

2 This is the main point—geometrically, we have “shifted” A to the right by m, so that

its elements became positive integers: A+m ⊆ N .
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Corollary 2. Any element x of an Archimedean field F has an integral part

[x]. It is the unique integer n such that

n ≤ x < n+ 1.

(It exists , by Theorem 2.)

Any ordered field has the so-called density property :

If a < b in F , there is x ∈ F such that a < x < b; e.g., take

x =
a+ b

2
.

We shall now show that, in Archimedean fields, x can be chosen rational ,
even if a and b are not. We refer to this as the density of rationals in an
Archimedean field.

Theorem 3 (density of rationals). Between any elements a and b (a < b) of

an Archimedean field F (such as E1), there is a rational r ∈ F with

a < r < b.

Proof. Let p = [a] (the integral part of a). The idea of the proof is to start
with p and to mark off a small “yardstick”

1

n
< b− a

several (m) times, until

p+
m

n
lands inside (a, b);

then r = p+ m
n is the desired rational.

We now make it precise. As F is Archimedean, there are m, n ∈ N such
that

n(b− a) > 1 and m
( 1

n

)

> a− p.

We fix the least such m (it exists, by Theorem 2 in §§5–6). Then

a− p < m

n
, but

m− 1

n
≤ a− p

(by the minimality of m). Hence

a < p+
m

n
≤ a+ 1

n
< a+ (b− a),

since 1
n < b− a. Setting

r = p+
m

n
,



46 Chapter 2. Real Numbers. Fields

we find

a < r < a+ b− a = b. �

Note. Having found one rational r1,

a < r1 < b,

we can apply Theorem 3 to find another r2 ∈ R,

r1 < r2 < b,

then a third r3 ∈ R,
r2 < r3 < b,

and so on. Continuing this process indefinitely, we obtain infinitely many

rationals in (a, b).

§§11–12. Powers With Arbitrary Real Exponents. Irrationals

In complete fields, one can define ar for any a > 0 and r ∈ E1 (for r ∈ N , see
§§5–6, Example (f)). First of all, we have the following theorem.

Theorem 1. Given a ≥ 0 in a complete field F , and a natural number n ∈ E1,
there always is a unique element p ∈ F , p ≥ 0, such that

pn = a.

It is called the nth root of a, denoted

n
√
a or a1/n.

(Note that n
√
a ≥ 0, by definition.)

A direct proof, from the completeness axiom, is sketched in Problems 1 and
2 below. We shall give a simpler proof in Chapter 4, §9, Example (a). At
present, we omit it and temporarily take Theorem 1 for granted. Hence we
obtain the following result.

Theorem 2. Every complete field F (such as E1) has irrational elements ,
i .e., elements that are not rational .

In particular ,
√
2 is irrational .1

Proof. By Theorem 1, F has the element

p =
√
2 with p2 = 2.

1 As usual, we write
√
a for 2

√
a.
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Seeking a contradiction, suppose
√
2 is rational, i.e.,

√
2 =

m

n

for some m, n ∈ N in lowest terms (see §7, final note).
Then m and n are not both even (otherwise, reduction by 2 would yield a

smaller n). From m/n =
√
2, we obtain

m2 = 2n2;

so m2 is even.

Only even elements have even squares, however.2 Thus m itself must be
even; i.e., m = 2r for some r ∈ N . It follows that

4r2 = m2 = 2n2, i.e., 2r2 = n2

and, by the same argument, n must be even.

This contradicts the fact that m and n are not both even, and this contra-
diction shows that

√
2 must be irrational. �

Note 1. Similarly, one can prove the irrationality of
√
a where a ∈ N and

a is not the square of a natural. See Problem 3 below for a hint.

Note 2. Theorem 2 shows that the field R of all rationals is not com-

plete (for it contains no irrationals), even though it is Archimedean (see Prob-
lem 6). Thus the Archimedean property does not imply completeness (but see
Theorem 1 of §10).

Next, we define ar for any rational number r > 0.

Definition 1.

Given a ≥ 0 in a complete field F , and a rational number

r =
m

n
(m, n ∈ N ⊆ E1),

we define

ar = n
√
am.

Here we must clarify two facts.

(1) If n = 1, we have

ar = am/1 = 1
√
am = am.

2 For if m is odd , then m = 2q − 1 for some q ∈ N , and hence

m2 = (2q − 1)2 = 4q2 − 4q + 1 = 4q(q − 1) + 1

is an odd number.
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If m = 1, we get

ar = a1/n = n
√
a.

Thus Definition 1 agrees with our previous definitions of am and n
√
a

(m, n ∈ N).

(2) If r is written as a fraction in two different ways ,

r =
m

n
=
p

q
,

then, as is easily seen,

n
√
am = q

√
ap = ar,

and so our definition is unambiguous (independent of the particular rep-
resentation of r).

Indeed,
m

n
=
p

q
implies mq = np,

whence

amq = apn,

i.e.,

(am)q = (ap)n;

cf. §§5–6, Problem 6.

By definition, however,

( n
√
am)n = am and ( q

√
ap)q = ap.

Substituting this in (am)q = (ap)n, we get

( n
√
am)nq = ( q

√
ap)nq,

whence
n
√
am = q

√
ap.

Thus Definition 1 is valid, indeed.

By using the results of Problems 4 and 6 of §§5–6, the reader will easily
obtain analogous formulas for powers with positive rational exponents, namely,

aras = ar+s; (ar)s = ars; (ab)r = arbr; ar < as if 0 < a < 1 and r > s;

a < b iff ar < br (a, b, r > 0); ar > as if a > 1 and r > s; 1r = 1
(1)

Henceforth we assume these formulas known, for rational r, s > 0.

Next, we define ar for any real r > 0 and any element a > 1 in a complete
field F .
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Let Aar denote the set of all members of F of the form ax, with x ∈ R and
0 < x ≤ r; i.e.,

Aar = {ax | 0 < x ≤ r, x rational}.
By the density of rationals in E1 (Theorem 3 of §10), such rationals x do exist;
thus Aar 6= ∅.

Moreover, Aar is right bounded in F . Indeed, fix any rational number y > r.
By the formulas in (1), we have, for any positive rational x ≤ r,

ay = ax+(y−x) = axay−x > ax

since a > 1 and y − x > 0 implies

ay−x > 1.

Thus ay is an upper bound of all ax in Aar.

Hence, by the assumed completeness of F , supAar exists . So we may define

ar = supAar.
3

We also put

a−r =
1

ar
.

If 0 < a < 1 (so that 1
a > 1), we put

ar =
(1

a

)−r

and a−r =
1

ar
,

where
(1

a

)r

= supA1/a,r,

as above.

Summing up, we have the following definitions.

Definition 2.

Given a > 0 in a complete field F , and r ∈ E1, we define the following.

(i) If r > 0 and a > 1, then

ar = supAar = sup{ax | 0 < x ≤ r, x rational}.

(ii) If r > 0 and 0 < a < 1, then ar = 1
(1/a)r , also written (1/a)−r.

(iii) a−r = 1/ar. (This defines powers with negative exponents as well.)

3 Note that, if r is a positive rational itself, then ar is the largest ax with x ≤ r (where ar

and ax are as in Definition 1); thus ar = maxAar = supAar , and so our present definition

agrees with Definition 1. This excludes ambiguities.
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We also define 0r = 0 for any real r > 0, and a0 = 1 for any a ∈ F , a 6= 0;
00 remains undefined .

The power ar is also defined if a < 0 and r is a rational m
n with n odd

because ar = n
√
am has sense in this case. (Why?) This does not work for

other values of r. Therefore, in general, we assume a > 0.

Again, it is easy to show that the formulas in (1) remain also valid for powers
with real exponents (see Problems 8–13 below), provided F is complete.

Problems on Roots, Powers, and Irrationals

The problems marked by ⇒ are theoretically important. Study them!

1. Let n ∈ N in E1; let p > 0 and a > 0 be elements of an ordered field F .
Prove that

(i) if pn > a, then (∃ x ∈ F ) p > x > 0 and xn > a;

(ii) if pn < a, then (∃ x ∈ F ) x > p and xn < a.

[Hint: For (i), put

x = p− d, with 0 < d < p.

Use the Bernoulli inequality (Problem 5(ii) in §§5–6) to find d such that

xn = (p− d)n > a,

i.e.,
(

1− d

p

)n
>

a

pn
.

Solving for d, show that this holds if

0 < d <
pn − a

npn−1
< p. (Why does such a d exist?)

For (ii), if pn < a, then
1

pn
>

1

a
.

Use (i) with a and p replaced by 1/a and 1/p.]

2. Prove Theorem 1 assuming that

(i) a > 1;

(ii) 0 < a < 1 (the cases a = 0 and a = 1 are trivial).

[Hints: (i) Let

A = {x ∈ F | x ≥ 1, xn > a}.

Show that A is bounded below (by 1) and A 6= ∅ (e.g., a+ 1 ∈ A—why?).

By completeness, put p = inf A.

Then show that pn = a (i.e., p is the required n
√
a).

Indeed, if pn > a, then Problem 1 would yield an x ∈ A with

x < p = inf A. (Contradiction!)



§§11–12. Powers With Arbitrary Real Exponents. Irrationals 51

Similarly, use Problem 1 to exclude pn < a.

To prove uniqueness, use Problem 4(ii) of §§5–6.
Case (ii) reduces to (i) by considering 1/a instead of a.]

3. Prove Note 1.
[Hint: Suppose first that a is not divisible by any square of a prime, i.e.,

a = p1p2 · · · pm,

where the pk are distinct primes. (We assume it known that each a ∈ N is the

product of [possibly repeating] primes.) Then proceed as in the proof of Theorem 2,
replacing “even” by “divisible by pk.”

The general case, a = p2b, reduces to the previous case since
√
a = p

√
b.]

4. Prove that if r is rational and q is not, then r ± q is irrational; so also
are rq, q/r, and r/q if r 6= 0.
[Hint: Assume the opposite and find a contradiction.]

⇒5. Prove the density of irrationals in a complete field F : If a < b (a, b ∈ F ),
there is an irrational x ∈ F with

a < x < b

(hence infinitely many such irrationals x). See also Chapter 1, §9,
Problem 4.
[Hint: By Theorem 3 of §10,

(∃ r ∈ R) a
√
2 < r < b

√
2, r 6= 0. (Why?)

Put x = r/
√
2; see Problem 4].

6. Prove that the rational subfield R of any ordered field is Archimedean.
[Hint: If

x =
k

m
and y =

p

q
(k, m, p, q ∈ N),

then nx > y for n = mp+ 1].

7. Verify the formulas in (1) for powers with positive rational exponents
r, s.

8. Prove that

(i) ar+s = aras and

(ii) ar−s = ar/as for r, s ∈ E1 and a ∈ F (a > 0).4

[Hints: For (i), if r, s > 0 and a > 1, use Problem 9 in §§8–9 to get

aras = supAar supAas = sup(AarAas).

4 In Problems 8–13, F is assumed complete. In a later chapter, we shall prove the formulas
in (1) more simply. Thus the reader may as well omit their present verification. The problems

are, however, useful as exercises.
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Verify that

AarAas = {axay | x, y ∈ R, 0 < x ≤ r, 0 < y ≤ s}
= {az | z ∈ R, 0 < z ≤ r + s} = Aa, r+s.

Hence deduce that

aras = sup(Aa, r+s) = ar+s

by Definition 2.

For (ii), if r > s > 0 and a > 1, then by (i),

ar−sas = ar;

so

ar−s =
ar

as
.

For the cases r < 0 or s < 0, or 0 < a < 1, use the above results and Defini-

tion 2(ii)(iii).]

9. From Definition 2 prove that if r > 0 (r ∈ E1), then

a > 1⇐⇒ ar > 1

for a ∈ F (a > 0).

10. Prove for r, s ∈ E1 that

(i) r < s⇔ ar < as if a > 1;

(ii) r < s⇔ ar > as if 0 < a < 1.

[Hints: (i) By Problems 8 and 9,

as = ar+(s−r) = aras−r > ar

since as−r > 1 if a > 1 and s− r > 0.

(ii) For the case 0 < a < 1, use Definition 2(ii).]

11. Prove that

(a · b)r = arbr and
(a

b

)r

=
ar

br

for r ∈ E1 and positive a, b ∈ F .
[Hint: Proceed as in Problem 8.]

12. Given a, b > 0 in F and r ∈ E1, prove that

(i) a > b⇔ ar > br if r > 0, and

(ii) a > b⇔ ar < br if r < 0.

[Hint:

a > b ⇐⇒ a

b
> 1 ⇐⇒

(a

b

)r
> 1

if r > 0 by Problems 9 and 11].
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13. Prove that
(ar)s = ars

for r, s ∈ E1 and a ∈ F (a > 0).
[Hint: First let r, s > 0 and a > 1. To show that

(ar)s = ars = supAa, rs = sup{axy | x, y ∈ R, 0 < xy ≤ rs},

use Problem 13 in §§8–9. Thus prove that

(i) (∀x, y ∈ R | 0 < xy ≤ rs) axy ≤ (ar)s, which is easy, and

(ii) (∀ d > 1) (∃ x, y ∈ R | 0 < xy ≤ rs) (ar)s < daxy .

Fix any d > 1 and put b = ar. Then

(ar)s = bs = supAbs = sup{by | y ∈ R, 0 < y ≤ s}.

Hence there is some y ∈ R, 0 < y ≤ s such that

(ar)s < d
1
2 (ar)y . (Why?)

Fix that y. Now

ar = supAar = sup{ax | x ∈ R, 0 < x ≤ r};

so

(∃ x ∈ R | 0 < x ≤ r) ar < d
1
2y ax. (Why?)

Combining all and using the formulas in (1) for rationals x, y, obtain

(ar)s < d
1
2 (ar)y < d

1
2 (d

1
2y ax)y = daxy,

thus proving (ii)].

§13. The Infinities. Upper and Lower Limits of Sequences

I. The Infinities. As we have seen, a set A 6= ∅ in E1 has a lub (glb) if A
is bounded above (respectively, below), but not otherwise.

In order to avoid this inconvenient restriction, we now add to E1 two new
objects of arbitrary nature, and call them “minus infinity” (−∞) and “plus
infinity” (+∞), with the convention that −∞ < +∞ and −∞ < x < +∞ for
all x ∈ E1.

It is readily seen that with this convention, the laws of transitivity and
trichotomy (Axioms VII and VIII) remain valid.

The set consisting of all reals and the two infinities is called the extended

real number system. We denote it by E∗ and call its elements extended real

numbers . The ordinary reals are also called finite numbers , while ±∞ are the
only two infinite elements of E∗. (Caution: They are not real numbers.)

At this stage we do not define any operations involving ±∞. (This will
be done later.) However, the notions of upper and lower bound, maximum,
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minimum, supremum, and infimum are defined in E∗ exactly as in E1. In
particular,

−∞ = minE∗ and +∞ = maxE∗.

Thus in E∗ all sets are bounded .

It follows that in E∗ every set A 6= ∅ has a lub and a glb. For if A has none
in E1, it still has the upper bound +∞ in E∗, which in this case is the unique

(hence also the least) upper bound; thus supA = +∞.1 Similarly, inf A = −∞
if there is no other lower bound.2 As is readily seen, all properties of lub and glb

stated in §§8–9 remain valid in E∗ (with the same proof). The only exception
is Theorem 2(ii′) in the case q = +∞ (respectively, p = −∞) since +∞− ε
and −∞+ ε make no sense. Part (ii) of Theorem 2 is valid.

We can now define intervals in E∗ exactly as in E1 (§§8–9, Example (3)),
allowing also infinite values of a, b, x. For example,

(−∞, a) = {x ∈ E∗ | −∞ < x < a} = {x ∈ E1 | x < a};
(a, +∞) = {x ∈ E1 | a < x};

(−∞, +∞) = {x ∈ E∗ | −∞ < x < +∞} = E1;

[−∞, +∞] = {x ∈ E∗ | −∞ ≤ x ≤ +∞}; etc.

Intervals with finite endpoints are said to be finite; all other intervals are called
infinite. The infinite intervals

(−∞, a), (−∞, a], (a, +∞), [a, +∞), a ∈ E1,

are actually subsets of E1, as is (−∞, +∞). Thus we shall speak of infinite
intervals in E1 as well.

II. Upper and Lower Limits.3 In Chapter 1, §§1–3 we already mentioned
that a real number p is called the limit of a sequence {xn} ⊆ E1 (p = limxn)
iff

(∀ ε > 0) (∃ k) (∀n > k) |xn − p| < ε, i.e., p− ε < xn < p+ ε, (1)

where ε ∈ E1 and n, k ∈ N .

This may be stated as follows:

For sufficiently large n (n > k), xn becomes and stays as close to p as we
like (“ε-close”).

1 This is true unless A consists of −∞ alone, in which case supA = −∞.
2 It is also customary to define sup ∅ = −∞ and inf ∅ = +∞. This is the only case where

supA < inf A.
3 This topic may be deferred until Chapter 3, §14. It presupposes Chapter 1, §8.
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We also define (in E1 and E∗)

lim
n→∞

xn = +∞⇐⇒ (∀ a ∈ E1) (∃ k) (∀n > k) xn > a and (2)

lim
n→∞

xn = −∞ ⇐⇒ (∀ b ∈ E1) (∃ k) (∀n > k) xn < b. (3)

Note that (2) and (3) make sense in E1, too, since the symbols ±∞ do not
occur on the right side of the formulas. Formula (2) means that xn becomes
arbitrarily large (larger than any a ∈ E1 given in advance) for sufficiently large
n (n > k). The interpretation of (3) is analogous. A more general and unified
approach will now be developed for E∗ (allowing infinite terms xn, too).

Let {xn} be any sequence in E∗. For each n, let An be the set of all terms
from xn onward , i.e.,

{xn, xn+1, . . . }.
For example,

A1 = {x1, x2, . . . }, A2 = {x2, x3, . . .}, etc.
The An form a contracting sequence (see Chapter 1, §8) since

A1 ⊇ A2 ⊇ · · · .

Now, for each n, let

pn = inf An and qn = supAn,

also denoted
pn = inf

k≥n
xk and qn = sup

k≥n
xk.

(These infima and suprema always exist in E∗, as noted above.) Since An ⊇
An+1, Corollary 2 of §§8–9 yields

inf An ≤ inf An+1 ≤ supAn+1 ≤ supAn.

Thus

p1 ≤ p2 ≤ · · · ≤ pn ≤ pn+1 ≤ · · · ≤ qn+1 ≤ qn ≤ · · · ≤ q2 ≤ q1, (4)

and so {pn}↑, while {qn}↓ in E∗. We also see that each qm is an upper bound

of all pn and hence
qm ≥ sup

n
pn (= lub of all pn).

This, in turn, shows that this sup (call it L) is a lower bound of all qm, and so

L ≤ inf
m
qm.

We put
inf
m
qm = L.
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Definition 1.

For each sequence {xn} ⊆ E∗, we define its upper limit L and its lower

limit L, denoted

L = limxn = lim sup
n→∞

xn and L = limxn = lim inf
n→∞

xn,

as follows.

We put (∀n)
qn = sup

k≥n
xk and pn = inf

k≥n
xk,

as before. Then we set

L = limxn = inf
n
qn and L = limxn = sup

n
pn, all in E

∗. (4)

Here and below, infn qn is the inf of all qn, and supn pn is the sup of all pn.

Corollary 1. For any sequence in E∗,

inf
n
xn ≤ limxn ≤ limxn ≤ sup

n
xn.

For, as we noted above,

L = sup
n
pn ≤ inf

m
qm = L.

Also,
L ≥ pn = inf An ≥ inf A1 = inf

n
xn and

L ≤ qn = supAn ≤ supA1 = sup
n
xn,

with An as above.

Examples.

(a) Let

xn =
1

n
.

Here

q1 = sup
{

1,
1

2
, . . . ,

1

n
, . . .

}

= 1, q2 =
1

2
, qn =

1

n
.

Hence

L = inf
n
qn = inf

{

1,
1

2
, . . . ,

1

n
, . . .

}

= 0,

as easily follows by Theorem 2 in §§8–9 and the Archimedean property.
(Verify!) Also,

p1 = inf
k≥1

1

k
= 0, p2 = inf

k≥2

1

k
= 0, . . . , pn = inf

k≥n

1

k
= 0.
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Since all pn are 0, so is L = supn pn. Thus here L = L = 0.

(b) Consider the sequence

1, −1, 2, −1

2
, . . . , n, − 1

n
, . . . .

Here

p1 = −1 = p2, p3 = −1

2
= p4, . . . ; p2n−1 = − 1

n
= p2n.

Thus

limxn = sup
n
pn = sup

{

−1, −1

2
, . . . , − 1

n
, . . .

}

= 0.

On the other hand, qn = +∞ for all n. (Why?) Thus

limxn = inf
n
qn = +∞.

Theorem 1.

(i) If xn ≥ b for infinitely many n, then

limxn ≥ b as well .

(ii) If xn ≤ a for all but finitely many n,4 then

limxn ≤ a as well .

Similarly for lower limits (with all inequalities reversed).

Proof.

(i) If xn ≥ b for infinitely many n, then such n must occur in each set

Am = {xm, xm+1, . . . }.
Hence

(∀m) qm = supAm ≥ b;

so L = inf
m
qm ≥ b, by Corollary 1 of §§8–9.

(ii) If xn ≤ a except finitely many n, let n0 be the last of these “exceptional”
values of n.

Then for n > n0, xn ≤ a, i.e., the set

An = {xn, xn+1, . . . }

4 In other words, for all except (at most) a finite number of terms xn. This is stronger
than just “infinitely many n” (allowing infinitely many exceptions as well). Caution: Avoid

confusing “all but finitely many” with just “infinitely many .”
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is bounded above by a; so

(∀n > n0) qn = supAn ≤ a.

Hence certainly L = inf
n
qn ≤ a. �

Corollary 2.

(i) If limxn > a, then xn > a for infinitely many n.

(ii) If limxn < b, then xn < b for all but finitely many n.

Similarly for lower limits (with all inequalities reversed).

Proof. Assume the opposite and find a contradiction to Theorem 1. �

To unify our definitions, we now introduce some useful notions.

By a neighborhood of p, briefly Gp,
5 we mean, for p ∈ E1, any interval of

the form

(p− ε, p+ ε), ε > 0.

If p = +∞ (respectively, p = −∞), Gp is an infinite interval of the form

(a, +∞] (respectively, [−∞, b)), with a, b ∈ E1.

We can now combine formulas (1)–(3) into one equivalent definition.

Definition 2.

An element p ∈ E∗ (finite or not) is called the limit of a sequence {xn} in
E∗ iff each Gp (no matter how small it is) contains all but finitely many
xn, i.e. all xn from some xk onward. In symbols,

(∀Gp) (∃ k) (∀n > k) xn ∈ Gp. (5)

We shall use the notation

p = limxn or lim
n→∞

xn.

Indeed, if p ∈ E1, then xn ∈ Gp means

p− ε < xn < p+ ε,

as in (1). If, however, p = ±∞, it means

xn > a (respectively, xn < b),

as in (2) and (3).

5 This terminology and notation anticipates some more general ideas in Chapter 3, §11.
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Theorem 2. We have q = limxn in E∗ iff

(i′) each neighborhood Gq contains xn for infinitely many n, and

(ii′) if q < b, then xn ≥ b for at most finitely many n.6

Proof. If q = limxn, Corollary 2 yields (ii′).

It also shows that any interval (a, b), with a < q < b, contains infinitely

many xn (for there are infinitely many xn > a, and only finitely many xn ≥ b,
by (ii′)).

Now if q ∈ E1,
Gq = (q − ε, q + ε)

is such an interval, so we obtain (i′). The cases q = ±∞ are analogous; we
leave them to the reader.

Conversely, assume (i′) and (ii′).

Seeking a contradiction, let q < L; say,

q < b < limxn.

Then Corollary 2(i) yields xn > b for infinitely many n, contrary to our as-
sumption (ii′).

Similarly, q > limxn would contradict (i′).

Thus necessarily q = limxn. �

Theorem 3. We have q = limxn in E∗ iff

limxn = limxn = q.

Proof. Suppose
limxn = limxn = q.

If q ∈ E1, then every Gq is an interval (a, b), a < q < b; therefore, Corol-

lary 2(ii) and its analogue for limxn imply (with q treated as both limxn and
limxn) that

a < xn < b for all but finitely many n.

Thus by Definition 2, q = limxn, as claimed.

Conversely, if so, then any Gq (no matter how small) contains all but finitely
many xn. Hence so does any interval (a, b) with a < q < b, for it contains some
small Gq.

Now, exactly as in the proof of Theorem 2, one excludes

q 6= limxn and q 6= limxn.

This settles the case q ∈ E1. The cases q = ±∞ are quite analogous. �

6 A similar theorem (with all inequalities reversed) holds for limxn.
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Problems on Upper and Lower Limits of Sequences in E∗

1. Complete the missing details in the proofs of Theorems 2 and 3, Corol-
lary 1, and Examples (a) and (b).

2. State and prove the analogues of Theorems 1 and 2 and Corollary 2 for
limxn.

3. Find limxn and limxn if

(a) xn = c (constant);

(b) xn = −n;
(c) xn = n; and

(d) xn = (−1)nn− n.
Does limxn exist in each case?

⇒4. A sequence {xn} is said to cluster at q ∈ E∗, and q is called its cluster
point , iff each Gq contains xn for infinitely many values of n.

Show that both L and L are cluster points (L the least and L the
largest).
[Hint: Use Theorem 2 and its analogue for L.

To show that no p < L (or q > L) is a cluster point, assume the opposite and

find a contradiction to Corollary 2.]

⇒5. Prove that

(i) lim(−xn) = − limxn and

(ii) lim(axn) = a · limxn if 0 ≤ a < +∞.

6. Prove that
limxn < +∞ (limxn > −∞)

iff {xn} is bounded above (below) in E1.

7. Prove that if {xn} and {yn} are bounded in E1, then

limxn + lim yn ≥ lim(xn + yn) ≥ limxn + lim yn

≥ lim(xn + yn) ≥ limxn + lim yn.

[Hint: Prove the first inequality and then use that and Problem 5(i) for the others.]

⇒8. Prove that if p = limxn in E1, then

lim(xn + yn) = p+ lim yn;

similarly for L.

⇒9. Prove that if {xn} is monotone, then limxn exists in E∗. Specifically,
if {xn}↑, then

limxn = sup
n
xn,
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and if {xn}↓, then
limxn = inf

n
xn.

⇒10. Prove that

(i) if limxn = +∞ and (∀n) xn ≤ yn, then also lim yn = +∞, and

(ii) if limxn = −∞ and (∀n) yn ≤ xn, then also lim yn = −∞.

11. Prove that if xn ≤ yn for all n, then

limxn ≤ lim yn and limxn ≤ lim yn.





Chapter 3

Vector Spaces. Metric Spaces

§§1–3. The Euclidean n-Space, En

By definition, the Euclidean n-space En is the set of all possible ordered n-
tuples of real numbers, i.e., the Cartesian product

E1 × E1 × · · · × E1 (n times).

In particular, E2 = E1 × E1 = {(x, y) | x, y ∈ E1},

E3 = E1 ×E1 ×E1 = {(x, y, z) | x, y, z ∈ E1},

and so on. E1 itself is a special case of En (n = 1).

In a familiar way, pairs (x, y) can be plotted as points of the xy-plane, or
as “vectors” (directed line segments) joining (0, 0) to such points. Therefore,
the pairs (x, y) themselves are called points or vectors in E2; similarly for E3.

In En (n > 3), there is no actual geometric representation, but it is con-
venient to use geometric language in this case, too. Thus any ordered n-tuple
(x1, x2, . . . , xn) of real numbers will also be called a point or vector in En, and
the single numbers x1, x2, . . . , xn are called its coordinates or components . A
point in En is often denoted by a single letter (preferably with a bar or an
arrow above it), and then its n components are denoted by the same letter,
with subscripts (but without the bar or arrow). For example,

x̄ = (x1, . . . , xn), ~u = (u1, . . . , un), etc.;

x̄ = (0, −1, 2, 4) is a point (vector) in E4 with coordinates 0, −1, 2, and 4
(in this order). The formula x̄ ∈ En means that x̄ = (x1, . . . , xn) is a point
(vector) in En. Since such “points” are ordered n-tuples, x̄ and ȳ are equal
(x̄ = ȳ) iff the corresponding coordinates are the same, i.e., x1 = y1, x2 = y2,
. . . , xn = yn (see Problem 1 below).

The point whose coordinates are all 0 is called the zero-vector or the origin,
denoted~0 or 0̄. The vector whose kth component is 1, and the other components
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are 0, is called the kth basic unit vector , denoted ~ek. There are exactly n such
vectors,

~e1 = (1, 0, 0, . . . , 0), ~e2 = (0, 1, 0, . . . , 0), . . . , ~en = (0, . . . , 0, 1).

In E3, we often write ī, j̄, and k̄ for ~e1, ~e2, ~e3, and (x, y, z) for (x1, x2, x3).
Similarly in E2. Single real numbers are called scalars (as opposed to vectors).

Definitions.

Given x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) in En, we define the fol-
lowing.

1. The sum of x̄ and ȳ,

x̄+ ȳ = (x1 + y1, x2 + y2, . . . , xn + yn) (hence x̄+ 0̄ = x̄).1

2. The dot product , or inner product , of x̄ and ȳ,

x̄ · ȳ = x1y1 + x2y2 + · · ·+ xnyn.

3. The distance between x̄ and ȳ,

ρ(x̄, ȳ) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 .

4. The absolute value, or length, of x̄,

|x̄| =
√

x21 + x22 + · · ·+ x2n = ρ(x̄, 0̄) =
√
x̄ · x̄

(three formulas that are all equal by Definitions 2 and 3).

5. The inverse of x̄,

−x̄ = (−x1, −x2, . . . , −xn).

6. The product of x̄ by a scalar c ∈ E1,

cx̄ = x̄c = (cx1, cx2, . . . , cxn);

in particular, (−1)x̄ = (−x1, −x2, . . . , −xn) = −x̄, 1x̄ = x̄, and 0x̄ = 0̄.

7. The difference of x̄ and ȳ,

x̄− ȳ =
−→
yx = (x1 − y1, x2 − y2, . . . , xn − yn).

In particular, x̄− 0̄ = x̄ and 0̄− x̄ = −x̄. (Verify!)

Note 1. Definitions 2–4 yield scalars , while the rest are vectors .

Note 2. We shall not define inequalities (<) in En (n ≥ 2), nor shall
we define vector products other than the dot product (2), which is a scalar .
(However, cf. §8.)

1 Sums of three or more vectors are defined by induction, as in Chapter 2, §§5–6.
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Note 3. From Definitions 3, 4, and 7, we obtain ρ(x̄, ȳ) = |x̄− ȳ|. (Verify!)
Note 4. We often write x̄/c for (1/c)x̄, where c ∈ E1, c 6= 0.

Note 5. In E1, x̄ = (x1) = x1. Thus, by Definition 4,

|x̄| =
√

x21 = |x1|,

where |x1| is defined as in Chapter 2, §§1–4, Definition 4. Thus the two defini-
tions agree.

We call x̄ a unit vector iff its length is 1, i.e., |x| = 1. Note that if x̄ 6= 0̄,
then x̄/|x̄| is a unit vector, since

∣

∣

∣

x̄

|x̄|
∣

∣

∣
=

√

x21
|x̄|2 + · · ·+ x2n

|x̄|2 = 1.

The vectors x̄ and ȳ are said to be orthogonal or perpendicular (x̄ ⊥ ȳ) iff
x̄ · ȳ = 0 and parallel (x̄ ‖ ȳ) iff x̄ = tȳ or ȳ = tx̄ for some t ∈ E1. Note that
x̄ ⊥ 0̄ and x̄ ‖ 0̄.
Examples.

If x̄ = (0, −1, 4, 2) and ȳ = (2, 2, −3, 2) are vectors in E4, then

x̄+ ȳ = (2, 1, 1, 4);

x̄− ȳ = (−2, −3, 7, 0);
ρ(x̄, ȳ) = |x̄− ȳ| =

√

22 + 32 + 72 + 02 =
√
62 ;

(x̄+ ȳ) · (x̄− ȳ) = 2(−2) + 1(−3) + 7 + 0 = 0.

So (x̄+ ȳ) ⊥ (x̄− ȳ) here.

Theorem 1. For any vectors x̄, ȳ, and z̄ ∈ En and any a, b ∈ E1, we have

(a) x̄+ ȳ and ax̄ are vectors in En (closure laws);

(b) x̄+ ȳ = ȳ + x̄ (commutativity of vector addition);

(c) (x̄+ ȳ) + z̄ = x̄+ (ȳ + z̄) (associativity of vector addition);

(d) x̄+ 0̄ = 0̄ + x̄ = x̄, i .e., 0̄ is the neutral element of addition;

(e) x̄+ (−x̄) = 0̄, i .e., −x̄ is the additive inverse of x̄;

(f) a(x̄+ ȳ) = ax̄+ aȳ and (a+ b)x̄ = ax̄+ bx̄ (distributive laws);

(g) (ab)x̄ = a(bx̄);

(h) 1x̄ = x̄.

Proof. Assertion (a) is immediate from Definitions 1 and 6. The rest follows
from corresponding properties of real numbers.
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For example, to prove (b), let x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn). Then by
definition, we have

x̄+ ȳ = (x1 + y1, . . . , xn + yn) and ȳ + x̄ = (y1 + x1, . . . , yn + xn).

The right sides in both expressions, however, coincide since addition is com-
mutative in E1. Thus x̄+ ȳ = ȳ + x̄, as claimed; similarly for the rest, which
we leave to the reader. �

Theorem 2. If x̄ = (x1, . . . , xn) is a vector in En, then, with ēk as above,

x̄ = x1ē1 + x2ē2 + · · ·+ xnēn =
n
∑

k=1

xkēk.

Moreover, if x̄ =
∑n

k=1 akēk for some ak ∈ E1, then necessarily ak = xk,
k = 1, . . . , n.

Proof. By definition,

ē1 = (1, 0, . . . , 0), ē2 = (0, 1, . . . , 0), . . . , ēn = (0, 0, . . . , 1).

Thus

x1ē1 = (x1, 0, . . . , 0), x2ē2 = (0, x2, . . . , 0), . . . , xnēn = (0, 0, . . . , xn).

Adding up componentwise, we obtain

n
∑

k=1

xkēk = (x1, x2, . . . , xn) = x̄,

as asserted.

Moreover, if the xk are replaced by any other ak ∈ E1, the same process
yields

(a1, . . . , an) = x̄ = (x1, . . . , xn),

i.e., the two n-tuples coincide, whence ak = xk, k = 1, . . . , n. �

Note 6. Any sum of the form

m
∑

k=1

akx̄k (ak ∈ E1, x̄k ∈ En)

is called a linear combination of the vectors x̄k (whose number m is arbitrary).
Thus Theorem 2 shows that any x̄ ∈ En can be expressed, in a unique way, as

a linear combination of the n basic unit vectors . In E3, we write

x̄ = x1ī+ x2j̄ + x3k̄.
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Note 7. If, as above, some vectors are numbered (e.g., x̄1, x̄2, . . . , x̄m),
we denote their components by attaching a second subscript; for example, the
components of x̄1 are x11, x12, . . . , x1n.

Theorem 3. For any vectors x̄, ȳ, and z̄ ∈ En and any a, b ∈ E1, we have

(a) x̄ · x̄ ≥ 0, and x̄ · x̄ > 0 iff x̄ 6= 0̄;

(b) (ax̄) · (bȳ) = (ab)(x̄ · ȳ);
(c) x̄ · ȳ = ȳ · x̄ (commutativity of inner products);

(d) (x̄+ ȳ) · z̄ = x̄ · z̄ + ȳ · z̄ (distributive law).

Proof. To prove these properties, express all in terms of the components of x̄,
ȳ, and z̄, and proceed as in Theorem 1. �

Note that (b) implies x̄ · 0̄ = 0 (put a = 1, b = 0).

Theorem 4. For any vectors x̄ and ȳ ∈ En and any a ∈ E1, we have the

following properties:

(a′) |x̄| ≥ 0, and |x̄| > 0 iff x̄ 6= 0̄.

(b′) |ax̄| = |a||x̄|.
(c′) |x̄ · ȳ| ≤ |x̄| |ȳ|, or , in components,

( n
∑

k=1

xkyk

)2

≤
( n
∑

k=1

x2k

)( n
∑

k=1

y2k

)

(Cauchy–Schwarz inequality).

Equality , |x̄ · ȳ| = |x̄| |ȳ|, holds iff x̄ ‖ ȳ.
(d′) |x̄+ ȳ| ≤ |x̄|+ |ȳ| and

∣

∣|x̄| − |ȳ|
∣

∣ ≤ |x̄− ȳ| (triangle inequalities).

Proof. Property (a′) follows from Theorem 3(a) since

|x̄|2 = x̄ · x̄ (see Definition 4).

For (b′), use Theorem 3(b), to obtain

(ax̄) · (ax̄) = a2(x̄ · x̄) = a2|x̄|2.
By Definition 4, however,

(ax̄) · (ax̄) = |ax̄|2.
Thus

|ax̄|2 = a2|x|2

so that |ax̄| = |a||x̄|, as claimed.

Now we prove (c′). If x̄ ‖ ȳ then x̄ = tȳ or ȳ = tx̄; so |x̄ · ȳ| = |x̄||ȳ| follows
by (b′). (Verify!)
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Otherwise, x̄ 6= tȳ and ȳ 6= tx̄ for all t ∈ E1. Then we obtain, for all t ∈ E1,

0 6= |tx̄− ȳ|2 =
n
∑

k=1

(txk − yk)2 = t2
n
∑

k=1

x2k − 2t
n
∑

k=1

xkyk +
n
∑

k=1

y2k.

Thus, setting

A =

n
∑

k=1

x2k, B = 2

n
∑

k=1

xkyk, and C =

n
∑

k=1

y2k,

we see that the quadratic equation

0 = At2 −Bt+ C

has no real solutions in t, so its discriminant, B2−4AC, must be negative; i.e.,

4

( n
∑

k=1

xkyk

)2

− 4

( n
∑

k=1

x2k

)( n
∑

k=1

y2k

)

< 0,

proving (c′).

To prove (d′), use Definition 2 and Theorem 3(d), to obtain

|x̄+ ȳ|2 = (x̄+ ȳ) · (x̄+ ȳ) = x̄ · x̄+ ȳ · ȳ + 2x̄ · ȳ = |x̄|2 + |ȳ|2 + 2x̄ · ȳ.
But x̄ · ȳ ≤ |x̄| |ȳ| by (c′). Thus we have

|x̄+ ȳ|2 ≤ |x̄|2 + |ȳ|2 + 2|x̄| |ȳ| = (|x̄|+ |ȳ|)2,
whence |x̄+ ȳ| ≤ |x̄|+ |ȳ|, as required.

Finally, replacing here x̄ by x̄− ȳ, we have

|x̄− ȳ|+ |ȳ| ≥ |x̄− ȳ + ȳ| = |x̄|, or |x̄− ȳ| ≥ |x̄| − |ȳ|.
Similarly, replacing ȳ by ȳ − x̄, we get |x̄− ȳ| ≥ |ȳ| − |x̄|. Hence

|x̄− ȳ| ≥ ±
(

|x̄| − |ȳ|
)

,

i.e., |x̄− ȳ| ≥
∣

∣|x̄| − |ȳ|
∣

∣, proving the second formula in (d′). �

Theorem 5. For any points x̄, ȳ, and z̄ ∈ En, we have

(i) ρ(x̄, ȳ) ≥ 0, and ρ(x̄, ȳ) = 0 iff x̄ = ȳ;

(ii) ρ(x̄, ȳ) = ρ(ȳ, x̄);

(iii) ρ(x̄, z̄) ≤ ρ(x̄, ȳ) + ρ(ȳ, z̄) (triangle inequality).

Proof.

(i) By Definition 3 and Note 3, ρ(x̄, ȳ) = |x̄−ȳ|; therefore, by Theorem 4(a′),
ρ(x̄, ȳ) = |x̄− ȳ| ≥ 0.

Also, |x̄ − ȳ| > 0 iff x̄ − ȳ 6= 0, i.e., iff x̄ 6= ȳ. Hence ρ(x̄, ȳ) 6= 0 iff
x̄ 6= ȳ, and assertion (i) follows.
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(ii) By Theorem 4(b′), |x̄− ȳ| = |(−1)(ȳ − x̄)| = |ȳ − x̄|, so (ii) follows.

(iii) By Theorem 4(d′),

ρ(x̄, ȳ) + ρ(ȳ, z̄) = |x̄− ȳ|+ |ȳ − z̄| ≥ |x̄− ȳ + ȳ − z̄| = ρ(x̄, z̄). �

Note 8. We also have |ρ(x̄, ȳ) − ρ(z̄, ȳ)| ≤ ρ(x̄, z̄). (Prove it!) The two
triangle inequalities have a simple geometric interpretation (which explains
their name). If x̄, ȳ, and z̄ are treated as the vertices of a triangle, we obtain
that the length of a side, ρ(x̄, z̄) never exceeds the sum of the two other sides
and is never less than their difference.

As E1 is a special case of En (in which “vectors” are single numbers), all
our theory applies to E1 as well. In particular, distances in E1 are defined by
ρ(x, y) = |x − y| and obey the three laws of Theorem 5. Dot products in E1

become ordinary products xy. (Why?) From Theorems 4(b′)(d′), we have

|a| |x| = |ax|; |x+ y| ≤ |x|+ |y|; |x− y| ≥
∣

∣|x| − |y|
∣

∣ (a, x, y ∈ E1).

Problems on Vectors in En

1. Prove by induction on n that

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) iff xk = yk, k = 1, 2, . . . , n.

[Hint: Use Problem 6(ii) of Chapter 1, §§1–3, and Example (i) in Chapter 2, §§5-6.]

2. Complete the proofs of Theorems 1 and 3 and Notes 3 and 8.

3. Given x̄ = (−1, 2, 0, −7), ȳ = (0, 0, −1, −2), and z̄ = (2, 4, −3, −3)
in E4, express x̄, ȳ, and z̄ as linear combinations of the basic unit
vectors. Also, compute their absolute values, their inverses, as well as
their mutual sums, differences, dot products, and distances. Are any of
them orthogonal? Parallel?

4. With x̄, ȳ, and z̄ as in Problem 3, find scalars a, b, and c such that

ax̄+ bȳ + cz̄ = ū,

when
(i) ū = ē1; (ii) ū = ē3;

(iii) ū = (−2, 4, 0, 1); (iv) ū = 0̄.

5. A finite set of vectors x̄, x̄2, . . . , x̄m is said to be dependent iff there are
scalars a1, . . . , am, not all zero, such that

m
∑

k=1

akx̄k = 0̄,
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and independent otherwise. Prove the independence of the following
sets of vectors:

(a) ē1, ē2, . . . , ēn in En;

(b) (1, 2, −3, 4) and (2, 3, 0, 0) in E4;

(c) (2, 0, 0), (4, −1, 3), and (0, 4, 1) in E3;

(d) the vectors x̄, ȳ, and z̄ of Problem 3.

6. Prove (for E2 and E3) that

x̄ · ȳ = |x̄| |ȳ| cosα,

where α is the angle between the vectors
−→
0x and

−→
0y ; we denote α by

〈x̄, ȳ〉.
[Hint: Consider the triangle 0̄x̄ȳ, with sides x̄ =

−→
0x , ȳ =

−→
0y , and

−→
xy = ~y − ~x (see

Definition 7). By the law of cosines,

|~x|2 + |~y|2 − 2|~x| |~y| cosα = |~y − ~x|2.

Now substitute |~x|2 = ~x · ~x, |~y|2 = ~y · ~y, and

|~y − ~x|2 = (~y − ~x) · (~y − ~x) = ~y · ~y + ~x · ~x− 2~x · ~y. (Why?)

Then simplify.]

7. Motivated by Problem 6, define in En

〈x̄, ȳ〉 = arccos
x̄ · ȳ
|x̄| |ȳ| if x̄ and ȳ are nonzero.

(Why does an angle with such a cosine exist?) Prove that

(i) x̄ ⊥ ȳ iff cos〈x̄, ȳ〉 = 0, i.e., 〈x̄, ȳ〉 = π

2
;

(ii)
n
∑

k=1

cos2〈x̄, ēk〉 = 1.

8. Continuing Problems 3 and 7, find the cosines of the angles between

the sides ,
−→
xy ,

−→
yz , and

−→
zx of the triangle x̄ȳz̄, with x̄, ȳ, and z̄ as in

Problem 3.

9. Find a unit vector in E4, with positive components, that forms equal
angles with the axes, i.e., with the basic unit vectors (see Problem 7).

10. Prove for En that if ū is orthogonal to each of the basic unit vectors ē1,
ē2, . . . , ēn, then ū = 0̄. Deduce that

ū = 0̄ iff (∀ x̄ ∈ En) x̄ · ū = 0.
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11. Prove that x̄ and ȳ are parallel iff

x1
y1

=
x2
y2

= · · · = xn
yn

= c (c ∈ E1),

where “xk/yk = c” is to be replaced by “xk = 0” if yk = 0.

12. Use induction on n to prove the Lagrange identity (valid in any field),

( n
∑

k=1

x2k

)( n
∑

k=1

y2k

)

−
( n
∑

k=1

xkyk

)2

=
∑

1≤i<k≤n

(xiyk − xkyi)2.

Hence find a new proof of Theorem 4(c′).

13. Use Problem 7 and Theorem 4(c′) (“equality”) to show that two nonzero
vectors x̄ and ȳ in En are parallel iff cos〈x̄, ȳ〉 = ±1.

14. (i) Prove that |x̄+ ȳ| = |x̄| + |ȳ| iff x̄ = tȳ or ȳ = tx̄ for some t ≥ 0;
equivalently, iff cos〈x̄, ȳ〉 = 1 (see Problem 7).

(ii) Find similar conditions for |x̄− ȳ| = |x̄|+ |ȳ|.
[Hint: Look at the proof of Theorem 4(d′).]

§§4–6. Lines and Planes in En

I. To obtain a line in E2 or E3 passing through two points ā and b̄, we take
the vector

~u =
−→
ab = b̄− ā

and, so to say, “stretch” it indefinitely in both directions, i.e., multiply ~u by
all possible scalars t ∈ E1. Then the set of all points x̄ of the form

x̄ = ā+ t~u

is the required line. It is natural to adopt this as a definition in En as well.
Below, ā 6= b̄.

Definition 1.

The line ab through the points ā, b̄ ∈ En (also called the line through ā,
in the direction of the vector ~u = b̄− ā) is the set of all points x̄ ∈ En of
the form

x̄ = ā+ t~u = ā+ t(b̄− ā),
where t varies over E1. We call t a variable real parameter and ~u a
direction vector for ab. Thus

Line ab = {x̄ ∈ En | x̄ = ā+ t~u for some t ∈ E1}, ~u = b̄− ā 6= 0̄. (1)
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The formula

x̄ = ā+ t~u, or x̄ = ā+ t(b̄− ā),

is called the parametric equation of the line. (We briefly say “the line x̄ =
ā + t~u.”) It is equivalent to n simultaneous equations in terms of coordinates ,
namely,

xk = ak + tuk = ak + t(bk − ak), k = 1, 2, . . . , n. (2)

Note 1. As the vector ~u is anyway being multiplied by all real numbers t,
the line (as a set of points) will not change if ~u is replaced by some c~u (c ∈ E1,
c 6= 0). In particular, taking c = 1/|~u|, we may replace ~u by ~u/|~u|, a unit

vector . We may as well assume that ~u is a unit vector itself.

If we let t vary not over all of E1 but only over some interval in E1, we obtain
what is called a line segment .1 In particular, we define the open line segment

L(ā, b̄), the closed line segment L[ā, b̄], the half-open line segment L(ā, b̄], and
the half-closed line segment L[ā, b̄), as we did for E1.

Definition 2.

Given ~u = b̄− ā, we set

(i) L(ā, b̄) = {ā+ t~u | 0 < t < 1};2 (ii) L[ā, b̄] = {ā+ t~u | 0 ≤ t ≤ 1};
(iii) L(ā, b̄] = {ā+ t~u | 0 < t ≤ 1}; (iv) L[ā, b̄) = {ā+ t~u | 0 ≤ t < 1};

In all cases, ā and b̄ are called the endpoints of the segment; ρ(ā, b̄) =
|b̄− ā| is its length; and 1

2
(ā+ b̄) is its midpoint .

Note that in E1, line segments simply become intervals , (a, b), [a, b], etc.

II. To describe a plane in E3, we fix one of its points, ā, and a vector

~u =
→
ab perpendicular to the plane (imagine a vertical pencil standing at ā on

the horizontal plane of the table). Then a point x̄ lies on the plane iff ~u ⊥ −→
ax .

It is natural to accept this as a definition in En as well.

Definition 3.

Given a point ā ∈ En and a vector ~u 6= ~0, we define the plane (also called
hyperplane if n > 3) through ā, orthogonal to ~u, to be the set of all x̄ ∈ En

such that ~u ⊥ −→
ax , i.e., ~u · (x̄− ā) = 0, or, in terms of components,

n
∑

k=1

uk(xk − ak) = 0, where ~u 6= ~0 (i.e., not all values uk are 0). (3)

1 We reserve the name “interval” for other kinds of sets (cf. §7).
2 This is an abbreviation for “{x̄ ∈ En | x̄ = ā+ t~u for some t ∈ E1, 0 < t < 1}.”
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We briefly say

“the plane ~u · (x̄− ā) = 0” or “the plane

n
∑

k=1

uk(xk − ak) = 0”

(this being the equation of the plane). Removing brackets in (3), we have

u1x2 + u2x2 + · · ·+ unxn = c, or ~u · x̄ = c, where c =

n
∑

k−1

ukak, ~u 6= ~0. (4)

An equation of this form is said to be linear in x1, x2, . . . , xn.

Theorem 1. A set A ⊆ En is a plane (hyperplane) iff A is exactly the set of

all x̄ ∈ En satisfying (4) for some fixed c ∈ E1 and ~u = (u1, . . . , un) 6= 0̄.

Proof. Indeed, as we saw above, each plane has an equation of the form (4).
Conversely, any equation of that form (with, say, u1 6= 0) can be written as

u1

(

x1 −
c

u1

)

+ u2x2 + u3x3 + · · ·+ unxn = 0.

Then, setting a1 = c/u1 and ak = 0 for k ≥ 2, we transform it into (3), which is,
by definition, the equation of a plane through ā = (c/u1, 0, . . . , 0), orthogonal
to ~u = (u1, . . . , un). �

Thus, briefly, planes are exactly all sets with linear equations (4). In this
connection, equation (4) is called the general equation of a plane. The vector ~u
is said to be normal to the plane. Clearly, if both sides of (4) are multiplied by
a nonzero scalar q, one obtains an equivalent equation (representing the same

set). Thus we may replace uk by quk, i.e., ~u by q~u, without affecting the plane.
In particular, we may replace ~u by the unit vector ~u/|~u|, as in lines (this is
called the normalization of the equation). Thus

~u

|~u| · (x̄− ā) = 0 (5)

and

x̄ = ā+ t
~u

|~u| (6)

are the normalized (or normal) equations of the plane (3) and line (1), respec-
tively.

Note 2. The equation xk = c (for a fixed k) represents a plane orthogonal

to the basic unit vector ~ek or, as we shall say, to the kth axis . The equation
results from (4) if we take ~u = ~ek so that uk = 1, while ui = 0 (i 6= k). For
example, x1 = c is the equation of a plane orthogonal to ~e1; it consists of all
x̄ ∈ En, with x1 = c (while the other coordinates of x̄ are arbitrary). In E2, it
is a line. In E1, it consists of c alone.
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Two planes (respectively, two lines) are said to be perpendicular to each
other iff their normal vectors (respectively, direction vectors) are orthogonal;
similarly for parallelism. A plane ~u · x̄ = c is said to be perpendicular to a line

x̄ = ā+ t~v iff ~u ‖ ~v; the line and the plane are parallel iff ~u ⊥ ~v.
Note 3. When normalizing, as in (5) or (6), we actually have two choices

of a unit vector, namely, ±~u/|~u|. If one of them is prescribed , we speak of a
directed plane (respectively, line).

Examples.

(a) Let ā = (0, −1, 2), b̄ = (1, 1, 1), and c̄ = (3, 1, −1) in E3. Then the line
ab has the parametric equation x̄ = ā+t(b̄− ā) or, in coordinates, writing
x, y, z for x1, x2, x3,

x = 0 + t(1− 0) = t, y = −1 + 2t, z = 2− t.

This may be rewritten

t =
x

1
=
y + 1

2
=
z − 2

−1 ,

where ~u = (1, 2, −1) is the direction vector (composed of the denomina-
tors). Normalizing and dropping t, we have

x

1/
√
6
=
y + 1

2/
√
6
=

z − 2

−1/
√
6

(the so-called symmetric form of the normal equations).

Similarly, for the line bc, we obtain

t =
x− 1

2
=
y − 1

0
=
z − 1

−2 ,

where “t = (y − 1)/0” stands for “y−1 = 0.” (It is customary to use this
notation.)

(b) Let ā = (1, −2, 0, 3) and ~u = (1, 1, 1, 1) in E4. Then the plane normal
to ~u through ā has the equation (x̄− ā) · ~u = 0, or

(x1 − 1) · 1 + (x2 + 2) · 1 + (x3 − 0) · 1 + (x4 − 3) · 1 = 0,

or x1 + x2 + x3 + x4 = 2. Observe that, by formula (4), the coeffi-
cients of x1, x2, x3, x4 are the components of the normal vector ~u (here
(1, 1, 1, 1)).

Now define a map f : E4 → E1 setting f(x̄) = x1 + x2 + x3 + x4 (the
left-hand side of the equation). This map is called the linear functional

corresponding to the given plane. (For another approach, see Problems 4–
6 below.)
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(c) The equation x+3y−2z = 1 represents a plane in E3, with ~u = (1, 3, −2).
The point ā = (1, 0, 0) lies on the plane (why?), so the plane equation
may be written (x̄− ā) · ~u = 0 or x̄ · ~u = 1, where x̄ = (x, y, z) and ā and
~u are as above.

Problems on Lines and Planes in En

1. Let ā = (−1, 2, 0, −7), b̄ = (0, 0, −1, 2), and c̄ = (2, 4, −3, −3) be
points in E4. Find the symmetric normal equations (see Example (a)) of
the lines ab, bc, and ca. Are any two of the lines perpendicular? Parallel?
On the line ab, find some points inside L(ā, b̄) and some outside L[ā, b̄].
Also, find the symmetric equations of the line through c̄ that is

(i) parallel to ab; (ii) perpendicular to ab.

2. With ā and b̄ as in Problem 1, find the equations of the two planes that
trisect, and are perpendicular to, the line segment L[ā, b̄].

3. Given a line x̄ = ā+ t~u (~u = b̄− ā 6= ~0) in En, define f : E1 → En by

f(t) = ā+ t~u for t ∈ E1.

Show that L[ā, b̄] is exactly the f -image of the interval [0, 1] in E1, with
f(0) = a and f(1) = b, while f [E1] is the entire line. Also show that f
is one to one.
[Hint: t 6= t′ implies |f(t)− f(t′)| 6= 0. Why?]

4. A map f : En → E1 is called a linear functional iff

(∀ x̄, ȳ ∈ En) (∀ a, b ∈ E1) f(ax̄+ bȳ) = af(x̄) + bf(ȳ).

Show by induction that f preserves linear combinations ; that is,

f

( m
∑

k=1

akx̄k

)

=
m
∑

k=1

akf(x̄k)

for any ak ∈ E1 and x̄k ∈ En.

5. From Problem 4 prove that a map f : En → E1 is a linear functional iff
there is ~u ∈ En such that

(∀ x̄ ∈ En) f(x̄) = ~u · x̄ (“representation theorem”).

[Hint: If f is a linear functional, write each x̄ ∈ En as x̄ =
∑n

k=1 xk ēk (§§1–3,
Theorem 2). Then

f(x̄) = f

( m∑

k=1

xkēk

)

=
n∑

k=1

xkf(ēk).

Setting uk = f(ēk) ∈ E1 and ~u = (u1, . . . , un), obtain f(x̄) = ~u · x̄, as required. For
the converse, use Theorem 3 in §§1–3.]
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6. Prove that a set A ⊆ En is a plane iff there is a linear functional f
(Problem 4), not identically zero, and some c ∈ E1 such that

A = {x̄ ∈ En | f(x̄) = c}.
(This could serve as a definition of planes in En.)
[Hint: A is a plane iff A = {x̄ | ~u · x̄ = c}. Put f(x̄) = ~u · x̄ and use Problem 5. Show

that f 6≡ 0 iff ~u 6= ~0 by Problem 10 of §§1–3.]

7. Prove that the perpendicular distance of a point p̄ to a plane ~u · x̄ = c
in En is

ρ(p̄, x̄0) =
|~u · p̄− c|
|~u| .

(x̄0 is the orthogonal projection of p̄, i.e., the point on the plane such

that
−→
px0 ‖ ~u.)

[Hint: Put ~v = ~u/|~u|. Consider the line x̄ = p̄ + t~v. Find t for which p̄ + t~v lies on

both the line and plane. Find |t|.]

8. A globe (solid sphere) in En, with center p̄ and radius ε > 0, is the set
{x̄ | ρ(x̄, p̄) < ε}, denoted Gp̄(ε). Prove that if ā, b̄ ∈ Gp̄(ε), then also
L[ā, b̄] ⊆ Gp̄(ε). Disprove it for the sphere Sp̄(ε) = {x̄ | ρ(x̄, p̄) = ε}.
[Hint: Take a line through p̄.]

§7. Intervals in En

0̄

Y

X

ā p̄

b̄q̄

a1 b1c

a2

b2

P Q

Figure 2

Consider the rectangle in E2 shown
in Figure 2. Its interior (without
the perimeter) consists of all points
(x, y) ∈ E2 such that

a1 < x < b1 and a2 < y < b2;

i.e.,

x ∈ (a1, b1) and y ∈ (a2, b2).

Thus it is the Cartesian product of

two line intervals , (a1, b1) and (a2, b2). To include also all or some sides,
we would have to replace open intervals by closed, half-closed, or half-open
ones. Similarly, Cartesian products of three line intervals yield rectangular
parallelepipeds in E3. We call such sets in En intervals .

Definitions.

1. By an interval in En we mean the Cartesian product of any n intervals
in E1 (some may be open, some closed or half-open, etc.).
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2. In particular, given

ā = (a1, . . . , an) and b̄ = (b1, . . . , bn)

with

ak ≤ bk, k = 1, 2, . . . , n,

we define the open interval (ā, b̄), the closed interval [ā, b̄], the half-open

interval (ā, b̄], and the half-closed interval [ā, b̄) as follows:

(ā, b̄) = {x̄ | ak < xk < bk, k = 1, 2, . . . , n}
= (a1, b1)× (a2, b2)× · · · × (an, bn);

[ā, b̄] = {x̄ | ak ≤ xk ≤ bk, k = 1, 2, . . . , n}
= [a1, b1]× [a2, b2]× · · · × [an, bn];

(ā, b̄] = {x̄ | ak < xk ≤ bk, k = 1, 2, . . . , n}
= (a1, b1]× (a2, b2]× · · · × (an, bn];

[a, b) = {x̄ | ak ≤ xk < bk, k = 1, 2, . . . , n}
= [a1, b1)× [a2, b2)× · · · × [an, bn).

In all cases, ā and b̄ are called the endpoints of the interval. Their distance

ρ(ā, b̄) = |b̄− ā|

is called its diagonal . The n differences

bk − ak = ℓk (k = 1, . . . , n)

are called its n edge-lengths . Their product

n
∏

k=1

ℓk =
n
∏

k=1

(bk − ak)

is called the volume of the interval (in E2 it is its area, in E1 its length). The
point

c̄ =
1

2
(ā+ b̄)

is called its center or midpoint . The set difference

[ā, b̄]− (ā, b̄)

is called the boundary of any interval with endpoints ā and b̄; it consists of 2n
“faces” defined in a natural manner. (How?)

We often denote intervals by single letters, e.g., A = (ā, b̄), and write dA for
“diagonal of A” and vA or volA for “volume of A.” If all edge-lengths bk − ak
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are equal , A is called a cube (in E2, a square). The interval A is said to be
degenerate iff bk = ak for some k, in which case, clearly,

volA =
n
∏

k=1

(bk − ak) = 0.

Note 1. We have x̄ ∈ (ā, b̄) iff the inequalities ak < xk < bk hold simul-

taneously for all k. This is impossible if ak = bk for some k; similarly for the
inequalities ak < xk ≤ bk or ak ≤ xk < bk. Thus a degenerate interval is

empty , unless it is closed (in which case it contains ā and b̄ at least).

Note 2. In any interval A,

dA = ρ(ā, b̄) =

√

n
∑

k=1

(bk − ak)2 =

√

n
∑

k=1

ℓ2k .

In E2, we can split an interval A into two subintervals P and Q by drawing
a line (see Figure 2). In E3, this is done by a plane orthogonal to one of the
axes of the form xk = c (see §§4–6, Note 2), with ak < c < bk. In particular, if
c = 1

2 (ak + bk), the plane bisects the kth edge of A; and so the kth edge-length

of P (and Q) equals 1
2ℓk = 1

2 (bk − ak). If A is closed, so is P or Q, depending

on our choice. (We may include the “partition” xk = c in P or Q.)1

ā

b̄

0̄

Y

X

Figure 3

Now, successively draw n planes
xk = ck, ck = 1

2(ak + bk), k =
1, 2, . . . , n. The first plane bisects
ℓj leaving the other edges of A un-
changed. The resulting two subinter-
vals P and Q then are cut by the
plane x2 = c2, bisecting the sec-
ond edge in each of them. Thus we
get four subintervals (see Figure 3 for
E2). Each successive plane doubles

the number of subintervals. After n
steps, we thus obtain 2n disjoint intervals, with all edges ℓk bisected. Thus by
Note 2, the diagonal of each of them is

√

n
∑

k=1

(1

2
ℓk

)2

=
1

2

√

n
∑

k=1

ℓ2k =
1

2
dA.

Note 3. If A is closed then, as noted above, we can make any one (but only
one) of the 2n subintervals closed by properly manipulating each step.

The proof of the following simple corollaries is left to the reader.

1 We have either P = {x̄ ∈ A | xk ≤ c} and Q = {x̄ ∈ A | xk > c}, or P = {x̄ ∈ A | xk < c}
and Q = {x̄ ∈ A | xk ≥ c}.
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Corollary 1. No distance between two points of an interval A exceeds dA, its
diagonal . That is , (∀ x̄, ȳ ∈ A) ρ(x̄, ȳ) ≤ dA.
Corollary 2. If an interval A contains p̄ and q̄, then also L[p̄, q̄] ⊆ A.
Corollary 3. Every nondegenerate interval in En contains rational points ,
i .e., points whose coordinates are all rational .

(Hint: Use the density of rationals in E1 for each coordinate separately.)

Problems on Intervals in En

(Here A and B denote intervals .)

1. Prove Corollaries 1–3.

2. Prove that if A ⊆ B, then dA ≤ dB and vA ≤ vB.

3. Give an appropriate definition of a “face” and a “vertex” of A.

4. Find the edge-lengths of A = (ā, b̄) in E4 if

ā = (1, −2, 4, 0) and b̄ = (2, 0, 5, 3).

Is A a cube? Find some rational points in it. Find dA and vA.

5. Show that the sets P and Q as defined in footnote 1 are intervals , indeed.
In particular, they can be made half-open (half-closed) if A is half-open
(half-closed).
[Hint: Let A = (ā, b̄],

P = {x̄ ∈ A | xk ≤ c}, and Q = {x̄ ∈ A | xk > c}.

To fix ideas, let k = 1, i.e., cut the first edge. Then let

p̄ = (c, a2, . . . , an) and q̄ = (c, b2, . . . , bn) (see Figure 2),

and verify that P = (ā, q̄] and Q = (p̄, b̄]. Give a proof.]

6. In Problem 5, assume that A is closed , and make Q closed. (Prove it!)

7. In Problem 5 show that (with k fixed) the kth edge-lengths of P and Q
equal c− ak and bk − c, respectively, while for i 6= k the edge-length ℓi
is the same in A, P , and Q, namely, ℓi = bi − ai.
[Hint: If k = 1, define p̄ and q̄ as in Problem 5.]

8. Prove that if an interval A is split into subintervals P and Q (P∩Q = ∅),
then vA = vP + vQ.
[Hint: Use Problem 7 to compute vA, vP , and vQ. Add up.]

Give an example. (Take A as in Problem 4 and split it by the plane
x4 = 1.)

∗9. Prove the additivity of the volume of intervals, namely, if A is subdivided ,
in any manner , into m mutually disjoint subintervals A1, A2, . . . , Am
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in En, then

vA =
m
∑

i=1

vAi.

(This is true also if some Ai contain common faces).
[Proof outline: For m = 2, use Problem 8.

0̄

Y

X

ā
c

p̄

b̄d̄

A1 A2

A3

Figure 4

Then by induction, suppose ad-

ditivity holds for any number of in-
tervals smaller than a certain m

(m > 1). Now let

A =
m⋃

i=1

Ai (Ai disjoint).

One of the Ai (say, A1 = [ā, p̄])

must have some edge-length smaller

than the corresponding edge-length
of A (say, ℓ1). Now cut all of A into

P = [ā, d̄] and Q = A−P (Figure 4)
by the plane x1 = c (c = p1) so that

A1 ⊆ P while A2 ⊆ Q. For simplicity, assume that the plane cuts each Ai into two

subintervals A′
i and A′′

i . (One of them may be empty.)

Then

P =

m⋃

i=1

A′
i and Q =

m⋃

i=1

A′′
i .

Actually, however, P and Q are split into fewer than m (nonempty) intervals since

A′′
1 = ∅ = A′

2 by construction. Thus, by our inductive assumption,

vP =

m∑

i=1

vA′
i and vQ =

m∑

i=1

vA′′
i ,

where vA′′
1 = 0 = vA′

2, and vAi = vA′
i +vA′′

i by Problem 8. Complete the inductive

proof by showing that

vA = vP + vQ =
m∑

i=1

vAi.]

§8. Complex Numbers

With all the operations defined in §§1–3, En (n > 1) is not yet a field because
of the lack of a vector multiplication satisfying the field axioms. We shall now
define such a multiplication, but only for E2. Thus E2 will become a field,
which we shall call the complex field , C.
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0

Y

X

z

z

Figure 5

We make some changes in nota-
tion and terminology here. Points of
E2, when regarded as elements of C,
will be called complex numbers (each
being an ordered pair of real num-
bers). We denote them by single let-
ters (preferably z) without a bar or
an arrow. For example, z = (x, y).
We preferably write (x, y) for (x1, x2). If z = (x, y), then x and y are called
the real and imaginary parts of z, respectively,1 and z̄ denotes the complex
number (x, −y), called the conjugate of z (see Figure 5).

Complex numbers with vanishing imaginary part, (x, 0), are called real

points of C. For brevity, we simply write x for (x, 0); for example, 2 = (2, 0).
In particular, 1 = (1, 0) = θ̄1 is called the real unit in C. Points with van-
ishing real part, (0, y), are called (purely) imaginary numbers. In particular,
θ̄2 = (0, 1) is such a number; we shall now denote it by i and call it the imag-

inary unit in C. Apart from these peculiarities, all our former definitions of
§§1–3 remain valid in E2 = C. In particular, if z = (x, y) and z′ = (x′, y′), we
have

z ± z′ = (x, y)± (x′, y′) = (x± x′, y ± y′),
ρ(z, z′) =

√

(x− x′)2 + (y − y′)2 , and
|z| =

√

x2 + y2 .

All theorems of §§1–3 are valid.

We now define the new multiplication in C, which will make it a field.

Definition 1.

If z = (x, y) and z′ = (x′, y′), then zz′ = (xx′ − yy′, xy′ + yx′).

Theorem 1. E2 = C is a field , with zero element 0 = (0, 0) and unity 1 =
(1, 0), under addition and multiplication as defined above.

Proof. We only must show that multiplication obeys Axioms I–VI of the field
axioms. Note that for addition, all is proved in Theorem 1 of §§1–3.

Axiom I (closure) is obvious from our definition, for if z and z′ are in C, so
is zz′.

To prove commutativity, take any complex numbers

z = (x, y) and z′ = (x′, y′)

1 This terminology is solely traditional. Actually, there is nothing “imaginary” about

(0, y), no more than about (x, 0), or (x, y).
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and verify that zz′ = z′z. Indeed, by definition,

zz′ = (xx′ − yy′, xy′ + yx′) and z′z = (x′x− y′y, x′y + y′x);

but the two expressions coincide by the commutative laws for real numbers.
Associativity and distributivity are proved in a similar manner.

Next, we show that 1 = (1, 0) satisfies Axiom IV(b), i.e., that 1z = z for
any complex number z = (x, y). In fact, by definition, and by axioms for E1,

1z = (1, 0) (x, y) = (1x− 0y, 1y + 0x) = (x− 0, y + 0) = (x, y) = z.

It remains to verify Axiom V(b), i.e., to show that each complex number
z = (x, y) 6= (0, 0) has an inverse z−1 such that zz−1 = 1. It turns out that
the inverse is obtained by setting

z−1 =
( x

|z|2 , −
y

|z|2
)

.

In fact, we then get

zz−1 =
( x2

|z|2 +
y2

|z|2 , −
xy

|z|2 +
yx

|z|2
)

=
(x2 + y2

|z|2 , 0
)

= (1, 0) = 1

since x2 + y2 = |z|2, by definition. This completes the proof. �

Corollary 1. i2 = −1; i .e., (0, 1)(0, 1) = (−1, 0).
Proof. By definition, (0, 1)(0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0). �

Thus C has an element i whose square is −1, while E1 has no such element,
by Corollary 2 in Chapter 2, §§1–4. This is no contradiction since that corollary
holds in ordered fields only. It only shows that C cannot be made an ordered

field.

However, the “real points” in C form a subfield that can be ordered by
setting

(x, 0) < (x′, 0) iff x < x′ in E1.2

Then this subfield behaves exactly like E1.3 Therefore, it is customary not to
distinguish between “real points in C” and “real numbers,” identifying (x, 0)
with x. With this convention, E1 simply is a subset (and a subfield) of C.
Henceforth, we shall simply say that “x is real” or “x ∈ E1” instead of “x =
(x, 0) is a real point.” We then obtain the following result.

Theorem 2. Every z ∈ C has a unique representation as

z = x+ yi,

2 The proof is left as an exercise (Problem 1′ below).
3 This can be made precise by using the notion of isomorphism (see Basic Concepts of Mathematics ,

Chapter 2, §14). We shall not go deeper into this topic here.

http://www.trillia.com/zakon1.html
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where x and y are real and i = (0, 1). Specifically ,

z = x+ yi iff z = (x, y).

Proof. By our conventions, x = (x, 0) and y = (y, 0), so

x+ yi = (x, 0) + (y, 0)(0, 1).

Computing the right-hand expression from definitions, we have for any x, y ∈
E1 that

x+ yi = (x, 0) + (y · 0− 0 · 1, y · 1 + 0 · 1) = (x, 0) + (0, y) = (x, y).

Thus (x, y) = x+ yi for any x, y ∈ E1. In particular, if (x, y) is the given
number z ∈ C of the theorem, we obtain z = (x, y) = x+ yi, as required.

To prove uniqueness, suppose that we also have

z = x′ + y′i with x′ = (x′, 0) and y′ = (y′, 0).

Then, as shown above, z = (x′, y′). Since also z = (x, y), we have (x, y) =
(x′, y′), i.e., the two ordered pairs coincide, and so x = x′ and y = y′ after
all. �

y

Y

θ

x X0

z

r

Figure 6

Geometrically, instead of Carte-
sian coordinates (x, y), we may also
use polar coordinates r, θ, where

r =
√

x2 + y2 = |z|

and θ is the (counterclockwise) rota-
tion angle from the x-axis to the di-

rected line
−→
0z ; see Figure 6. Clearly,

z is uniquely determined by r and θ,
but θ is not uniquely determined by
z; indeed, the same point of E2 results if θ is replaced by θ+2nπ (n = 1, 2, . . . ).
(If z = 0, then θ is not defined at all.) The values r and θ are called, respec-
tively, the modulus and argument of z = (x, y). By elementary trigonometry,
x = r cos θ and y = r sin θ. Substituting in z = x+ yi, we obtain the following
corollary.

Corollary 2. z = r(cos θ + i sin θ) (trigonometric or polar form of z).

Problems on Complex Numbers

1. Complete the proof of Theorem 1 (associativity, distributivity, etc.).

1′. Verify that the “real points” in C form an ordered field.
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2. Prove that zz̄ = |z|2. Deduce that z−1 = z̄/|z|2 if z 6= 0.4

3. Prove that
z + z′ = z̄ + z′ and zz′ = z̄ · z′.

Hence show by induction that

zn = (z̄)n, n = 1, 2, . . . , and
n
∑

k=1

akzk =
n
∑

k=1

ākz̄
k.

4. Define
eθi = cos θ + i sin θ.

Describe eθi geometrically. Is |eθi| = 1?

5. Compute

(a)
1 + 2i

3− i ;

(b) (1 + 2i)(3− i); and

(c)
x+ 1 + i

x+ 1− i , x ∈ E
1.

Do it in two ways: (i) using definitions only and the notation (x, y) for
x+ yi; and (ii) using all laws valid in a field.

6. Solve the equation (2, −1)(x, y) = (3, 2) for x and y in E1.

7. Let
z = r(cos θ + i sin θ),

z′ = r′(cos θ′ + i sin θ′), and

z′′ = r′′(cos θ′′ + i sin θ′′)

as in Corollary 2. Prove that z = z′z′′ if

r = |z| = r′r′′, i.e., |z′z′′| = |z′| |z′′|, and θ = θ′ + θ′′.

Discuss the following statement: To multiply z′ by z′′ means to rotate
−→
0z′

counterclockwise by the angle θ′′ and to multiply it by the scalar r′′ =
|z′′|. Consider the cases z′′ = i and z′′ = −1.
[Hint: Remove brackets in

r(cos θ + i sin θ) = r′(cos θ′ + i sin θ′) · r′′(cos θ′′ + i sin θ′′)

and apply the laws of trigonometry.]

8. By induction, extend Problem 7 to products of n complex numbers, and
derive de Moivre’s formula, namely, if z = r(cos θ + i sin θ), then

zn = rn(cos(nθ) + i sin(nθ)).

4 Recall that z̄ means “conjugate of z.”
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Use it to find, for n = 1, 2, . . . ,

(a) in; (b) (1 + i)n; (c)
1

(1 + i)n
.

9. From Problem 8, prove that for every complex number z 6= 0, there are
exactly n complex numbers w such that

wn = z;

they are called the nth roots of z.
[Hint: If

z = r(cos θ + i sin θ) and w = r′(cos θ′ + i sin θ′),

the equation wn = z yields, by Problem 8,

(r′)n = r and nθ′ = θ,

and conversely.

While this determines r′ uniquely, θ may be replaced by θ+2kπ without affecting
z. Thus

θ′ =
θ + 2kπ

n
, k = 1, 2, . . . .

Distinct points w result only from k = 0, 1, . . . , n− 1 (then they repeat cyclically).

Thus n values of w are obtained.]

10. Use Problem 9 to find in C

(a) all cube roots of 1; (b) all fourth roots of 1.

Describe all nth roots of 1 geometrically.

∗§9. Vector Spaces. The Space Cn. Euclidean Spaces

I. We shall now follow the pattern of En to obtain the general notion of a
vector space (just as we generalized E1 to define fields).

Let V be a set of arbitrary elements (not necessarily n-tuples), called “vec-
tors” or “points,” with a certain operation (call it “addition,” +) somehow
defined in V . Let F be any field (e.g., E1 or C); its elements will be called
scalars ; its zero and unity will be denoted by 0 and 1, respectively. Suppose
that yet another operation (“multiplication of scalars by vectors”) has been
defined that assigns to every scalar c ∈ F and every vector x ∈ V a certain
vector, denoted cx or xc and called the c-multiple of x. Furthermore, sup-
pose that this multiplication and addition in V satisfy the nine laws specified

in Theorem 1 of §§1–3. That is, we have closure:

(∀x, y ∈ V ) (∀ c ∈ F ) x+ y ∈ V and cx ∈ V .
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Vector addition is commutative and associative. There is a unique zero-vector ,
~0, such that

(∀x ∈ V ) x+~0 = x,

and each x ∈ V has a unique inverse, −x, such that

x+ (−x) = ~0.

We have distributivity :

a(x+ y) = ax+ ay and (a+ b)x = ax+ bx.

Finally, we have
1x = x

and
(ab)x = a(bx)

(a, b ∈ F ; x, y ∈ V ).

In this case, V together with these two operations is called a vector space

(or a linear space) over the field F ; F is called its scalar field , and elements of
F are called the scalars of V .

Examples.

(a) En is a vector space over E1 (its scalar field).

(a′) Rn, the set of all rational points of En (i.e., points with rational coordi-
nates) is a vector space over R, the rationals in E1. (Note that we could
take R as a scalar field for all of En; this would yield another vector
space, En over R, not to be confused with En over E1, i.e., the ordinary
En.)

(b) Let F be any field, and let Fn be the set of all ordered n-tuples of elements
of F , with sums and scalar multiples defined as in En (with F playing
the role of E1). Then Fn is a vector space over F (proof as in Theorem 1
of §§1–3).

(c) Each field F is a vector space (over itself) under the addition and multi-
plication defined in F . Verify!

(d) Let V be a vector space over a field F , and letW be the set of all possible
mappings

f : A→ V

from some arbitrary set A 6= ∅ into V . Define the sum f + g of two such
maps by setting

(f + g)(x) = f(x) + g(x) for all x ∈ A.1

1 Here “f+g” must be treated as one letter (function symbol); “(f+g)(x)” means “h(x),”

where h = f + g; similarly for such symbols as af , etc.
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Similarly, given a ∈ F and f ∈W , define the map af by

(af)(x) = af(x).

Under these operations, W is a vector space over the same field F , with
each map f : A→ V treated as a single “vector” in W . (Verify!)

Vector spaces over E1 (respectively, C) are called real (respectively, complex )
linear spaces. Complex spaces can always be transformed into real ones by
restricting their scalar field C to E1 (treated as a subfield of C).

II. An important example of a complex linear space is Cn, the set of all
ordered n-tuples

x = (x1, . . . , xn)

of complex numbers xk (now treated as scalars), with sums and scalar multiples
defined as in En. In order to avoid confusion with conjugates of complex
numbers, we shall not use the bar notation x̄ for a vector in this section,
writing simply x for it. Dot products in Cn are defined by

x · y =
n
∑

k=1

xkȳk,

where ȳk is the conjugate of the complex number yk (see §8), and hence a scalar

in C. Note that ȳk = yk if yk ∈ E1. Thus, for vectors with real components,

x · y =
n
∑

k=1

xkyk,

as in En. The reader will easily verify (exactly as for En) that, for x, y ∈ Cn

and a, b ∈ C, we have the following properties:

(i) x · y ∈ C; thus x · y is a scalar , not a vector.

(ii) x · x ∈ E1, and x · x ≥ 0; moreover, x · x = 0 iff x = ~0. (Thus the dot

product of a vector by itself is a real number ≥ 0.)

(iii) x · y = y · x (= conjugate of y · x). Commutativity fails in general.

(iv) (ax) · (by) = (ab̄)(x · y). Hence (iv′) (ax) · y = a(x · y) = x · (āy).
(v) (x+ y) · z = x · z + y · z and (v′) z · (x+ y) = z · x+ z · y.
Observe that (v′) follows from (v) by (iii). (Verify!)

III. Sometimes (but not always) dot products can also be defined in real or
complex linear spaces other than En or Cn, in such a manner as to satisfy the
laws (i)–(v), hence also (v′), listed above, with C replaced by E1 if the space
is real. If these laws hold, the space is called Euclidean. For example, En is a
real Euclidean space and Cn is a complex one.
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In every such space, we define absolute values of vectors by

|x| =
√
x · x.

(This root exists in E1 by formula (ii).) In particular, this applies to En

and Cn. Then given any vectors x, y and a scalar a, we obtain as before the
following properties:

(a′) |x| ≥ 0; and |x| = 0 iff x = ~0.

(b′) |ax| = |a| |x|.
(c′) Triangle inequality : |x+ y| ≤ |x|+ |y|.
(d′) Cauchy–Schwarz inequality : |x · y| ≤ |x| |y|, and |x · y| = |x| |y| iff x ‖ y

(i.e., x = ay or y = ax for some scalar a).

We prove only (d′); the rest is proved as in Theorem 4 of §§1–3.
If x · y = 0, all is trivial, so let z = x · y = rc 6= 0, where r = |x · y| and c has

modulus 1, and let y′ = cy. For any (variable) t ∈ E1, consider |tx + y′|. By
definition and (v), (iii), and (iv),

|tx+ y′|2 = (tx+ y′) · (tx+ y′)

= tx · tx+ y′ · tx+ tx · y′ + y′ · y′

= t2(x · x) + t(y′ · x) + t(x · y′) + (y′ · y′)
since t̄ = t. Now, since cc̄ = 1,

x · y′ = x · (cy) = (c̄x) · y = c̄rc = r = |x · y|.
Similarly,

y′ · x = x · y′ = r̄ = r = |x · y|, x · x = |x|2, and y′ · y′ = y · y = |y|2.
Thus we obtain

(∀ t ∈ E1) |tx+ cy|2 = t2|x|2 + 2t|x · y|+ |y|2. (1)

Here |x|2, 2|x · y|, and |y|2 are fixed real numbers. We treat them as coeffi-
cients in t of the quadratic trinomial

f(t) = t2|x|2 + 2t|x · y|+ |y|2.

Now if x and y are not parallel, then cy 6= −tx, and so

|tx+ cy| = |tx+ y′| 6= 0

for any t ∈ E1. Thus by (1), the quadratic trinomial has no real roots; hence
its discriminant,

4|x · y|2 − 4(|x| |y|)2,
is negative, so that |x · y| < |x| |y|.



∗§9. Vector Spaces. The Space Cn. Euclidean Spaces 89

If, however, x ‖ y, one easily obtains |x · y| = |x| |y|, by (b′). (Verify.)

Thus |x · y| = |x| |y| or |x · y| < |x| |y| according to whether x ‖ y or not. �

In any Euclidean space, we define distances by ρ(x, y) = |x − y|. Planes ,
lines , and line segments are defined exactly as in En. Thus

line pq = {p+ t(q − p) | t ∈ E1} (in real and complex spaces alike).

Problems on Linear Spaces

1. Prove that Fn in Example (b) is a vector space, i.e., that it satisfies all
laws stated in Theorem 1 in §§1–3; similarly for W in Example (d).

2. Verify that dot products in Cn obey the laws (i)–(v′). Which of these
laws would fail if these products were defined by

x · y =
n
∑

k=1

xkyk instead of x · y =
n
∑

k=1

xkȳk?

How would this affect the properties of absolute values given in (a′)–(d′)?

3. Complete the proof of formulas (a′)–(d′) for Euclidean spaces. What
change would result if property (ii) of dot products were restated as

“x · x ≥ 0 and ~0 ·~0 = 0”?

4. Define orthogonality, parallelism and angles in a general Euclidean space
following the pattern of §§1–3 (text and Problem 7 there). Show that

u = ~0 iff u is orthogonal to all vectors of the space.

5. Define the basic unit vectors ek in Cn exactly as in En, and prove
Theorem 2 in §§1–3 for Cn (replacing E1 by C). Also, do Problem 5(a)
of §§1–3 for Cn.

6. Define hyperplanes in Cn as in Definition 3 of §§4–6, and prove
Theorem 1 stated there, for Cn. Do also Problems 4–6 there for Cn

(replacing E1 by C) and Problem 4 there for vector spaces in general
(replacing E1 by the scalar field F ).

7. Do Problem 3 of §§4–6 for general Euclidean spaces (real or complex).
Note: Do not replace E1 by C in the definition of a line and a line
segment.

8. A finite set of vectors B = {x1, . . . , xm} in a linear space V over F is
said to be independent iff

(∀ a1, a2, . . . , am ∈ F )
( m
∑

i=1

aixi = ~0 =⇒ a1 = a2 = · · · = am = 0

)

.

Prove that if B is independent, then

(i) ~0 /∈ B;
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(ii) each subset of B is independent (∅ counts as independent); and
(iii) if for some scalars ai, bi ∈ F ,

m
∑

i=1

aixi =

m
∑

i=1

bixi,

then ai = bi, i = 1, 2, . . . , m.

9. Let V be a vector space over F and let A ⊆ V . By the span of A in V ,
denoted span(A), is meant the set of all “linear combinations” of vectors
from A, i.e., all vectors of the form

m
∑

i=1

aixi, ai ∈ F, xi ∈ A, m ∈ N.2

Show that span(A) is itself a vector space V ′ ⊆ V (a subspace of V )
over the same field F , with the operations defined in V . (We say that
A spans V ′.) Show that in En and Cn, the basic unit vectors span the
entire space.

∗§10. Normed Linear Spaces

By a normed linear space (briefly normed space) is meant a real or complex
vector space E in which every vector x is associated with a real number |x|,
called its absolute value or norm, in such a manner that the properties (a′)–(c′)
of §9 hold.1 That is, for any vectors x, y ∈ E and scalar a, we have

(i) |x| ≥ 0;

(i′) |x| = 0 iff x = ~0;

(ii) |ax| = |a| |x|; and
(iii) |x+ y| ≤ |x|+ |y| (triangle inequality).

Mathematically, the existence of absolute values in E amounts to that of a
map (called a norm map) x→ |x| on E, i.e., a map ϕ : E → E1, with function
values ϕ(x) written as |x|, satisfying the laws (i)–(iii) above. Often such a map
can be chosen in many ways (not necessarily via dot products, which may not
exist in E), thus giving rise to different norms on E. Sometimes we write ‖x‖
for |x| or use other similar symbols.

Note 1. From (iii), we also obtain |x− y| ≥
∣

∣|x| − |y|
∣

∣ exactly as in En.

2 If A = ∅, then span(A) = {~0} by definition.
1 Roughly, it is a vector space (over E1 or C) in which “well-behaved” absolute values are

defined, resembling those in En.
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Examples.

(A) Each Euclidean space (§9), such as En or Cn, is a normed space, with
norm defined by

|x| =
√
x · x ,

as follows from formulas (a′)–(c′) in §9. In En and Cn, one can also
equivalently define

|x| =
√

n
∑

k=1

|xk|2,

where x = (x1, . . . , xn). This is the so-called standard norm, usually
presupposed in En (Cn).

(B) One can also define other, “nonstandard ,” norms on En and Cn. For
example, fix some real p ≥ 1 and put

|x|p =

( n
∑

k=1

|xk|p
)

1
p
.

One can show that |x|p so defined satisfies (i)–(iii) and thus is a norm

(see Problems 5–7 below).

(C) Let W be the set of all bounded maps

f : A→ E

from a set A 6= ∅ into a normed space E, i.e., such that

(∀ t ∈ A) |f(t)| ≤ c
for some real constant c > 0 (dependent on f but not on t). Define f + g
and af as in Example (d) of §9 so that W becomes a vector space. Also,
put

‖f‖ = sup
t∈A
|f(t)|,

i.e., the supremum of all |f(t)|, with t ∈ A. Due to boundedness, this
supremum exists in E1, so ‖f‖ ∈ E1.

It is easy to show that ‖f‖ is a norm on W . For example, we verify
(iii) as follows.

By definition, we have for f, g ∈W and x ∈ A,
|(f + g)(x)| = |f(x) + g(x)|

≤ |f(x)|+ |g(x)|
≤ sup

t∈A
|f(t)|+ sup

t∈A
|g(t)|

= ‖f‖+ ‖g‖.

(1)
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(The first inequality is true because (iii) holds in the normed space E to
which f(x) and g(x) belong.) By (1), ‖f‖+ ‖g‖ is an upper bound of all
expressions |(f + g)(x)|, x ∈ A. Thus

‖f‖+ ‖g‖ ≥ sup
x∈A
|(f + g)(x)| = ‖f + g‖.

Note 2. Formula (1) also shows that the map f + g is bounded and hence
is a member of W . Quite similarly we see that af ∈ W for any scalar a and
f ∈W . Thus we have the closure laws for W . The rest is easy.

In every normed (in particular, in each Euclidean) space E, we define dis-

tances by

ρ(x, y) = |x− y| for all x, y ∈ E.

Such distances depend, of course, on the norm chosen for E; thus we call them
norm-induced distances. In particular, using the standard norm in En and Cn

(Example (A)), we have

ρ(x, y) =

√

n
∑

k=1

|xk − yk|2 .

Using the norm of Example (B), we get

ρ(x, y) =

( n
∑

k=1

|xk − yk|p
)

1
p

instead. In the space W of Example (C), we have

ρ(f, g) = ‖f − g‖ = sup
x∈A
|f(x)− g(x)|.

Proceeding exactly as in the proof of Theorem 5 in §§1–3, we see that norm-
induced distances obey the three laws stated there. (Verify!) Moreover, by
definition,

ρ(x+ u, y + u) = |(x+ u)− (y + u)| = |x− y| = ρ(x, y).

Thus we have

ρ(x, y) = ρ(x+ u, y + u) for norm-induced distances; (2)

i.e., the distance ρ(x, y) does not change if both x and y are “translated” by

one and the same vector u. We call such distances translation-invariant .

A more general theory of distances will be given in §§11ff.
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Problems on Normed Linear Spaces

1. Show that distances in normed spaces obey the laws stated in Theorem 5
of §§1–3.

2. Complete the proof of assertions made in Example (C) and Note 2.

3. Define |x| = x1 for x = (x1, . . . , xn) in C
n or En. Is this a norm? Which

(if any) of the laws (i)–(iii) does it obey? How about formula (2)?

4. Do Problem 3 in §§4–6 for a general normed space E, with lines defined
as in En (see also Problem 7 in §9). Also, show that contracting se-
quences of line segments in E are f -images of contracting sequences of
intervals in E1. Using this fact, deduce from Problem 11 in Chapter 2,
§§8–9, an analogue for line segments in E, namely, if

L[an, bn] ⊇ L[an+1, bn+1], n = 1, 2, . . . ,

then
∞
⋂

n=1

L[an, bn] 6= ∅.

5. Take for granted the lemma that

a1/pb1/q ≤ a

p
+
b

q

if a, b, p, q ∈ E1 with a, b ≥ 0 and p, q > 0, and

1

p
+

1

q
= 1.

(A proof will be suggested in Chapter 5, §6, Problem 11.) Use it to
prove Hölder’s inequality , namely, if p > 1 and 1

p + 1
q = 1, then

n
∑

k=1

|xkyk| ≤
( n
∑

k=1

|xk|p
)

1
p
( n
∑

k=1

|yk|q
)

1
q
for any xk, yk ∈ C.

[Hint: Let

A =

( n∑

k=1

|xk|p
) 1

p

and B =

( n∑

k=1

|yk|q
) 1

q

.

If A = 0 or B = 0, then all xk or all yk vanish, and the required inequality is trivial.

Thus assume A 6= 0 and B 6= 0. Then, setting

a =
|xk|p
Ap

and b =
|yk|q
Bq

in the lemma, obtain

|xkyk|
AB

≤ |xk|p
pAp

+
|yk|q
qBq

, k = 1, 2, . . . , n.
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Now add up these n inequalities, substitute the values of A and B, and simplify.]

6. Prove the Minkowski inequality ,

( n
∑

k=1

|xk + yk|p
)

1
p
≤

( n
∑

k=1

|xk|p
)

1
p
+

( n
∑

k=1

|yk|p
)

1
p

for any real p ≥ 1 and xk, yk ∈ C.
[Hint: If p = 1, this follows by the triangle inequality in C. If p > 1, let

A =

n∑

k=1

|xk + yk|p 6= 0.

(If A = 0, all is trivial.) Then verify (writing “
∑

” for “
∑n

k=1” for simplicity)

A =
∑

|xk + yk||xk + yk|p−1 ≤
∑

|xk||xk + yk|p−1 +
∑

|yk||xk + yk|p−1

Now apply Hölder’s inequality (Problem 5) to each of the last two sums, with q =

p/(p− 1), so that (p− 1)q = p and 1/p = 1− 1/q. Thus obtain

A ≤
(∑

|xk|p
) 1

p
(∑

|xk + yk|p
) 1

q
+

(∑

|yk|p
) 1

p
(∑

|xk + yk|p
) 1

q
.

Then divide by A
1
q = (

∑ |xk + yk|p)
1
q and simplify.]

7. Show that Example (B) indeed yields a norm for Cn and En.
[Hint: For the triangle inequality, use Problem 6. The rest is easy.]

8. A sequence {xm} of vectors in a normed space E (e.g., in En or Cn) is
said to be bounded iff

(∃ c ∈ E1) (∀m) |xm| < c,

i.e., iff supm |xm| is finite.
Denote such sequences by single letters, x = {xm}, y = {ym}, etc.,

and define

x+ y = {xm + ym}, and ax = {axm} for any scalar a.

Also let

|x| = sup
m
|xm|.

Show that, with these definitions, the set M of all bounded infinite
sequences in E becomes a normed space (in which every such sequence
is to be treated as a single vector, and the scalar field is the same as
that of E).
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§11. Metric Spaces

I. In §§1–3, we defined distances ρ(x̄, ȳ) for points x̄, ȳ in En using the
formula

ρ(x̄, ȳ) =

√

n
∑

k=1

(xk − yk)2 = |x̄− ȳ|.

This actually amounts to defining a certain function ρ of two variables x̄, ȳ ∈
En. We also showed that ρ obeys the three laws of Theorem 5 there. (We call
them metric laws.)

Now, as will be seen, such functions ρ can also be defined in other sets,
using quite different defining formulas. In other words, given any set S 6= ∅
of arbitrary elements, one can define in it, so to say, “fancy distances” ρ(x, y)
satisfying the same three laws. It turns out that it is not the particular formula
used to define ρ but rather the preservation of the three laws that is most
important for general theoretical purposes.

Thus we shall assume that a function ρ with the same three properties has
been defined, in some way or other , for a set S 6= ∅, and propose to study the
consequences of the three metric laws alone, without assuming anything else.
(In particular, no operations other than ρ, or absolute values, or inequalities <,
need be defined in S.) All results so obtained will, of course, apply to distances
in En (since they obey the metric laws), but they will also apply to other cases

where the metric laws hold .

The elements of S (though arbitrary) will be called “points ,” usually denoted
by p, q, x, y, z (sometimes with bars, etc.); ρ is called a metric for S. We
symbolize it by

ρ : S × S → E1

since it is function defined on S × S (pairs of elements of S) into E1. Thus we
are led to the following definition.

Definition 1.

A metric space is a set S 6= ∅ together with a function

ρ : S × S → E1

(called a metric for S) satisfying the metric laws (axioms):

For any x, y, and z in S, we have

(i) ρ(x, y) ≥ 0, and (i′) ρ(x, y) = 0 iff x = y;

(ii) ρ(x, y) = ρ(y, x) (symmetry law); and

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle law).
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Thus a metric space is a pair (S, ρ), namely, a set S and a metric ρ for it.
In general, one can define many different metrics

ρ, ρ′, ρ′′, . . .

for the same S. The resulting spaces

(S, ρ), (S, ρ′), (S, ρ′′), . . .

then are regarded as different . However, if confusion is unlikely, we simply
write S for (S, ρ). We write “p ∈ (S, ρ)” for “p ∈ S with metric ρ,” and
“A ⊆ (S, ρ)” for “A ⊆ S in (S, ρ).”

Examples.

(1) In En, we always assume

ρ(x̄, ȳ) = |x̄− ȳ| (the “standard metric”)

unless stated otherwise.1 By Theorem 5 in §§1–3, (En, ρ) is a metric
space.

(2) However, one can define for En many other “nonstandard” metrics. For
example,

ρ′(x̄, ȳ) =

( n
∑

k=1

|xk − yk|p
)1/p

for any real p ≥ 1

likewise satisfies the metric laws (a proof is suggested in §10, Problems 5–
7); similarly for Cn.

(3) Any set S 6= ∅ can be “metrized” (i.e., endowed with a metric) by setting

ρ(x, y) = 1 if x 6= y, and ρ(x, x) = 0.

(Verify the metric laws!) This is the so-called discrete metric. The space
(S, ρ) so defined is called a discrete space.

(4) Distances (“mileages”) on the surface of our planet are actually measured
along circles fitting in the curvature of the globe (not straight lines). One
can show that they obey the metric laws and thus define a (nonstandard)
metric for S = (surface of the globe).

(5) A mapping f : A→ E1 is said to be bounded iff

(∃K ∈ E1) (∀x ∈ A) |f(x)| ≤ K.

1 Similarly in other normed spaces (§10), such as Cn. (A reader who has omitted the

“starred” §10 will consider En only.)
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For a fixed A 6= ∅, let W be the set of all such maps (each being treated
as a single “point” of W ). Metrize W by setting, for f, g ∈W ,

ρ(f, g) = sup
x∈A
|f(x)− g(x)|.

(Verify the metric laws; see a similar proof in §10.)

II. We now define “balls” in any metric space (S, ρ).

Definition 2.

Given p ∈ (S, ρ) and a real ε > 0, we define the open ball or globe with
center p and radius ε (briefly “ε-globe about p”), denoted

Gp or Gp(ε) or G(p; ε),

to be the set of all x ∈ S such that

ρ(x, p) < ε.

Similarly, the closed ε-globe about p is

Gp = Gp(ε) = {x ∈ S | ρ(x, p) ≤ ε}.

The ε-sphere about p is defined by

Sp(ε) = {x ∈ S | ρ(x, p) = ε}.

Note. An open globe in E3 is an ordinary solid sphere (without its surface
Sp(ε)), as known from geometry. In E2, an open globe is a disc (the interior
of a circle). In E1, the globe Gp(ε) is simply the open interval

(p− ε, p+ ε),

while Gp(ε) is the closed interval

[p− ε, p+ ε].

The shape of the globes and spheres depends on the metric ρ. It may become
rather strange for various unusual metrics. For example, in the discrete space

(Example (3)), any globe of radius < 1 consists of its center alone, while Gp(2)
contains the entire space. (Why?) See also Problems 1, 2, and 4.

III. Now take any nonempty set

A ⊆ (S, ρ).

The distances ρ(x, y) in S are, of course, also defined for points of A (since
A ⊆ S), and the metric laws remain valid in A. Thus A is likewise a (smaller)
metric space under the metric ρ “inherited” from S; we only have to restrict
the domain of ρ to A×A (pairs of points from A). The set A with this metric
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is called a subspace of S. We shall denote it by (A, ρ), using the same letter ρ,
or simply by A. Note that A with some other metric ρ′ is not called a subspace
of (S, ρ).

By definition, points in (A, ρ) have the same distances as in (S, ρ). However,
globes and spheres in (A, ρ) must consist of points from A only, with centers
in A. Denoting such a globe by

G∗
p(ε) = {x ∈ A | ρ(x, p) < ε},

we see that it is obtained by restricting Gp(ε) (the corresponding globe in S)
to points of A, i.e., removing all points not in A. Thus

G∗
p(ε) = A ∩Gp(ε);

similarly for closed globes and spheres. A∩Gp(ε) is often called the relativized
(to A) globe Gp(ε). Note that p ∈ G∗

p(ε) since ρ(p, p) = 0 < ε, and p ∈ A.
For example, let R be the subspace of E1 consisting of rationals only. Then

the relativized globe G∗
p(ε) consists of all rationals in the interval

Gp(ε) = (p− ε, p+ ε),

and it is assumed here that p is rational itself.

IV. A few remarks are due on the extended real number system E∗ (see
Chapter 2, §13). As we know, E∗ consists of all reals and two additional
elements, ±∞, with the convention that −∞ < x < +∞ for all x ∈ E1.
The standard metric ρ does not apply to E∗. However, one can metrize E∗ in
various other ways. The most common metric ρ′ is suggested in Problems 5 and
6 below. Under that metric, globes turn out to be finite and infinite intervals

in E∗.

Instead of metrizing E∗, we may simply adopt the convention that intervals
of the form

(a, +∞] and [−∞, a), a ∈ E1,

will be called “globes” about +∞ and −∞, respectively (without specifying
any “radii”). Globes about finite points may remain as they are in E1. This
convention suffices for most purposes of limit theory. We shall use it often (as
we did in Chapter 2, §13).

Problems on Metric Spaces

The “arrowed” problems should be noted for later work.

1. Show that E2 becomes a metric space if distances ρ(x̄, ȳ) are defined
by

(a) ρ(x̄, ȳ) = |x1 − y1|+ |x2 − y2| or
(b) ρ(x̄, ȳ) = max{|x1 − y1|, |x2 − y2|},
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where x̄ = (x1, x2) and ȳ = (y1, y2). In each case, describe G0̄(1)
and S0̄(1). Do the same for the subspace of points with nonnegative

coordinates.

2. Prove the assertions made in the text about globes in a discrete space.
Find an empty sphere in such a space. Can a sphere contain the entire
space?

3. Show that ρ in Examples (3) and (5) obeys the metric axioms.

4. Let M be the set of all positive integers together with the “point” ∞.
Metrize M by setting

ρ(m, n) =
∣

∣

∣

1

m
− 1

n

∣

∣

∣
, with the convention that

1

∞ = 0.

Verify the metric axioms. Describe G∞( 1
2
), S∞( 1

2
), and G1(1).

⇒5. Metrize the extended real number system E∗ by

ρ′(x, y) = |f(x)− f(y)|,
where the function

f : E∗ −→
onto

[−1, 1]

is defined by

f(x) =
x

1 + |x| if x is finite, f(−∞) = −1, and f(+∞) = 1.

Compute ρ′(0, +∞), ρ′(0, −∞), ρ′(−∞, +∞), ρ′(0, 1), ρ′(1, 2), and
ρ′(n, +∞). Describe G0(1), G+∞(1), and G−∞( 12 ). Verify the metric
axioms (also when infinities are involved).

⇒6. In Problem 5, show that the function f is one to one, onto [−1, 1], and
increasing ; i.e.,

x < x′ implies f(x) < f(x′) for x, x′ ∈ E∗.

Also show that the f -image of an interval (a, b) ⊆ E∗ is the interval
(f(a), f(b)). Hence deduce that globes in E∗ (with ρ′ as in Problem 5)
are intervals in E∗ (possibly infinite).
[Hint: For a finite x, put

y = f(x) =
x

1 + |x| .

Solving for x (separately in the cases x ≥ 0 and x < 0), show that

(∀ y ∈ (−1, 1)) x = f−1(y) =
y

1− |y| ;

thus x is uniquely determined by y, i.e., f is one to one and onto—each y ∈ (−1, 1)

corresponds to some x ∈ E1. (How about ±1?)
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To show that f is increasing, consider separately the three cases x < 0 < x′,
x < x′ < 0 and 0 < x < x′ (also for infinite x and x′).]

7. Continuing Problems 5 and 6, consider (E1, ρ′) as a subspace of (E∗, ρ′)
with ρ′ as in Problem 5. Show that globes in (E1, ρ′) are exactly all
open intervals in E∗. For example, (0, 1) is a globe. What are its center
and radius under ρ′ and under the standard metric ρ?

8. Metrize the closed interval [0, +∞] in E∗ by setting

ρ(x, y) =

∣

∣

∣

∣

1

1 + x
− 1

1 + y

∣

∣

∣

∣

,

with the conventions 1 + (+∞) = +∞ and 1/(+∞) = 0. Verify the
metric axioms. Describe Gp(1) for arbitrary p ≥ 0.

9. Prove that if ρ is a metric for S, then another metric ρ′ for S is given
by

(i) ρ′(x, y) = min{1, ρ(x, y)};

(ii) ρ′(x, y) =
ρ(x, y)

1 + ρ(x, y)
.

In case (i), show that globes Gp(ε) of radius ε ≤ 1 are the same under ρ
and ρ′. In case (ii), prove that any Gp(ε) in (S, ρ) is also a globe Gp(ε

′)
in (S, ρ′) of radius

ε′ =
ε

1 + ε
,

and any globe of radius ε′ < 1 in (S, ρ′) is also a globe in (S, ρ). (Find
the converse formula for ε as well!)
[Hint for the triangle inequality in (ii): Let a = ρ(x, z), b = ρ(x, y), and c = ρ(y, z),
so that a ≤ b+ c. The required inequality is

a

1 + a
≤ b

1 + b
+

c

1 + c
.

Simplify it and show that it follows from a ≤ b+ c.]

10. Prove that if (X, ρ′) and (Y, ρ′′) are metric spaces, then a metric ρ for
the set X × Y is obtained by setting, for x1, x2 ∈ X and y1, y2 ∈ Y ,

(i) ρ((x1, y1), (x2, y2)) = max{ρ′(x1, x2), ρ′′(y1, y2)}; or
(ii) ρ((x1, y1), (x2, y2)) =

√

ρ′(x1, x2)2 + ρ′′(y1, y2)2 .

[Hint: For brevity, put ρ′12 = ρ′(x1, x2), ρ
′′
12 = ρ′′(y1, y2), etc. The triangle inequal-

ity in (ii),
√

(ρ′13)
2 + (ρ′′13)

2 ≤
√

(ρ′12)
2 + (ρ′′12)

2 +
√

(ρ′23)
2 + (ρ′′23)

2 ,

is verified by squaring both sides, isolating the remaining square root on the right

side, simplifying, and squaring again. Simplify by using the triangle inequalities valid
in X and Y , i.e.,

ρ′13 ≤ ρ′12 + ρ′23 and ρ′′13 ≤ ρ′′12 + ρ′′23.
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Reverse all steps, so that the required inequality becomes the last step.]

11. Prove that
|ρ(y, z)− ρ(x, z)| ≤ ρ(x, y)

in any metric space (S, ρ).
[Caution: The formula ρ(x, y) = |x−y|, valid in En, cannot be used in (S, ρ). Why?]

12. Prove that

ρ(p1, p2) + ρ(p2, p3) + · · ·+ ρ(pn−1, pn) ≥ ρ(p1, pn).
[Hint: Use induction.]

§12. Open and Closed Sets. Neighborhoods

I. Let A be an open globe in (S, ρ) or an open interval (ā, b̄) in En. Then
every p ∈ A can be enclosed in a small globe Gp(δ) ⊆ A (Figures 7 and 8).
(This would fail for “boundary” points; but there are none inside an open Gq

or (ā, b̄).)

q

p

A

Figure 7

ā

b̄

A

p

Figure 8

This suggests the following ideas, for any (S, ρ).

Definition 1.

A point p is said to be interior to a set A ⊆ (S, ρ) iff A contains some
Gp; i.e., p, together with some globe Gp, belongs to A. We then also say
that A is a neighborhood of p. The set of all interior points of A (“the
interior of A”) is denoted A0. Note: ∅0 = ∅ and S0 = S.1

Definition 2.

A set A ⊆ (S, ρ) is said to be open iff A coincides with its interior
(A0 = A). Such are ∅ and S.

1 Indeed, ∅ has no points at all, and hence no interior points; i.e., ∅0 is void. On the other

hand, S contains any Gp. Thus any p is interior to S; i.e., S0 = S.
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Examples.

(1) As noted above, an open globe Gq(r) has interior points only, and thus
is an open set in the sense of Definition 2. (See Problem 1 for a proof.)

(2) The same applies to an open interval (ā, b̄) in En. (See Problem 2.)

(3) The interior of any interval in En never includes its endpoints ā and b̄.
In fact, it coincides with the open interval (ā, b̄). (See Problem 4.)

(4) The set R of all rationals in E1 has no interior points at all (R0 = ∅)
because it cannot contain any Gp = (p − ε, p + ε). Indeed, any such
Gp contains irrationals (see Chapter 2, §§11–12, Problem 5), so it is not
entirely contained in R.

Theorem 1 (Hausdorff property2). Any two points p and q (p 6= q) in (S, ρ)
are centers of two disjoint globes .

More precisely ,
(∃ ε > 0) Gp(ε) ∩Gq(ε) = ∅.

Proof. As p 6= q, we have ρ(p, q) > 0 by metric axiom (i′). Thus we may put

ε =
1

2
ρ(p, q) > 0.

It remains to show that with this ε, Gp(ε) ∩Gq(ε) = ∅.
Seeking a contradiction, suppose this fails. Then there is x ∈ Gp(ε) ∩Gq(ε)

so that ρ(p, x) < ε and ρ(x, q) < ε. By the triangle law,

ρ(p, q) ≤ ρ(p, x) + ρ(x, q) < ε+ ε = 2ε; i.e., ρ(p, q) < 2ε,

which is impossible since ρ(p, q) = 2ε. �

p

q

δ

r

Figure 9

p1 a1 b1

ā

b̄

p̄
δ

Figure 10

Note. A look at Figure 9 explains the idea of this proof, namely, to obtain
two disjoint globes of equal radius, it suffices to choose ε ≤ 1

2
ρ(p, q). The

reader is advised to use such diagrams in E2 as a guide.

II. We can now define closed sets in terms of open sets.

2 Named after Felix Hausdorff.
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Definition 3.

A set A ⊆ (S, ρ) is said to be closed iff its complement −A = S − A is
open, i.e., has interior points only.

That is, each p ∈ −A (outside A) is in some globe Gp ⊆ −A so that

A ∩Gp = ∅.

Examples (continued).

(5) The sets ∅ and S are closed, for their complements, S and ∅, are open, as
noted above. Thus a set may be both closed and open (“clopen”).

(6) All closed globes in (S, ρ) and all closed intervals in En are closed sets by
Definition 3. Indeed (see Figures 9 and 10), if A = Gq(r) or A = [ā, b̄],
then any point p outside A can be enclosed in a globe Gp(δ) disjoint from
A; so, by Definition 3, A is closed (see Problem 12).

(7) A one-point set {q} (also called “singleton”) in (S, ρ) is always closed, for
any p outside {q} (p 6= q) is in a globe disjoint from {q} by Theorem 1.

In a discrete space (§11, Example (3)), {q} is also open since it is an
open globe, {q} = Gq(

1
2
) (why?); so it is “clopen.” Hence, in such a space,

all sets are “clopen”. For p ∈ A implies {p} = Gp(
1
2) ⊆ A; similarly for

−A. Thus A and −A have interior points only, so both are open.

(8) The interval (a, b] in E1 is neither open nor closed . (Why?)

∗III. (The rest of this section may be deferred until Chapter 4, §10.)
Theorem 2. The union of any finite or infinite family of open sets Ai (i ∈ I),
denoted

⋃

i∈I

Ai,

is open itself . So also is
n
⋂

i=1

Ai

for finitely many open sets . (This fails for infinitely many sets Ai; see Prob-

lem 11 below .)

Proof. We must show that any point p of A =
⋃

iAi is interior to A.

Now if p ∈ ⋃

iAi, p is in some Ai, and it is an interior point of Ai (for Ai

is open, by assumption). Thus there is a globe

Gp ⊆ Ai ⊆ A,

as required.
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For finite intersections , it suffices to consider two open sets A and B (for
n sets, all then follows by induction). We must show that each p ∈ A ∩ B is
interior to A ∩B.

Now as p ∈ A and A is open, we have some Gp(δ
′) ⊆ A. Similarly, there is

Gp(δ
′′) ⊆ B. Then the smaller of the two globes, call it Gp, is in both A and

B, so
Gp ⊆ A ∩B

and p is interior to A ∩B, indeed. �

Theorem 3. If the sets Ai (i ∈ I) are closed, so is
⋂

i∈I

Ai

(even for infinitely many sets). So also is

n
⋃

i=1

Ai

for finitely many closed sets Ai. (Again, this fails for infinitely many sets Ai.)

Proof. Let A =
⋂

i∈I Ai. To prove that A is closed, we show that −A is open.

Now by set theory (see Chapter 1, §§1–3, Theorem 2),

−A = −
⋂

i

Ai =
⋃

i

(−Ai),

where the (−Ai) are open (for the Ai are closed). Thus by Theorem 2, −A is

open, as required.

The second assertion (as to
⋃n

i=1Ai) follows quite similarly. �

Corollary 1. A nonempty set A ⊆ (S, ρ) is open iff A is a union of open

globes .

For if A is such a union, it is open by Theorem 2. Conversely, if A is open,
then each p ∈ A is in some Gp ⊆ A. All such Gp (p ∈ A) cover all of A, so
A ⊆ ⋃

p∈AGp. Also,
⋃

p∈AGp ⊆ A since all Gp are in A. Thus

A =
⋃

p∈A

Gp.

Corollary 2. Every finite set F in a metric space (S, ρ) is closed .

Proof. If F = ∅, F is closed by Example (5). If F 6= ∅, let

F = {p1, . . . , pn} =
n
⋃

k=1

{pk}.

Now by Example (7), each {pk} is closed; hence so is F by Theorem 3. �
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Note. The family of all open sets in a given space (S, ρ) is denoted by G;
that of all closed sets, by F . Thus “A ∈ G” means that A is open; “A ∈ F”
means that A is closed . By Theorems 2 and 3, we have

(∀A, B ∈ G) A ∪B ∈ G and A ∩B ∈ G;

similarly for F . This is a kind of “closure law.” We say that F and G are
“closed under finite unions and intersections .”

In conclusion, consider any subspace (A, ρ) of (S, ρ). As we know from §11,
it is a metric space itself, so it has its own open and closed sets (which must
consist of points of A only). We shall now show that they are obtained from
those of (S, ρ) by intersecting the latter sets with A.

Theorem 4. Let (A, ρ) be a subspace of (S, ρ). Then the open (closed) sets

in (A, ρ) are exactly all sets of the form A ∩ U , with U open (closed) in S.

Proof. Let G be open in (A, ρ). By Corollary 1, G is the union of some open
globes G∗

i (i ∈ I) in (A, ρ). (For brevity, we omit the centers and radii; we
also omit the trivial case G = ∅.)

As was shown in §11, however, G∗
i = A ∩Gi, where Gi is an open globe in

(S, ρ). Thus

G =
⋃

i

G∗
i =

⋃

i

(A ∩Gi) = A ∩
⋃

i

Gi,

by set theory (see Chapter 1, §§1–3, Problem 9).

Again by Corollary 1, U =
⋃

iGi is an open set in (S, ρ). Thus G has the
form

A ∩
⋃

i

Gi = A ∩ U,

with U open in S, as asserted.

Conversely, assume the latter, and let p ∈ G. Then p ∈ A and p ∈ U . As
U is open in (S, ρ), there is a globe Gp in (S, ρ) such that p ∈ Gp ⊆ U . As
p ∈ A, we have

p ∈ A ∩Gp ⊆ A ∩ U.

However, A ∩Gp is a globe in (A, ρ), call it G∗
p. Thus

p ∈ G∗
p ⊆ A ∩ U = G;

i.e., p is an interior point of G in (A, ρ). We see that each p ∈ G is interior to
G, as a set in (A, ρ), so G is open in (A, ρ).

This proves the theorem for open sets. Now let F be closed in (A, ρ). Then
by Definition 3, A − F is open in (A, ρ). (Of course, when working in (A, ρ),
we replace S by A in taking complements.) Let G = A−F , so F = A−G, and
G is open in (A, ρ). By what was shown above, G = A ∩ U with U open in S.
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Thus
F = A−G = A− (A ∩ U) = A− U = A ∩ (−U)

by set theory. Here −U = S−U is closed in (S, ρ) since U is open there. Thus
F = A ∩ (−U), as required.

The proof of the converse (for closed sets) is left as an exercise. �

Problems on Neighborhoods, Open and Closed Sets

⇒1. Verify Example (1).
[Hint: Given p ∈ Gq(r), let

δ = r − ρ(p, q) > 0. (Why > 0?)

Use the triangle law to show that

x ∈ Gp(δ) ⇒ ρ(x, q) < r ⇒ x ∈ Gq(r).]

⇒2. Check Example (2); see Figure 8.
[Hint: If p̄ ∈ (ā, b̄), choose δ less than the 2n numbers

pk − ak and bk − pk, k = 1, . . . , n;

then show that Gp̄(δ) ⊆ (ā, b̄).]

3. Prove that if p̄ ∈ Gq̄(r) in En, then Gq̄(r) contains a cube [c̄, d̄] with
c̄ 6= d̄ and with center p̄.
[Hint: By Example (1), there isGp̄(δ) ⊆ Gq̄(r). Inscribe inGp̄(

1
2
δ) a cube of diagonal

δ. Find its edge-length (δ/
√
n). Then use it to find the coordinates of the endpoints,

c̄ and d̄ (given p̄, the center). Prove that [c̄, d̄] ⊆ Gp̄(δ).]

4. Verify Example (3).
[Hint: To show that no interior points of [ā, b̄] are outside (ā, b̄), let p̄ /∈ (ā, b̄). Then

at least one of the inequalities ak < pk or pk < bk fails. (Why?) Let it be a1 < p1,
say, so p1 ≤ a1.

Now take any globe Gp̄(δ) about p̄ and prove that it is not contained in [ā, b̄]

(so p̄ cannot be an interior point). For this purpose, as in Problem 3, show that
Gp̄(δ) ⊇ [c̄, d̄] with c1 < p1 ≤ a1. Deduce that c̄ ∈ Gp̄(δ), but c̄ /∈ [ā, b̄]; so

Gp̄(δ) 6⊆ [ā, b̄].]

5. Prove that each open globe Gq̄(r) in E
n is a union of cubes (which can

be made open, closed, half-open, etc., as desired). Also, show that each
open interval (ā, b̄) 6= ∅ in En is a union of open (or closed) globes.
[Hint for the first part: By Problem 3, each p̄ ∈ Gq̄(r) is in a cube Cp ⊆ Gq̄(r). Show

that Gq̄(r) =
⋃

Cp.]

6. Show that every globe in En contains rational points, i.e., those with
rational coordinates only (we express it by saying that the set Rn of
such points is dense in En); similarly for the set In of irrational points
(those with irrational coordinates).
[Hint: First check it with globes replaced by cubes (c̄, d̄); see §7, Corollary 3. Then

use Problem 3 above.]
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7. Prove that if x̄ ∈ Gq̄(r) in En, there is a rational point p̄ (Problem 6)
and a rational number δ > 0 such that x̄ ∈ Gp̄(δ) ⊆ Gq̄(r). Deduce that
each globe Gq̄(r) in E

n is a union of rational globes (those with rational
centers and radii). Similarly, show that Gq̄(r) is a union of intervals
with rational endpoints.
[Hint for the first part: Use Problem 6 and Example (1).]

8. Prove that if the points p1, . . . , pn in (S, ρ) are distinct , there is an
ε > 0 such that the globes G(pk; ε) are disjoint from each other, for
k = 1, 2, . . . , n.

9. Do Problem 7, with Gq̄(r) replaced by an arbitrary open set G 6= ∅ in
En.

10. Show that every open set G 6= ∅ in En is infinite (∗even uncountable;
see Chapter 1, §9).
[Hint: Choose Gq̄(r) ⊆ G. By Problem 3, Gp̄(r) ⊃ L[c̄, d̄], a line segment.]

11. Give examples to show that an infinite intersection of open sets may not
be open, and an infinite union of closed sets may not be closed.
[Hint: Show that

∞⋂

n=1

(

− 1

n
,
1

n

)

= {0}

and
∞⋃

n=2

[ 1

n
, 1− 1

n

]

= (0, 1).]

12. Verify Example (6) as suggested in Figures 9 and 10.
[Hints: (i) For Gq(r), take

δ = ρ(p, q)− r > 0. (Why > 0?)

(ii) If p̄ /∈ [ā, b̄], at least one of the 2n inequalities ak ≤ pk or pk ≤ bk fails (why?),

say, p1 < a1. Take δ = a1 − p1.

In both (i) and (ii) prove that A ∩Gp(δ) = ∅ (proceed as in Theorem 1).]

∗13. Prove the last parts of Theorems 3 and 4.

∗14. Prove that A0, the interior of A, is the union of all open globes contained
in A (assume A0 6= ∅). Deduce that A0 is an open set, the largest

contained in A.3

∗15. For sets A, B ⊆ (S, ρ), prove that

(i) (A ∩B)0 = A0 ∩B0;

(ii) (A0)0 = A0; and

(iii) if A ⊆ B then A0 ⊆ B0.

3 That is, the one that contains all other open subsets of A.
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[Hint for (ii): A0 is open by Problem 14.]

16. Is A0 ∪B0 = (A ∪B)0?
[Hint: See Example (4). Take A = R, B = E1 − R.]

17. Prove that if M and N are neighborhoods of p in (S, ρ), then

(a) p ∈M ∩N ;

(b) M ∩N is a neighborhood of p;

∗(c) so is M0; and

(d) so also is each set P ⊆ S such that P ⊇M or P ⊇ N .

[Hint for (c): See Problem 14.]

18. The boundary of a set A ⊆ (S, ρ) is defined by

bdA = −[A0 ∪ (−A)0];
thus it consists of points that fail to be interior in A or in −A.

Prove that the following statements are true:

(i) S = A0 ∪ bdA ∪ (−A)0, all disjoint.
(ii) bdS = ∅, bd ∅ = ∅.

∗(iii) A is open iff A ∩ bdA = ∅; A is closed iff A ⊇ bdA.

(iv) In En,
bdGp̄(r) = bdGp̄(r) = Sp̄(r)

(the sphere with center p̄ and radius r). Is this true in all metric
spaces?
[Hint: Consider Gp(1) in a discrete space (S, ρ) with more than one point in
S; see §11, Example (3).]

(v) In En, if (ā, b̄) 6= ∅, then
bd(ā, b̄] = bd[ā, b̄) = bd(ā, b̄) = bd[ā, b̄] = [ā, b̄]− (ā, b̄).

(vi) In En, (Rn)0 = ∅; hence bdRn = En (Rn as in Problem 6).

19. Verify Example (8) for intervals in En.

§13. Bounded Sets. Diameters

I. Geometrically, the diameter of a closed globe in En could be defined as
the maximum distance between two of its points. In an open globe in En, there
is no “maximum” distance (why?), but we still may consider the supremum of
all distances inside the globe. Moreover, this makes sense in any set A ⊆ (S, ρ).
Thus we accept it as a general definition, for any such set.
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Definition 1.

The diameter of a set A 6= ∅ in a metric space (S, ρ), denoted dA, is the
supremum (in E∗) of all distances ρ(x, y), with x, y ∈ A;1 in symbols,

dA = sup
x, y∈A

ρ(x, y).

If A = ∅, we put dA = 0. If dA < +∞, A is said to be bounded (in
(S, ρ)).

Equivalently, we could define a bounded set as in the statement of the fol-
lowing theorem.

Theorem 1. A set A ⊆ (S, ρ) is bounded iff A is contained in some globe. If
so, the center p of this globe can be chosen at will .

Proof. If A = ∅, all is trivial.

ε

p q

A

Figure 11

Thus let A 6= ∅; let q ∈ A, and choose
any p ∈ S. Now if A is bounded, then
dA < +∞, so we can choose a real ε >
ρ(p, q)+dA as a suitable radius for a globe
Gp(ε) ⊇ A (see Figure 11 for motivation).
Now if x ∈ A, then by the definition of dA,
ρ(q, x) ≤ dA; so by the triangle law,

ρ(p, x) ≤ ρ(p, q) + ρ(q, x)

≤ ρ(p, q) + dA < ε;

i.e., x ∈ Gp(ε). Thus (∀x ∈ A) x ∈ Gp(ε),
as required.

Conversely, if A ⊆ Gp(ε), then any x, y ∈ A are also in Gp(ε); so ρ(x, p) < ε
and ρ(p, y) < ε, whence

ρ(x, y) ≤ ρ(x, p) + ρ(p, y) < ε+ ε = 2ε.

Thus 2ε is an upper bound of all ρ(x, y) with x, y ∈ A. Therefore,
dA = sup ρ(x, y) ≤ 2ε < +∞;

i.e., A is bounded, and all is proved. �

As a special case we obtain the following.

Theorem 2. A set A ⊆ En is bounded iff there is a real K > 0 such that

(∀ x̄ ∈ A) |x̄| < K

(∗similarly in Cn and other normed spaces).

1 Recall that the supremum always exists in E∗ (finite or not); see Chapter 2, §13.
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Proof. By Theorem 1 (choosing 0̄ for p), A is bounded iff A is contained in
some globe G0̄(ε) about 0̄. That is,

(∀ x̄ ∈ A) x̄ ∈ G0̄(ε) or ρ(x̄, 0̄) = |x̄| < ε.

Thus ε is the required K. (∗The proof for normed spaces is the same.) �

Note 1. In E1, this means that

(∀x ∈ A) −K < x < K;

i.e., A is bounded by −K and K. This agrees with our former definition, given
in Chapter 2, §§8–9.

Caution: Upper and lower bounds are not defined in (S, ρ), in general.

Examples.

(1) ∅ is bounded, with d∅ = 0, by definition.

(2) Let A = [ā, b̄] in En, with d = ρ(ā, b̄) its diagonal. By Corollary 1 in §7,
d is the largest distance in A. In nonclosed intervals, we still have

d = sup
x, y∈A

ρ(x, y) = dA < +∞ (see Problem 10(ii)).

Thus all intervals in En are bounded .

(3) Each globe Gp(ε) in (S, ρ) is bounded, with dGp(ε) ≤ 2ε < +∞, as was
shown in the proof of Theorem 1. See, however, Problems 5 and 6 below.

(4) All of En is not bounded, under the standard metric, for if En had a finite
diameter d, no distance in En would exceed d; but ρ(−dē1, dē1) = 2d, a
contradiction!

(5) On the other hand, under the discrete metric (§11, Example (3)), any set
(even the entire space) is contained in Gp(3) and hence bounded. The
same applies to the metric ρ′ defined for E∗ in Problem 5 of §11, since
distances under that metric never exceed 2, and so E∗ ⊆ Gp(3) for any
choice of p.

Note 2. This shows that boundedness depends on the metric ρ. A set may
be bounded under one metric and not bounded under another. A metric ρ is
said to be bounded iff all sets are bounded under ρ (as in Example (5)).

Problem 9 of §11 shows that any metric ρ can be transformed into a bounded

one, even preserving all sufficiently small globes; in part (i) of the problem, even
the radii remain the same if they are ≤ 1.

Note 3. An idea similar to that of diameter is often used to define distances
between sets . If A 6= ∅ and B 6= ∅ in (S, ρ), we define ρ(A, B) to be the infimum

of all distances ρ(x, y), with x ∈ A and y ∈ B. In particular, if B = {p} (a
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singleton), we write ρ(A, p) for ρ(A, B). Thus

ρ(A, p) = inf
x∈A

ρ(x, p).

II. The definition of boundedness extends, in a natural manner, to sequences
and functions. We briefly write {xm} ⊆ (S, ρ) for a sequence of points in (S, ρ),
and f : A→ (S, ρ) for a mapping of an arbitrary set A into the space S. Instead
of “infinite sequence with general term xm,” we say “the sequence xm.”

Definition 2.

A sequence {xm} ⊆ (S, ρ) is said to be bounded iff its range is bounded
in (S, ρ), i.e., iff all its terms xm are contained in some globe in (S, ρ).

In En, this means (by Theorem 2) that

(∀m) |xm| < K

for some fixed K ∈ E1.2

Definition 3.

A function f : A → (S, ρ) is said to be bounded on a set B ⊆ A iff the
image set f [B] is bounded in (S, ρ); i.e. iff all function values f(x), with
x ∈ B, are in some globe in (S, ρ).

In En, this means that

(∀x ∈ B) |f(x)| < K

for some fixed K ∈ E1.2

If B = A, we simply say that f is bounded .

Note 4. If S = E1 or S = E∗, we may also speak of upper and lower

bounds. It is customary to call sup f [B] also the supremum of f on B and
denote it by symbols like

sup
x∈B

f(x) or sup{f(x) | x ∈ B}.

In the case of sequences, we often write supm xm or sup xm instead; similarly
for infima, maxima, and minima.

Examples.

(a) The sequence

xm =
1

m
in E1

is bounded since all terms xm are in the interval (0, 2) = G1(1). We have
inf xm = 0 and sup xm = maxxm = 1.

2 ∗Similarly in Cn and other normed spaces.
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(b) The sequence

xm = m in E1

is bounded below (by 1) but not above. We have inf xm = minxm = 1
and supxm = +∞ (in E∗).

(c) Define f : E1 → E1 by

f(x) = 2x.

This map is bounded on each finite interval B = (a, b) since f [B] =
(2a, 2b) is itself an interval and hence bounded. However, f is not
bounded on all of E1 since f [E1] = E1 is not a bounded set.

(d) Under a bounded metric ρ, all functions f : A→ (S, ρ) are bounded.

(e) The so-called identity map on S, f : S → (S, ρ), is defined by

f(x) = x.

Clearly, f carries each set B ⊆ S onto itself; i.e., f [B] = B. Thus f is
bounded on B iff B is itself a bounded set in (S, ρ).

(f) Define f : E1 → E1 by

f(x) = sinx.

Then f [E1] = [−1, 1] is a bounded set in the range space E1. Thus f is
bounded on E1 (briefly, bounded).

Problems on Boundedness and Diameters

1. Show that if a set A in a metric space is bounded, so is each subset
B ⊆ A.

2. Prove that if the sets A1, A2, . . . , An in (S, ρ) are bounded, so is

n
⋃

k=1

Ak.

Disprove this for infinite unions by a counterexample.
[Hint: By Theorem 1, each Ak is in some Gp(εk), with one and the same center

p. If the number of the globes is finite, we can put max(ε1, . . . , εn) = ε, so Gp(ε)
contains all Ak. Verify this in detail.]

⇒3. From Problems 1 and 2 show that a set A in (S, ρ) is bounded iff it is
contained in a finite union of globes,

n
⋃

k=1

G(pk; εk).
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4. A set A in (S, ρ) is said to be totally bounded iff for every ε > 0 (no
matter how small), A is contained in a finite union of globes of radius
ε. By Problem 3, any such set is bounded. Disprove the converse by a
counterexample.
[Hint: Take an infinite set in a discrete space.]

5. Show that distances between points of a globe Gp(ε) never exceed 2ε.
(Use the triangle inequality!) Hence infer that dGp(ε) ≤ 2ε. Give an
example where dGp(ε) < 2ε. Thus the diameter of a globe may be less

than twice its radius.
[Hint: Take a globe Gp(

1
2
) in a discrete space.]

6. Show that in En (∗as well as in Cn and any other normed linear space
6= {0}), the diameter of a globe Gp(ε) always equals 2ε (twice its radius).
[Hint: By Problem 5, 2ε is an upper bound of all ρ(x̄, ȳ) with x̄, ȳ ∈ Gp(ε).

To show that there is no smaller upper bound, prove that any number

2ε − 2r (r > 0)

is exceeded by some ρ(x̄, ȳ); e.g., take x̄ and ȳ on some line through p̄,

x̄ = p̄+ t~u,

choosing suitable values for t to get ρ(x̄, ȳ) = |x̄− ȳ| > 2ε− 2r.]

7. Prove that in En, a set A is bounded iff it is contained in an interval .

8. Prove that for all sets A and B in (S, ρ) and each p ∈ S
ρ(A, B) ≤ ρ(A, p) + ρ(p, B).

Disprove

ρ(A, B) < ρ(A, p) + ρ(p, B)

by an example.

9. Find sup xn, inf xn, maxxn, and minxn (if any) for sequences with
general term

(a) n;

(b) (−1)n(2− 22−n);

(c) 1− 2

n
;

(d)
n(n− 1)

(n+ 2)2
.

Which are bounded in E1?

10. Prove the following about lines and line segments.

(i) Show that any line segment in En is a bounded set, but the entire
line is not.
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(ii) Prove that the diameter of L(ā, b̄) and of (ā, b̄) equals ρ(ā, b̄).

11. Let f : E1 → E1 be given by

f(x) =
1

x
if x 6= 0, and f(0) = 0.

Show that f is bounded on an interval [a, b] iff 0 /∈ [a, b]. Is f bounded
on (0, 1)?

12. Prove the following:

(a) If A ⊆ B ⊆ (S, ρ), then dA ≤ dB.

(b) dA = 0 iff A contains at most one point.

(c) If A ∩B 6= ∅, then
d(A ∪B) ≤ dA+ dB.

Show by an example that this may fail if A ∩B = ∅.

§14. Cluster Points. Convergent Sequences

Consider the set

A =
{

1,
1

2
, . . . ,

1

m
, . . .

}

;

we may as well let A denote the sequence xm = 1/m in E1.1 Plotting it on
the axis, we observe a remarkable fact: The points xm “cluster” close to 0,
approaching 0 as m increases—see Figure 12.

−ε ε

0 11
2

1
3

1
4

1
5

1
6

1
7

· · ·

Figure 12

To make this more precise, take any globe about 0 in E1, G0(ε) = (−ε, ε).
No matter how small, it contains infinitely many (even all but finitely many)
points xm, namely, all from some xk onward, so that

(∀m > k) xm ∈ G0(ε).

Indeed, take k > 1/ε, so 1/k < ε. Then

(∀m > k)
1

m
<

1

k
< ε;

1 “Sequence” means “infinite sequence”; m, n, k denote integers > 0.
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i.e., xm ∈ (−ε, ε) = G0(ε).

This suggests the following generalizations.

Definition 1.

A set, or sequence, A ⊆ (S, ρ) is said to cluster at a point p ∈ S (not
necessarily p ∈ A), and p is called its cluster point or accumulation point ,
iff every globe Gp about p contains infinitely many points (respectively,
terms) of A. (Thus only infinite sets can cluster .)

Note 1. In sequences (unlike sets) an infinitely repeating term counts as
infinitely many terms. For example, the sequence 0, 1, 0, 1, . . . clusters at 0
and 1 (why?); but its range, {0, 1}, has no cluster points (being finite). This
distinction is, however, irrelevant if all terms xm are distinct , i.e., different from
each other. Then we may treat sequences and sets alike.

Definition 2.

A sequence {xm} ⊆ (S, ρ) is said to converge or tend to a point p in S,
and p is called its limit , iff every globe Gp(ε) about p (no matter how
small) contains all but finitely many terms xm.2 In symbols,

(∀ ε > 0) (∃ k) (∀m > k) xm ∈ Gp(ε), i.e., ρ(xm, p) < ε. (1)

If such a p exists, we call {xm} a convergent sequence (in (S, ρ));
otherwise, a divergent one. The notation is

xm → p, or limxm = p, or lim
m→∞

xm = p.

In En,3 ρ(x̄m, p̄) = |x̄m − p̄|; thus formula (1) turns into

x̄m → p̄ in En iff (∀ ε > 0) (∃ k) (∀m > k) |x̄m − p̄| < ε. (2)

Since “all but finitely many” (as in Definition 2) implies “infinitely many” (as
in Definition 1), any limit is also a cluster point . Moreover, we obtain the
following result.

Corollary 1. If xm → p, then p is the unique cluster point of {xm}. (Thus a

sequence with two or more cluster points , or none at all , diverges .)

For if p 6= q, the Hausdorff property (Theorem 1 of §12) yields an ε such
that

Gp(ε) ∩Gq(ε) = ∅.
As xm → p, Gp(ε) leaves out at most finitely many xm, and only these can
possibly be in Gq(ε). (Why?) Thus q fails to satisfy Definition 1 and hence is
no cluster point. Hence limxm (if it exists) is unique.

2 That is, Gp(ε) leaves out at most finitely many terms xm, say, x1, x2, . . . , xk, whereas
in Definition 1, Gp(ε) may leave out even infinitely many points of A.

3 ∗Similarly for sequences in Cn and in other normed spaces (§10).
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Corollary 2.

(i) We have xm → p in (S, ρ) iff ρ(xm, p)→ 0 in E1.

Hence

(ii) x̄m → p̄ in En iff |x̄m − p̄| → 0 and

(iii) x̄m → 0̄ in En iff |x̄m| → 0.

Proof. By (2), we have ρ(xm, p)→ 0 in E1 if

(∀ ε > 0) (∃ k) (∀m > k) |ρ(xm, p)− 0| = ρ(xm, p) < ε.

By (1), however, this means that xm → p, proving our first assertion. The rest
easily follows from it, since ρ(x̄m, p̄) = |x̄m − p̄| in En. �

Corollary 3. If xm tends to p, then so does each subsequence xmk
.

For xm → p means that each Gp leaves out at most finitely many xm. This
certainly still holds if we drop some terms, passing to {xmk

}.
Note 2. A similar argument shows that the convergence or divergence of

{xm}, and its limit or cluster points, are not affected by dropping or adding

a finite number of terms ; similarly for cluster points of sets . For example, if
{xm} tends to p, so does {xm+1} (the same sequence without x1).

We leave the following two corollaries as exercises.

Corollary 4. If {xm} splits into two subsequences , each tending to the same

limit p, then also xm → p.

Corollary 5. If {xm} converges in (S, ρ), it is bounded there. (See Problem 4.)

Of course, the convergence or divergence of {xm} and its clustering depend
on the metric ρ and the space S. Our theory applies to any (S, ρ). In particu-
lar, it applies to E∗, with the metric ρ′ of Problem 5 in §11. Recall that under
that metric, globes about ±∞ have the form (a, +∞] and [−∞, a), respec-
tively. Thus limits and cluster points in (E∗, ρ′) coincide with those defined
in Chapter 2, §13, (formulas (1)–(3) and Definition 2 there).4 Our theory then
applies to infinite limits as well, and generalizes Chapter 2, §13.
Examples.

(a) Let

xm = p for all m

(such sequences are called constant). As p ∈ Gp, any Gp contains all

xm. Thus xm → p, by Definition 2. We see that each constant sequence

converges to the common value of its terms .

4 The second part of Chapter 2, §13, should be reviewed at this stage.
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(b) In our introductory example, we showed that

lim
m→∞

1

m
= 0 in E1

and that 0 is the (unique) cluster point of the set A = {1, 1
2 , . . . }. Here

0 /∈ A.
(c) The sequence

0, 1, 0, 1, . . .

has two cluster points, 0 and 1, so it diverges by Corollary 1. (It “os-
cillates” from 0 to 1.) This shows that a bounded sequence may diverge.
The converse to Corollary 5 fails.

(d) The sequence

xm = m

(or the set N of all naturals) has no cluster points in E1, for a globe of
radius < 1

2 (with any center p ∈ E1) contains at most one xm, and hence
no p satisfies Definition 1 or 2.

However, {xm} does cluster in (E∗, ρ′), and even has a limit there,
namely +∞. (Prove it!)

(e) The set R of all rationals in E1 clusters at each p ∈ E1. Indeed, any
globe

Gp(ε) = (p− ε, p+ ε)

contains infinitely many rationals (see Chapter 2, §10, Theorem 3), and
this means that each p ∈ E1 is a cluster point of R.

(f) The sequence

1, 1, 2,
1

2
, 3,

1

3
, . . . (with x2k =

1

k
and x2k−1 = k)

has only one cluster point, 0, in E1; yet it diverges, being unbounded (see
Corollary 5). In (E∗, ρ′), it has two cluster points, 0 and +∞. (Verify!)

(g) The lim and lim of any sequence in E∗ are cluster points (cf. Chapter 2,
§13, Theorem 2 and Problem 4). Thus in E∗, all sequences cluster .

(h) Let

A = [a, b], a < b.

Then A clusters exactly at all its points , for if p ∈ A, then any globe

Gp(ε) = (p− ε, p+ ε)

overlaps with A (even with (a, b)) and so contains infinitely many points
of A, as required. Even the endpoints a and b are cluster points of A (and
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of (a, b), (a, b], and [a, b)). On the other hand, no point outside A is a
cluster point. (Why?)

(i) In a discrete space (§11, Example (3)), no set can cluster, since small
globes, such as Gp(

1
2
), are singletons . (Explain!)

Example (h) shows that a set A may equal the set of its cluster points (call
it A′); i.e.,

A = A′.

Such sets are said to be perfect . Sometimes we have A ⊆ A′, A′ ⊆ A, A′ = S
(as in Example (e)), or A′ = ∅. We conclude with the following result.

Corollary 6. A set A ⊆ (S, ρ) clusters at p iff each globe Gp (about p) contains
at least one point of A other than p.5

Indeed, assume the latter. Then, in particular, each globe

Gp

( 1

n

)

, n = 1, 2, . . . ,

contains some point of A other than p; call it xn. We can make the xn distinct

by choosing each time xn+1 closer to p than xn is. It easily follows that each
Gp(ε) contains infinitely many points of A (the details are left to the reader),
as required. The converse is obvious.

Problems on Cluster Points and Convergence

1. Is the Archimedean property (see Chapter 2, §10) involved in the proof
that

lim
m→∞

1

m
= 0?

2. Prove Note 2 and Corollaries 4 and 6.

3. Verify Example (c) in detail.6

4. Prove Corollary 5.
[Hint: Fix some Gp(ε). Use Definition 2. If Gp(ε) leaves out x1, x2, . . . , xk, take a

larger radius r greater than

ρ(xm, p), m = 1, 2, . . . , k.

Then the enlarged globe Gp(r) contains all xm. Use Theorem 1 in §13.]

5. Show that xm = m tends to +∞ in E∗. Does it contradict Corollary 5?

6. Show that E1 is a perfect set in E1: E1 = (E1)′. Is E1 a perfect set in
E∗? Why?

5 This corollary does not apply to cluster points of sequences.
6 In particular, show that there are no other cluster points.
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⇒7. Review Problems 2 and 4 of Chapter 2, §13. (Do them if not done
before.)

8. Verify Examples (f) and (h).

9. Explain Example (i) in detail.

10. In the following cases find the set A′ of all cluster points of A in E1. Is
A′ ⊆ A? Is A ⊆ A′? Is A perfect? Give a precise proof.

(a) A consists of all points of the form

1

n
and 1 +

1

n
, n = 1, 2, . . . ;

i.e., A is the sequence

{

1, 2,
1

2
, 1

1

2
, . . . ,

1

n
, 1 +

1

n
, . . .

}

.

Does it converge?

(b) A is the set of all rationals in (0, 1). Answer: A′ = [0, 1]. Why?

(c) A is the union of the intervals

[ 2n

2n+ 1
,
2n+ 1

2n+ 2

]

, n = 0, 1, 2, . . . .

(d) A consists of all points of the form

2−n and 2−n + 2−n−k, n, k ∈ N .

11. Can a sequence {xm} ⊆ E1 cluster at each p ∈ E1?
[Hint: See Example (e).]

12. Prove that if

p = supA or p = inf A in E1

(∅ 6= A ⊆ E1), and if p /∈ A, then p is a cluster point of A.
[Hint: Take Gp(ε) = (p− ε, p+ ε). Use Theorem 2 of Chapter 2, §§8–9.]

13. Prove that a set A ⊆ (S, ρ) clusters at p iff every neighborhood of p
(see §12, Definition 1) contains infinitely many points of A; similarly for
sequences. How about convergence? State it in terms of cubic neigh-
borhoods in En.

14. Discuss Example (h) for nondegenerate intervals in En. Give a proof.

15. Prove that a set A 6= ∅ clusters at p (p /∈ A) iff ρ(p, A) = 0. (See §13,
Note 3.)

16. Show that in En (∗and in any other normed space 6= {0̄}), the cluster
points of any globe Gp̄(ε) form exactly the closed globe Gp̄(ε), and that



120 Chapter 3. Vector Spaces. Metric Spaces

Gp̄(ε) is perfect. Is this true in other spaces? (Consider a discrete

space!)
[Hint: Given q̄ ∈ Gp̄(ε) in En, show that any Gq̄(δ) overlaps with the line pq. Show

also that no point outside Gq̄(ε) is a cluster point of Gp̄(ε).]

17. (Cantor’s set.) Remove from [0, 1] the open middle third
(1

3
,
2

3

)

.

From the remaining closed intervals
[

0,
1

3

]

and
[2

3
, 1

]

,

remove their open middles,
(1

9
,
2

9

)

and
(7

9
,
8

9

)

.

Do the same with the remaining four closed intervals, and so on, ad
infinitum. The set P which remains after all these (infinitely many)
removals is called Cantor’s set .

Show that P is perfect.
[Hint: If p /∈ P , then either p is in one of the removed open intervals, or p /∈ [0, 1].
In both cases, p is no cluster point of P . (Why?) Thus no p outside P is a cluster

point.

On the other hand, if p ∈ P , show that any Gp(ε) contains infinitely many
endpoints of removed open intervals, all in P ; thus p ∈ P ′. Deduce that P = P ′.]

§15. Operations on Convergent Sequences1

Sequences in E1 and C can be added and multiplied termwise; for example,
adding {xm} and {ym}, one obtains the sequence with general term xm + ym.
This leads to important theorems, valid also for En (∗and other normed spaces).
Theorem 1 below states, roughly, that the limit of the sum {xm + ym} equals

the sum of limxm and lim ym (if these exist), and similarly for products and
quotients (when they are defined).2

Theorem 1. Let xm → q, ym → r, and am → a in E1 or C (the complex

field). Then

(i) xm ± ym → q ± r;
1 This section (and the rest of this chapter) may be deferred until Chapter 4, §2. Then

Theorems 1 and 2 may be combined with the more general theorems of Chapter 4, §3. (It is

rather a matter of taste which to do first.)
2 Theorem 1 is known as “continuity of addition, multiplication, and division” (for reasons

to be clarified later). Note the restriction a 6= 0 in (iii).
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(ii) amxm → aq;

(iii)
xm
am
→ q

a
if a 6= 0 and for all m ≥ 1, am 6= 0.

This also holds if the xm, ym, q, and r are vectors in En (∗or in another normed

space), while the am and a are scalars for that space.

Proof. (i) By formula (2) of §14, we must show that

(∀ ε > 0) (∃ k) (∀m > k) |xm ± ym − (q ± r)| < ε.

Thus we fix an arbitrary ε > 0 and look for a suitable k. Since xm → q and
ym → r, there are k′ and k′′ such that

(∀m > k′) |xm − q| <
ε

2

and

(∀m > k′′) |ym − r| <
ε

2

(as ε is arbitrary , we may as well replace it by 1
2ε). Then both inequalities hold

for m > k, k = max(k′, k′′). Adding them, we obtain

(∀m > k) |xm − q|+ |ym − r| < ε.

Hence by the triangle law,

|xm − q ± (ym − r)| < ε, i.e., |xm ± ym − (q ± r)| < ε for m > k,

as required. �

This proof of (i) applies to sequences of vectors as well, without any change.
The proof of (ii) and (iii) is sketched in Problems 1–4 below.

Note 1. By induction, parts (i) and (ii) hold for sums and products of any
finite (but fixed) number of suitable convergent sequences.

Note 2. The theorem does not apply to infinite limits q, r, a.

Note 3. The assumption a 6= 0 in Theorem 1(iii) is important. It ensures
not only that q/a is defined but also that at most finitely many am can vanish

(see Problem 3). Since we may safely drop a finite number of terms (see Note 2
in §14), we can achieve that no am is 0, so that xm/am is defined . It is with
this understanding that part (iii) of the theorem has been formulated. The
next two theorems are actually special cases of more general propositions to be
proved in Chapter 4, §§3 and 5. Therefore, we only state them here, leaving
the proofs as exercises, with some hints provided.

Theorem 2 (componentwise convergence). We have x̄m → p̄ in En (∗Cn) iff
each of the n components of x̄m tends to the corresponding component of p̄,
i .e., iff xmk → pk, k = 1, 2, . . . , n, in E1(C). (See Problem 8 for hints .)
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Theorem 3. Every monotone sequence {xn} ⊆ E∗ has a finite or infinite

limit, which equals supn xn if {xn}↑ and infn xn if {xn}↓. If {xn} is monotone

and bounded in E1, its limit is finite (by Corollary 1 of Chapter 2, §13).
The proof was requested in Problem 9 of Chapter 2, §13. See also Chapter 4,

§5, Theorem 1. An important application is the following.

Example (the number e).

Let xn =
(

1 +
1

n

)n

in E1. By the binomial theorem,

xn = 1 + 1 +
n(n− 1)

2!n2
+
n(n− 1)(n− 2)

3!n3
+ · · ·

+
n(n− 1) · · · (n− (n− 1))

n!nn

= 2 +
(

1− 1

n

) 1

2!
+

(

1− 1

n

)(

1− 2

n

) 1

3!
+ · · ·

+
(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− n− 1

n

) 1

n!
.

If n is replaced by n + 1, all terms in this expansion increase, as does
their number. Thus xn < xn+1, i.e., {xn}↑. Moreover, for n > 1,

2 < xn < 2 +
1

2!
+ · · ·+ 1

n!
≤ 2 +

1

2
+ · · ·+ 1

2n−1

= 2 +
1

2

(

1 + · · ·+ 1

2n−2

)

= 2 +
1

2

1−
(1

2

)n−1

1

2

< 2 + 1 = 3.

Thus 2 < xn < 3 for n > 1. Hence 2 < supn xn ≤ 3; and by Theorem 3,
supn xn = limxn. This limit, denoted by e, plays an important role in
analysis. It can be shown that it is irrational, and (to within 10−20)
e = 2.71828182845904523536 . . . . In any case,

2 < e = lim
n→∞

(

1 +
1

n

)n

≤ 3. (1)

The following corollaries are left as exercises for the reader.

Corollary 1. Suppose limxm = p and lim ym = q exist in E∗.

(a) If p > q, then xm > ym for all but finitely many m.

(b) If xm ≤ ym for infinitely many m, then p ≤ q; i .e., limxm ≤ lim ym.

This is known as passage to the limit in inequalities . Caution: The strict

inequalities xm < ym do not imply p < q but only p ≤ q. For example, let

xm =
1

m
and ym = 0.
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Then
(∀m) xm > ym;

yet limxm = lim ym = 0.

Corollary 2. Let xm → p in E∗, and let c ∈ E∗ (finite or not). Then the

following are true:

(a) If p > c (respectively, p < c), we have xm > c (xm < c) for all but finitely
many m.

(b) If xm ≤ c (respectively, xm ≥ c) for infinitely many m, then p ≤ c (p ≥ c).

One can prove this from Corollary 1, with ym = c (or xm = c) for all m.

Corollary 3 (rule of intermediate sequence). If xm → p and ym → p in E∗

and if xm ≤ zm ≤ ym for all but finitely many m, then also zm → p.

Theorem 4 (continuity of the distance function). If

xm → p and ym → q in a metric space (S, ρ),

then

ρ(xm, ym)→ ρ(p, q) in E1.

Hint: Show that

|ρ(xm, ym)− ρ(p, q)| ≤ ρ(xm, p) + ρ(q, ym)→ 0

by Theorem 1.

Problems on Limits of Sequences

See also Chapter 2, §13.
1. Prove that if xm → 0 and if {am} is bounded in E1 or C, then

amxm → 0.

This is true also if the xm are vectors and the am are scalars (or vice
versa).
[Hint: If {am} is bounded, there is a K ∈ E1 such that

(∀m) |am| < K.

As xm → 0,

(∀ ε > 0) (∃ k) (∀m > k) |xm| < ε

K
(why?),

so |amxm| < ε.]

2. Prove Theorem 1(ii).
[Hint: By Corollary 2(ii)(iii) in §14, we must show that amxm − aw → 0. Now

amxm − aq = am(xm − q) + (am − a)q,
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where xm − q → 0 and am − a → 0 by Corollary 2 of §14. Hence by Problem 1,

am(xm − q) → 0 and (am − a)q → 0

(treat q as a constant sequence and use Corollary 5 in §14). Now apply Theorem 1(i).]

3. Prove that if am → a and a 6= 0 in E1 or C, then

(∃ ε > 0) (∃ k) (∀m > k) |am| ≥ ε.

(We briefly say that the am are bounded away from 0, form > k.) Hence
prove the boundedness of { 1

am
} for m > k.

[Hint: For the first part, proceed as in the proof of Corollary 1 in §14, with xm = am,
p = a, and q = 0.

For the second part, the inequalities

(∀m > k)
∣
∣
∣
1

am

∣
∣
∣ ≤ 1

ε

lead to the desired result.]

4. Prove that if am → a 6= 0 in E1 or C, then

1

am
→ 1

a
.

Use this and Theorem 1(ii) to prove Theorem 1(iii), noting that

xm
am

= xm ·
1

am
.

[Hint: Use Note 3 and Problem 3 to find that

(∀m > k)
∣
∣
∣
1

am
− 1

a

∣
∣
∣ =

1

|a| |am − a| 1

|am| ,

where
{ 1

am

}

is bounded and
1

|a| |am − a| → 0. (Why?)

Hence, by Problem 1,
∣
∣
∣
1

am
− 1

a

∣
∣
∣ → 0. Proceed.]

5. Prove Corollaries 1 and 2 in two ways:

(i) Use Definition 2 of Chapter 2, §13 for Corollary 1(a), treating in-
finite limits separately ; then prove (b) by assuming the opposite
and exhibiting a contradiction to (a).

(ii) Prove (b) first by using Corollary 2 and Theorem 3 of Chapter 2,
§13; then deduce (a) by contradiction.

6. Prove Corollary 3 in two ways (cf. Problem 5).

7. Prove Theorem 4 as suggested, and also without using Theorem 1(i).

8. Prove Theorem 2.
[Hint: If x̄m → p̄, then

(∀ ε > 0) (∃ q) (∀m > q) ε > |x̄m − p̄| ≥ |xmk − pk|. (Why?)
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Thus by definition xmk → pk, k = 1, 2, . . . , n.

Conversely, if so, use Theorem 1(i)(ii) to obtain

n∑

k=1

xmk~ek →
n∑

k=1

pk~ek,

with ~ek as in Theorem 2 of §§1–3].

8′. In Problem 8, prove the converse part from definitions . (Fix ε > 0, etc.)

9. Find the following limits in E1, in two ways: (i) using Theorem 1,
justifying each step; (ii) using definitions only.

(a) lim
m→∞

m+ 1

m
; (b) lim

m→∞
3m+ 2

2m− 1
;

(c) lim
n→∞

1

1 + n2
; (d) lim

n→∞
n(n− 1)

1− 2n2
.

[Solution of (a) by the first method: Treat

m+ 1

m
= 1 +

1

m

as the sum of xm = 1 (constant) and

ym =
1

m
→ 0 (proved in §14).

Thus by Theorem 1(i),

m+ 1

m
= xm + ym → 1 + 0 = 1.

Second method: Fix ε > 0 and find k such that

(∀m > k)
∣
∣
∣
m+ 1

m
− 1

∣
∣
∣ < ε.

Solving for m, show that this holds if m >
1

ε
. Thus take an integer k >

1

ε
, so

(∀m > k)
∣
∣
∣
m+ 1

m
− 1

∣
∣
∣ < ε.

Caution: One cannot apply Theorem 1(iii) directly , treating (m + 1)/m as the
quotient of xm = m+1 and am = m, because xm and am diverge in E1. (Theorem 1

does not apply to infinite limits.) As a remedy, we first divide the numerator and

denominator by a suitable power of m (or n).]

10. Prove that

|xm| → +∞ in E∗ iff
1

xm
→ 0 (xm 6= 0).

11. Prove that if

xm → +∞ and ym → q 6= −∞ in E∗,
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then
xm + ym → +∞.

This is written symbolically as

“+∞+ q = +∞ if q 6= −∞.”

Do also
“−∞+ q = −∞ if q 6= +∞.”

Prove similarly that

“(+∞) · q = +∞ if q > 0”

and
“(+∞) · q = −∞ if q < 0.”

[Hint: Treat the cases q ∈ E1, q = +∞, and q = −∞ separately. Use definitions.]

12. Find the limit (or lim and lim) of the following sequences in E∗:

(a) xn = 2 · 4 · · · 2n = 2nn!;

(b) xn = 5n− n3;

(c) xn = 2n4 − n3 − 3n2 − 1;

(d) xn = (−1)nn!;

(e) xn =
(−1)n
n!

.

[Hint for (b): xn = n(5− n2); use Problem 11.]

13. Use Corollary 4 in §14, to find the following:

(a) lim
n→∞

(−1)n
1 + n2

;

(b) lim
n→∞

1− n+ (−1)n
2n+ 1

.

14. Find the following.

(a) lim
n→∞

1 + 2 + · · ·+ n

n2
;

(b) lim
n→∞

n
∑

k=1

k2

n3 + 1
;

(c) lim
n→∞

n
∑

k=1

k3

n4 − 1
.

[Hint: Compute
∑n

k=1 k
m using Problem 10 of Chapter 2, §§5–6.]

What is wrong with the following “solution” of (a):
1

n2
→ 0,

2

n2
→ 0,

etc.; hence the limit is 0?
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15. For each integer m ≥ 0, let

Smn = 1m + 2m + · · ·+ nm.

Prove by induction on m that

lim
n→∞

Smn

(n+ 1)m+1
=

1

m+ 1
.

[Hint: First prove that

(m+ 1)Smn = (n+ 1)m+1 − 1−
m−1∑

i=0

(m+ 1

i

)

Smi

by adding up the binomial expansions of (k + 1)m+1, k = 1, . . . , n.]

16. Prove that

lim
n→∞

qn = +∞ if q > 1; lim
n→∞

qn = 0 if |q| < 1; lim
n→∞

1n = 1.

[Hint: If q > 1, put q = 1 + d, d > 0. By the binomial expansion,

qn = (1 + d)n = 1 + nd+ · · ·+ dn > nd → +∞. (Why?)

If |q| < 1, then
∣
∣ 1
q

∣
∣ > 1; so lim

∣
∣ 1
q

∣
∣n = +∞; use Problem 10.]

17. Prove that

lim
n→∞

n

qn
= 0 if |q| > 1, and lim

n→∞
n

qn
= +∞ if 0 < q < 1.

[Hint: If |q| > 1, use the binomial as in Problem 16 to obtain

|q|n >
1

2
n(n− 1)d2, n ≥ 2, so

n

|q|n <
2

(n− 1)d2
→ 0.

Use Corollary 3 with

xn = 0, |zn| =
n

|q|n , and yn =
2

(n− 1)d2

to get |zn| → 0; hence also zn → 0 by Corollary 2(iii) of §14. In case 0 < q < 1, use
10.]

18. Let r, a ∈ E1. Prove that

lim
n→∞

nra−n = 0 if |a| > 1.

[Hint: If r > 1 and a > 1, use Problem 17 with q = a1/r to get na−n/r → 0. As

0 < nra−n = (na−n/r)r ≤ na−n/r → 0,

obtain nra−n → 0.

If r < 1, then nra−n < na−n → 0. What if a < −1?]
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19. (Geometric series.) Prove that if |q| < 1, then

lim
n→∞

(a+ aq + · · ·+ aqn−1) =
a

1− q .

[Hint:

a(1 + q + · · ·+ qn−1) = a
1− qn

1− q
,

where qn → 0, by Problem 16.]

20. Let 0 < c < +∞. Prove that

lim
n→∞

n
√
c = 1.

[Hint: If c > 1, put n
√
c = 1 + dn, dn > 0. Expand c = (1 + dn)n to show that

0 < dn <
c

n
→ 0,

so dn → 0 by Corollary 3.]

21. Investigate the following sequences for monotonicity, lim, lim, and lim.
(In each case, find suitable formula, or formulas, for the general term.)

(a) 2, 5, 10, 17, 26, . . . ;

(b) 2, −2, 2, −2, . . . ;
(c) 2, −2, −6, −10, −14, . . . ;
(d) 1, 1, −1, −1, 1, 1, −1, −1, . . . ;

(e)
3 · 2
1
,
4 · 6
4
,
5 · 10
9

,
6 · 14
16

, . . . .

22. Do Problem 21 for the following sequences.

(a)
1

2 · 3 ,
−8
3 · 4 ,

27

4 · 5 ,
−64
5 · 6 ,

125

6 · 7 , . . . ;

(b)
2

9
, −5

9
,
8

9
, −13

9
, . . . ;

(c)
2

3
, −2

5
,
4

7
, −4

9
,
6

11
, − 6

13
, . . . ;

(d) 1, 3, 5, 1, 1, 3, 5, 2, 1, 3, 5, 3, . . . , 1, 3, 5, n, . . . ;

(e) 0.9, 0.99, 0.999, . . . ;

(f) +∞, 1, +∞, 2, +∞, 3, . . . ;

(g) −∞, 1, −∞, 1
2
, . . . , −∞, 1

n
, . . . .

23. Do Problem 20 as follows: If c ≥ 1, { n
√
c}↓. (Why?) By Theorem 3,

p = lim
n→∞

n
√
c exists and

(∀n) 1 ≤ p ≤ n
√
c, i.e., 1 ≤ pn ≤ c.
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By Problem 16, p cannot be > 1, so p = 1.

In case 0 < c < 1, consider n
√

1/c and use Theorem 1(iii).

24. Prove the existence of limxn and find it when xn is defined inductively
by

(i) x1 =
√
2 , xn+1 =

√
2xn ;

(ii) x1 = c > 0, xn+1 =
√
c2 + xn ;

(iii) x1 = c > 0, xn+1 =
cxn
n+ 1

; hence deduce that lim
n→∞

cn

n!
= 0.

[Hint: Show that the sequences are monotone and bounded in E1 (Theorem 3).

For example, in (ii) induction yields

xn < xn+1 < c+ 1. (Verify!)

Thus limxn = limxn+1 = p exists. To find p, square the equation

xn+1 =
√

c2 + xn (given)

and use Theorem 1 to get

p2 = c2 + p. (Why?)

Solving for p (noting that p > 0), obtain

p = limxn =
1

2
(1 +

√

4c2 + 1);

similarly in cases (i) and (iii).]

25. Find limxn in E1 or E∗ (if any), given that

(a) xn = (n+ 1)q − nq, 0 < q < 1;

(b) xn =
√
n (
√
n+ 1−√n);

(c) xn =
1√

n2 + k
;

(d) xn = n(n+ 1)cn, with |c| < 1;

(e) xn =
n
√

m
∑

k=1

ank , with ak > 0;

(f) xn =
3 · 5 · 7 · · · (2n+ 1)

2 · 5 · 8 · · · (3n− 1)
.

[Hints:

(a) 0 < xn = nq
[(

1 +
1

n

)q
− 1

]

< nq
(

1 +
1

n
− 1

)

= nq−1 → 0. (Why?)

(b) xn =
1

1 +
√

1 + 1/n
, where 1 <

√

1 +
1

n
< 1 +

1

n
→ 1, so xn → 1

2
. (Why?)

(c) Verify that
n√

n2 + n
≤ xn ≤ n√

n2 + 1
,
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so xn → 1 by Corollary 3. (Give a proof.)

(d) See Problems 17 and 18.

(e) Let a = max(a1, . . . , am). Prove that a ≤ xn ≤ a n
√
m. Use Problem 20.]

The following are some harder but useful problems of theoretical importance.
The explicit hints should make them not too hard.

26. Let {xn} ⊆ E1. Prove that if xn → p in E1, then also

lim
n→∞

1

n

n
∑

i=1

xi = p

(i.e., p is also the limit of the sequence of the arithmetic means of the
xn).
[Solution: Fix ε > 0. Then

(∃ k) (∀n > k) p− ε

4
< xn < p+

ε

4
.

Adding n− k inequalities, get

(n− k)
(

p− ε

4

)

<

n∑

i=k+1

xi < (n− k)
(

p+
ε

4

)

.

With k so fixed, we thus have

(∀n > k)
n− k

n

(

p− ε

4

)

<
1

n
(xk+1 + · · ·+ xn) <

n− k

n

(

p+
ε

4

)

. (i)

Here, with k and ε fixed,

lim
n→∞

n− k

n

(

p− ε

4

)

= p− ε

4
.

Hence, as p− 1
2
ε < p− 1

4
ε, there is k′ such that

(∀n > k′) p− ε

2
<

n− k

n

(

p− ε

4

)

.

Similarly,

(∃ k′′) (∀n > k′′)
n− k

n

(

p+
ε

4

)

< p+
ε

2
.

Combining this with (i), we have, for K′ = max(k, k′, k′′),

(∀n > K′) p− ε

2
<

1

n
(xk+1 + · · ·+ xn) < p+

ε

2
. (ii)

Now with k fixed,

lim
n→∞

1

n
(x1 + x2 + · · ·+ xk) = 0.

Hence

(∃K′′) (∀n > K′′) − ε

2
<

1

n
(x1 + · · ·+ xk) <

ε

2
.
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Let K = max(K′, K′′). Then combining with (ii), we have

(∀n > K) p− ε <
1

n
(x1 + · · ·+ xn) < p+ ε,

and the result follows.]

26′ Show that the result of Problem 26 holds also for infinite limits p =
±∞ ∈ E∗.

27. Prove that if xn → p in E∗ (xn > 0), then

lim
n→∞

n
√
x1x2 · · ·xn = p.

[Hint: Let first 0 < p < +∞. Given ε > 0, use density to fix δ > 1 so close to 1 that

p− ε <
p

δ
< p < pδ < p+ ε.

As xn → p,

(∃ k) (∀n > k)
p
4
√
δ
< xn < p

4
√
δ.

Continue as in Problem 26, replacing ε by δ, and multiplication by addition (also

subtraction by division, etc., as shown above).3 Find a similar solution for the case
p = +∞. Note the result of Problem 20.]

28. Disprove by counterexamples the converse implications in Problems 26
and 27. For example, consider the sequences

1, −1, 1, −1, . . .
and

1

2
, 2,

1

2
, 2,

1

2
, 2, . . . .

29. Prove the following.

(i) If {xn} ⊂ E1 and lim
n→∞

(xn+1 − xn) = p in E∗, then
xn
n
→ p.

(ii) If {xn} ⊂ E1 (xn > 0) and if
xn+1

xn
→ p ∈ E∗, then n

√
xn → p.

Disprove the converse statements by counterexamples.
[Hint: For (i), let y1 = x1 and yn = xn − xn−1, n = 2, 3, . . . . Then yn → p and

1

n

n∑

i=1

yi =
xn

n
,

so Problems 26 and 26′ apply.

For (ii), use Problem 27. See Problem 28 for examples.]

30. From Problem 29 deduce that

(a) lim
n→∞

n
√
n! = +∞;

3 Another solution (reducing all to Problem 26) will be obtained by applying logarithms.
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(b) lim
n→∞

n+ 1

n!
= 0;

(c) lim
n→∞

n

√

nn

n!
= e;

(d) lim
n→∞

1

n
n
√
n! =

1

e
;

(e) lim
n→∞

n
√
n = 1.

31. Prove that

lim
n→∞

xn =
a+ 2b

3
,

given

x0 = a, x1 = b, and xn+2 =
1

2
(xn + xn+1).

[Hint: Show that the differences dn = xn − xn−1 form a geometric sequence, with

ratio q = − 1
2
, and xn = a+

∑n
k=1 dk. Then use the result of Problem 19.]

⇒32. For any sequence {xn} ⊆ E1, prove that

limxn ≤ lim
1

n

n
∑

i=1

xi ≤ lim
1

n

n
∑

i=1

xi ≤ limxn.

Hence find a new solution of Problems 26 and 26′.
[Proof for lim: Fix any k ∈ N . Put

c =

k∑

i=1

xi and b = sup
i≥k

xi.

Verify that
(∀n > k) xk+1 + xk+2 + · · ·+ xn ≤ (n− k)b.

Add c on both sides and divide by n to get

(∀n > k)
1

n

n∑

i=1

xi ≤
c

n
+

n− k

n
b. (i*)

Now fix any ε > 0, and first let |b| < +∞. As
c

n
→ 0 and

n− k

n
b → b, there is

nk > k such that

(∀n > nk)
c

n
<

ε

2
and

n− k

n
b < b+

ε

2
.

Thus by (i∗),

(∀n > nk)
1

n

n∑

i=1

xi ≤ ε+ b.

This clearly holds also if b = sup
i≥k

xi = +∞. Hence also

sup
n≥nk

1

n

n∑

i=1

xi ≤ ε+ sup
i≥k

xi.
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As k and ε were arbitrary , we may let first k → +∞, then ε → 0, to obtain

lim
1

n

n∑

i=1

xi ≤ lim
k→∞

sup
i≥k

xi = limxn. (Explain!)]

⇒33. Given {xn} ⊆ E1, xn > 0, prove that

limxn ≤ lim n
√
x1x2 · · ·xn and lim n

√
x1x2 · · ·xn ≤ limxn.

Hence obtain a new solution for Problem 27.
[Hint: Proceed as suggested in Problem 32, replacing addition by multiplication.]

34. Given xn, yn ∈ E1 (yn > 0), with

xn → p ∈ E∗ and bn =
n
∑

i=1

yi → +∞,

prove that

lim
n→∞

∑n
i=1 xiyi

∑n
i=1 yi

= p.

Note that Problem 26 is a special case of Problem 34 (take all yn = 1).
[Hint for a finite p: Proceed as in Problem 26. However, before adding the n − k

inequalities, multiply by yi and obtain

(

p− ε

4

) n∑

i=k+1

yi <

n∑

i=k+1

xiyi <
(

p+
ε

4

) n∑

i=k+1

yi.

Put bn =
n∑

i=1

yi and show that

1

bn

n∑

i=k+1

xiyi = 1− 1

bn

k∑

i=1

xiyi,

where bn → +∞ (by assumption), so

1

bn

k∑

i=1

xiyi → 0 (for a fixed k).

Proceed. Find a proof for p = ±∞.]

35. Do Problem 34 by considering lim and lim as in Problem 32.

[Hint: Replace
c

n
by

c

bn
, where bn =

n∑

i=1

yi → +∞.]

36. Prove that if un, vn ∈ E1, with {vn}↑ (strictly) and vn → +∞, and if

lim
n→∞

un − un−1

vn − vn−1
= p (p ∈ E∗),

then also

lim
n→∞

un
vn

= p.
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[Hint: The result of Problem 34, with

xn =
un − un−1

vn − vn−1
and yn = vn − vn−1.

leads to the final result.]

37. From Problem 36 obtain a new solution for Problem 15. Also prove that

lim
n→∞

( Smn

nm+1
− 1

m+ 1

)

=
1

2
.

[Hint: For the first part, put

un = Smn and vn = nm+1.

For the second, put

un = (m+ 1)Smn − nm+1 and vn = nm(m+ 1).]

38. Let 0 < a < b < +∞. Define inductively: a1 =
√
ab and b1 = 1

2 (a+ b);

an+1 =
√

anbn and bn+1 =
1

2
(an + bn), n = 1, 2, . . . .

Then an+1 < bn+1 for

bn+1 − an+1 =
1

2
(an + bn)−

√

anbn =
1

2
(
√

bn −
√
an)

2 > 0.

Deduce that

a < an < an+1 < bn+1 < bn < b,

so {an}↑ and {bn}↓. By Theorem 3, an → p and bn → q for some
p, q ∈ E1. Prove that p = q, i.e.,

lim an = lim bn.

(This is Gauss ’s arithmetic–geometric mean of a and b.)
[Hint: Take limits of both sides in bn+1 = 1

2
(an + bn) to get q = 1

2
(p+ q).]

39. Let 0 < a < b in E1. Define inductively a1 = a, b1 = b,

an+1 =
2anbn
an + bn

, and bn+1 =
1

2
(an + bn), n = 1, 2, . . . .

Prove that √
ab = lim

n→∞
an = lim

n→∞
bn.

[Hint: Proceed as in Problem 38.]

40. Prove the continuity of dot multiplication, namely, if

x̄n → q̄ and ȳn → r̄ in En
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(∗or in another Euclidean space; see §9), then
x̄n · ȳn → q̄ · r̄.

§16. More on Cluster Points and Closed Sets. Density

I. The notions of cluster point and closed set (§§12, 14) can be characterized
in terms of convergent sequences. We start with cluster points.

Theorem 1.

(i) A sequence {xm} ⊆ (S, ρ) clusters at a point p ∈ S iff it has a subsequence

{xmn
} converging to p.1

(ii) A set A ⊆ (S, ρ) clusters at p ∈ S iff p is the limit of some sequence {xn}
of points of A other than p; if so, the terms xn can be made distinct.

Proof. (i) If p = limn→∞ xmn
, then by definition each globe about p contains

all but finitely many xmn
, hence infinitely many xm. Thus p is a cluster point.

Conversely, if so, consider in particular the globes

Gp

( 1

n

)

, n = 1, 2, . . . .

By assumption, Gp(1) contains some xm. Thus fix

xm1
∈ Gp(1).

Next, choose a term

xm2
∈ Gp

(1

2

)

with m2 > m1.

(Such terms exist since Gp(
1
2
) contains infinitely many xm.) Next, fix

xm3
∈ Gp

(1

3

)

, with m3 > m2 > m1,

and so on.

Thus, step by step (inductively), select a sequence of subscripts

m1 < m2 < · · · < mn < · · ·
that determines a subsequence (see Chapter 1, §8) such that

(∀n) xmn
∈ Gp

( 1

n

)

, i.e., ρ(xmn
, p) <

1

n
→ 0,

1 Therefore, cluster points of {xm} are also called subsequential limits.
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whence ρ(xmn
, p) → 0, or xmn

→ p. (Why?) Thus we have found a subse-
quence xmn

→ p, and assertion (i) is proved.

Assertion (ii) is proved quite similarly—proceed as in the proof of Corollary 6
in §14; the inequalities m1 < m2 < · · · are not needed here. �

Examples.

(a) Recall that the set R of all rationals clusters at each p ∈ E1 (§14,
Example (e)). Thus by Theorem 1(ii), each real p is the limit of a se-

quence of rationals . See also Problem 6 of §12 for p̄ in En.

(b) The sequence
0, 1, 0, 1, . . .

has two convergent subsequences,

x2n = 1→ 1 and x2n−1 = 0→ 0.

Thus by Theorem 1(i), it clusters at 0 and 1.

Interpret Example (f) and Problem 10(a) in §14 similarly.

As we know, even infinite sets may have no cluster points (take N in E1).
However, a bounded infinite set or sequence in En (∗or Cn) must cluster. This
important theorem (due to Bolzano and Weierstrass) is proved next.

Theorem 2 (Bolzano–Weierstrass).

(i) Each bounded infinite set or sequence A in En (∗or Cn) has at least one

cluster point p̄ there (possibly outside A).

(ii) Thus each bounded sequence in En (∗Cn) has a convergent subsequence.

Proof. Take first a bounded sequence {zm} ⊆ [a, b] in E1. Let

p = lim zm.

By Theorem 2(i) of Chapter 2, §13, {zm} clusters at p. Moreover, as

a ≤ zm ≤ b,
we have

a ≤ inf zm ≤ p ≤ sup zm ≤ b
by Corollary 1 of Chapter 2, §13. Thus

p ∈ [a, b] ⊆ E1,

and so {zm} clusters in E1.

Assertion (ii) now follows—for E1—by Theorem 1(i) above.

Next, take

{z̄m} ⊆ E2, z̄m = (xm, ym); xm, ym ∈ E1.
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If {z̄m} is bounded, all z̄m are in some square [ā, b̄]. (Why?) Let

ā = (a1, a2) and b̄ = (b1, b2).

Then

a1 ≤ xm ≤ b1 and a2 ≤ ym ≤ b2 in E1.

Thus by the first part of the proof, {xm} has a convergent subsequence

xmk
→ p1 for some p1 ∈ [a1, b1].

For simplicity, we henceforth write xm for xmk
, ym for ymk

, and z̄m for z̄mk
.

Thus z̄m = (xm, ym) is now a subsequence, with xm → p1, and a2 ≤ ym ≤ b2,
as before.

We now reapply this process to {ym} and obtain a subsubsequence

ymi
→ p2 for some p2 ∈ [a2, b2].

The corresponding terms xmi
still tend to p1 by Corollary 3 of §14. Thus we

have a subsequence

z̄mi
= (xmi

, ymi
)→ (p1, p2) in E2

by Theorem 2 in §15. Hence p̄ = (p1, p2) is a cluster point of {z̄m}. Note that
p̄ ∈ [ā, b̄] (see above). This proves the theorem for sequences in E2 (hence in
C).

The proof for En is similar; one only has to take subsequences n times .
(∗The same applies to Cn with real components replaced by complex ones.)

Now take a bounded infinite set A ⊂ En (∗Cn). Select from it an infinite
sequence {z̄m} of distinct points (see Chapter 1, §9, Problem 5). By what was
shown above, {z̄m} clusters at some point p̄, so each Gp̄ contains infinitely
many distinct points z̄m ∈ A. Thus by definition, A clusters at p̄. �

Note 1. We have also proved that if {z̄m} ⊆ [ā, b̄] ⊂ En, then {z̄m} has a
cluster point in [ā, b̄]. (This applies to closed intervals only.)

Note 2. The theorem may fail in spaces other than En (∗Cn). For example,
in a discrete space, all sets are bounded, but no set can cluster.

II. Cluster points are closely related to the following notion.

Definition 1.

The closure of a set A ⊆ (S, ρ), denoted A, is the union of A and the set
of all cluster points of A (call it A′). Thus A = A ∪A′.

Theorem 3. We have p ∈ A in (S, ρ) iff each globe Gp(δ) about p meets A,
i .e.,

(∀ δ > 0) A ∩Gp(δ) 6= ∅.



138 Chapter 3. Vector Spaces. Metric Spaces

Equivalently , p ∈ A iff

p = lim
n→∞

xn for some {xn} ⊆ A.

The proof is as in Corollary 6 of §14 and Theorem 1. (Here, however, the
xn need not be distinct or different from p.) The details are left to the reader.

This also yields the following new characterization of closed sets (cf. §12).
Theorem 4. A set A ⊆ (S, ρ) is closed iff one of the following conditions

holds .

(i) A contains all its cluster points (or has none); i .e., A ⊇ A′.

(ii) A = A.

(iii) A contains the limit of each convergent sequence {xn} ⊆ A (if any).2

Proof. Parts (i) and (ii) are equivalent since

A ⊇ A′ ⇐⇒ A = A ∪A′ = A. (Explain!)

Now let A be closed. If p /∈ A, then p ∈ −A; therefore, by Definition 3 in
§12, some Gp fails to meet A (Gp∩A = ∅). Hence no p ∈ −A is a cluster point,
or the limit of a sequence {xn} ⊆ A. (This would contradict Definitions 1 and
2 of §14.) Consequently, all such cluster points and limits must be in A, as
claimed.

Conversely, suppose A is not closed, so −A is not open. Then −A has a
noninterior point p; i.e., p ∈ −A but no Gp is entirely in −A. This means that
each Gp meets A. Thus

p ∈ A (by Theorem 3),

and

p = lim
n→∞

xn for some {xn} ⊆ A (by the same theorem),

even though p /∈ A (for p ∈ −A).
We see that (iii) and (ii), hence also (i), fail if A is not closed and hold if A

is closed. (See the first part of the proof.) Thus the theorem is proved. �

The following corollaries are left as exercises (see Problems 6–9).

Corollary 1. ∅ = ∅.
Corollary 2. A ⊆ B =⇒ A ⊆ B.

Corollary 3. A is always a closed set ⊇ A.

2 Property (iii) is often called the sequential closedness of A.
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Corollary 4. A ∪B = A∪B (the closure of A∪B equals the union of A and

B).

III. As we know, the rationals are dense in E1 (Theorem 3 of Chapter 2,
§10). This means that every globe Gp(δ) = (p − δ, p + δ) in E1 contains
rationals. Similarly (see Problem 6 in §12), the set Rn of all rational points is
dense in En. We now generalize this idea for arbitrary sets in a metric space
(S, ρ).

Definition 2.

Given A ⊆ B ⊆ (S, ρ), we say that A is dense in B iff each globe Gp,

p ∈ B, meets A. By Theorem 3, this means that each p ∈ B is in A; i.e.,

p = lim
n→∞

xn for some {xn} ⊆ A.

Equivalently, A ⊆ B ⊆ A.3

Summing up, we have the following:

A is open iff A = A0.

A is closed iff A = A; equivalently , iff A ⊇ A′.

A is dense in B iff A ⊆ B ⊆ A.
A is perfect iff A = A′.4

Problems on Cluster Points, Closed Sets, and Density

1. Complete the proof of Theorem 1(ii).

2. Prove that R = E1 and Rn = En (Example (a)).

3. Prove Theorem 2 for E3. Prove it for En (∗and Cn) by induction on n.

4. Verify Note 2.

5. Prove Theorem 3.

6. Prove Corollaries 1 and 2.

7. Prove that (A ∪B)′ = A′ ∪B′.
[Hint: Show by contradiction that p /∈ (A′ ∪ B′) excludes p ∈ (A ∪ B)′. Hence
(A ∪B)′ ⊆ A′ ∪B′. Then show that A′ ⊆ (A ∪B)′, etc.]

8. From Problem 7, deduce that A ∪ B is closed if A and B are. Then
prove Corollary 4. By induction, extend both assertions to any finite

number of sets.

3 If B is closed (e.g., if B = S) this means that A = B. Why?
4 See §14, the remarks following Example (i).
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9. From Theorem 4, prove that if the sets Ai (i ∈ I) are closed, so is
⋂

i∈I Ai.

10. Prove Corollary 3 from Theorem 3. Deduce that A = A and prove
footnote 3.
[Hint: Consider Figure 7 and Example (1) in §12 when using Theorem 3 (twice).]

11. Prove that A is contained in any closed superset of A and is the inter-
section of all such supersets.
[Hint: Use Corollaries 2 and 3.]

12. (i) Prove that a bounded sequence {x̄m} ⊆ En (∗Cn) converges to p̄
iff p̄ is its only cluster point.

(ii) Disprove it for

(a) unbounded {x̄m} and
(b) other spaces.

[Hint: For (i), if x̄m → p̄ fails, some Gp̄ leaves out infinitely many x̄m. These x̄m

form a bounded subsequence that, by Theorem 2, clusters at some q̄ 6= p̄. (Why?)

Thus q̄ is another cluster point (contradiction!).

For (ii), consider (a) Example (f) in §14 and (b) Problem 10 in §14, with (0, 2]
as a subspace of E1.]

13. In each case of Problem 10 in §14, find A. Is A closed? (Use Theorem 4.)

14. Prove that if {bn} ⊆ B ⊆ A in (S, ρ), there is a sequence {an} ⊆ A such
that ρ(an, bn)→ 0. Hence an → p iff bn → p.
[Hint: Choose an ∈ Gbn (1/n).]

15. We have, by definition,

p ∈ A0 iff (∃ δ > 0) Gp(δ) ⊆ A;
hence

p /∈ A0 iff (∀ δ > 0) Gp(δ) 6⊆ A, i.e., Gp(δ)− A 6= ∅.
(See Chapter 1, §§1–3.) Find such quantifier formulas for p ∈ A, p /∈ A,
p ∈ A′, and p /∈ A′.
[Hint: Use Corollary 6 in §14, and Theorem 3 in §16.]

16. Use Problem 15 to prove that

(i) −(A) = (−A)0 and

(ii) −(A0) = −A.
17. Show that

A ∩ (−A) = bdA (boundary of A);

cf. §12, Problem 18. Hence prove again that A is closed iff A ⊇ bdA.
[Hint: Use Theorem 4 and Problem 16 above.]
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∗18. A set A is said to be nowhere dense in (S, ρ) iff (A)0 = ∅. Show that
Cantor’s set P (§14, Problem 17) is nowhere dense.
[Hint: P is closed, so P = P .]

∗19. Give another proof of Theorem 2 for E1.
[Hint: Let A ⊆ [a, b]. Put

Q = {x ∈ [a, b] | x exceeds infinitely many points (or terms) of A}.

Show that Q is bounded and nonempty, so it has a glb, say, p = inf A. Show that A

clusters at p.]

∗20. For any set A ⊆ (S, ρ) define

GA(ε) =
⋃

x∈A

Gx(ε).

Prove that

A =
∞
⋂

n=1

GA

( 1

n

)

.

∗21. Prove that

A = {x ∈ S | ρ(x, A) = 0}; see §13, Note 3.

Hence deduce that a set A in (S, ρ) is closed iff

(∀x ∈ S) ρ(x, A) = 0 =⇒ x ∈ A.

§17. Cauchy Sequences. Completeness

A convergent sequence is characterized by the fact that its terms xm become
(and stay) arbitrarily close to its limit, asm→ +∞. Due to this, however, they
also get close to each other ; in fact, ρ(xm, xn) can be made arbitrarily small
for sufficiently large m and n. It is natural to ask whether the latter property,
in turn, implies the existence of a limit. This problem was first studied by
Augustin-Louis Cauchy (1789–1857). Thus we shall call such sequences Cauchy
sequences . More precisely, we formulate the following.

Definition 1.

A sequence {xm} ⊆ (S, ρ) is called a Cauchy sequence (we briefly say
that “{xm} is Cauchy”) iff, given any ε > 0 (no matter how small), we
have ρ(xm, xn) < ε for all but finitely many m and n. In symbols,

(∀ ε > 0) (∃ k) (∀m, n > k) ρ(xm, xn) < ε. (1)
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Observe that here we only deal with terms xm, xn, not with any other point.
The limit (if any) is not involved, and we do not have to know it in advance.
We shall now study the relationship between property (1) and convergence.

Theorem 1. Every convergent sequence {xm} ⊆ (S, ρ) is Cauchy.

Proof. Let xm → p. Then given ε > 0, there is a k such that

(∀m > k) ρ(xm, p) <
ε

2
.

As this holds for any m > k, it also holds for any other term xn with n > k.
Thus

(∀m, n > k) ρ(xm, p) <
ε

2
and ρ(p, xn) <

ε

2
.

Adding and using the triangle inequality, we get

ρ(xm, xn) ≤ ρ(xm, p) + ρ(p, xn) < ε,

and (1) is proved. �

Theorem 2. Every Cauchy sequence {xm} ⊆ (S, ρ) is bounded.

Proof. We must show that all xm are in some globe. First we try an arbitrary
radius ε. Then by (1), there is k such that ρ(xm, xn) < ε for m, n > k. Fix
some n > k. Then

(∀m > k) ρ(xm, xn) < ε, i.e., xm ∈ Gxn
(ε).

Thus the globe Gxn
(ε) contains all xm except possibly the k terms x1, . . . , xk.

To include them as well, we only have to take a larger radius r, greater than
ρ(xm, xn), m = 1, . . . , k. Then all xm are in the enlarged globe Gxn

(r). �

Note 1. In E1, under the standard metric, only sequences with finite limits
are regarded as convergent. If xn → ±∞, then {xn} is not even a Cauchy
sequence in E1 (in view of Theorem 2); but in E∗, under a suitable metric

(cf. Problem 5 in §11), it is convergent (hence also Cauchy and bounded).

Theorem 3. If a Cauchy sequence {xm} clusters at a point p, then xm → p.

Proof. We want to show that xm → p, i.e., that

(∀ ε > 0) (∃ k) (∀m > k) ρ(xm, p) < ε.

Thus we fix ε > 0 and look for a suitable k. Now as {xm} is Cauchy, there is
a k such that

(∀m, n > k) ρ(xm, xn) <
ε

2
.

Also, as p is a cluster point, the globe Gp(
ε
2
) contains infinitely many xn, so we

can fix one with n > k (k as above). Then ρ(xn, p) <
ε
2 and, as noted above,

also ρ(xm, xn) <
ε
2
for m > k. Hence

(∀m > k) ρ(xm, xn) + ρ(xn, p) < ε,
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implying ρ(xm, p) ≤ ρ(xm, xn) + ρ(xn, p) < ε, as required. �

Note 2. It follows that a Cauchy sequence can have at most one cluster
point p, for p is also its limit and hence unique; see §14, Corollary 1.

These theorems show that Cauchy sequences behave very much like conver-
gent ones. Indeed, our next theorem (a famous result by Cauchy) shows that,
in En (∗and Cn) the two kinds of sequences coincide.

Theorem 4 (Cauchy’s convergence criterion). A sequence {x̄m} in En (∗or
Cn) converges if and only if it is a Cauchy sequence.

Proof. If {xm} converges, it is Cauchy by Theorem 1.

Conversely, let {xm} be a Cauchy sequence. Then by Theorem 2, it is
bounded. Hence by the Bolzano–Weierstrass theorem (Theorem 2 of §16), it
has a cluster point p̄. Thus by Theorem 3 above, it converges to p̄, and all is
proved. �

Unfortunately, this theorem (along with the Bolzano–Weierstrass theorem
used in its proof) does not hold in all metric spaces. It even fails in some
subspaces of E1. For example, we have

xm =
1

m
→ 0 in E1.

By Theorem 1, this sequence, being convergent, is also a Cauchy sequence.
Moreover, it still preserves (1) even if we remove the point 0 from E1 since
the distances ρ(xm, xn) remain the same. However, in the resulting subspace
S = E1 − {0}, the sequence no longer converges because its limit (and unique
cluster point) 0 has disappeared, leaving a “gap” in its place. Thus we have a
Cauchy sequence in S, without a limit or cluster points , so Theorem 4 fails in
S (along with the Bolzano–Weierstrass theorem).

Quite similarly, both theorems fail in (0, 1) (but not in [0, 1]) as a subspace
of E1. By analogy to incomplete ordered fields, it is natural to say that S
is “incomplete” because of the missing cluster point 0, and call a space (or
subspace) “complete” if it has no such “gaps,” i.e., if Theorem 4 holds in it.
Thus we define as follows.

Definition 2.

A metric space (or subspace) (S, ρ) is said to be complete iff every Cauchy
sequence in S converges to some point p in S.

Similarly, a set A ⊆ (S, ρ) is called complete iff each Cauchy sequence
{xm} ⊆ A converges to some point p in A, i.e., iff (A, ρ) is complete as a
metric subspace of (S, ρ).

In particular, En (∗and Cn) are complete by Theorem 4. The sets (0, 1)
and E1−{0} are incomplete in E1, but [0, 1] is complete. Indeed, we have the
following theorem.
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∗Theorem 5.

(i) Every closed set in a complete space is complete itself .

(ii) Every complete set A ⊆ (S, ρ) is necessarily closed.1

Proof. (i) Let A be a closed set in a complete space (S, ρ). We have to show
that Theorem 4 holds in A (as it does in S). Thus we fix any Cauchy sequence
{xm} ⊆ A and prove that it converges to some p in A.

Now, since S is complete, the Cauchy sequence {xm} has a limit p in S. As
A is closed , however, that limit must be in A by Theorem 4 in §16. Thus (i)
is proved.

(ii) Now let A be complete in a metric space (S, ρ). To prove that A is
closed, we again use Theorem 4 of §16. Thus we fix any convergent sequence
{xm} ⊆ A, xm → p ∈ S, and show that p must be in A.

Now, since {xm} converges in S, it is a Cauchy sequence, in S as well as

in A. Thus by the assumed completeness of A, it has a limit q in A. Then,
however, the uniqueness of lim

m→∞
xm (in S) implies that p = q ∈ A, so that p is

in A, indeed. �

Problems on Cauchy Sequences

1. Without using Theorem 4, prove that if {xn} and {yn} are Cauchy
sequences in E1 (or C), so also are

(i) {xn + yn} and (ii) {xnyn}.

2. Prove that if {xm} and {ym} are Cauchy sequences in (S, ρ), then the
sequence of distances

ρ(xm, ym), m = 1, 2, . . . ,

converges in E1.
[Hint: Show that this sequence is Cauchy in E1; then use Theorem 4.]

3. Prove that a sequence {xm} is Cauchy in (S, ρ) iff

(∀ ε > 0) (∃ k) (∀m > k) ρ(xm, xk) < ε.

4. Two sequences {xm} and {ym} are called concurrent iff

ρ(xm, ym)→ 0.

Notation: {xm} ≈ {ym}. Prove the following.

(i) If one of them is Cauchy or convergent, so is the other, and
limxm = lim ym (if it exists).

1 Here (S, ρ) itself need not be complete.
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(ii) If any two sequences converge to the same limit, they are concur-
rent.

5. Show that if {xm} and {ym} are Cauchy sequences in (S, ρ), then

lim
m→∞

ρ(xm, ym)

does not change if {xm} or {ym} is replaced by a concurrent sequence
(see Problems 4 and 2).

Call

lim
m→∞

ρ(xm, ym)

the “distance”

ρ({xm}, {ym})
between {xm} and {ym}. Prove that such “distances” satisfy all met-
ric axioms, except that ρ({xm}, {ym}) may be 0 even for different se-
quences. (When?)

Also, show that if

(∀m) xm = a and ym = b (constant),

then ρ({xm}, {ym}) = ρ(a, b).

5′. Continuing Problems 4 and 5, show that the concurrence relation (≈)
is reflexive, symmetric, and transitive (Chapter 1, §§4–7), i.e., an equiv-

alence relation. That is, given {xm}, {ym} in S, prove that

(a) {xm} ≈ {xm} (reflexivity);
(b) if {xm} ≈ {ym} then {ym} ≈ {xm} (symmetry);

(c) if {xm} ≈ {ym} and {ym} ≈ {zm}, then {xm} ≈ {zm} (transitiv-
ity).

∗5′′. From Problem 4 deduce that the set of all sequences in (S, ρ) splits into
disjoint equivalence classes (as defined in Chapter 1, §§4–7) under the
relation of concurrence (≈). Show that all sequences of one and the
same class either converge to the same limit or have no limit at all, and
either none of them is Cauchy or all are Cauchy.

6. Give examples of incomplete metric spaces possessing complete sub-
spaces.

7. Prove that if a sequence {xm} ⊆ (S, ρ) is Cauchy then it has a subse-
quence {xmk

} such that

(∀ k) ρ(xmk
, xmk+1

) < 2−k.

8. Show that every discrete space (S, ρ) is complete.
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∗9. Let C be the set of all Cauchy sequences in (S, ρ); we denote them by
capitals, e.g., X = {xm}. Let

X∗ = {Y ∈ C | Y ≈ X}
denote the equivalence class of X under concurrence, ≈ (see Problems 2,
5′, and 5′′). We define

σ(X∗, Y ∗) = ρ({xm}, {ym}) = lim
m→∞

ρ(xm, ym).

By Problem 5, this is unambiguous , for ρ({xm}, {ym}) does not de-
pend on the particular choice of {xm} ∈ X∗ and {ym} ∈ Y ∗; and
lim ρ(xm, ym) exists by Problem 2.

Show that σ is a metric for the set of all equivalence classes X∗

(X ∈ C); call this set C∗.
∗10. Continuing Problem 9, let x∗ denote the equivalence class of the se-

quence with all terms equal to x; let C′ be the set of all such “constant”
equivalence classes (it is a subset of C∗).

Show that C′ is dense in (C∗, σ), i.e., C′ = C∗ under the metric σ.
(See §16, Definition 2.)
[Hint: Fix any “point” X∗ ∈ C∗ and any globe G(X∗; ε) about X∗ in (C∗, σ). We

must show that it contains some x∗ ∈ C′.

By definition, X∗ is the equivalence class of some Cauchy sequence X = {xm} in

(S, ρ), so

(∃ k) (∀m, n > k) ρ(xm, xn) <
ε

2
.

Fix some x = xn (n > k) and consider the equivalence class x∗ of the sequence
{x, x, . . . , x, . . . }; thus, x∗ ∈ C′, and

σ(X∗, x∗) = lim
m→∞

ρ(xm, x) ≤ ε

2
. (Why?)

Thus x∗ ∈ G(X∗, ε), as required.]

∗11. Two metric spaces (S, ρ) and (T, σ) are said to be isometric iff there is
a map f : S ←→

onto
T such that

(∀x, y ∈ S) ρ(x, y) = σ(f(x), f(y)).

Show that the spaces (S, ρ) and (C′, σ) of Problem 10 are isometric.
Note that it is customary not to distinguish between two isometric
spaces, treating each of them as just an “isometric copy” of the other.
Indeed, distances in each of them are alike.
[Hint: Define f(x) = x∗.]

∗12. Continuing Problems 9 to 11, show that the space (C∗, σ) is complete.
Thus prove that for every metric space (S, ρ), there is a complete metric

space (C∗, σ) containing an isometric copy C′ of S, with C′ dense in

C∗. C∗ is called a completion of (S, ρ).
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[Hint: Take a Cauchy sequence {X∗
m} in (C∗, σ). By Problem 10, each globe

G(X∗
m; 1

m
) contains some x∗

m ∈ C′, where x∗
m is the equivalence class of

{xm, xm, . . . , xm, . . . },

and σ(X∗
m, x∗

m) < 1
m

→ 0. Thus by Problem 4, {x∗
m} is Cauchy in (C∗, σ), as is

{X∗
m}. Deduce that X = {xm} ∈ C, and X∗ = lim

m→∞
X∗

m in (C∗, σ).]





Chapter 4

Function Limits and Continuity

§1. Basic Definitions

We shall now consider functions whose domains and ranges are sets in some
fixed (but otherwise arbitrary) metric spaces (S, ρ) and (T, ρ′), respectively.
We write

f : A→ (T, ρ′)

for a function f with Df = A ⊆ (S, ρ) and D′
f ⊆ (T, ρ′). S is called the

domain space, and T the range space, of f .

I. Given such a function, we often have to investigate its “local behavior”
near some point p ∈ S. In particular, if p ∈ A = Df (so that f(p) is defined) we
may ask: Is it possible to make the function values f(x) as near as we like (“ε-
near”) to f(p) by keeping x sufficiently close (“δ-close”) to p, i.e., inside some
sufficiently small globe Gp(δ)?

1 If this is the case, we say that f is continuous

at p. More precisely, we formulate the following definition.

Definition 1.

A function f : A → (T, ρ′), with A ⊆ (S, ρ), is said to be continuous at

p iff p ∈ A and, moreover, for each ε > 0 (no matter how small) there is

δ > 0 such that ρ′(f(x), f(p)) < ε for all x ∈ A ∩Gp(δ). In symbols,

(∀ ε > 0) (∃ δ > 0) (∀x ∈ A ∩Gp(δ))

{

ρ′(f(x), f(p)) < ε, or

f(x) ∈ Gf(p)(ε).
(1)

If (1) fails , we say that f is discontinuous at p and call p a discontinuity

point of f . This is also the case if p /∈ A (since f(p) is not defined).

If (1) holds for each p in a set B ⊆ A, we say that f is continuous on B. If
this is the case for B = A, we simply say that f is continuous .

1 Of course, for f(x) to exist, x must also be in A = Df ; thus x ∈ A∩Gp(δ). We say that

x is δ-close to p iff ρ(x, p) < δ.
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Sometimes we prefer to keep x near p but different from p. We then replace
Gp(δ) in (1) by the set Gp(δ)− {p}, i.e., the globe without its center , denoted
G¬p(δ) and called the deleted δ-globe about p. This is even necessary if p /∈ Df .
Replacing f(p) in (1) by some q ∈ T , we then are led to the following definition.

Definition 2.

Given f : A → (T, ρ′), A ⊆ (S, ρ), p ∈ S, and q ∈ T , we say that f(x)
tends to q as x tends to p (f(x)→ q as x→ p) iff for each ε > 0 there is

δ > 0 such that ρ′(f(x), q) < ε for all x ∈ A ∩G¬p(δ). In symbols,

(∀ ε > 0) (∃ δ > 0) (∀x ∈ A ∩G¬p(δ))

{

ρ′(f(x), q) < ε, i.e.,

f(x) ∈ Gq(ε).
(2)

This means that f(x) is ε-close to q when x is δ-close to p and x 6= p.2

If (2) holds for some q, we call q a limit of f at p. There may be no such q.
We then say that f has no limit at p, or that this limit does not exist. If there
is only one such q (for a given p), we write q = lim

x→p
f(x).

Note 1. Formula (2) holds “vacuously” (see Chapter 1, §§1–3, end remark)
if A ∩ G¬p(δ) = ∅ for some δ > 0. Then any q ∈ T is a limit at p, so a limit
exists but is not unique. (We discard the case where T is a singleton.)

Note 2. However, uniqueness is ensured if A∩G¬p(δ) 6= ∅ for all δ > 0, as
we prove below.

Observe that by Corollary 6 of Chapter 3, §14, the set A clusters at p iff

(∀ δ > 0) A ∩G¬p(δ) 6= ∅. (Explain!)

Thus we have the following corollary.

Corollary 1. If A clusters at p in (S, ρ), then a function f : A→ (T, p′) can
have at most one limit at p; i .e.,

lim
x→p

f(x) is unique (if it exists).3

In particular , this holds if A ⊇ (a, b) ⊂ E1 (a < b) and p ∈ [a, b].

Proof. Suppose f has two limits, q and r, at p. By the Hausdorff property,

Gq(ε) ∩Gr(ε) = ∅ for some ε > 0.

Also, by (2), there are δ′, δ′′ > 0 such that

(∀x ∈ A ∩G¬p(δ
′)) f(x) ∈ Gq(ε) and

(∀x ∈ A ∩G¬p(δ
′′)) f(x) ∈ Gr(ε).

2 Observe that the choice of δ depends on ε in both (1) and (2).
3 Because of this, some authors restrict Definition 2 to the case where A clusters at p.

However, this has its disadvantages (e.g., Corollary 2 fails).
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Let δ = min(δ′, δ′′). Then for x ∈ A∩G¬p(δ), f(x) is in both Gq(ε) and Gr(ε),
and such an x exists since A ∩G¬p(δ) 6= ∅ by assumption.

But this is impossible since Gq(ε) ∩Gr(ε) = ∅ (a contradiction!). �

For intervals , see Chapter 3, §14, Example (h).

Corollary 2. f is continuous at p (p ∈ Df ) iff f(x)→ f(p) as x→ p.

The straightforward proof from definitions is left to the reader.

Note 3. In formula (2), we excluded the case x = p by assuming that
x ∈ A ∩ G¬p(δ). This makes the behavior of f at p itself irrelevant. Thus for

the existence of a limit q at p, it does not matter whether p ∈ Df or whether

f(p) = q. But both conditions are required for continuity at p (see Corollary 2
and Definition 1).

Note 4. Observe that if (1) or (2) holds for some δ, it certainly holds for
any δ′ ≤ δ. Thus we may always choose δ as small as we like. Moreover, as
x is limited to Gp(δ), we may disregard, or change at will, the function values
f(x) for x /∈ Gp(δ) (“local character of the limit notion”).

II. Limits in E∗. If S or T is E∗ (or E1), we may let x → ±∞ or
f(x)→ ±∞. For a precise definition, we rewrite (2) in terms of globes Gp and
Gq:

(∀Gq) (∃Gp) (∀x ∈ A ∩G¬p) f(x) ∈ Gq . (2′)

This makes sense also if p = ±∞ or q = ±∞. We only have to use our
conventions as to G±∞, or the metric ρ′ for E∗, as explained in Chapter 3, §11.

For example, consider

“f(x)→ q as x→ +∞” (A ⊆ S = E∗, p = +∞, q ∈ (T, ρ′)).

Here Gp has the form (a, +∞], a ∈ E1, and G¬p = (a, +∞), while Gq = Gq(ε),
as usual. Noting that x ∈ G¬p means x > a (x ∈ E1), we can rewrite (2′) as

(∀ ε > 0) (∃ a ∈ E1) (∀x ∈ A | x > a) f(x) ∈ Gq(ε), or ρ
′(f(x), q) < ε. (3)

This means that f(x) becomes arbitrarily close to q for large x (x > a).

Next consider “f(x) → +∞ as x → −∞.” Here G¬p = (−∞, a) and
Gq = (b,+∞]. Thus formula (2′) yields (with S = T = E∗, and x varying over
E1)

(∀ b ∈ E1) (∃ a ∈ E1) (∀x ∈ A | x < a) f(x) > b; (4)

similarly in other cases, which we leave to the reader.

Note 5. In (3), we may take A = N (the naturals). Then f : N → (T, ρ′)
is a sequence in T . Writing m for x, set um = f(m) and a = k ∈ N to obtain

(∀ ε > 0) (∃ k) (∀m > k) um ∈ Gq(ε); i.e., ρ′(um, q) < ε.
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This coincides with our definition of the limit q of a sequence {um} (see
Chapter 3, §14). Thus limits of sequences are a special case of function limits .
Theorems on sequences can be obtained from those on functions f : A→ (T, ρ′)
by simply taking A = N and S = E∗ as above.

Note 6. Formulas (3) and (4) make sense also if S = E1 (respectively,
S = T = E1) since they do not involve any mention of ±∞. We shall use such
formulas also for functions f : A → T , with A ⊆ S ⊆ E1 or T ⊆ E1, as the
case may be.

III. Relative Limits and Continuity. Sometimes the desired result (1)
or (2) does not hold in full , but only with A replaced by a smaller set B ⊆ A.
Thus we may have

(∀ ε > 0) (∃ δ > 0) (∀x ∈ B ∩G¬p(δ)) f(x) ∈ Gq(ε).

In this case, we call q a relative limit of f at p over B and write

“f(x)→ q as x→ p over B”

or

lim
x→p, x∈B

f(x) = q (if q is unique);

B is called the path over which x tends to p. If, in addition, p ∈ Df and
q = f(p), we say that f is relatively continuous at p over B; then (1) holds
with A replaced by B. Again, if this holds for every p ∈ B, we say that f
is relatively continuous on B. Clearly, if B = A = Df , this yields ordinary

(nonrelative) limits and continuity. Thus relative limits and continuity are
more general .

Note that for limits over a path B, x is chosen from B or B − {p} only.
Thus the behavior of f outside B becomes irrelevant, and so we may arbitrarily
redefine f on −B. For example, if p /∈ B but limx→p, x∈B f(x) = q exists, we
may define f(p) = q, thus making f relatively continuous at p (over B). We
also may replace (S, ρ) by (B, ρ) (if p ∈ B), or restrict f to B, i.e., replace
f by the function g : B → (T, ρ′) defined by g(x) = f(x) for x ∈ B (briefly,
g = f on B).4

A particularly important case is

A ⊆ S ⊆ E∗, e.g., S = E1.

Then inequalities are defined in S, so we may take

B = {x ∈ A | x < p} (points in A, preceding p).

4 The function g is called the restriction of f to B denoted fB or f |B. Thus f is relatively

continuous on B iff fB is continuous.
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Then, writing Gq for Gq(ε) and a = p− δ, we obtain from formula (2)

(∀Gq) (∃ a < p) (∀x ∈ A | a < x < p) f(x) ∈ Gq. (5)

If (5) holds, we call q a left limit of f at p and write

“f(x)→ q as x→ p−” (“x tends to p from the left”).

If, in addition, q = f(p), we say that f is left continuous at p. Similarly, taking

B = {x ∈ A | x > p},

we obtain right limits and continuity. We write

f(x)→ q as x→ p+

iff q is a right limit of f at p, i.e., if (5) holds with all inequalities reversed.

If the set B in question clusters at p, the relative limit (if any) is unique.
We then denote the left and right limit, respectively, by f(p−) and f(p+), and
we write

lim
x→p−

f(x) = f(p−) and lim
x→p+

f(x) = f(p+). (6)

Corollary 3. With the previous notation, if f(x) → q as x → p over a path

B, and also over D, then f(x)→ q as x→ p over B ∪D.

Hence if Df ⊆ E∗ and p ∈ E∗, we have

q = lim
x→p

f(x) iff q = f(p−) = f(p+). (Exercise!)

We now illustrate our definitions by a diagram in E2 representing a function
f : E1 → E1 by its graph, i.e., points (x, y) such that y = f(x).

Here

Gq(ε) = (q − ε, q + ε)

is an interval on the y-axis . The dotted lines show how to construct an interval

(p− δ, p+ δ) = Gp

on the x-axis , satisfying formula (1) in Figure 13, formulas (5) and (6) in
Figure 14, or formula (2) in Figure 15. The point Q in each diagram belongs

to the graph; i.e., Q = (p, f(p)). In Figure 13, f is continuous at p (and also at
p1). However, it is only left-continuous at p in Figure 14, and it is discontinuous
at p in Figure 15, though f(p−) and f(p+) exist. (Why?)

Examples.

(a) Let f : A→ T be constant on B ⊆ A; i.e.,

f(x) = q for a fixed q ∈ T and all x ∈ B.
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O pp− δ p+ δ p1

q

q − ε

q + ε

q1

q1 − ε

q1 + ε

Q

Figure 13

O pp− δ p+ δx

f(x)

q

q − ε

q + ε

Q

Figure 14

Then f is relatively continuous on B, and f(x)→ q as x→ p over B, at
each p. (Given ε > 0, take an arbitrary δ > 0. Then

(∀x ∈ B ∩G¬p(δ)) f(x) = q ∈ Gq(ε),

as required; similarly for continuity.)

(b) Let f be the identity map on A ⊂ (S, ρ); i.e.,

(∀x ∈ A) f(x) = x.
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O pp− δ p+ δ

q

q − ε

q + ε

Q
f(p)

Figure 15

Then, given ε > 0, take δ = ε to obtain, for p ∈ A,
(∀x ∈ A ∩Gp(δ)) ρ(f(x), f(p)) = ρ(x, p) < δ = ε.

Thus by (1), f is continuous at any p ∈ A, hence on A.

(c) Define f : E1 → E1 by

f(x) = 1 if x is rational, and f(x) = 0 otherwise.

(This is the Dirichlet function, so named after Johann Peter Gustav Leje-
une Dirichlet.)

No matter how small δ is, the globe

Gp(δ) = (p− δ, p+ δ)

(even the deleted globe) contains both rationals and irrationals. Thus as
x varies over G¬p(δ), f(x) takes on both values, 0 and 1, many times and
so gets out of any Gq(ε), with q ∈ E1, ε < 1

2 .

Hence for any q, p ∈ E1, formula (2) fails if we take ε = 1
4 , say. Thus

f has no limit at any p ∈ E1 and hence is discontinuous everywhere!
However, f is relatively continuous on the set R of all rationals by Exam-
ple (a).

(d) Define f : E1 → E1 by

f(x) = [x] (= the integral part of x; see Chapter 2, §10).
Thus f(x) = 0 for x ∈ [0, 1), f(x) = 1 for x ∈ [1, 2), etc. Then f is
discontinuous at p if p is an integer (why?) but continuous at any other
p (restrict f to a small Gp(δ) so as to make it constant).
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O

Y

X

1

2

3

1 2 3 4

Figure 16

However, left and right limits
exist at each p ∈ E1, even if p =
n (an integer). In fact,

f(x) = n, x ∈ (n, n+ 1)

and

f(x) = n− 1, x ∈ (n− 1, n),

hence f(n+) = n and f(n−) =
n − 1; f is right continuous on

E1. See Figure 16.

(e) Define f : E1 → E1 by

f(x) =
x

|x| if x 6= 0, and f(0) = 0.

(This is the so-called signum function, often denoted by sgn.)

O

Y

X

1

−1

Figure 17

Then (Figure 17)

f(x) = −1 if x < 0

and

f(x) = 1 if x > 0.

Thus, as in (d), we infer that f
is discontinuous at 0, but con-
tinuous at each p 6= 0. Also,
f(0+) = 1 and f(0−) = −1. Redefining f(0) = 1 or f(0) = −1, we
can make f right (respectively, left) continuous at 0, but not both.

(f) Define f : E1 → E1 by (see Figure 18)

f(x) = sin
1

x
if x 6= 0, and f(0) = 0.

O

Y

X

1

−1

Figure 18

Any globe G0(δ) about 0 con-
tains points at which f(x) =
1, as well as those at which
f(x) = −1 or f(x) = 0 (take
x = 2/(nπ) for large integers n);
in fact, the graph “oscillates” in-
finitely many times between −1
and 1. Thus by the same argu-
ment as in (c), f has no limit at
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0 (not even a left or right limit) and hence is discontinuous at 0. No
attempt at redefining f at 0 can restore even left or right continuity, let
alone ordinary continuity, at 0.

(g) Define f : E2 → E1 by

f(0̄) = 0 and f(x̄) =
x1x2
x21 + x22

if x̄ = (x1, x2) 6= 0̄.

Let B be any line in E2 through 0̄, given parametrically by

x̄ = t~u, t ∈ E1, ~u fixed (see Chapter 3, §§4–6),

so x1 = tu1 and x2 = tu2. As is easily seen, for x̄ ∈ B, f(x̄) = f(ū)
(constant) if x̄ 6= 0̄. Hence

(∀ x̄ ∈ B ∩G¬0̄(δ)) f(x̄) = f(ū),

i.e., ρ(f(x̄), f(ū)) = 0 < ε, for any ε > 0 and any deleted globe about 0̄.

By (2′), then, f(x̄) → f(ū) as x̄ → 0̄ over the path B. Thus f has a
relative limit f(ū) at 0̄, over any line x̄ = tū, but this limit is different

for various choices of ū, i.e., for different lines through 0̄. No ordinary

limit at 0̄ exists (why?); f is not even relatively continuous at 0̄ over the
line x̄ = t~u unless f(ū) = 0 (which is the case only if the line is one of
the coordinate axes (why?)).

Problems on Limits and Continuity

1. Prove Corollary 2. Why can one interchange Gp(δ) and G¬p(δ) here?

2. Prove Corollary 3. By induction, extend its first clause to unions of n
paths. Disprove it for infinite unions of paths (see Problem 9 in §3).

2′. Prove that a function f : E1 → (T, ρ′) is continuous at p iff

f(p) = f(p−) = f(p+).

3. Show that relative limits and continuity at p (over B) are equivalent
to the ordinary ones if B is a neighborhood of p (Chapter 3, §12); for
example, if it is some Gp.

4. Discuss Figures 13–15 in detail, comparing f(p), f(p−), and f(p+); see
Problem 2′.

Observe that in Figure 13, different values of δ result at p and p1 for
the same ε. Thus δ depends on both ε and the choice of p.

5. Complete the missing details in Examples (d)–(g). In (d), redefine f(x)
to be the least integer ≥ x. Show that f is then left-continuous on E1.
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6. Give explicit definitions (such as (3)) for

(a) lim
x→+∞

f(x) = −∞; (b) lim
x→−∞

f(x) = q;

(c) lim
x→p

f(x) = +∞; (d) lim
x→p

f(x) = −∞;

(e) lim
x→p−

f(x) = +∞; (f) lim
x→p+

f(x) = −∞.

In each case, draw a diagram (such as Figures 13–15) and determine
whether the domain and range of f must both be in E∗.

7. Define f : E1 → E1 by

f(x) =
x2 − 1

x− 1
if x 6= 1, and f(1) = 0.

Show that limx→1 f(x) = 2 exists, yet f is discontinuous at p = 1. Make
it continuous by redefining f(1).
[Hint: For x 6= 1, f(x) = x+ 1. Proceed as in Example (b), using the deleted globe

G¬p(δ).]

8. Find limx→p f(x) and check continuity at p in the following cases, assum-
ing that Df = A is the set of all x ∈ E1 for which the given expression
for f(x) has sense. Specify that set.5

(a) lim
x→2

(2x2 − 3x− 5); (b) lim
x→1

3x+ 2

2x− 1
;

(c) lim
x→−1

(x2 − 4

x+ 2
− 1

)

; (d) lim
x→2

x3 − 8

x− 2
;

(e) lim
x→a

x4 − a4
x− a ; (f) lim

x→0

( x

x+ 1

)3

;

(g) lim
x→−1

( 1

x2 + 1

)2

.

[Example solution: Find lim
x→1

5x2 − 1

2x+ 3
.

Here

f(x) =
5x2 − 1

2x+ 3
; A = E1 −

{

−3

2

}

; p = 1.

We show that f is continuous at p, and so (by Corollary 2)

lim
x→p

f(x) = f(p) = f(1) =
4

5
.

Using formula (1), we fix an arbitrary ε > 0 and look for a δ such that

(∀x ∈ A ∩Gp(δ)) ρ(f(x), f(1)) = |f(x)− f(1)| < ε, i.e.,
∣
∣
∣
5x2 − 1

2x+ 3
− 4

5

∣
∣
∣ < ε;

5 In (d) and (e), p /∈ A, yet one can restore continuity as in Problem 7. (Reduce the

fraction by x− p for x 6= p and define f(p) accordingly.)
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or, by putting everything over a common denominator and using properties of abso-
lute values,

|x− 1| |25x+ 17|
5|2x+ 3| < ε whenever |x− 1| < δ and x ∈ A. (6)

(Usually in such problems, it is desirable to factor out x− p.)

By Note 4, we may assume 0 < δ ≤ 1. Then |x− 1| < δ implies −1 ≤ x− 1 ≤ 1,

i.e., 0 ≤ x ≤ 2, so

5 |2x+ 3| ≥ 15 and |25x+ 17| ≤ 67.

Hence (6) will certainly hold if

|x− 1| 67
15

< ε, i.e., if |x− 1| < 15ε

67
.

To achieve it, we choose δ = min(1, 15ε/67). Then, reversing all steps, we obtain

(6), and hence lim
x→1

f(x) = f(1) = 4/5.]

9. Find (using definitions, such as (3))

(a) lim
x→+∞

1

x
; (b) lim

x→−∞
3x+ 2

2x− 1
;

(c) lim
x→+∞

x3

1− x2 ; (d) lim
x→3+

x− 1

x− 3
;

(e) lim
x→3−

x− 1

x− 3
; (f) lim

x→3

∣

∣

∣

x− 1

x− 3

∣

∣

∣
.

10. Prove that if

lim
x→p

f(x) = q̄ ∈ En (∗Cn),

then for each scalar c,

lim
x→p

cf(x) = cq̄.

11. Define f : E1 → E1 by

f(x) = x · sin 1

x
if x 6= 0, and f(0) = 0.

Show that f is continuous at p = 0, i.e.,

lim
x→0

f(x) = f(0) = 0.

Draw an approximate graph (it is contained between the lines y = ±x).
[Hint:

∣
∣
∣x · sin 1

x
− 0

∣
∣
∣ ≤ |x|.]

∗12. Discuss the statement: f is continuous at p iff

(∀Gf(p)) (∃Gp) f [Gp] ⊆ Gf(p).
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13. Define f : E1 → E1 by

f(x) = x if x is rational

and

f(x) = 0 otherwise.

Show that f is continuous at 0 but nowhere else. How about relative

continuity?

14. Let A = (0, +∞) ⊂ E1. Define f : A→ E1 by

f(x) = 0 if x is irrational

and

f(x) =
1

n
if x =

m

n
(in lowest terms)

for some natural m and n. Show that f is continuous at each irrational,
but at no rational, point p ∈ A.
[Hints: If p is irrational , fix ε > 0 and an integer k > 1/ε. In Gp(1), there are only
finitely many irreducible fractions

m

n
> 0 with n ≤ k,

so one of them, call it r, is closest to p. Put

δ = min(1, |r − p|)

and show that

(∀x ∈ A ∩Gp(δ)) |f(x)− f(p)| = f(x) < ε,

distinguishing the cases where x is rational and irrational.

If p is rational , use the fact that each Gp(δ) contains irrationals x at which

f(x) = 0 =⇒ |f(x)− f(p)| = f(p).

Take ε < f(p).]

15. Given two reals, p > 0 and q > 0, define f : E1 → E1 by

f(0) = 0 and f(x) =
(x

p

)

·
[ q

x

]

if x 6= 0;

here [q/x] is the integral part of q/x.

(i) Is f left or right continuous at 0?

(ii) Same question with f(x) = [x/p](q/x).

16. Prove that if (S, ρ) is discrete, then all functions f : S → (T, ρ′) are
continuous. What if (T, ρ′) is discrete but (S, ρ) is not?
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§2. Some General Theorems on Limits and Continuity

I. In §1 we gave the so-called “ε, δ” definition of continuity. Now we present
another (equivalent) formulation, known as the sequential one. Roughly, it
states that f is continuous iff it carries convergent sequences {xm} ⊆ Df into

convergent “image sequences” {f(xm)}. More precisely, we have the following
theorem.

Theorem 1 (sequential criterion of continuity). (i) A function

f : A→ (T, ρ′), with A ⊆ (S, ρ),

is continuous at a point p ∈ A iff for every sequence {xm} ⊆ A such that

xm → p in (S, ρ), we have f(xm)→ f(p) in (T, ρ′). In symbols ,

(∀ {xm} ⊆ A | xm → p) f(xm)→ f(p). (1′)

(ii) Similarly, a point q ∈ T is a limit of f at p (p ∈ S) iff

(∀ {xm} ⊆ A− {p} | xm → p) f(xm)→ q. (2′)

Note that in (2′) we consider only sequences of terms other than p.

Proof. We first prove (ii). Suppose q is a limit of f at p, i.e. (see §1),

(∀ ε > 0) (∃ δ > 0) (∀x ∈ A ∩G¬p(δ)) f(x) ∈ Gq(ε). (2)

Thus, given ε > 0, there is δ > 0 (henceforth fixed) such that

f(x) ∈ Gq(ε) whenever x ∈ A, x 6= p, and x ∈ Gp(δ). (3)

We want to deduce (2′). Thus we fix any sequence

{xm} ⊆ A− {p}, xm → p.1

Then

(∀m) xm ∈ A and xm 6= p,

and Gp(δ) contains all but finitely many xm. Then these xm satisfy the con-
ditions stated in (3). Hence f(xm) ∈ Gq(ε) for all but finitely many m. As ε
is arbitrary, this implies f(xm) → q (by the definition of lim

m→∞
f(xm)), as is

required in (2′). Thus (2) =⇒ (2′).

Conversely, suppose (2) fails , i.e., its negation holds. (See the rules for
forming negations of such formulas in Chapter 1, §§1–3.) Thus

(∃ ε > 0) (∀ δ > 0) (∃x ∈ A ∩G¬p(δ)) f(x) /∈ Gq(ε) (4)

1 If no such sequence exists, then (2′) is vacuously true and there is nothing to prove.
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by the rules for quantifiers. We fix an ε satisfying (4), and let

δm =
1

m
, m = 1, 2, . . . .

By (4), for each δm there is xm (depending on δm) such that

xm ∈ A ∩G¬p

( 1

m

)

(5)

and
f(xm) /∈ Gq(ε), m = 1, 2, 3, . . . (6)

We fix these xm. As xm ∈ A and xm 6= p, we obtain a sequence

{xm} ⊆ A− {p}.
Also, as xm ∈ Gp(

1
m), we have ρ(xm, p) < 1/m → 0, and hence xm → p.

On the other hand, by (6), the image sequence {f(xm)} cannot converge to q
(why?), i.e., (2′) fails . Thus we see that (2′) fails or holds accordingly as (2)
does .

This proves assertion (ii). Now, by setting q = f(p) in (2) and (2′), we also
obtain the first clause of the theorem, as to continuity. �

Note 1. The theorem also applies to relative limits and continuity over a
path B (just replace A by B in the proof), as well as to the cases p = ±∞
and q = ±∞ in E∗ (for E∗ can be treated as a metric space; see the end of
Chapter 3, §11).

If the range space (T, ρ′) is complete (Chapter 3, §17), then the image
sequences {f(xm)} converge iff they are Cauchy . This leads to the following
corollary.

Corollary 1. Let (T, ρ′) be complete, such as En. Let a map f : A→ T with

A ⊆ (S, ρ) and a point p ∈ S be given. Then for f to have a limit at p,
it suffices that {f(xm)} be Cauchy in (T, ρ′) whenever {xm} ⊆ A − {p} and

xm → p in (S, ρ).

Indeed, as noted above, all such {f(xm)} converge. Thus it only remains to
show that they tend to one and the same limit q, as is required in part (ii) of
Theorem 1. We leave this as an exercise (Problem 1 below).
∗Theorem 2 (Cauchy criterion for functions). With the assumptions of Corol-

lary 1, the function f has a limit at p iff for each ε > 0, there is δ > 0 such

that

ρ′(f(x), f(x′)) < ε for all x, x′ ∈ A ∩G¬p(δ).
2

In symbols ,

(∀ ε > 0) (∃ δ > 0) (∀x, x′ ∈ A ∩G¬p(δ)) ρ′(f(x), f(x′)) < ε. (7)

2 That is, f(x) is ε-close to f(x′) when x and x′ are δ-close to p, but not equal to p.
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Proof. Assume (7). To show that f has a limit at p, we use Corollary 1. Thus
we take any sequence

{xm} ⊆ A− {p} with xm → p

and show that {f(xm)} is Cauchy, i.e.,
(∀ ε > 0) (∃ k) (∀m,n > k) ρ′(f(xm), f(xn)) < ε.

To do this, fix an arbitrary ε > 0. By (7), we have

(∀x, x′ ∈ A ∩G¬p(δ)) ρ′(f(x), f(x′)) < ε, (7′)

for some δ > 0. Now as xm → p, there is k such that

(∀m, n > k) xm, xn ∈ Gp(δ).

As {xm} ⊆ A− {p}, we even have xm, xn ∈ A ∩G¬p(δ). Hence by (7′),

(∀m, n > k) ρ′(f(xm), f(xn)) < ε;

i.e., {f(xm)} is Cauchy , as required in Corollary 1, and so f has a limit at p.
This shows that (7) implies the existence of that limit.

The easy converse proof is left to the reader. (See Problem 2.) �

II. Composite Functions. The composite of two functions

f : S → T and g : T → U ,

denoted
g ◦ f (in that order),

is by definition a map of S into U given by

(g ◦ f)(x) = g(f(x)), s ∈ S.
Our next theorem states, roughly, that g ◦ f is continuous if g and f are. We
shall use Theorem 1 to prove it.

Theorem 3. Let (S, ρ), (T, ρ′), and (U, ρ′′) be metric spaces . If a function

f : S → T is continuous at a point p ∈ S, and if g : T → U is continuous at the

point q = f(p), then the composite function g ◦ f is continuous at p.

Proof. The domain of g ◦ f is S. So take any sequence

{xm} ⊆ S with xm → p.

As f is continuous at p, formula (1′) yields f(xm) → f(p), where f(xm) is in
T = Dg. Hence, as g is continuous at f(p), we have

g(f(xm))→ g(f(p)), i.e., (g ◦ f)(xm)→ (g ◦ f)(p),
and this holds for any {xm} ⊆ S with xm → p. Thus g ◦ f satisfies condition
(1′) and is continuous at p. �
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Caution: The fact that

lim
x→p

f(x) = q and lim
y→q

g(y) = r

does not imply

lim
x→p

g(f(x)) = r

(see Problem 3 for counterexamples).

Indeed, if {xm} ⊆ S−{p} and xm → p, we obtain, as before, f(xm)→ q, but
not f(xm) 6= q. Thus we cannot re-apply formula (2′) to obtain g(f(xm))→ r
since (2′) requires that f(xm) 6= q. The argument still works if g is continuous
at q (then (1′) applies) or if f(x) never equals q (then f(xm) 6= q). It even
suffices that f(x) 6= q for x in some deleted globe about p (see §1, Note 4).
Hence we obtain the following corollary.

Corollary 2. With the notation of Theorem 3, suppose

f(x)→ q as x→ p, and g(y)→ r as y → q.

Then

g(f(x))→ r as x→ p,

provided, however, that

(i) g is continuous at q, or

(ii) f(x) 6= q for x in some deleted globe about p, or

(iii) f is one to one, at least when restricted to some G¬p(δ).

Indeed, (i) and (ii) suffice, as was explained above. Thus assume (iii). Then
f can take the value q at most once, say, at some point

x0 ∈ G¬p(δ).

As x0 6= p, let

δ′ = ρ(x0, p) > 0.

Then x0 /∈ G¬p(δ
′), so f(x) 6= q on G¬p(δ

′), and case (iii) reduces to (ii).

We now show how to apply Corollary 2.

Note 2. Suppose we know that

r = lim
y→q

g(y) exists.

Using this fact, we often pass to another variable x, setting y = f(x) where f
is such that q = limx→p f(x) for some p. We shall say that the substitution (or
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“change of variable”) y = f(x) is admissible if one of the conditions (i), (ii), or
(iii) of Corollary 2 holds.3 Then by Corollary 2,

lim
y→q

g(y) = r = lim
x→p

g(f(x))

(yielding the second limit).

Examples.

(A) Let

h(x) =
(

1 +
1

x

)x

for |x| ≥ 1.

Then

lim
x→+∞

h(x) = e.

For a proof, let n = f(x) = [x] be the integral part of x. Then for
x > 1,

(

1 +
1

n+ 1

)n

≤ h(x) ≤
(

1 +
1

n

)n+1

. (Verify!) (8)

As x→ +∞, n tends to +∞ over integers , and by rules for sequences ,

lim
n→∞

(

1 +
1

n

)n+1

= lim
n→∞

(

1 +
1

n

)(

1 +
1

n

)n

= 1 · lim
n→∞

(

1 +
1

n

)n

= 1 · e = e,

with e as in Chapter 3, §15. Similarly one shows that also

lim
n→∞

(

1 +
1

n+ 1

)n

= e.

Thus (8) implies that also lim
x→+∞

h(x) = e (see Problem 6 below).

Remark. Here we used Corollary 2(ii) with

f(x) = [x], q = +∞, and g(n) =
(

1 +
1

n

)n

.

The substitution n = f(x) is admissible since f(x) = n never equals +∞, its
limit, thus satisfying Corollary 2(ii).

(B) Quite similarly, one shows that also

lim
x→−∞

(

1 +
1

x

)x

= e.

See Problem 5.

3 In particular, the so-called linear substitution y = ax + b (a, b ∈ E1, a 6= 0) is always

admissible since f(x) = ax+ b yields a one-to-one map.
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(C) In Examples (A) and (B), we now substitute x = 1/z. This is admissible
by Corollary 2(ii) since the dependence between x and z is one to one.
Then

z =
1

x
→ 0+ as x→ +∞, and z → 0− as x→ −∞.

Thus (A) and (B) yield

lim
z→0+

(1 + z)1/z = lim
z→0−

(1 + z)1/z = e.

Hence by Corollary 3 of §1, we obtain

lim
z→0

(1 + z)1/z = e. (9)

More Problems on Limits and Continuity

1. Complete the proof of Corollary 1.
[Hint: Consider {f(xm)} and {f(x′

m)}, with

xm → p and x′
m → p.

By Chapter 3, §14, Corollary 4, p is also the limit of

x1, x
′
1, x2, x

′
2, . . . ,

so, by assumption,

f(x1), f(x
′
1), . . . converges (to q, say).

Hence {f(xm)} and {f(x′
m)} must have the same limit q. (Why?)]

∗2. Complete the converse proof of Theorem 2 (cf. proof of Theorem 1 in
Chapter 3, §17).

3. Define f, g : E1 → E1 by setting

(i) f(x) = 2; g(y) = 3 if y 6= 2, and g(2) = 0; or

(ii) f(x) = 2 if x is rational and f(x) = 2x otherwise; g as in (i).

In both cases, show that

lim
x→1

f(x) = 2 and lim
y→2

g(y) = 3 but not lim
x→1

g(f(x)) = 3.4

4. Prove Theorem 3 from “ε, δ” definitions. Also prove (both ways) that if
f is relatively continuous on B, and g on f [B], then g ◦ f is relatively
continuous on B.

4 In case (ii), disprove the existence of limx→1 g(f(x)).
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5. Complete the missing details in Examples (A) and (B).
[Hint for (B): Verify that

(

1− 1

n+ 1

)−n−1
=

( n

n+ 1

)−n−1
=

(n+ 1

n

)n+1
=

(

1 +
1

n

)(

1 +
1

n

)n
→ e.]

⇒6. Given f, g, h : A→ E∗, A ⊆ (S, ρ), with

f(x) ≤ h(x) ≤ g(x)
for x ∈ G¬p(δ) ∩A for some δ > 0. Prove that if

lim
x→p

f(x) = lim
x→p

g(x) = q,

then also
lim
x→p

h(x) = q.

Use Theorem 1.
[Hint: Take any

{xm} ⊆ A− {p} with xm → p.

Then f(xm) → q, g(xm) → q, and

(∀xm ∈ A ∩G¬p(δ)) f(xm) ≤ h(xm) ≤ g(xm).

Now apply Corollary 3 of Chapter 3, §15.]

⇒7. Given f, g : A→ E∗, A ⊆ (S, ρ), with f(x)→ q and g(x)→ r as x→ p
(p ∈ S), prove the following:

(i) If q > r, then

(∃ δ > 0) (∀x ∈ A ∩G¬p(δ)) f(x) > g(x).

(ii) (Passage to the limit in inequalities .) If

(∀ δ > 0) (∃x ∈ A ∩G¬p(δ)) f(x) ≤ g(x),
then q ≤ r. (Observe that here A clusters at p necessarily, so the
limits are unique.)
[Hint: Proceed as in Problem 6; use Corollary 1 of Chapter 3, §15.]

8. Do Problems 6 and 7 using only Definition 2 of §1.
[Hint: Here prove 7(ii) first.]

9. Do Examples (a)–(d) of §1 using Theorem 1.
[Hint: For (c), use also Example (a) in Chapter 3, §16.]

10. Addition and multiplication in E1 may be treated as functions

f, g : E2 → E1

with
f(x, y) = x+ y and g(x, y) = xy.
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Show that f and g are continuous on E2 (see footnote 2 in Chapter 3,
§15). Similarly, show that the standard metric

ρ(x, y) = |x− y|
is a continuous mapping from E2 to E1.
[Hint: Use Theorems 1, 2, and, 4 of Chapter 3, §15 and the sequential criterion.]

11. Using Corollary 2 and formula (9), find lim
x→0

(1±mx)1/x for a fixed m ∈
N .

⇒12. Let a > 0 in E1. Prove that lim
x→0

ax = 1.

[Hint: Let n = f(x) be the integral part of 1
x

(x 6= 0). Verify that

a−1/(n+1) ≤ ax ≤ a1/n if a ≥ 1,

with inequalities reversed if 0 < a < 1. Then proceed as in Example (A), noting that

lim
n→∞

a1/n = 1 = lim
n→∞

a−1/(n+1)

by Problem 20 of Chapter 3, §15. (Explain!)]

⇒13. Given f, g : A→ E∗, A ⊆ (S, ρ), with

f ≤ g for x in G¬p(δ) ∩A.
Prove that

(a) if lim
x→p

f(x) = +∞, then also lim
x→p

g(x) = +∞;

(b) if lim
x→p

g(x) = −∞, then also lim
x→p

f(x) = −∞.

Do it it two ways:

(i) Use definitions only, such as (2′) in §1.
(ii) Use Problem 10 of Chapter 2, §13 and the sequential criterion.

⇒14. Prove that

(i) if a > 1 in E1, then

lim
x→+∞

ax

x
= +∞ and lim

x→+∞
a−x

x
= 0;

(ii) if 0 < a < 1, then

lim
x→+∞

ax

x
= 0 and lim

x→+∞
a−x

x
= +∞;

(iii) if a > 1 and 0 ≤ q ∈ E1, then

lim
x→+∞

ax

xq
= +∞ and lim

x→+∞
a−x

xq
= 0;
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(iv) if 0 < a < 1 and 0 ≤ q ∈ E1, then

lim
x→+∞

ax

xq
= 0 and lim

x→+∞
a−x

xq
= +∞.

[Hint: (i) From Problems 17 and 10 of Chapter 3, §15, obtain

lim
an

n
= +∞.

Then proceed as in Examples (A)–(C); (iii) reduces to (i) by the method used in
Problem 18 of Chapter 3, §15.]

⇒∗15. For a map f : (S, ρ) → (T, ρ′), show that the following statements are
equivalent:

(i) f is continuous on S.

(ii) (∀A ⊆ S) f [A] ⊆ f [A].
(iii) (∀B ⊆ T ) f−1[B] ⊇ f−1[B].

(iv) f−1[B] is closed in (S, ρ) whenever B is closed in (T, ρ′).

(v) f−1[B] is open in (S, ρ) whenever B is open in (T, ρ′).

[Hints: (i) =⇒ (ii): Use Theorem 3 of Chapter 3, §16 and the sequential criterion to

show that
p ∈ A =⇒ f(p) ∈ f [A].

(ii) =⇒ (iii): Let A = f−1[B]. Then f [A] ⊆ B, so by (ii),

f [A] ⊆ f [A] ⊆ B.

Hence
f−1[B] = A ⊆ f−1[f [A]] ⊆ f−1[B]. (Why?)

(iii) =⇒ (iv): If B is closed, B = B (Chapter 3, §16, Theorem 4(ii)), so by (iii),

f−1[B] = f−1[B] ⊇ f−1[B]; deduce (iv).

(iv) =⇒ (v): Pass to complements in (iv).

(v) =⇒ (i): Assume (v). Take any p ∈ S and use Definition 1 in §1.]

16. Let f : E1 → E1 be continuous. Define g : E1 → E2 by

g(x) = (x, f(x)).

Prove that

(a) g and g−1 are one to one and continuous;

(b) the range of g, i.e., the set

D′
g = {(x, f(x)) | x ∈ E1},

is closed in E2.

[Hint: Use Theorem 2 of Chapter 3, §15, Theorem 4 of Chapter 3, §16, and the
sequential criterion.]
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§3. Operations on Limits. Rational Functions

I. A function f : A→ T is said to be real if its range D′
f lies in E1, complex

if D′
f ⊆ C, vector valued if D′

f is a subset of En, and scalar valued if D′
f lies in

the scalar field of En. (∗In the latter two cases, we use the same terminology if
En is replaced by some other (fixed) normed space under consideration.) The
domain A may be arbitrary.

For such functions one can define various operations whenever they are de-
fined for elements of their ranges , to which the function values f(x) belong.
Thus as in Chapter 3, §9, we define the functions f±g, fg, and f/g “pointwise,”
setting

(f ± g)(x) = f(x)± g(x), (fg)(x) = f(x) g(x), and
(f

g

)

(x) =
f(x)

g(x)

whenever the right side expressions are defined. We also define |f | : A → E1

by

(∀x ∈ A) |f |(x) = |f(x)|.

In particular, f±g is defined if f and g are both vector valued or both scalar
valued, and fg is defined if f is vector valued while g is scalar valued; similarly
for f/g. (However, the domain of f/g consists of those x ∈ A only for which
g(x) 6= 0.)

In the theorems below, all limits are at some (arbitrary, but fixed) point p
of the domain space (S, ρ). For brevity, we often omit “x→ p.”

Theorem 1. For any functions f, g, h : A→ E1(C), A ⊆ (S, ρ), we have the

following:

(i) If f, g, h are continuous at p (p ∈ A), so are f ± g and fh. So also is

f/h, provided h(p) 6= 0; similarly for relative continuity over B ⊆ A.

(ii) If f(x)→ q, g(x)→ r, and h(x)→ a (all , as x→ p over B ⊆ A), then
(a) f(x)± g(x)→ q ± r;
(b) f(x)h(x)→ qa; and

(c)
f(x)

h(x)
→ q

a
, provided a 6= 0.

All this holds also if f and g are vector valued and h is scalar valued .

For a simple proof, one can use Theorem 1 of Chapter 3, §15. (An indepen-
dent proof is sketched in Problems 1–7 below.)

We can also use the sequential criterion (Theorem 1 in §2). To prove (ii),
take any sequence

{xm} ⊆ B − {p}, xm → p.
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Then by the assumptions made,

f(xm)→ q, g(xm)→ r, and h(xm)→ a.

Thus by Theorem 1 of Chapter 3, §15,

f(xm)± g(xm)→ q ± r, f(xm)g(xm)→ qa, and
f(xm)

g(xm)
→ q

a
.

As this holds for any sequence {xm} ⊆ B − {p} with xm → p, our assertion
(ii) follows by the sequential criterion; similarly for (i).

Note 1. By induction, the theorem also holds for sums and products of any
finite number of functions (whenever such products are defined).

Note 2. Part (ii) does not apply to infinite limits q, r, a; but it does apply
to limits at p = ±∞ (take E∗ with a suitable metric for the space S).

Note 3. The assumption h(x) → a 6= 0 (as x → p over B) implies that
h(x) 6= 0 for x in B ∩ G¬p(δ) for some δ > 0; see Problem 5 below. Thus the
quotient function f/h is defined on B ∩G¬p(δ) at least .

II. If the range space of f is En (∗or Cn), then each function value f(x) is
a vector in that space; thus it has n real (∗respectively, complex) components,
denoted

fk(x), k = 1, 2, . . . , n.

Here we may treat fk as a mapping of A = Df into E1 (∗or C); it carries
each point x ∈ A into fk(x), the kth component of f(x). In this manner, each
function

f : A→ En (∗Cn)

uniquely determines n scalar-valued maps

fk : A→ E1 (C),

called the components of f . Notation: f = (f1, . . . , fn).

Conversely, given n arbitrary functions

fk : A→ E1 (C), k = 1, 2, . . . , n,

one can define f : A→ En (∗Cn) by setting

f(x) = (f1(x), f2(x), . . . , fn(x)).

Then obviously f = (f1, f2, . . . , fn). Thus the fk in turn determine f uniquely.
To define a function f : A→ En (∗Cn) means to give its n components fk. Note
that

f(x) = (f1(x), . . . , fn(x)) =

n
∑

k=1

ēkfk(x), i.e., f =

n
∑

k=1

ēkfk, (1)
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where the ēk are the n basic unit vectors; see Chapter 3, §§1–3, Theorem 2.
Our next theorem shows that the limits and continuity of f reduce to those of
the fk.

Theorem 2 (componentwise continuity and limits). For any function f : A→
En (∗Cn), with A ⊆ (S, ρ) and with f = (f1, . . . , fn), we have that

(i) f is continuous at p (p ∈ A) iff all its components fk are, and

(ii) f(x)→ q̄ as x→ p (p ∈ S) iff

fk(x)→ qk as x→ p (k = 1, 2, . . . , n),

i .e., iff each fk has , as its limit at p, the corresponding component of q̄.

Similar results hold for relative continuity and limits over a path B ⊆ A.
We prove (ii). If f(x)→ q̄ as x→ p then, by definition,

(∀ ε > 0) (∃ δ > 0) (∀x ∈ A ∩G¬p(δ)) ε > |f(x)− q̄| =
√

n
∑

k=1

|fk(x)− qk|2 ;

in turn, the right-hand side of the inequality given above is no less than each

|fk(x)− qk|, k = 1, 2, . . . , n.

Thus

(∀ ε > 0) (∃ δ > 0) (∀x ∈ A ∩G¬p(δ)) |fk(x)− qk| < ε;

i.e., fk(x)→ qk, k = 1, . . . , n.

Conversely, if each fk(x)→ qk, then Theorem 1(ii) yields

n
∑

k=1

ēkfk(x)→
n
∑

k=1

ēkqk.
1

By formula (1), then, f(x) → q̄ (for
∑n

k=1 ēkqk = q̄). Thus (ii) is proved;
similarly for (i) and for relative limits and continuity.

Note 4. Again, Theorem 2 holds also for p = ±∞ (but not for infinite q).

Note 5. A complex function f : A → C may be treated as f : A → E2.
Thus it has two real components: f = (f1, f2). Traditionally, f1 and f2 are
called the real and imaginary parts of f , also denoted by fre and fim, so

f = fre + i · fim.

By Theorem 2, f is continuous at p iff fre and fim are.

1 Here we treat ēk as a constant function, with values ēk (cf. §1, Example (a)).
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Example.

The complex exponential is the function f : E1 → C defined by

f(x) = cosx+ i · sinx, also written f(x) = exi.

As we shall see later, the sine and the cosine functions are continuous.
Hence so is f by Theorem 2.

III. Next, consider functions whose domain is a set in En (∗or Cn). We call
them functions of n real (∗or complex ) variables , treating x̄ = (x1, . . . , xn) as
a variable n-tuple. The range space may be arbitrary.

In particular, a monomial in n variables is a map on En (∗or Cn) given by
a formula of the form

f(x̄) = axm1

1 xm2

2 · · ·xmn

n = a ·
n
∏

k=1

xmk

k ,

where the mk are fixed integers ≥ 0 and a ∈ E1 (∗or a ∈ C).2 If a 6= 0, the
sum m =

∑n
k=1mk is called the degree of the monomial. Thus

f(x, y, z) = 3x2yz3 = 3x2y1z3

defines a monomial of degree 6, in three real (or complex) variables x, y, z.
(We often write x, y, z for x1, x2, x3.)

A polynomial is any sum of a finite number of monomials; its degree is, by
definition, that of its leading term, i.e., the one of highest degree. (There may
be several such terms, of equal degree.) For example,

f(x, y, z) = 3x2yz3 − 2xy7

defines a polynomial of degree 8 in x, y, z. Polynomials of degree 1 are some-
times called linear .

A rational function is the quotient f/g of two polynomials f and g on En

(∗or Cn).3 Its domain consists of those points at which g does not vanish. For
example,

h(x, y) =
x2 − 3xy

xy − 1

defines a rational function on points (x, y), with xy 6= 1. Polynomials and
monomials are rational functions with denominator 1.

Theorem 3. Any rational function (in particular , every polynomial) in one

or several variables is continuous on all of its domain.

2 We also allow a to be a vector , while the xk are scalars.
3 This is valid also if one allows the coefficients of f to be vectors (provided those of g,

and the variables xk, remain scalars).
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Proof. Consider first a monomial of the form

f(x̄) = xk (k fixed);

it is called the kth projection map because it “projects” each x̄ ∈ En (∗Cn)
onto its kth component xk.

Given any ε > 0 and p̄, choose δ = ε. Then

(∀ x̄ ∈ Gp̄(δ)) |f(x̄)− f(p̄)| = |xk − pk| ≤
√

n
∑

i=1

|xi − pi|2 = ρ(x̄, p̄) < ε.

Hence by definition, f is continuous at each p̄. Thus the theorem holds for
projection maps.

However, any other monomial, given by

f(x̄) = axm1

1 xm2

2 · · ·xmn
n ,

is the product of finitely many (namely of m = m1+m2+ · · ·+mn) projection
maps multiplied by a constant a. Thus by Theorem 1, it is continuous. So
also is any finite sum of monomials (i.e., any polynomial), and hence so is
the quotient f/g of two polynomials (i.e., any rational function) wherever it is
defined, i.e., wherever the denominator does not vanish. �

IV. For functions on En (∗or Cn), we often consider relative limits over a

line of the form

x̄ = p̄+ t~ek (parallel to the kth axis, through p̄);

see Chapter 3, §§4–6, Definition 1. If f is relatively continuous at p̄ over that

line, we say that f is continuous at p̄ in the kth variable xk (because the other
components of x̄ remain constant , namely, equal to those of p̄, as x̄ runs over
that line). As opposed to this, we say that f is continuous at p̄ in all n variables

jointly if it is continuous at p̄ in the ordinary (not relative) sense. Similarly,
we speak of limits in one variable, or in all of them jointly.

Since ordinary continuity implies relative continuity over any path, joint
continuity in all n variables always implies that in each variable separately ,
but the converse fails (see Problems 9 and 10 below); similarly for limits at p̄.

Problems on Continuity of Vector-Valued Functions

1. Give an “ε, δ” proof of Theorem 1 for f ± g.
[Hint: Proceed as in Theorem 1 of Chapter 3, §15, replacing max(k′, k′′) by δ =

min(δ′, δ′′). Thus fix ε > 0 and p ∈ S. If f(x) → q and g(x) → r as x → p over B,

then (∃ δ′, δ′′ > 0) such that

(∀x ∈ B ∩G¬p(δ
′)) |f(x)− q| < ε

2
and (∀x ∈ B ∩G¬p(δ

′′)) |g(x)− r| < ε

2
.

Put δ = min(δ′, δ′′), etc.]
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In Problems 2, 3, and 4, E = En (∗or another normed space), F is its scalar
field, B ⊆ A ⊆ (S, ρ), and x→ p over B.

2. For a function f : A→ E prove that

f(x)→ q ⇐⇒ |f(x)− q| → 0,

equivalently, iff f(x)− q → 0̄.
[Hint: Proceed as in Chapter 3, §14, Corollary 2.]

3. Given f : A → (T, ρ′), with f(x) → q as x → p over B. Show that for
some δ > 0, f is bounded on B ∩G¬p(δ), i.e.,

f [B ∩G¬p(δ)] is a bounded set in (T, ρ′).

Thus if T = E, there is K ∈ E1 such that

(∀x ∈ B ∩G¬p(δ)) |f(x)| < K

(Chapter 3, §13, Theorem 2).

4. Given f, h : A → E1 (C) (or f : A → E, h : A → F ), prove that if one
of f and h has limit 0 (respectively, 0̄), while the other is bounded on
B ∩G¬p(δ), then h(x)f(x)→ 0 (0̄).

5. Given h : A → E1 (C), with h(x) → a as x → p over B, and a 6= 0.
Prove that

(∃ ε, δ > 0) (∀x ∈ B ∩G¬p(δ)) |h(x)| ≥ ε,
i.e., h(x) is bounded away from 0 on B ∩G¬p(δ). Hence show that 1/h
is bounded on B ∩G¬p(δ).
[Hint: Proceed as in the proof of Corollary 1 in §1, with q = a and r = 0. Then use

(∀x ∈ B ∩G¬p(δ))
∣
∣
∣

1

h(x)

∣
∣
∣ ≤ 1

ε
.]

6. Using Problems 1 to 5, give an independent proof of Theorem 1.
[Hint: Proceed as in Problems 2 and 4 of Chapter 3, §15 to obtain Theorem 1(ii).
Then use Corollary 2 of §1.]

7. Deduce Theorems 1 and 2 of Chapter 3, §15 from those of the present
section, setting A = B = N , S = E∗, and p = +∞.
[Hint: See §1, Note 5.]

8. Redo Problem 8 of §1 in two ways:

(i) Use Theorem 1 only.

(ii) Use Theorem 3.

[Example for (i): Find lim
x→1

(x2 + 1).

Here f(x) = x2 + 1, or f = gg + h, where h(x) = 1 (constant) and g(x) = x
(identity map). As h and g are continuous (§1, Examples (a) and (b)), so is f by

Theorem 1. Thus lim
x→1

f(x) = f(1) = 12 + 1 = 2.
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Or, using Theorem 1(ii), lim
x→1

(x2 + 1) = lim
x→1

x2 + lim
x→1

1, etc.]

9. Define f : E2 → E1 by

f(x, y) =
x2y

(x4 + y2)
, with f(0, 0) = 0.

Show that f(x, y)→ 0 as (x, y)→ (0, 0) along any straight line through
0̄, but not over the parabola y = x2 (then the limit is 1

2
). Deduce that

f is continuous at 0̄ = (0, 0) in x and y separately , but not jointly .

10. Do Problem 9, setting

f(x, y) = 0 if x = 0, and f(x, y) =
|y|
x2
· 2−|y|/x2

if x 6= 0.4

11. Discuss the continuity of f : E2 → E1 in x and y jointly and separately,
at 0̄, when

(a) f(x, y) =
x2y2

x2 + y2
, f(0, 0) = 0;

(b) f(x, y) = integral part of x+ y;

(c) f(x, y) = x+
xy

|x| if x 6= 0, f(0, y) = 0;

(d) f(x, y) =
xy

|x| + x sin
1

y
if xy 6= 0, and f(x, y) = 0 otherwise;

(e) f(x, y) =
1

x
sin(x2 + |xy|) if x 6= 0, and f(0, y) = 0.

[Hints: In (c) and (d), |f(x, y)| ≤ |x|+ |y|; in (e), use | sinα| ≤ |α|.]

4 Use Problem 14 in §2 for limit computations.
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§4. Infinite Limits. Operations in E∗

As we have noted, Theorem 1 of §3 does not apply to infinite limits ,1 even if
the function values f(x), g(x), h(x) remain finite (i.e., in E1). Only in certain
cases (stated below) can we prove some analogues.

There are quite a few such separate cases. Thus, for brevity, we shall adopt
a kind of mathematical shorthand. The letter q will not necessarily denote a
constant ; it will stand for

“a function f : A→ E1, A ⊆ (S, ρ), such that f(x)→ q ∈ E1 as x→ p.”2

Similarly, “0” and “±∞” will stand for analogous expressions, with q replaced
by 0 and ±∞, respectively.

For example, the “shorthand formula” (+∞) + (+∞) = +∞ means

“The sum of two real functions, with limit +∞ at p (p ∈ S), is itself a
function with limit +∞ at p.”3

The point p is fixed, possibly ±∞ (if A ⊆ E∗). With this notation, we have
the following theorems.

Theorems.

1. (±∞) + (±∞) = ±∞.

2. (±∞) + q = q + (±∞) = ±∞.

3. (±∞) · (±∞) = +∞.

4. (±∞) · (∓∞) = −∞.

5. | ±∞| = +∞.

6. (±∞) · q = q · (±∞) = ±∞ if q > 0.

7. (±∞) · q = q · (±∞) = ∓∞ if q < 0.

8. −(±∞) = ∓∞.

9.
(±∞)

q
= (±∞) · 1

q
if q 6= 0.

10.
q

(±∞)
= 0.

11. (+∞)+∞ = +∞.

12. (+∞)−∞ = 0.

13. (+∞)q = +∞ if q > 0.

1 It even has no meaning since operations on ±∞ have not been defined.
2 Note that q is finite throughout.
3 Similarly for (−∞) + (−∞) = −∞. Both combined are written as “(±∞) + (±∞) =

±∞.”
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14. (+∞)q = 0 if q < 0.

15. If q > 1, then q+∞ = +∞ and q−∞ = 0.

16. If 0 < q < 1, then q+∞ = 0 and q−∞ = +∞.

We prove Theorems 1 and 2, leaving the rest as problems. (Theorems 11–16
are best postponed until the theory of logarithms is developed.)

1. Let f(x) and g(x)→ +∞ as x→ p. We have to show that

f(x) + g(x)→ +∞,

i.e., that

(∀ b ∈ E1) (∃ δ > 0) (∀x ∈ A ∩G¬p(δ)) f(x) + g(x) > b

(we may assume b > 0). Thus fix b > 0. As f(x) and g(x)→ +∞, there
are δ′, δ′′ > 0 such that

(∀x ∈ A ∩G¬p(δ
′)) f(x) > b and (∀x ∈ A ∩G¬p(δ

′′)) g(x) > b.

Let δ = min(δ′, δ′′). Then

(∀x ∈ A ∩G¬p(δ)) f(x) + g(x) > b+ b > b,

as required; similarly for the case of −∞.

2. Let f(x) → +∞ and g(x) → q ∈ E1. Then there is δ′ > 0 such that for
x in A ∩G¬p(δ

′), |q − g(x)| < 1, so that g(x) > q − 1.

Also, given any b ∈ E1, there is δ′′ such that

(∀x ∈ A ∩G¬p(δ
′′)) f(x) > b− q + 1.

Let δ = min(δ′, δ′′). Then

(∀x ∈ A ∩G¬p(δ)) f(x) + g(x) > (b− q + 1) + (q − 1) = b,

as required; similarly for the case of f(x)→ −∞.

Caution: No theorems of this kind exist for the following cases (which there-
fore are called indeterminate expressions):

(+∞) + (−∞), (±∞) · 0, ±∞
±∞ ,

0

0
, (±∞)0, 00, 1±∞. (1∗)

In these cases, it does not suffice to know only the limits of f and g. It
is necessary to investigate the functions themselves to give a definite answer,
since in each case the answer may be different, depending on the properties of
f and g. The expressions (1∗) remain indeterminate even if we consider the
simplest kind of functions, namely sequences , as we show next.
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Examples.

(a) Let

um = 2m and vm = −m.

(This corresponds to f(x) = 2x and g(x) = −x.) Then, as is readily seen,

um → +∞, vm → −∞, and um + vm = 2m−m = m→ +∞.
If, however, we take xm = 2m and ym = −2m, then

xm + ym = 2m− 2m = 0;

thus xm+ym is constant , with limit 0 (for the limit of a constant function
equals its value; see §1, Example (a)).

Next, let

um = 2m and zm = −2m+ (−1)m.

Then again

um → +∞ and zm → −∞, but um + zm = (−1)m;

um + zm “oscillates” from −1 to 1 as m→ +∞, so it has no limit at all.

These examples show that (+∞) + (−∞) is indeed an indeterminate
expression since the answer depends on the nature of the functions in-
volved. No general answer is possible.

(b) We now show that 1+∞ is indeterminate.

Take first a constant {xm}, xm = 1, and let ym = m. Then

xm → 1, ym → +∞, and xym

m = 1m = 1 = xm → 1.

If, however, xm = 1+ 1
m and ym = m, then again ym → +∞ and xm → 1

(by Theorem 10 above and Theorem 1 of Chapter 3, §15), but

xym

m =
(

1 +
1

m

)m

does not tend to 1; it tends to e > 2, as shown in Chapter 3, §15. Thus
again the result depends on {xm} and {ym}.

In a similar manner, one shows that the other cases (1∗) are indeterminate.

Note 1. It is often useful to introduce additional “shorthand” conventions.
Thus the symbol ∞ (unsigned infinity) might denote a function f such that

|f(x)| → +∞ as x→ p;

we then also write f(x) → ∞. The symbol 0+ (respectively, 0−) denotes a
function f such that

f(x)→ 0 as x→ p
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and, moreover ,

f(x) > 0 (f(x) < 0, respectively) on some G¬p(δ).

We then have the following additional formulas:

(i)
(±∞)

0+
= ±∞,

(±∞)

0−
= ∓∞.

(ii) If q > 0, then
q

0+
= +∞ and

q

0−
= −∞.

(iii)
∞
0

=∞.

(iv)
q

∞ = 0.

The proof is left to the reader.

Note 2. All these formulas and theorems hold for relative limits, too.

So far, we have defined no arithmetic operations in E∗. To fill this gap
(at least partially), we shall henceforth treat Theorems 1–16 above not only as

certain limit statements (in “shorthand”) but also as definitions of certain op-
erations in E∗. For example, the formula (+∞)+(+∞) = +∞ shall be treated
as the definition of the actual sum of +∞ and +∞ in E∗, with +∞ regarded
this time as an element of E∗ (not as a function). This convention defines the
arithmetic operations for certain cases only; the indeterminate expressions (1∗)
remain undefined, unless we decide to assign them some meaning.

In higher analysis, it indeed proves convenient to assign a meaning to at
least some of them. We shall adopt these (admittedly arbitrary) conventions:

{

(±∞) + (∓∞) = (±∞)− (±∞) = +∞; 00 = 1;

0 · (±∞) = (±∞) · 0 = 0 (even if 0 stands for the zero-vector).
(2∗)

Caution: These formulas must not be treated as limit theorems (in “short-
hand”). Sums and products of the form (2∗) will be called “unorthodox .”

Problems on Limits and Operations in E∗

1. Show by examples that all expressions (1∗) are indeterminate.

2. Give explicit definitions for the following “unsigned infinity” limit state-
ments:

(a) lim
x→p

f(x) =∞; (b) lim
x→p+

f(x) =∞; (c) lim
x→∞

f(x) =∞.

3. Prove at least some of Theorems 1–10 and formulas (i)–(iv) in Note 1.
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4. In the following cases, find lim f(x) in two ways: (i) use definitions only;
(ii) use suitable theorems and justify each step accordingly.

(a) lim
x→∞

1

x
(= 0). (b) lim

x→∞
x(x− 1)

1− 3x2
.

(c) lim
x→2+

x2 − 2x+ 1

x2 − 3x+ 2
. (d) lim

x→2−

x2 − 2x+ 1

x2 − 3x+ 2
.

(e) lim
x→2

x2 − 2x+ 1

x2 − 3x+ 2
(=∞).

[Hint: Before using theorems, reduce by a suitable power of x.]

5. Let

f(x) =
n
∑

k=0

akx
k and g(x) =

m
∑

k=0

bkx
k (an 6= 0, bm 6= 0).

Find lim
x→∞

f(x)

g(x)
if (i) n > m; (ii) n < m; and (iii) n = m (n, m ∈ N).

6. Verify commutativity and associativity of addition and multiplication
in E∗, treating Theorems 1–16 and formulas (2∗) as definitions. Show
by examples that associativity and commutativity (for three terms or
more) would fail if, instead of (2∗), the formula (±∞)+ (∓∞) = 0 were
adopted.
[Hint: For sums, first suppose that one of the terms in a sum is +∞; then the sum

is +∞. For products, single out the case where one of the factors is 0; then consider

the infinite cases.]

7. Continuing Problem 6, verify the distributive law (x+ y)z = xz + yz in
E∗, assuming that x and y have the same sign (if infinite), or that z ≥ 0.
Show by examples that it may fail in other cases; e.g., if x = −y = +∞,
z = −1.

§5. Monotone Functions

A function f : A → E∗, with A ⊆ E∗, is said to be nondecreasing on a set
B ⊆ A iff

x ≤ y implies f(x) ≤ f(y) for x, y ∈ B.

It is said to be nonincreasing on B iff

x ≤ y implies f(x) ≥ f(y) for x, y ∈ B.

Notation: f↑ and f↓ (on B), respectively.
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In both cases, f is said to be monotone or monotonic on B. If f is also one
to one on B (i.e., when restricted to B), we say that it is strictly monotone

(increasing if f↑ and decreasing if f↓).
Clearly, f is nondecreasing iff the function −f = (−1)f is nonincreasing.

Thus in proofs, we need consider only the case f↑. The case f↓ reduces to it
by applying the result to −f .
Theorem 1. If a function f : A → E∗ (A ⊆ E∗) is monotone on A, it has a

left and a right (possibly infinite) limit at each point p ∈ E∗.

In particular , if f↑ on an interval (a, b) 6= ∅, then
f(p−) = sup

a<x<p
f(x) for p ∈ (a, b]

and

f(p+) = inf
p<x<b

f(x) for p ∈ [a, b).

(In case f↓, interchange “sup” and “inf.”)

Proof. To fix ideas, assume f↑.
Let p ∈ E∗ and B = {x ∈ A | x < p}. Put q = sup f [B] (this sup always

exists in E∗; see Chapter 2, §13). We shall show that q is a left limit of f at p
(i.e., a left limit over B).

There are three possible cases:

(1) If q is finite, any globe Gq is an interval (c, d), c < q < d, in E1. As
c < q = sup f [B], c cannot be an upper bound of f [B] (why?), so c is
exceeded by some f(x0), x0 ∈ B. Thus

c < f(x0), x0 < p.

Hence as f↑, we certainly have

c < f(x0) ≤ f(x) for all x > x0 (x ∈ B).

Moreover, as f(x) ∈ f [B], we have

f(x) ≤ sup f [B] = q < d,

so c < f(x) < d; i.e., f(x) ∈ (c, d) = Gq.

We have thus shown that

(∀Gq) (∃x0 < p) (∀x ∈ B | x0 < x) f(x) ∈ Gq ,

so q is a left limit at p.

(2) If q = +∞, the same proof works with Gq = (c, +∞]. Verify!

(3) If q = −∞, then

(∀x ∈ B) f(x) ≤ sup f [B] = −∞,
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i.e., f(x) ≤ −∞, so f(x) = −∞ (constant) on B. Hence q is also a left
limit at p (§1, Example (a)).

In particular, if f↑ on A = (a, b) with a, b ∈ E∗ and a < b, then B =
(a, p) for p ∈ (a, b]. Here p is a cluster point of the path B (Chapter 3, §14,
Example (h)), so a unique left limit f(p−) exists. By what was shown above,

q = f(p−) = sup f [B] = sup
a<x<p

f(x), as claimed.

Thus all is proved for left limits.

The proof for right limits is quite similar; one only has to set

B = {x ∈ A | x > p}, q = inf f [B]. �

Note 1. The second clause of Theorem 1 holds even if (a, b) is only a
subset of A, for the limits in question are not affected by restricting f to (a, b).
(Why?) The endpoints a and b may be finite or infinite.

Note 2. If Df = A = N (the naturals), then by definition, f : N → E∗ is a
sequence with general term xm = f(m), m ∈ N (see §1, Note 2). Then setting
p = +∞ in the proof of Theorem 1, we obtain Theorem 3 of Chapter 3, §15.
(Verify!)

Example.

The exponential function F : E1 → E1 to the base a > 0 is given by

F (x) = ax.

It is monotone (Chapter 2, §§11–12, formula (1)), so F (0−) and F (0+)
exist . By the sequential criterion (Theorem 1 of §2), we may use a suitable
sequence to find F (0+), and we choose xm = 1

m
→ 0+. Then

F (0+) = lim
m→∞

F
( 1

m

)

= lim
m→∞

a1/m = 1

(see Chapter 3, §15, Problem 20).

Similarly, taking xm = − 1
m
→ 0−, we obtain F (0−) = 1. Thus

F (0+) = F (0−) = lim
x→0

F (x) = lim
x→0

ax = 1.

(See also Problem 12 of §2.)
Next, fix any p ∈ E1. Noting that

F (x) = ax = ap+x−p = apax−p,

we set y = x− p. (Why is this substitution admissible?) Then y → 0 as
x→ p, so we get

lim
x→p

F (x) = lim ap · lim
x→p

ax−p = ap lim
y→0

ay = ap · 1 = ap = F (p).
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As limx→p F (x) = F (p), F is continuous at each p ∈ E1. Thus all

exponentials are continuous .

Theorem 2. If a function f : A→ E∗ (A ⊆ E∗) is nondecreasing on a finite

or infinite interval B = (a, b) ⊆ A and if p ∈ (a, b), then

f(a+) ≤ f(p−) ≤ f(p) ≤ f(p+) ≤ f(b−), (1)

and for no x ∈ (a, b) do we have

f(p−) < f(x) < f(p) or f(p) < f(x) < f(p+);1

similarly in case f↓ (with all inequalities reversed).

Proof. By Theorem 1, f↑ on (a, p) implies

f(a+) = inf
a<x<p

f(x) and f(p−) = sup
a<x<p

f(x);

thus certainly f(a+) ≤ f(p−). As f↑, we also have f(p) ≥ f(x) for all x ∈
(a, p); hence

f(p) ≥ sup
a<x<p

f(x) = f(p−).

Thus
f(a+) ≤ f(p−) ≤ f(p);

similarly for the rest of (1).

Moreover, if a < x < p, then f(x) ≤ f(p−) since
f(p−) = sup

a<x<p
f(x).

If, however, p ≤ x < b, then f(p) ≤ f(x) since f↑. Thus we never have

f(p−) < f(x) < f(p). Similarly, one excludes f(p) < f(x) < f(p+). This
completes the proof. �

Note 3. If f(p−), f(p+), and f(p) exist (all finite), then

|f(p)− f(p−)| and |f(p+)− f(p)|
are called, respectively, the left and right jumps of f at p; their sum is the
(total) jump at p. If f is monotone, the jump equals |f(p+)− f(p−)|.

For a graphical example, consider Figure 14 in §1. Here f(p) = f(p−) (both
finite), so the left jump is 0. However, f(p+) > f(p), so the right jump is
greater than 0. Since

f(p) = f(p−) = lim
x→p−

f(x),

f is left continuous (but not right continuous) at p.

1 In other words, the interval [f(p−), f(p+)] contains no f(x) except f(p).
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Theorem 3. If f : A→ E∗ is monotone on a finite or infinite interval (a, b)
contained in A, then all its discontinuities in (a, b), if any , are “jumps ,” that

is , points p at which f(p−) and f(p+) exist, but f(p−) 6= f(p) or f(p+) 6= f(p).2

Proof. By Theorem 1, f(p−) and f(p+) exist at each p ∈ (a, b).

If, in addition, f(p−) = f(p+) = f(p), then

lim
x→p

f(x) = f(p)

by Corollary 3 of §1, so f is continuous at p. Thus discontinuities occur only
if f(p−) 6= f(p) or f(p+) 6= f(p). �

Problems on Monotone Functions

1. Complete the proofs of Theorems 1 and 2. Give also an independent
(analogous) proof for nonincreasing functions.

2. Discuss Examples (d) and (e) of §1 again using Theorems 1–3.

3. Show that Theorem 3 holds also if f is piecewise monotone on (a, b),
i.e., monotone on each of a sequence of intervals whose union is (a, b).

4. Consider the monotone function f defined in Problems 5 and 6 of Chap-
ter 3, §11. Show that under the standard metric in E1, f is continuous
on E1 and f−1 is continuous on (0, 1). Additionally, discuss continuity
under the metric ρ′.

⇒5. Prove that if f is monotone on (a, b) ⊆ E∗, it has at most countably
many discontinuities in (a, b).
[Hint: Let f↑. By Theorem 3, all discontinuities of f correspond to mutually disjoint

intervals (f(p−), f(p+)) 6= ∅. (Why?) Pick a rational from each such interval, so
these rationals correspond one to one to the discontinuities and form a countable set

(Chapter 1, §9)].

6. Continuing Problem 17 of Chapter 3, §14, let

G11 =
(1

3
,
2

3

)

, G21 =
(1

9
,
2

9

)

, G22 =
(7

9
,
8

9

)

, and so on;

that is, Gmi is the ith open interval removed from [0, 1] at the mth step
of the process (i = 1, 2, . . . , 2m−1, m = 1, 2, . . . ad infinitum).

Define F : [0, 1]→ E1 as follows:

(i) F (0) = 0;

(ii) if x ∈ Gmi, then F (x) =
2i− 1

2m
; and

2 Note that f(p−) and f(p+) may not exist if f is not monotone. See Examples (c) and

(f) in §1.
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(iii) if x is in none of the Gmi (i.e., x ∈ P ), then

F (x) = sup
{

F (y)
∣

∣

∣
y ∈

⋃

m,i

Gmi, y < x
}

.

Show that F is nondecreasing and continuous on [0, 1]. (F is called
Cantor’s function.)

7. Restate Theorem 3 for the case where f is monotone on A, where A is
a (not necessarily open) interval. How about the endpoints of A?

§6. Compact Sets

We now pause to consider a very important kind of sets. In Chapter 3, §16,
we showed that every sequence {z̄m} taken from a closed interval [ā, b̄] in En

must cluster in it (Note 1 of Chapter 3, §16).1 There are other sets with the
same remarkable property. This leads us to the following definition.

Definition 1.

A set A ⊆ (S, ρ) is said to be sequentially compact (briefly compact) iff
every sequence {xm} ⊆ A clusters at some point p in A.

If all of S is compact, we say that the metric space (S, ρ) is compact.2

Examples.

(a) Each closed interval in En is compact (see above).

(a′) However, nonclosed intervals, and En itself, are not compact.

For example, the sequence xn = 1/n is in (0, 1] ⊂ E1, but clusters
only at 0, outside (0, 1]. As another example, the sequence xn = n has
no cluster points in E1. Thus (0, 1] and E1 fail to be compact (even
though E1 is complete); similarly for En (∗and Cn).

(b) Any finite set A ⊆ (S, ρ) is compact. Indeed, an infinite sequence in such
a set must have at least one infinitely repeating term p ∈ A. Then by
definition, this p is a cluster point (see Chapter 3, §14, Note 1).

(c) The empty set is “vacuously” compact (it contains no sequences).

(d) E∗ is compact. See Example (g) in Chapter 3, §14.

Other examples can be derived from the theorems that follow.

1 Think of [ā, b̄] as of a container so “compact” that it “squeezes” into clustering any

sequence that is inside it, and it supplies the cluster point.
2 Hence A is compact iff (A, ρ) is compact as a subspace of (S, ρ). Note that {xm} clusters

at p iff there is a subsequence xmk
→ p (Chapter 3, §16, Theorem 1).



§6. Compact Sets 187

Theorem 1. If a set B ⊆ (S, ρ) is compact , so is any closed subset A ⊆ B.

Proof. We must show that each sequence {xm} ⊆ A clusters at some p ∈ A.
However, as A ⊆ B, {xm} is also in B, so by the compactness of B, it clusters
at some p ∈ B. Thus it remains to show that p ∈ A as well.

Now by Theorem 1 of Chapter 3, §16, {xm} has a subsequence xmk
→ p.

As {xmk
} ⊆ A and A is closed , this implies p ∈ A (Theorem 4 in Chapter 3,

§16). �

Theorem 2. Every compact set A ⊆ (S, ρ) is closed .

Proof. Given that A is compact, we must show (by Theorem 4 in Chapter 3,
§16) that A contains the limit of each convergent sequence {xm} ⊆ A.

Thus let xm → p, {xm} ⊆ A. As A is compact, the sequence {xm} clusters
at some q ∈ A, i.e., has a subsequence xmk

→ q ∈ A. However, the limit of the
subsequence must be the same as that of the entire sequence. Thus p = q ∈ A;
i.e., p is in A, as required. �

Theorem 3. Every compact set A ⊆ (S, ρ) is bounded .

Proof. By Problem 3 in Chapter 3, §13, it suffices to show that A is contained
in some finite union of globes . Thus we fix some arbitrary radius ε > 0 and,
seeking a contradiction, assume that A cannot be covered by any finite number

of globes of that radius.

Then if x1 ∈ A, the globe Gx1
(ε) does not cover A, so there is a point x2 ∈ A

such that

x2 /∈ Gx1
(ε), i.e., ρ(x1, x2) ≥ ε.

By our assumption, A is not even covered by Gx1
(ε) ∪Gx2

(ε). Thus there is a
point x3 ∈ A with

x3 /∈ Gx1
(ε) and x3 /∈ Gx2

(ε), i.e., ρ(x3, x1) ≥ ε and ρ(x3, x2) ≥ ε.

Again, A is not covered by
⋃3

i=1Gxi
(ε), so there is a point x4 ∈ A not in that

union; its distances from x1, x2, and x3 must therefore be ≥ ε.
Since A is never covered by any finite number of ε-globes, we can continue

this process indefinitely (by induction) and thus select an infinite sequence
{xm} ⊆ A, with all its terms at least ε-apart from each other.

Now as A is compact, this sequence must have a convergent subsequence
{xmk

}, which is then certainly Cauchy (by Theorem 1 of Chapter 3, §17). This
is impossible, however, since its terms are at distances ≥ ε from each other,
contrary to Definition 1 in Chapter 3, §17. This contradiction completes the
proof. �

Note 1. We have actually proved more than was required, namely, that no
matter how small ε > 0 is , A can be covered by finitely many globes of radius
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ε with centers in A. This property is called total boundedness (Chapter 3, §13,
Problem 4).

Note 2. Thus all compact sets are closed and bounded. The converse fails

in metric spaces in general (see Problem 2 below). In En (∗and Cn), however,
the converse is likewise true, as we show next.

Theorem 4. In En (∗and Cn) a set is compact iff it is closed and bounded .

Proof. In fact, if a set A ⊆ En (∗Cn) is bounded, then by the Bolzano–
Weierstrass theorem, each sequence {xm} ⊆ A has a convergent subsequence
xmk

→ p. If A is also closed, the limit point p must belong to A itself.

Thus each sequence {xm} ⊆ A clusters at some p in A, so A is compact.

The converse is obvious. �

Note 3. In particular, every closed globe in En (∗or Cn) is compact since
it is bounded and closed (Chapter 3, §12, Example (6)), so Theorem 4 applies.

We conclude with an important theorem, due to G. Cantor.

Theorem 5 (Cantor’s principle of nested closed sets). Every contracting se-

quence of nonvoid compact sets ,

F1 ⊇ F2 ⊇ · · · ⊇ Fm ⊇ · · · ,
in a metric space (S, ρ) has a nonvoid intersection; i .e., some p belongs to all
Fm.

For complete sets Fm, this holds as well, provided the diameters of the sets

Fm tend to 0: dFm → 0.

Proof. We prove the theorem for complete sets first.

As Fm 6= ∅, we can pick a point xm from each Fm to obtain a sequence
{xm}, xm ∈ Fm. Since dFm → 0, it is easy to see that {xm} is a Cauchy

sequence. (The details are left to the reader.) Moreover,

(∀m) xm ∈ Fm ⊆ F1.

Thus {xm} is a Cauchy sequence in F1, a complete set (by assumption).

Therefore, by the definition of completeness (Chapter 3, §17), {xm} has a
limit p ∈ F1. This limit remains the same if we drop a finite number of terms,
say, the first m−1 of them. Then we are left with the sequence xm, xm+1, . . . ,
which, by construction, is entirely contained in Fm (why?), with the same limit
p. Then, however, the completeness of Fm implies that p ∈ Fm as well. As m
is arbitrary here, it follows that (∀m) p ∈ Fm, i.e.,

p ∈
∞
⋂

m=1

Fm, as claimed.

The proof for compact sets is analogous and even simpler. Here {xm} need
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not be a Cauchy sequence. Instead, using the compactness of F1, we select
from {xm} a subsequence xmk

→ p ∈ F1 and then proceed as above. �

Note 4. In particular, in En we may let the sets Fm be closed intervals

(since they are compact). Then Theorem 5 yields the principle of nested in-

tervals : Every contracting sequence of closed intervals in En has a nonempty

intersection. (For an independent proof, see Problem 8 below.)

Problems on Compact Sets

1. Complete the missing details in the proof of Theorem 5.

2. Verify that any infinite set in a discrete space is closed and bounded but
not compact .
[Hint: In such a space no sequence of distinct terms clusters.]

3. Show that En is not compact, in three ways:

(i) from definitions (as in Example (a′));

(ii) from Theorem 4; and

(iii) from Theorem 5, by finding in En a contracting sequence of infinite
closed sets with a void intersection. For example, in E1 take the
closed sets Fm = [m, +∞), m = 1, 2, . . . . (Are they closed?)

4. Show that E∗ is compact under the metric ρ′ defined in Problems 5 and
6 in Chapter 3, §11. Is E1 a compact set under that metric?
[Hint: For the first part, use Theorem 2 of Chapter 2, §13, noting that Gq is also a
globe under ρ′. For the second, consider the sequence xn = n.]

5. Show that a set A ⊆ (S, ρ) is compact iff every infinite subset B ⊆ A
has a cluster point p ∈ A.
[Hint: Select from B a sequence {xm} of distinct terms. Then the cluster points of
{xm} are also those of B. (Why?)]

6. Prove the following.

(i) If A and B are compact, so is A ∪ B, and similarly for unions of

n sets .

(ii) If the sets Ai (i ∈ I) are compact, so is
⋂

i∈I Ai, even if I is infinite.

Disprove (i) for unions of infinitely many sets by a counterexample.
[Hint: For (ii), verify first that

⋂

i∈I Ai is sequentially closed . Then use Theorem 1.]

7. Prove that if xm → p in (S, ρ), then the set

B = {p, x1, x2, . . . , xm, . . . }
is compact.
[Hint: If B is finite, see Example (b). If not, use Problem 5, noting that any infinite

subset of B defines a subsequence xmk
→ p, so it clusters at p.]
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8. Prove, independently, the principle of nested intervals in En, i.e., The-
orem 5 with

Fm = [ām, b̄m] ⊆ En,

where
ām = (am1, . . . , amn) and b̄m = (bm1, . . . , bmn).

[Hint: As Fm+1 ⊆ Fm, ām+1 and b̄m+1 are in Fm; hence by properties of closed
intervals,

amk ≤ am+1, k ≤ bm+1, k ≤ bmk, k = 1, 2, . . . , n.

Fixing k, let Ak be the set of all amk, m = 1, 2, . . . . Show that Ak is bounded above
by each bmk, so let pk = supAk in E1. Then

(∀m) amk ≤ pk ≤ bmk . (Why?)

Unfixing k, obtain such inequalities for k = 1, 2, . . . , n. Let p̄ = (p1, . . . , pk). Then

(∀m) p̄ ∈ [ām, b̄m], i.e., p̄ ∈
⋂

Fm, as required.

Note that the theorem fails for nonclosed intervals, even in E1; e.g., take Fm =

(0, 1/m] and show that
⋂

m Fm = ∅.]

9. From Problem 8, obtain a new proof of the Bolzano–Weierstrass theo-
rem.
[Hint: Let {x̄m} ∈ [ā, b̄] ⊆ En; put F0 = [ā, b̄] and set

dF0 = ρ(ā, b̄) = d (diagonal of F0).

Bisecting the edges of F0, subdivide F0 into 2n intervals of diagonal d/2;3 one of

them must contain infinitely many xm. (Why?) Let F1 be one such interval; make

it closed and subdivide it into 2n subintervals of diagonal d/22. One of them, F2,

contains infinitely many xm; make it closed, etc.

Thus obtain a contracting sequence of closed intervals Fm with

dFm =
d

2m
, m = 1, 2, . . . .

From Problem 8, obtain

p̄ ∈
∞⋂

m=1

Fm.

Show that {x̄m} clusters at p̄.]

⇒10. Prove the Heine–Borel theorem: If a closed interval F0 ⊂ En is covered

by a family of open sets Gi (i ∈ I), i .e.,

F0 ⊆
⋃

i∈I

Gi,

then it can always be covered by a finite number of these Gi.
[Outline of proof: Let dF0 = d. Seeking a contradiction, suppose F0 cannot be
covered by any finite number of the Gi.

3 This is achieved by drawing n planes perpendicular to the axes (Chapter 3, §§4–6).
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As in Problem 9, subdivide F0 into 2n intervals of diagonal d/2. At least one

of them cannot be covered by finitely many Gi. (Why?) Choose one such interval,

make it closed , call it F1, and subdivide it into 2n subintervals of diagonal d/22.

One of these, F2, cannot be covered by finitely many Gi; make it closed and repeat
the process indefinitely.

Thus obtain a contracting sequence of closed intervals Fm with

dFm =
d

2m
, m = 1, 2, . . . .

From Problem 8 (or Theorem 5), get p̄ ∈ ⋂
Fm.

As p̄ ∈ F0, p̄ is in one of the Gi; call it G. As G is open, p̄ is its interior point,
so let G ⊇ Gp̄(ε). Now take m so large that d/2m = dFm < ε. Show that then

Fm ⊆ Gp̄(ε) ⊆ G.

Thus (contrary to our choice of the Fm) Fm is covered by a single set Gi. This

contradiction completes the proof.]

11. Prove that if {xm} ⊆ A ⊆ (S, ρ) and A is compact, then {xm} converges
iff it has a single cluster point.
[Hint: Proceed as in Problem 12 of Chapter 3, §16.]

12. Prove that if ∅ 6= A ⊆ (S, ρ) and A is compact, there are two points
p, q ∈ A such that dA = ρ(p, q).
[Hint: As A is bounded (Theorem 3), dA < +∞. By the properties of suprema,

(∀n) (∃xn, yn ∈ A) dA− 1

n
< ρ(xn, yn) ≤ dA. (Explain!)

By compactness, {xn} has a subsequence xnk
→ p ∈ A. For brevity, put x′

k = xnk
,

y′k = ynk
. Again, {y′k} has a subsequence y′km

→ q ∈ A. Also,

dA− 1

nkm

< ρ(x′
km

, y′km
) ≤ dA.

Passing to the limit (as m → +∞), obtain

dA ≤ ρ(p, q) ≤ dA

by Theorem 4 in Chapter 3, §15.]

13. Given nonvoid sets A, B ⊆ (S, ρ), define

ρ(A, B) = inf{ρ(x, y) | x ∈ A, y ∈ B}.

Prove that if A and B are compact and nonempty, there are p ∈ A and
q ∈ B such that ρ(p, q) = ρ(A, B). Give an example to show that this
may fail if A and B are not compact (even if they are closed in E1).
[Hint: For the first part, proceed as in Problem 12.]

14. Prove that every compact set is complete. Disprove the converse by
examples.
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∗§7. More on Compactness

Another useful approach to compactness is based on the notion of a covering

of a set (already encountered in Problem 10 in §6). We say that a set F is
covered by a family of sets Gi (i ∈ I) iff

F ⊆
⋃

i∈I

Gi.

If this is the case, {Gi} is called a covering of F . If the sets Gi are open, we
call the set family {Gi} an open covering . The covering {Gi} is said to be finite
(infinite, countable, etc.) iff the number of the sets Gi is.

If {Gi} is an open covering of F , then each point x ∈ F is in some Gi and is
its interior point (for Gi is open), so there is a globe Gx(εx) ⊆ Gi. In general,
the radii εx of these globes depend on x, i.e., are different for different points
x ∈ F . If, however, they can be chosen all equal to some ε, then this ε is called
a Lebesgue number for the covering {Gi} (so named after Henri Lebesgue).
Thus ε is a Lebesgue number iff for every x ∈ F , the globe Gx(ε) is contained

in some Gi. We now obtain the following theorem.

Theorem 1 (Lebesgue). Every open covering {Gj} of a sequentially compact

set F ⊆ (S, ρ) has at least one Lebesgue number ε. In symbols ,

(∃ ε > 0) (∀x ∈ F ) (∃ i) Gx(ε) ⊆ Gi. (1)

Proof. Seeking a contradiction, assume that (1) fails , i.e., its negation holds.
As was explained in Chapter 1, §§1–3, this negation is

(∀ ε > 0) (∃xε ∈ F ) (∀ i) Gxε
(ε) 6⊆ Gi

(where we write xε for x since here x may depend on ε). As this is supposed
to hold for all ε > 0, we take successively

ε = 1,
1

2
, . . . ,

1

n
, . . . .

Then, replacing “xε” by “xn” for convenience, we obtain

(∀n) (∃xn ∈ F ) (∀ i) Gxn

( 1

n

)

* Gi. (2)

Thus for each n, there is some xn ∈ F such that the globe Gxn
( 1n ) is not

contained in any Gi. We fix such an xn ∈ F for each n, thus obtaining a
sequence {xn} ⊆ F . As F is compact (by assumption), this sequence clusters
at some p ∈ F .

The point p, being in F , must be in some Gi (call it G), together with some

globe Gp(r) ⊆ G. As p is a cluster point, even the smaller globe Gp(
r
2 ) contains
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infinitely many xn. Thus we may choose n so large that 1
n <

r
2 and xn ∈ Gp(

r
2 ).

For that n, Gxn
( 1n ) ⊆ Gp(r) because

(

∀x ∈ Gxn

( 1

n

))

ρ(x, p) ≤ ρ(x, xn) + ρ(xn, p) <
1

n
+
r

2
<
r

2
+
r

2
= r.

As Gp(r) ⊆ G (by construction), we certainly have

Gxn

( 1

n

)

⊆ Gp(r) ⊆ G.

However, this is impossible since by (2) no Gxn
( 1n ) is contained in any Gi.

This contradiction completes the proof. �

Our next theorem might serve as an alternative definition of compactness.
In fact, in topology (which studies spaces more general than metric spaces),
this is is the basic definition of compactness. It generalizes Problem 10 in §6.
Theorem 2 (generalized Heine–Borel theorem). A set F ⊆ (S, ρ) is compact

iff every open covering of F has a finite subcovering .

That is , whenever F is covered by a family of open sets Gi (i ∈ I), F can

also be covered by a finite number of these Gi.

Proof. Let F be sequentially compact, and let F ⊆ ⋃

Gi, all Gi open. We
have to show that {Gi} reduces to a finite subcovering.

By Theorem 1, {Gi} has a Lebesgue number ε satisfying (1). We fix this
ε > 0. Now by Note 1 in §6, we can cover F by a finite number of ε-globes,

F ⊆
n
⋃

k=1

Gxk
(ε), xk ∈ F.

Also by (1), each Gxk
(ε) is contained in some Gi; call it Gik . With the Gik so

fixed, we have

F ⊆
n
⋃

k=1

Gxk
(ε) ⊆

n
⋃

k=1

Gik .

Thus the sets Gik constitute the desired finite subcovering, and the “only if”
in the theorem is proved.

Conversely, assume the condition stated in the theorem. We have to show
that F is sequentially compact, i.e., that every sequence {xm} ⊆ F clusters at
some p ∈ F .

Seeking a contradiction, suppose F contains no cluster points of {xm}. Then
by definition, each point x ∈ F is in some globe Gx containing at most finitely

many xm. The set F is covered by these open globes, hence also by finitely
many of them (by our assumption). Then, however, F contains at most finitely

many xm (namely, those contained in the so-selected globes), whereas the
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sequence {xm} ⊆ F was assumed infinite. This contradiction completes the
proof. �

§8. Continuity on Compact Sets. Uniform Continuity

I. Some additional important theorems apply to functions that are contin-
uous on a compact set (see §6).
Theorem 1. If a function f : A→ (T, ρ′), A ⊆ (S, ρ), is relatively continuous

on a compact set B ⊆ A, then f [B] is a compact set in (T, ρ′). Briefly ,

the continuous image of a compact set is compact .

Proof. To show that f [B] is compact, we take any sequence {ym} ⊆ f [B] and
prove that it clusters at some q ∈ f [B].

As ym ∈ f [B], ym = f(xm) for some xm in B. We pick such an xm ∈ B for
each ym, thus obtaining a sequence {xm} ⊆ B with

f(xm) = ym, m = 1, 2, . . . .

Now by the assumed compactness of B, the sequence {xm} must cluster at
some p ∈ B. Thus it has a subsequence xmk

→ p. As p ∈ B, the function f
is relatively continuous at p over B (by assumption). Hence by the sequential
criterion (§2), xmk

→ p implies f(xmk
)→ f(p); i.e.,

ymk
→ f(p) ∈ f [B].

Thus q = f(p) is the desired cluster point of {ym}. �

This theorem can be used to prove the compactness of various sets.

Examples.

(1) A closed line segment L[ā, b̄] in En (∗and in other normed spaces) is
compact, for, by definition,

L[ā, b̄] = {ā+ t~u | 0 ≤ t ≤ 1}, where ~u = b̄− ā.
Thus L[ā, b̄] is the image of the compact interval [0, 1] ⊆ E1 under the
map f : E1 → En, given by f(t) = ā + t~u, which is continuous by
Theorem 3 of §3. (Why?)

(2) The closed solid ellipsoid in E3,

{

(x, y, z)
∣

∣

∣

x2

a2
+
y2

b2
+
z2

c2
≤ 1

}

,

is compact, being the image of a compact globe under a suitable contin-
uous map. The details are left to the reader as an exercise.
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Lemma 1. Every nonvoid compact set F ⊆ E1 has a maximum and a mini-

mum.

Proof. By Theorems 2 and 3 of §6, F is closed and bounded. Thus F has an
infimum and a supremum in E1 (by the completeness axiom), say, p = inf F
and q = supF . It remains to show that p, q ∈ F .

Assume the opposite, say, q /∈ F . Then by properties of suprema, each globe
Gq(δ) = (q − δ, q + δ) contains some x ∈ B (specifically, q − δ < x < q) other
than q (for q /∈ B, while x ∈ B). Thus

(∀ δ > 0) F ∩G¬q(δ) 6= ∅;

i.e., F clusters at q and hence must contain q (being closed). However, since
q /∈ F , this is the desired contradiction, and the lemma is proved. �

The next theorem has many important applications in analysis.

Theorem 2 (Weierstrass).

(i) If a function f : A → (T, ρ′) is relatively continuous on a compact set

B ⊆ A, then f is bounded on B; i.e., f [B] is bounded .

(ii) If , in addition, B 6= ∅ and f is real (f : A → E1), then f [B] has a

maximum and a minimum; i .e., f attains a largest and a least value at

some points of B.

Proof. Indeed, by Theorem 1, f [B] is compact, so it is bounded, as claimed
in (i).

If further B 6= ∅ and f is real, then f [B] is a nonvoid compact set in E1, so
by Lemma 1, it has a maximum and a minimum in E1. Thus all is proved. �

Note 1. This and the other theorems of this section hold, in particular, if
B is a closed interval in En or a closed globe in En (∗or Cn) (because these
sets are compact—see the examples in §6). This may fail, however, if B is
not compact, e.g., if B = (ā, b̄). For a counterexample, see Problem 11 in
Chapter 3, §13.
Theorem 3. If a function f : A→ (T, ρ′), A ⊆ (S, ρ), is relatively continuous

on a compact set B ⊆ A and is one to one on B (i .e., when restricted to B),
then its inverse, f−1, is continuous on f [B].1

Proof. To show that f−1 is continuous at each point q ∈ f [B], we apply the
sequential criterion (Theorem 1 in §2). Thus we fix a sequence {ym} ⊆ f [B],
ym → q ∈ f [B], and prove that f−1(ym)→ f−1(q).

1 Note that f need not be one to one on all of its domain A, only on B. Thus f−1 need
not be a mapping on f [A], but it is one on f [B]. (We use “f−1” here to denote the inverse

of f so restricted.)
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Let f−1(ym) = xm and f−1(q) = p so that

ym = f(xm), q = f(p), and xm, p ∈ B.

We have to show that xm → p, i.e., that

(∀ ε > 0) (∃ k) (∀m > k) ρ(xm, p) < ε.

Seeking a contradiction, suppose this fails , i.e., its negation holds. Then
(see Chapter 1, §§1–3) there is an ε > 0 such that

(∀ k) (∃mk > k) ρ(xmk
, p) ≥ ε, (1)

where we write “mk” for “m” to stress that themk may be different for different
k. Thus by (1), we fix some mk for each k so that (1) holds, choosing step by

step,
mk+1 > mk, k = 1, 2, . . . .

Then the xmk
form a subsequence of {xm}, and the corresponding ymk

=
f(xmk

) form a subsequence of {ym}. Henceforth, for brevity, let {xm} and
{ym} themselves denote these two subsequences. Then as before, xm ∈ B,
ym = f(xm) ∈ f [B], and ym → q, q = f(p). Also, by (1),

(∀m) ρ(xm, p) ≥ ε (xm stands for xmk
). (2)

Now as {xm} ⊆ B and B is compact, {xm} has a (sub)subsequence

xmi
→ p′ for some p′ ∈ B.

As f is relatively continuous on B, this implies

f(xmi
) = ymi

→ f(p′).

However, the subsequence {ymi
} must have the same limit as {ym}, i.e., f(p).

Thus f(p′) = f(p), whence p = p′ (for f is one to one on B), so xmi
→ p′ = p.

This contradicts (2), however, and thus the proof is complete.2 �

Examples (continued).

(3) For a fixed n ∈ N , define f : [0, +∞)→ E1 by

f(x) = xn.

Then f is one to one (strictly increasing) and continuous (being a mono-

mial ; see §3). Thus by Theorem 3, f−1 (the nth root function) is relatively
continuous on each interval

f [[a, b]] = [an, bn],

hence on [0, +∞).

2 We call f bicontinuous if (as in our case) both f and f−1 are continuous.
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See also Example (a) in §6 and Problem 1 below.

II. Uniform Continuity. If f is relatively continuous on B, then by
definition,

(∀ ε > 0) (∀ p ∈ B) (∃ δ > 0) (∀x ∈ B ∩Gp(δ)) ρ′(f(x), f(p)) < ε. (3)

Here, in general, δ depends on both ε and p (see Problem 4 in §1); that is, given
ε > 0, some values of δ may fit a given p but fail (3) for other points.

It may occur, however, that one and the same δ (depending on ε only)
satisfies (3) for all p ∈ B simultaneously, so that we have the stronger formula

(∀ ε > 0) (∃ δ > 0) (∀ p, x ∈ B | ρ(x, p) < δ) ρ′(f(x), f(p)) < ε.3 (4)

Definition 1.

If (4) is true, we say that f is uniformly continuous on B.

Clearly, this implies (3), but the converse fails.4

Theorem 4. If a function f : A→ (T, ρ′), A ⊆ (S, ρ), is relatively continuous

on a compact set B ⊂ A, then f is also uniformly continuous on B.

Proof (by contradiction). Suppose f is relatively continuous on B, but (4)
fails . Then there is an ε > 0 such that

(∀ δ > 0) (∃ p, x ∈ B) ρ(x, p) < δ, and yet ρ′(f(x), f(p)) ≥ ε;

here p and x depend on δ. We fix such an ε and let

δ = 1,
1

2
, . . . ,

1

m
, . . . .

Then for each δ (i.e., each m), we get two points xm, pm ∈ B with

ρ(xm, pm) <
1

m
(5)

and

ρ′(f(xm), f(pm)) ≥ ε, m = 1, 2, . . . . (6)

Thus we obtain two sequences, {xm} and {pm}, in B. As B is compact,
{xm} has a subsequence xmk

→ q (q ∈ B). For simplicity, let it be {xm} itself;
thus

xm → q, q ∈ B.

3 In other words, f(x) and f(p) are ε-close for any p, x ∈ B with ρ(p, x) < δ.
4 See Example (h) below.
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Hence by (5), it easily follows that also pm → q (because ρ(xm, pm) → 0; see
Problem 4 in Chapter 3, §17). By the assumed relative continuity of f on B,
it follows that

f(xm)→ f(q) and f(pm)→ f(q) in (T, ρ′).

This, in turn, implies that ρ′(f(xm), f(pm))→ 0, which is impossible, in view
of (6). This contradiction completes the proof. �

One type of uniformly continuous functions are so-called contraction map-

pings . We define them in Example (a) below and hence derive a few noteworthy
special cases. Some of them are so-called isometries (see Problems, footnote 5).

Examples.

(a) A function f : A → (T, ρ′), A ⊆ (S, ρ), is called a contraction map (on
A) iff

ρ(x, y) ≥ ρ′(f(x), f(y)) for all x, y ∈ A.

Any such map is uniformly continuous on A. In fact, given ε > 0, we
simply take δ = ε. Then (∀x, p ∈ A)

ρ(x, p) < δ implies ρ′(f(x), f(p)) ≤ ρ(x, p) < δ = ε,

as required in (3).

(b) As a special case, consider the absolute value map (norm map) given by

f(x̄) = |x̄| on En (∗or another normed space).

It is uniformly continuous on En because

∣

∣|x̄| − |p̄|
∣

∣ ≤ |x̄− p̄|, i.e., ρ′(f(x̄), f(p̄)) ≤ ρ(x̄, p̄),

which shows that f is a contraction map, so Example (a) applies.

(c) Other examples of contraction maps are

(1) constant maps (see §1, Example (a)) and

(2) projection maps (see the proof of Theorem 3 in §3).
Verify!

(d) Define f : E1 → E1 by

f(x) = sinx
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By elementary trigonometry, | sinx| ≤ |x|. Thus (∀x, p ∈ E1)

|f(x)− f(p)| = | sinx− sin p|

= 2
∣

∣

∣
sin

1

2
(x− p) · cos 1

2
(x+ p)

∣

∣

∣

≤ 2
∣

∣

∣
sin

1

2
(x− p)

∣

∣

∣

≤ 2 · 1
2
|x− p| = |x− p|,

and f is a contraction map again. Hence the sine function is uniformly

continuous on E1; similarly for the cosine function.

(e) Given ∅ 6= A ⊆ (S, ρ), define f : S → E1 by

f(x) = ρ(x, A) where ρ(x, A) = inf
y∈A

ρ(x, y).

It is easy to show that

(∀x, p ∈ S) ρ(x, A) ≤ ρ(x, p) + ρ(p, A),

i.e.,

f(x) ≤ ρ(p, x) + f(p), or f(x)− f(p) ≤ ρ(p, x).
Similarly, f(p)− f(x) ≤ ρ(p, x). Thus

|f(x)− f(p)| ≤ ρ(p, x);
i.e., f is uniformly continuous (being a contraction map).

(f) The identity map f : (S, ρ)→ (S, ρ), given by

f(x) = x,

is uniformly continuous on S since

ρ(f(x), f(p)) = ρ(x, p) (a contraction map!).

However, even relative continuity could fail if the metric in the domain

space S were not the same as in S when regarded as the range space

(e.g., make ρ′ discrete!)

(g) Define f : E1 → E1 by

f(x) = a+ bx (b 6= 0).

Then

(∀x, p ∈ E1) |f(x)− f(p)| = |b| |x− p|;
i.e.,

ρ(f(x), f(p)) = |b| ρ(x, p).
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Thus, given ε > 0, take δ = ε/|b|. Then
ρ(x, p) < δ =⇒ ρ(f(x), f(p)) = |b| ρ(x, p) < |b| δ = ε,

proving uniform continuity.

(h) Let

f(x) =
1

x
on B = (0, +∞).

Then f is continuous on B, but not uniformly so. Indeed, we can prove
the negation of (4), i.e.,

(∃ ε > 0) (∀ δ > 0) (∃x, p ∈ B) ρ(x, p) < δ and ρ′(f(x), f(p)) ≥ ε. (4′)

Take ε = 1 and any δ > 0. We look for x, p such that

|x− p| < δ and |f(x)− f(p)| ≥ ε,
i.e.,

∣

∣

∣

1

x
− 1

p

∣

∣

∣
≥ 1.

This is achieved by taking

p = min
(

δ,
1

2

)

, x =
p

2
. (Verify!)

Thus (4) fails on B = (0, +∞), yet it holds on [a, +∞) for any a > 0.
(Verify!)

Problems on Uniform Continuity ;
Continuity on Compact Sets

1. Prove that if f is relatively continuous on each compact subset of D,
then it is relatively continuous on D.
[Hint: Use Theorem 1 of §2 and Problem 7 in §6.]

2. Do Problem 4 in Chapter 3, §17, and thus complete the last details in
the proof of Theorem 4.

3. Give an example of a continuous one-to-one map f such that f−1 is not
continuous.
[Hint: Show that any map is continuous on a discrete space (S, ρ).]

4. Give an example of a continuous function f and a compact set D ⊆
(T, ρ′) such that f−1[D] is not compact.
[Hint: Let f be constant on E1.]

5. Complete the missing details in Examples (1) and (2) and (c)–(h).

6. Show that every polynomial of degree one on En (∗or Cn) is uniformly
continuous.
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7. Show that the arcsine function is uniformly continuous on [−1, 1].
[Hint: Use Example (d) and Theorems 3 and 4.]

⇒8. Prove that if f is uniformly continuous on B, and if {xm} ⊆ B is
a Cauchy sequence, so is {f(xm)}. (Briefly, f preserves Cauchy se-
quences.) Show that this may fail if f is only continuous in the ordinary

sense. (See Example (h).)

9. Prove that if f : S → T is uniformly continuous on B ⊆ S, and g : T → U
is uniformly continuous on f [B], then the composite function g ◦ f is
uniformly continuous on B.

10. Show that the functions f and f−1 in Problem 5 of Chapter 3, §11 are
contraction maps ,5 hence uniformly continuous. By Theorem 1, find
again that (E∗, ρ′) is compact.

11. Let A′ be the set of all cluster points of A ⊆ (S, ρ). Let f : A→ (T, ρ′)
be uniformly continuous on A, and let (T, ρ′) be complete.

(i) Prove that limx→p f(x) exists at each p ∈ A′.

(ii) Thus define f(p) = limx→p f(x) for each p ∈ A′ − A, and show

that f so extended is uniformly continuous on the set A = A∪A′.6

(iii) Consider, in particular, the case A = (a, b) ⊆ E1, so that

A = A′ = [a, b].

[Hint: Take any sequence {xm} ⊆ A, xm → p ∈ A′. As it is Cauchy (why?), so is

{f(xm)} by Problem 8. Use Corollary 1 in §2 to prove existence of limx→p f(x).

For uniform continuity, use definitions; in case (iii), use Theorem 4.]

12. Prove that if two functions f, g with values in a normed vector space
are uniformly continuous on a set B, so also are f ±g and af for a fixed
scalar a.

For real functions, prove this also for f ∨ g and f ∧ g defined by

(f ∨ g)(x) = max(f(x), g(x))

and

(f ∧ g)(x) = min(f(x), g(x)).

[Hint: After proving the first statements, verify that

max(a, b) =
1

2
(a+ b+ |b− a|) and min(a, b) =

1

2
(a+ b− |b− a|)

and use Problem 9 and Example (b).]

5 They even are so-called isometries; a map f : (S, ρ) → (T, ρ′) is an isometry iff for all x
and y in S, ρ(x, y) = ρ′(f(x), f(y)).

6 It is an easier problem to prove ordinary continuity. Do that first.
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13. Let f be vector valued and h scalar valued, with both uniformly contin-
uous on B ⊆ (S, ρ).

Prove that

(i) if f and h are bounded on B, then hf is uniformly continuous on
B;

(ii) the function f/h is uniformly continuous on B if f is bounded on
B and h is “bounded away” from 0 on B, i.e.,

(∃ δ > 0) (∀x ∈ B) |h(x)| ≥ δ.

Give examples to show that without these additional conditions, hf and
f/h may not be uniformly continuous (see Problem 14 below).

14. In the following cases, show that f is uniformly continuous on B ⊆ E1,
but only continuous (in the ordinary sense) on D, as indicated, with
0 < a < b < +∞.

(a) f(x) =
1

x2
; B = [a, +∞); D = (0, 1).

(b) f(x) = x2; B = [a, b]; D = [a, +∞).

(c) f(x) = sin
1

x
; B and D as in (a).

(d) f(x) = x cosx; B and D as in (b).

15. Prove that if f is uniformly continuous on B, it is so on each subset
A ⊆ B.

16. For nonvoid sets A, B ⊆ (S, ρ), define

ρ(A, B) = inf{ρ(x, y) | x ∈ A, y ∈ B}.
Prove that if ρ(A, B) > 0 and if f is uniformly continuous on each of A
and B, it is so on A ∪B.

Show by an example that this fails if ρ(A, B) = 0, even if A∩B = ∅
(e.g., take A = [0, 1], B = (1, 2] in E1, making f constant on each of A
and B).

Note, however, that if A and B are compact , A ∩ B = ∅ implies

ρ(A, B) > 0. (Prove it using Problem 13 in §6.) Thus A ∩ B = ∅
suffices in this case.

17. Prove that if f is relatively continuous on each of the disjoint closed sets

F1, F2, . . . , Fn,

it is relatively continuous on their union

F =

n
⋃

k=1

Fk;
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hence (see Problem 6 of §6) it is uniformly continuous on F if the Fk

are compact.
[Hint: Fix any p ∈ F . Then p is in some Fk, say, p ∈ F1. As the Fk are disjoint,
p /∈ F2, . . . , Fp; hence p also is no cluster point of any of F2, . . . , Fn (for they are

closed).

Deduce that there is a globe Gp(δ) disjoint from each of F2, . . . , Fn, so that
F ∩ Gp(δ) = F1 ∩ Gp(δ). From this it is easy to show that relative continuity of f

on F follows from relative continuity on F1.]

⇒18. Let p̄0, p̄1, . . . , p̄m be fixed points in En (∗or in another normed space).
Let

f(t) = p̄k + (t− k)(p̄k+1 − p̄k)
whenever k ≤ t ≤ k + 1, t ∈ E1, k = 0, 1, . . . , m− 1.

Show that this defines a uniformly continuous mapping f of the in-
terval [0, m] ⊆ E1 onto the “polygon”

m−1
⋃

k=0

L[pk, pk+1].

In what case is f one to one? Is f−1 uniformly continuous on each
L[pk, pk+1]? On the entire polygon?
[Hint: First prove ordinary continuity on [0, m] using Theorem 1 of §3. (For the

points 1, 2, . . . , m− 1, consider left and right limits.) Then use Theorems 1–4.]

19. Prove the sequential criterion for uniform continuity : A function
f : A → T is uniformly continuous on a set B ⊆ A iff for any two
(not necessarily convergent) sequences {xm} and {ym} in B, with
ρ(xm, ym) → 0, we have ρ′(f(xm), f(ym)) → 0 (i.e., f preserves con-

current pairs of sequences; see Problem 4 in Chapter 3, §17).

§9. The Intermediate Value Property

Definition 1.

A function f : A → E∗ is said to have the intermediate value property ,
or Darboux property ,1 on a set B ⊆ A iff, together with any two function

values f(p) and f(p1) (p, p1 ∈ B), it also takes all intermediate values

between f(p) and f(p1) at some points of B.

In other words, the image set f [B] contains the entire interval between
f(p) and f(p1) in E

∗.

1 This property is named after Jean Gaston Darboux, who investigated it for derivatives

(see Chapter 5, §2, Theorem 4).
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Note 1. It follows that f [B] itself is a finite or infinite interval in E∗, with
endpoints inf f [B] and sup f [B]. (Verify!)

Geometrically, if A ⊆ E1, this means that the curve y = f(x) meets all
horizontal lines y = q, for q between f(p) and f(p1). For example, in Figure 13
in §1, we have a “smooth” curve that cuts each horizontal line y = q between
f(0) and f(p1); so f has the Darboux property on [0, p1]. In Figures 14 and
15, there is a “gap” at p; the property fails. In Example (f) of §1, the property
holds on all of E1 despite a discontinuity at 0. Thus it does not imply continuity.

Intuitively, it seems plausible that a “continuous curve” must cut all inter-
mediate horizontals. A precise proof for functions continuous on an interval,
was given independently by Bolzano and Weierstrass (the same as in Theorem 2
of Chapter 3, §16). Below we give a more general version of Bolzano’s proof
based on the notion of a convex set and related concepts.

Definition 2.

A set B in En (∗or in another normed space) is said to be convex iff for
each ā, b̄ ∈ B the line segment L[ā, b̄] is a subset of B.

A polygon joining ā and b̄ is any finite union of line segments (a “broken
line”) of the form

m−1
⋃

i=0

L[p̄i, p̄i+1] with p̄0 = ā and p̄m = b̄.

The set B is said to be polygon connected (or piecewise convex ) iff any two
points ā, b̄ ∈ B can be joined by a polygon contained in B.

ā

b̄

A

Figure 19

ā

c̄

b̄

Figure 20

B

Example.

Any globe in En (∗or in another normed space) is convex, so also is any
interval in En or in E∗. Figures 19 and 20 represent a convex set A and
a polygon-connected set B in E2 (B is not convex; it has a “cavity”).

We shall need a simple lemma that is noteworthy in its own right as well.
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Lemma 1 (principle of nested line segments). Every contracting sequence of

closed line segments L[p̄m, q̄m] in En (∗or in any other normed space) has a

nonvoid intersection; i .e., there is a point

p̄ ∈
∞
⋂

m=1

L[p̄m, q̄m].

Proof. Use Cantor’s theorem (Theorem 5 of §6) and Example (1) in §8. �

We are now ready for Bolzano’s theorem. The proof to be used is typical of
so-called “bisection proofs .” (See also §6, Problems 9 and 10 for such proofs.)

Theorem 1. If f : B → E1 is relatively continuous on a polygon-connected

set B in En (∗or in another normed space), then f has the Darboux property

on B.

In particular , if B is convex and if f(p̄) < c < f(q̄) for some p̄, q̄ ∈ B, then
there is a point r̄ ∈ L(p̄, q̄) such that f(r̄) = c.

Proof. First, let B be convex . Seeking a contradiction, suppose p̄, q̄ ∈ B with

f(p̄) < c < f(q̄),

yet f(x̄) 6= c for all x̄ ∈ L(p̄, q̄).
Let P be the set of all those x̄ ∈ L[p̄, q̄] for which f(x̄) < c, i.e.,

P = {x̄ ∈ L[p̄, q̄] | f(x̄) < c},
and let

Q = {x̄ ∈ L[p̄, q̄] | f(x̄) > c}.
Then p̄ ∈ P , q̄ ∈ Q, P ∩Q = ∅, and P ∪Q = L[p̄, q̄] ⊆ B. (Why?)

Now let

r̄0 =
1

2
(p̄+ q̄)

be the midpoint on L[p̄, q̄]. Clearly, r̄0 is either in P or in Q. Thus it bisects
L[p̄, q̄] into two subsegments, one of which must have its left endpoint in P and

its right endpoint in Q.2

We denote this particular closed segment by L[p̄1, q̄1], p̄1 ∈ P , q̄1 ∈ Q. We
then have

L[p̄1, q̄1] ⊆ L[p̄, q̄] and |p1 − q1| =
1

2
|p̄− q̄|. (Verify!)

Now we bisect L[p̄1, q̄1] and repeat the process. Thus let

r̄1 =
1

2
(p̄1 + q̄1).

2 Indeed, if r̄0 ∈ P , this holds for L[r̄0, q̄]. If r̄0 ∈ Q, take L[p̄, r̄0].
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By the same argument, we obtain a closed subsegment L[p̄2, q̄2] ⊆ L[p̄1, q̄1],
with p̄2 ∈ P , q̄2 ∈ Q, and

|p̄2 − q̄2| =
1

2
|p̄1 − q̄1| =

1

4
|p̄− q̄|.

Next, we bisect L[p̄2, q̄2], and so on. Continuing this process indefinitely, we
obtain an infinite contracting sequence of closed line segments L[p̄m, q̄m] such
that

(∀m) p̄m ∈ P, q̄m ∈ Q,
and

|p̄m − q̄m| =
1

2m
|p̄− q̄| → 0 as m→ +∞.

By Lemma 1, there is a point

r̄ ∈
∞
⋂

m=1

L[p̄m, q̄m].

This implies that

(∀m) |r̄ − p̄m| ≤ |p̄m − q̄m| → 0,

whence p̄m → r̄. Similarly, we obtain q̄m → r̄.

Now since r̄ ∈ L[p̄, q̄] ⊆ B, the function f is relatively continuous at r̄ over
B (by assumption). By the sequential criterion, then,

f(p̄m)→ f(r̄) and f(q̄m)→ f(r̄).

Moreover, f(p̄m) < c < f(q̄m) (for p̄m ∈ P and q̄m ∈ Q). Letting m → +∞,
we pass to limits (Chapter 3, §15, Corollary 1) and get

f(r̄) ≤ c ≤ f(r̄),

so that r̄ is neither in P nor in Q, which is a contradiction. This completes
the proof for a convex B.

The extension to polygon-connected sets is left as an exercise (see Problem
2 below). Thus all is proved. �

Note 2. In particular, the theorem applies if B is a globe or an interval.

Thus continuity on an interval implies the Darboux property . The converse
fails , as we have noted. However, for monotone functions, we obtain the fol-
lowing theorem.

Theorem 2. If a function f : A → E1 is monotone and has the Darboux

property on a finite or infinite interval (a, b) ⊆ A ⊆ E1, then it is continuous

on (a, b).

Proof. Seeking a contradiction, suppose f is discontinuous at some p ∈ (a, b).
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For definiteness, let f↑ on (a, b). Then by Theorems 2 and 3 in §5, we
have either f(p−) < f(p) or f(p) < f(p+) or both, with no function values in

between.

On the other hand, since f has the Darboux property, the function values
f(x) for x in (a, b) fill an entire interval (see Note 1). Thus it is impossible
for f(p) to be the only function value between f(p−) and f(p+) unless f is
constant near p, but then it is also continuous at p, which we excluded. This
contradiction completes the proof.3 �

Note 3. The theorem holds (with a similar proof) for nonopen intervals as
well, but the continuity at the endpoints is relative (right at a, left at b).

Theorem 3. If f : A → E1 is strictly monotone and continuous when re-

stricted to a finite or infinite interval B ⊆ A ⊆ E1, then its inverse f−1 has

the same properties on the set f [B] (itself an interval , by Note 1 and Theo-

rem 1).4

Proof. It is easy to see that f−1 is increasing (decreasing) if f is; the proof is
left as an exercise. Thus f−1 is monotone on f [B] if f is so on B. To prove
the relative continuity of f−1, we use Theorem 2, i.e., show that f−1 has the
Darboux property on f [B].

Thus let f−1(p) < c < f−1(q) for some p, q ∈ f [B]. We look for an r ∈ f [B]
such that f−1(r) = c, i.e., r = f(c). Now since p, q ∈ f [B], the numbers f−1(p)
and f−1(q) are in B, an interval . Hence also the intermediate value c is in B;
thus it belongs to the domain of f , and so the function value f(c) exists . It
thus suffices to put r = f(c) to get the result. �

Examples.

(a) Define f : E1 → E1 by

f(x) = xn for a fixed n ∈ N .

As f is continuous (being a monomial), it has the Darboux property
on E1. By Note 1, setting B = [0, +∞), we have f [B] = [0, +∞).
(Why?) Also, f is strictly increasing on B. Thus by Theorem 3, the

inverse function f−1 (i.e., the nth root function) exists and is continuous

on f [B] = [0, +∞).

If n is odd , then f−1 has these properties on all of E1, by a similar
proof; thus n

√
x exists for x ∈ E1.

(b) Logarithmic functions. From the example in §5, we recall that the expo-

3 More formally, if, say, f(p) < f(p+), let f(p) < c < f(p+) ≤ f(p′), p′ ∈ (p, b). (Such a

p′ exists since f↑, and f(p+) = inf{f(x) | p < x < b}; see §5, Theorem 1.) By the Darboux
property, f(x) = c for some x ∈ (a, b), but this contradicts Theorem 2 in §5.

4 We write “f” for “f restricted to B” as well; cf. also footnote 1 in §8.
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nential function given by

F (x) = ax (a > 0)

is continuous and strictly monotone on E1.5 Its inverse, F−1, is called
the logarithmic function to the base a, denoted loga. By Theorem 3, it is
continuous and strictly monotone on F [E1].

To fix ideas, let a > 1, so F↑ and (F−1)↑. By Note 1, F [E1] is an
interval with endpoints p and r, where

p = inf F [E1] = inf{ax | −∞ < x < +∞}

and

r = supF [E1] = sup{ax | −∞ < x < +∞}.

Now by Problem 14(iii) of §2 (with q = 0),

lim
x→+∞

ax = +∞ and lim
x→−∞

ax = 0.

As F↑, we use Theorem 1 in §5 to obtain

r = sup ax = lim
x→+∞

ax = +∞ and p = lim
x→−∞

ax = 0.

Thus F [E1], i.e., the domain of loga, is the interval (p, r) = (0, +∞). It
follows that loga x is uniquely defined for x in (0, +∞); it is called the
logarithm of x to the base a.

The range of loga (i.e. of F−1) is the same as the domain of F , i.e., E1.
Thus if a > 1, loga x increases from −∞ to +∞ as x increases from 0 to
+∞. Hence

lim
x→+∞

loga x = +∞ and lim
x→0+

loga x = −∞,

provided a > 1.

If 0 < a < 1, the values of these limits are interchanged (since F↓ in
this case), but otherwise the results are the same.

If a = e, we write lnx or log x for loga x, and we call lnx the natural

logarithm of x. Its inverse is, of course, the exponential f(x) = ex, also
written exp(x). Thus by definition, ln ex = x and

x = exp(lnx) = elnx (0 < x < +∞). (1)

(c) The power function g : (0, +∞)→ E1 is defined by

g(x) = xa for a fixed real a.

5 We exclude the case a = 1 here.
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If a > 0, we also define g(0) = 0. For x > 0, we have

xa = exp(lnxa) = exp(a · lnx).
Thus by the rules for composite functions (Theorem 3 and Corollary 2 in
§2), the continuity of g on (0, +∞) follows from that of exponential and
log functions. If a > 0, g is also continuous at 0. (Exercise!)

Problems on the Darboux Property and Related Topics

1. Prove Note 1.

1′. Prove Note 3.

1′′. Prove continuity at 0 in Example (c).

2. Prove Theorem 1 for polygon-connected sets.
[Hint: If

B ⊇
m−1⋃

i=0

L[p̄i, p̄i+1]

with

f(p̄0) < c < f(p̄m),

show that for at least one i, either c = f(p̄i) or f(p̄i) < c < f(p̄i+1). Then replace
B in the theorem by the convex segment L[p̄i, p̄i+1].]

3. Show that, if f is strictly increasing on B ⊆ E, then f−1 has the same
property on f [B], and both are one to one; similarly for decreasing
functions.

4. For functions on B = [a, b] ⊂ E1, Theorem 1 can be proved thusly: If

f(a) < c < f(b),

let

P = {x ∈ B | f(x) < c}
and put r = supP .

Show that f(r) is neither greater nor less than c, and so necessarily
f(r) = c.
[Hint: If f(r) < c, continuity at r implies that f(x) < c on some Gr(δ) (§2,
Problem 7), contrary to r = supP . (Why?)]

5. Continuing Problem 4, prove Theorem 1 in all generality , as follows.
Define

g(t) = p̄+ t(q̄ − p̄), 0 ≤ t ≤ 1.

Then g is continuous (by Theorem 3 in §3), and so is the composite
function h = f ◦ g, on [0, 1]. By Problem 4, with B = [0, 1], there is a
t ∈ (0, 1) with h(t) = c. Put r̄ = g(t), and show that f(r̄) = c.
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6. Show that every equation of odd degree, of the form

f(x) =
n
∑

k=0

akx
k = 0 (n = 2m− 1, an 6= 0),

has at least one solution for x in E1.
[Hint: Show that f takes both negative and positive values as x → −∞ or x → +∞;
thus by the Darboux property, f must also take the intermediate value 0 for some

x ∈ E1.]

7. Prove that if the functions f : A → (0, +∞) and g : A → E1 are both
continuous, so also is the function h : A→ E1 given by

h(x) = f(x)g(x).

[Hint: See Example (c)].

8. Using Corollary 2 in §2, and limit properties of the exponential and log
functions, prove the “shorthand” Theorems 11–16 of §4.

8′. Find lim
x→+∞

(

1 +
1

x

)

√
x

.

8′′. Similarly, find a new solution of Problem 27 in Chapter 3, §15, reducing
it to Problem 26.

9. Show that if f : E1 → E∗ has the Darboux property on B (e.g., if B is
convex and f is relatively continuous on B) and if f is one to one on B,
then f is necessarily strictly monotone on B.

10. Prove that if two real functions f, g are relatively continuous on [a, b]
(a < b) and

f(x)g(x) > 0 for x ∈ [a, b],

then the equation

(x− a)f(x) + (x− b)g(x) = 0

has a solution between a and b; similarly for the equation

f(x)

x− a +
g(x)

x− b = 0 (a, b ∈ E1).

10′. Similarly, discuss the solutions of

2

x− 4
+

9

x− 1
+

1

x− 2
= 0.
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§10. Arcs and Curves. Connected Sets

A deeper insight into continuity and the Darboux property can be gained by
generalizing the notions of a convex set and polygon-connected set to obtain
so-called connected sets.

I. As a first step, we consider arcs and curves .

Definition 1.

A set A ⊆ (S, ρ) is called an arc iff A is a continuous image of a compact
interval [a, b] ⊂ E1, i.e., iff there is a continuous mapping

f : [a, b] −→
onto

A.

If, in addition, f is one to one, A is called a simple arc with endpoints

f(a) and f(b).

If instead f(a) = f(b), we speak of a closed curve.

A curve is a continuous image of any finite or infinite interval in E1.

Corollary 1. Each arc is a compact (hence closed and bounded) set (by
Theorem 1 of §8).
Definition 2.

A set A ⊆ (S, ρ) is said to be arcwise connected iff every two points
p, q ∈ A are in some simple arc contained in A. (We then also say the p
and q can be joined by an arc in A.)

Examples.

(a) Every closed line segment L[ā, b̄] in En (∗or in any other normed space)
is a simple arc (consider the map f in Example (1) of §8).

(b) Every polygon

A =
m−1
⋃

i=0

L[p̄i, p̄i+1]

is an arc (see Problem 18 in §8). It is a simple arc if the half-closed
segments L[p̄i, p̄i+1) do not intersect and the points p̄i are distinct, for
then the map f in Problem 18 of §8 is one to one.

(c) It easily follows that every polygon-connected set is also arcwise con-

nected ; one only has to show that every polygon joining two points p̄0, p̄m
can be reduced to a simple polygon (not a self-intersecting one). See
Problem 2.

However, the converse is false. For example, two discs in E2 connected
by a parabolic arc form together an arcwise- (but not polygonwise-) con-
nected set.
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(d) Let f1, f2, . . . , fn be real continuous functions on an interval I ⊆ E1.
Treat them as components of a function f : I → En,

f = (f1, . . . , fn).

Then f is continuous by Theorem 2 in §3. Thus the image set f [I] is a
curve in En; it is an arc if I is a closed interval.

Introducing a parameter t varying over I, we obtain the parametric

equations of the curve, namely,

xk = fk(t), k = 1, 2, . . . , n.

Then as t varies over I, the point x̄ = (x1, . . . , xn) describes the curve
f [I]. This is the usual way of treating curves in En (∗and Cn).

It is not hard to show that Theorem 1 in §9 holds also if B is only arcwise

connected (see Problem 3 below). However, much more can be proved by
introducing the general notion of a connected set. We do this next.

∗II. For this topic, we shall need Theorems 2–4 of Chapter 3, §12, and
Problem 15 of Chapter 4, §2. The reader is advised to review them. In partic-
ular, we have the following theorem.

Theorem 1. A function f : (A, ρ)→ (T, ρ′) is continuous on A iff f−1[B] is
closed in (A, ρ) for each closed set B ⊆ (T, ρ′); similarly for open sets .

Indeed, this is part of Problem 15 in §2 with (S, ρ) replaced by (A, ρ).

Definition 3.

A metric space (S, ρ) is said to be connected iff S is not the union P ∪Q
of any two nonvoid disjoint closed sets; it is disconnected otherwise.1

A set A ⊆ (S, ρ) is called connected iff (A, ρ) is connected as a subspace

of (S, ρ); i.e., iff A is not a union of two disjoint sets P, Q 6= ∅ that are
closed (hence also open) in (A, ρ), as a subspace of (S, ρ).

Note 1. By Theorem 4 of Chapter 3, §12, this means that

P = A ∩ P1 and Q = A ∩Q1

for some sets P1, Q1 that are closed in (S, ρ). Observe that, unlike compact
sets, a set that is closed or open in (A, ρ) need not be closed or open in (S, ρ).

Examples.

(a′) ∅ is connected.
(b′) So is any one-point set {p}. (Why?)

1 The term “closed” may be replaced by “open” here, for P and Q are open as well, each
being the complement of the other closed set. Similarly, if they are open, they are both open

and closed (briefly, “clopen”).
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(c′) Any finite set of two or more points is disconnected. (Why?)

Other examples are provided by the theorems that follow.

Theorem 2. The only connected sets in E1 are exactly all convex sets , i .e., fi-
nite and infinite intervals , including E1 itself .

Proof. The proof that such intervals are exactly all convex sets in E1 is left
as an exercise.

We now show that each connected set A ⊆ E1 is convex, i.e., that a, b ∈ A
implies (a, b) ⊆ A.

Seeking a contradiction, suppose p /∈ A for some p ∈ (a, b), a, b ∈ A. Let

P = A ∩ (−∞, p) and Q = A ∩ (p, +∞).

Then A = P ∪ Q, a ∈ P , b ∈ Q, and P ∩ Q = ∅. Moreover, (−∞, p) and
(p, +∞) are open sets in E1. (Why?) Hence P and Q are open in A, each
being the intersection of A with a set open in E1 (see Note 1 above). As
A = P ∪Q, with P ∩Q = ∅, it follows that A is disconnected . This shows that
if A is connected in E1, it must be convex.

Conversely, let A be convex in E1. The proof that A is connected is an
almost exact copy of the proof given for Theorem 1 of §9, so we only briefly
sketch it here.2

If A were disconnected, then A = P ∪ Q for some disjoint sets P, Q 6= ∅,
both closed in A. Fix any p ∈ P and q ∈ Q. Exactly as in Theorem 1 of §9,
select a contracting sequence of line segments (intervals) [pm, qm] ⊆ A such
that pm ∈ P , qm ∈ Q, and |pm − qm| → 0, and obtain a point

r ∈
∞
⋂

m=1

[pm, qm] ⊆ A,

so that pm → r, qm → r, and r ∈ A. As the sets P and Q are closed in
(A, ρ), Theorem 4 of Chapter 3, §16 shows that both P and Q must contain the
common limit r of the sequences {pm} ⊆ P and {qm} ⊆ Q. This is impossible,
however, since P ∩ Q = ∅, by assumption. This contradiction shows that A
cannot be disconnected. Thus all is proved. �

Note 2. By the same proof, any convex set in a normed space is connected .
In particular, En and all other normed spaces are connected themselves .3

Theorem 3. If a function f : A → (T, ρ′) with A ⊆ (S, ρ) is relatively con-

tinuous on a connected set B ⊆ A, then f [B] is a connected set in (T, ρ′).4

2 Note that the same proof holds also for A in any normed space.
3 See also Corollary 3 below (note that it presupposes Corollary 2, hence Theorem 2).
4 Briefly, any continuous image of a connected set is connected itself .
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Proof. By definition (§1), relative continuity on B becomes ordinary continu-
ity when f is restricted to B. Thus we may treat f as a mapping of B into

f [B], replacing S and T by their subspaces B and f [B].

Seeking a contradiction, suppose f [B] is disconnected, i.e.,

f [B] = P ∪Q

for some disjoint sets P, Q 6= ∅ closed in (f [B], ρ′). Then by Theorem 1, with
T replaced by f [B], the sets f−1[P ] and f−1[Q] are closed in (B, ρ). They also
are nonvoid and disjoint (as are P and Q) and satisfy

B = f−1[P ∪Q] = f−1[P ] ∪ f−1[Q]

(see Chapter 1, §§4–7, Problem 6). Thus B is disconnected, contrary to as-
sumption. �

Corollary 2. All arcs and curves are connected sets (by Definition 2 and

Theorems 2 and 3).

Lemma 1. A set A ⊆ (S, ρ) is connected iff any two points p, q ∈ A are in

some connected subset B ⊆ A. Hence any arcwise connected set is connected .

Proof. Seeking a contradiction, suppose the condition stated in Lemma 1
holds but A is disconnected, so A = P ∪Q for some disjoint sets P 6= ∅, Q 6= ∅,
both closed in (A, ρ).

Pick any p ∈ P and q ∈ Q. By assumption, p and q are in some connected
set B ⊆ A. Treat (B, ρ) as a subspace of (A, ρ), and let

P ′ = B ∩ P and Q′ = B ∩Q.

Then by Theorem 4 of Chapter 3, §12, P ′ and Q′ are closed in B. Also, they
are disjoint (for P and Q are) and nonvoid (for p ∈ P ′, q ∈ Q′), and

B = B ∩ A = B ∩ (P ∪Q) = (B ∩ P ) ∪ (B ∩Q) = P ′ ∪Q′.

Thus B is disconnected, contrary to assumption. This contradiction proves the
lemma (the converse proof is trivial).

In particular, if A is arcwise connected, then any points p, q in A are in
some arc B ⊆ A, a connected set by Corollary 2. Thus all is proved. �

Corollary 3. Any convex or polygon-connected set (e.g ., a globe) in En (or
in any other normed space) is arcwise connected , hence connected .

Proof. Use Lemma 1 and Example (c) in part I of this section. �

Caution: The converse fails . A connected set need not be arcwise connected,

let alone polygon connected (see Problem 17). However, we have the following
theorem.



§10. Arcs and Curves. Connected Sets 215

Theorem 4. Every open connected set A in En (∗or in another normed space)
is also arcwise connected and even polygon connected .

Proof. If A = ∅, this is “vacuously” true, so let A 6= ∅ and fix ā ∈ A.
Let P be the set of all p̄ ∈ A that can be joined with ā by a polygon K ⊆ A.

Let Q = A − P . Clearly, ā ∈ P , so P 6= ∅. We shall show that P is open,
i.e., that each p̄ ∈ P is in a globe Gp̄ ⊆ P .

Thus we fix any p̄ ∈ P . As A is open and p̄ ∈ A, there certainly is a globe
Gp̄ contained in A. Moreover, as Gp̄ is convex, each point x̄ ∈ Gp̄ is joined
with p̄ by the line segment L[x̄, p̄] ⊆ Gp̄. Also, as p̄ ∈ P , some polygon K ⊆ A
joins p̄ with ā. Then

K ∪ L[x̄, p̄]
is a polygon joining x̄ and ā, and hence by definition x̄ ∈ P . Thus each x̄ ∈ Gp̄

is in P , so that Gp̄ ⊆ P , as required, and P is open (also open in A as a

subspace).

Next, we show that the set Q = A− P is open as well. As before, if Q 6= ∅,
fix any q̄ ∈ Q and a globe Gq̄ ⊆ A, and show that Gq̄ ⊆ Q. Indeed, if some
x̄ ∈ Gq̄ were not in Q, it would be in P , and thus it would be joined with ā
(fixed above) by a polygon K ⊆ A. Then, however, q̄ itself could be so joined

by the polygon
L[q̄, x̄] ∪K,

implying that q̄ ∈ P , not q̄ ∈ Q. This shows that Gq̄ ⊂ Q indeed, as claimed.

Thus A = P ∪ Q with P, Q disjoint and open (hence clopen) in A. The
connectedness of A then implies that Q = ∅. (P is not empty, as has been
noted.) Hence A = P . By the definition of P , then, each point b̄ ∈ A can be
joined to ā by a polygon. As ā ∈ A was arbitrary, A is polygon connected. �

Finally, we obtain a stronger version of the intermediate value theorem.

Theorem 5. If a function f : A→ E1 is relatively continuous on a connected

set B ⊆ A ⊆ (S, ρ), then f has the Darboux property on B.

In fact, by Theorems 3 and 2, f [B] is a connected set in E1, i.e., an interval .
This, however, implies the Darboux property.

Problems on Arcs, Curves, and Connected Sets

1. Discuss Examples (a) and (b) in detail. In particular, verify that L[ā, b̄]
is a simple arc. (Show that the map f in Example (1) of §8 is one to

one.)

2. Show that each polygon

K =
m−1
⋃

i=0

L[p̄i, p̄i+1]
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can be reduced to a simple polygon P (P ⊆ K) joining p0 and pm.
[Hint: First, show that if two line segments have two or more common points, they

lie in one line. Then use induction on the number m of segments in K. Draw a
diagram in E2 as a guide.]

3. Prove Theorem 1 of §9 for an arcwise connected B ⊆ (S, ρ).
[Hint: Proceed as in Problems 4 and 5 in §9, replacing g by some continuous map
f : [a, b] −→

onto
B.]

4. Define f as in Example (f) of §1. Let

Gab = {(x, y) ∈ E2 | a ≤ x ≤ b, y = f(x)}.

(Gab is the graph of f over [a, b].) Prove the following:

(i) If a > 0, then Gab is a simple arc in E2.

(ii) If a ≤ 0 ≤ b, Gab is not even arcwise connected.

[Hints: (i) Prove that f is continuous on [a, b], a > 0, using the continuity of the
sine function. Then use Problem 16 in §2, restricting f to [a, b].

(ii) For a contradiction, assume 0̄ is joined by a simple arc to some p̄ ∈ Gab.]

5. Show that each arc is a continuous image of [0, 1].
[Hint: First, show that any [a, b] ⊆ E1 is such an image. Then use a suitable

composite mapping.]

∗6. Prove that a function f : B → E1 on a compact set B ⊆ E1 must be
continuous if its graph,

{(x, y) ∈ E2 | x ∈ B, y = f(x)},

is a compact set (e.g., an arc) in E2.
[Hint: Proceed as in the proof of Theorem 3 of §8.]

∗7. Prove that A is connected iff there is no continuous map

f : A −→
onto
{0, 1}.5

[Hint: If there is such a map, Theorem 1 shows that A is disconnected. (Why?)

Conversely, if A = P ∪Q (P, Q as in Definition 3), put f = 0 on P and f = 1 on Q.

Use again Theorem 1 to show that f so defined is continuous on A.]

∗8. Let B ⊆ A ⊆ (S, ρ). Prove that B is connected in S iff it is connected
in (A, ρ).

∗9. Suppose that no two of the sets Ai (i ∈ I) are disjoint. Prove that if all
Ai are connected, so is A =

⋃

i∈I Ai.
[Hint: If not, let A = P ∪ Q (P, Q as in Definition 3). Let Pi = Ai ∩ P and

Qi = Ai ∩Q, so Ai = Pi ∪Qi, i ∈ I.

5 That is, onto a two-point set {0} ∪ {1}.
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At least one of the Pi, Qi must be ∅ (why?); say, Qj = ∅ for some j ∈ I. Then
(∀ i) Qi = ∅, for Qi 6= ∅ implies Pi = ∅, whence

Ai = Qi ⊆ Q =⇒ Ai ∩Aj = ∅ (since Aj ⊆ P ),

contrary to our assumption. Deduce that Q =
⋃

i Qi = ∅. (Contradiction!)]

∗10. Prove that if {An} is a finite or infinite sequence of connected sets and
if

(∀n) An ∩ An+1 6= ∅,

then

A =
⋃

n

An

is connected.
[Hint: Let Bn =

⋃n
k=1 Ak. Use Problem 9 and induction to show that the Bn are

connected and no two are disjoint. Verify that A =
⋃

n Bn and apply Problem 9 to

the sets Bn.]

∗11. Given p ∈ A, A ⊆ (S, ρ), let Ap denote the union of all connected subsets
of A that contain p (one of them is {p}); Ap is called the p-component

of A. Prove that

(i) Ap is connected (use Problem 9);

(ii) Ap is not contained in any other connected set B ⊆ A with p ∈ B;

(iii) (∀ p, q ∈ A) Ap ∩ Aq = ∅ iff Ap 6= Aq; and

(iv) A =
⋃{Ap | p ∈ A}.

[Hint for (iii): If Ap ∩ Aq 6= ∅ and Ap 6= Aq , then B = Ap ∪ Aq is a connected set

larger than Ap, contrary to (ii).]

∗12. Prove that if A is connected, so is its closure (Chapter 3, §16,
Definition 1), and so is any set D such that A ⊆ D ⊆ Ā.
[Hints: First show that D is the “least” closed set in (D, ρ) that contains A
(Problem 11 in Chapter 3, §16 and Theorem 4 of Chapter 3, §12). Next, seeking

a contradiction, let D = P ∪Q, P ∩Q = ∅, P, Q 6= ∅, clopen in D. Then

A = (A ∩ P ) ∪ (A ∩Q)

proves A disconnected , for if A ∩ P = ∅, say, then A ⊆ Q ⊂ D (why?), contrary to

the minimality of D; similarly for A ∩Q = ∅.]
∗13. A set is said to be totally disconnected iff its only connected subsets are

one-point sets and ∅.
Show that R (the rationals) has this property in E1.

∗14. Show that any discrete space is totally disconnected (see Problem 13).

∗15. From Problems 11 and 12 deduce that each component Ap is closed

(Ap = Ap).
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∗16. Prove that a set A ⊆ (S, ρ) is disconnected iff A = P ∪Q, with P, Q 6= ∅,
and each of P, Q disjoint from the closure of the other: P ∩ Q = ∅ =
P ∩Q.
[Hint: By Problem 12, the closure of P in (A, ρ) (i.e., the least closed set in (A, ρ)
that contains P ) is

A ∩ P = (P ∪Q) ∩ P = (P ∩ P ) ∪ (Q ∩ P ) = P ∪ ∅ = P,

so P is closed in A; similarly for Q. Prove the converse in the same manner.]

∗17. Give an example of a connected set that is not arcwise connected.
[Hint: The set G0b (a = 0) in Problem 4 is the closure of G0b − {0̄} (verify!), and
the latter is connected (why?); hence so is G0b by Problem 12.]

∗§11. Product Spaces. Double and Iterated Limits

Given two metric spaces (X, ρ1) and (Y, ρ2), we may consider the Cartesian
product X × Y , suitably metrized . Two metrics for X × Y are suggested in
Problem 10 in Chapter 3, §11. We shall adopt the first of them as follows.

Definition 1.

By the product of two metric spaces (X, ρ1) and (Y, ρ2) is meant the
space (X × Y, ρ), where the metric ρ is defined by

ρ((x, y), (x′, y′)) = max{ρ1(x, x′), ρ2(y, y′)} (1)

for x, x′ ∈ X and y, y′ ∈ Y .

Thus the distance between (x, y) and (x′, y′) is the larger of the two distances

ρ1(x, x
′) in X and ρ2(y, y

′) in Y .

The verification that ρ in (1) is, indeed, a metric is left to the reader. We now
obtain the following theorem.

Theorem 1.

(i) A globe G(p, q)(ε) in (X×Y, ρ) is the Cartesian product of the correspond-

ing ε-globes in X and Y ,

G(p, q)(ε) = Gp(ε)×Gq(ε).

(ii) Convergence of sequences {(xm, ym)} in X × Y is componentwise. That
is , we have

(xm, ym)→ (p, q) in X × Y iff xm → p in X and ym → q in Y .
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Again, the easy proof is left as an exercise.

In this connection, recall that by Theorem 2 of Chapter 3, §15, convergence
in E2 is componentwise as well , even though the standard metric in E2 is not
the product metric (1); it is rather the metric (ii) of Problem 10 in Chapter 3,
§11. We might have adopted this second metric for X × Y as well. Then part
(i) of Theorem 1 would fail, but part (ii) would still follow by making

ρ1(xm, p) <
ε√
2
and ρ2(ym, q) <

ε√
2
.

It follows that, as far as convergence is concerned, the two choices of ρ are

equivalent .

Note 1. More generally, two metrics for a space S are said to be equivalent
iff exactly the same sequences converge (to the same limits) under both metrics.
Then also all function limits are the same since they reduce to sequential limits,
by Theorem 1 of §2; similarly for such notions as continuity, compactness,
completeness, closedness, openness, etc.

In view of this, we shall often call X×Y a product space (in the wider sense)
even if its metric is not the ρ of formula (1) but equivalent to it. In this sense,
E2 is the product space E1 ×E1, and X × Y is its generalization.

Various ideas valid in E2 extend quite naturally to X × Y . Thus functions
defined on a set A ⊆ X × Y may be treated as functions of two variables x,
y such that (x, y) ∈ A. Given (p, q) ∈ X × Y , we may consider ordinary or
relative limits at (p, q), e.g., limits over a path

B = {(x, y) ∈ X × Y | y = q}

(briefly called the “line y = q”). In this case, y remains fixed (y = q) while
x→ p; we then speak of limits and continuity in one variable x, as opposed to
those in both variables jointly , i.e., the ordinary limits (cf. §3, part IV).

Some other kinds of limits are to be defined below. For simplicity, we con-
sider only functions f : (X×Y )→ (T, ρ′) defined on all of X×Y . If confusion
is unlikely, we write ρ for all metrics involved (such as ρ′ in T ). Below, p and q
always denote cluster points of X and Y , respectively (this justifies the “lim”
notation). Of course, our definitions apply in particular to E2 as the simplest
special case of X × Y .

Definition 2.

A function f : (X × Y ) → (T, ρ′) is said to have the double limit s ∈ T
at (p, q), denoted

s = lim
x→p
y→q

f(x, y),

iff for each ε > 0, there is a δ > 0 such that f(x, y) ∈ Gs(ε) whenever
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x ∈ G¬p(δ) and y ∈ G¬q(δ). In symbols,

(∀ ε > 0) (∃ δ > 0) (∀x ∈ G¬p(δ)) (∀ y ∈ G¬q(δ)) f(x, y) ∈ Gs(ε). (2)

Observe that this is the relative limit over the path

D = (X − {p})× (Y − {q})
excluding the two “lines” x = p and y = q. If f were restricted to D, this
would coincide with the ordinary nonrelative limit (see §1), denoted

s = lim
(x, y)→(p, q)

f(x, y),

where only the point (p, q) is excluded. Then we would have

(∀ ε > 0) (∃ δ > 0) (∀ (x, y) ∈ G¬(p,q)(δ)) f(x, y) ∈ Gs(ε). (3)

Now consider limits in one variable, say,

lim
y→q

f(x, y) with x fixed .

If this limit exists for each choice of x from some set B ⊆ X , it defines a
function

g : B → T

with value
g(x) = lim

y→q
f(x, y), x ∈ B.

This means that

(∀x ∈ B) (∀ ε > 0) (∃ δ > 0) (∀ y ∈ G¬q(δ)) ρ(g(x), f(x, y)) < ε. (4)

Here, in general, δ depends on both ε and x. However, in some cases (re-
sembling uniform continuity), one and the same δ (depending on ε only) fits
all choices of x from B. This suggests the following definition.

Definition 3.

With the previous notation, suppose

lim
y→q

f(x, y) = g(x) exists for each x ∈ B (B ⊆ X).

We say that this limit is uniform in x (on B), and we write

“g(x) = lim
y→q

f(x, y) (uniformly for x ∈ B),”

iff for each ε > 0, there is a δ > 0 such that ρ(g(x), f(x, y)) < ε for all

x ∈ B and all y ∈ G¬q(δ). In symbols,

(∀ ε > 0) (∃ δ > 0) (∀x ∈ B) (∀ y ∈ G¬q(δ)) ρ(g(x), f(x, y)) < ε. (5)
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Usually, the set B in formulas (4) and (5) is a deleted neighborhood of p in
X , e.g.,

B = G¬p(r), or B = X − {p}.

Assume (4) for such a B, so

lim
y→q

f(x, y) = g(x) exists for each x ∈ B.

If, in addition,

lim
x→p

g(x) = s

exists, we call s the iterated limit of f at (p, q) (first in y, then in x), denoted

lim
x→p

lim
y→q

f(x, y).

This limit is obtained by first letting y → q (with x fixed) and then letting
x→ p. Quite similarly, we define

lim
y→q

lim
x→p

f(x, y).

In general, the two iterated limits (if they exist) are different , and their
existence does not imply that of the double limit (2), let alone (3), nor does it
imply the equality of all these limits. (See Problems 4ff below.) However, we
have the following theorem.

Theorem 2 (Osgood). Let (T, ρ′) be complete. Assume the existence of the

following limits of the function f : X × Y → T :

(i) lim
y→q

f(x, y) = g(x) (uniformly for x ∈ X − {p}) and

(ii) lim
x→p

f(x, y) = h(y) for y ∈ Y − {q}.1

Then the double limit and the two iterated limits of f at (p, q) exist and all

three coincide.

Proof. Let ε > 0. By our assumption (i), there is a δ > 0 such that

(∀x ∈ X − {p}) (∀ y ∈ G¬q(δ)) ρ(g(x), f(x, y)) <
ε

4
(cf. (5)). (5′)

Now take any y′, y′′ ∈ G¬q(δ). By assumption (ii), there is an x′ ∈ X −{p}
so close to p that

ρ(h(y′), f(x′, y′)) <
ε

4
and ρ(h(y′′), f(x′, y′′)) <

ε

4
. (Why?)

1 Actually, it suffices to assume the existence of the limits (i) and (ii) for x in some G¬p(r)

and y in some G¬q(r). Of course, it does not matter which of the two limits is uniform.
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Hence, using (5′) and the triangle law (repeatedly), we obtain for such y′, y′′

ρ(h(y′), h(y′′)) ≤ ρ(h(y′), f(x′, y′)) + ρ(f(x′, y′), g(x′))

+ ρ(g(x′), f(x′, y′′)) + ρ(f(x′, y′′), h(y′′))

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

It follows that the function h satisfies the Cauchy criterion of Theorem 2 in

§2. (It does apply since T is complete.) Thus limy→q h(y) exists , and, by
assumption (ii), it equals lim

y→q
lim
x→p

f(x, y) (which therefore exists).

Let then H = lim
y→q

h(y). With δ as above, fix some y0 ∈ G¬q(δ) so close to q
that

ρ(h(y0), H) <
ε

4
.

Also, using assumption (ii), choose a δ′ > 0 (δ′ ≤ δ) such that

ρ(h(y0), f(x, y0)) <
ε

4
for x ∈ G¬p(δ

′).

Combining with (5′), obtain (∀x ∈ G¬p(δ
′))

ρ(H, g(x)) ≤ ρ(H, h(y0)) + ρ(h(y0), f(x, y0)) + ρ(f(x, y0), g(x)) <
3ε

4
. (6)

Thus
(∀x ∈ G¬p(δ

′)) ρ(H, g(x)) < ε.

Hence limx→p g(x) = H, i.e., the second iterated limit, lim
x→p

lim
y→q

f(x, y), likewise
exists and equals H.

Finally, with the same δ′ ≤ δ, we combine (6) and (5′) to obtain

(∀x ∈ G¬p(δ
′)) (∀ y ∈ G¬q(δ

′))

ρ(H, f(x, y)) ≤ ρ(H, g(x)) + ρ(g(x), f(x, y)) <
3ε

4
+
ε

4
= ε.

Hence the double limit (2) also exists and equals H. �

Note 2. The same proof works also with f restricted to (X−{p})×(Y −{q})
so that the “lines” x = p and y = q are excluded from Df . In this case,
formulas (2) and (3) mean the same; i.e.,

lim
x→p
y→q

f(x, y) = lim
(x, y)→(p, q)

f(x, y).

Note 3. In Theorem 2, we may take E∗ (suitably metrized) for X or Y
or T . Then the theorem also applies to limits at ±∞, and infinite limits. We
may also take X = Y = N ∪{+∞} (the naturals together with +∞), with the
same E∗-metric, and consider limits at p = q = +∞. Moreover, by Note 2, we
may restrict f to N × N , so that f : N × N → T becomes a double sequence
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(Chapter 1, §9). Writing m and n for x and y, and umn for f(x, y), we then
obtain Osgood’s theorem for double sequences (also called the Moore–Smith

theorem) as follows.

Theorem 2′. Let {umn} be a double sequence in a complete space (T, ρ′). If

lim
n→∞

umn = qm exists for each m

and if

lim
m→∞

umn = pn (uniformly in n) likewise exists ,

then the double limit and the two iterated limits of {umn} exist and

lim
m→∞
n→∞

umn = lim
n→∞

lim
m→∞

umn = lim
m→∞

lim
n→∞

umn.

Here the assumption that limm→∞ umn = pn (uniformly in n) means, by
(5), that

(∀ ε > 0) (∃ k) (∀n) (∀m > k) ρ(umn, pn) < ε. (7)

Similarly, the statement “ lim
m→∞
n→∞

umn = s” (see (2)) is tantamount to

(∀ ε > 0) (∃ k) (∀m, n > k) ρ(umn, s) < ε. (8)

Note 4. Given any sequence {xm} ⊆ (S, ρ), we may consider the double
limit lim

m→∞
n→∞

ρ(xm, xn) in E
1. By using (8), one easily sees that

lim
m→∞
n→∞

ρ(xm, xn) = 0

iff

(∀ ε > 0) (∃ k) (∀m, n > k) ρ(xm, xn) < ε,

i.e., iff {xm} is a Cauchy sequence. Thus Cauchy sequences are those for which

lim
m→∞
n→∞

ρ(xm, xn) = 0.

Theorem 3. In every metric space (S, ρ), the metric ρ : (S × S) → E1 is a

continuous function on the product space S × S.
Proof. Fix any (p, q) ∈ S × S. By Theorem 1 of §2, ρ is continuous at (p, q)
iff

ρ(xm, ym)→ ρ(p, q) whenever (xm, ym)→ (p, q),

i.e., whenever xm → p and ym → q. However, this follows by Theorem 4 in
Chapter 3, §15. Thus continuity is proved. �
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Problems on Double Limits and Product Spaces

1. Prove Theorem 1(i). Prove Theorem 1(ii) for both choices of ρ, as sug-
gested.

2. Formulate Definitions 2 and 3 for the cases

(i) p = q = s = +∞;

(ii) p = +∞, q ∈ E1, s = −∞;

(iii) p ∈ E1, q = s = −∞; and

(iv) p = q = s = −∞.

3. Prove Theorem 2′ from Theorem 2 using Theorem 1 of §2. Give a direct
proof as well.

4. Define f : E2 → E1 by

f(x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and f(0, 0) = 0;

see §1, Example (g). Show that

lim
y→0

lim
x→0

f(x, y) = 0 = lim
x→0

lim
y→0

f(x, y),

but

lim
x→0
y→0

f(x, y) does not exist.

Explain the apparent failure of Theorem 2.

4′. Define f : E2 → E1 by

f(x, y) = 0 if xy = 0 and f(x, y) = 1 otherwise.

Show that f satisfies Theorem 2 at (p, q) = (0, 0), but

lim
(x, y)→(p, q)

f(x, y)

does not exist.

5. Do Problem 4, with f defined as in Problems 9 and 10 of §3.
6. Define f as in Problem 11 of §3. Show that for (c), we have

lim
(x, y)→(0, 0)

f(x, y) = lim
x→0
y→0

f(x, y) = lim
x→0

lim
y→0

f(x, y) = 0,

but lim
y→0

lim
x→0

f(x, y) does not exist; for (d),

lim
y→0

lim
x→0

f(x, y) = 0,
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but the iterated limits do not exist; and for (e), lim
(x, y)→(0, 0)

f(x, y) fails
to exist, but

lim
x→0
y→0

f(x, y) = lim
y→0

lim
x→0

f(x, y) = lim
x→0

lim
y→0

f(x, y) = 0.

Give your comments.

7. Find (if possible) the ordinary, the double, and the iterated limits of f
at (0, 0) assuming that f(x, y) is given by one of the expressions below,
and f is defined at those points of E2 where the expression has sense.

(i)
x2

x2 + y2
; (ii)

y sinxy

x2 + y2
;

(iii)
x+ 2y

x− y ; (iv)
x3y

x6 + y2
;

(v)
x2 − y2
x2 + y2

; (vi)
x5 + y4

(x2 + y2)2
;

(vii)
y + x · 2−y2

4 + x2
; (viii)

sinxy

sinx · sin y .

8. Solve Problem 7 with x and y tending to +∞.

9. Consider the sequence umn in E1 defined by

umn =
m+ 2n

m+ n
.

Show that

lim
m→∞

lim
n→∞

umn = 2 and lim
n→∞

lim
m→∞

umn = 1,

but the double limit fails to exist. What is wrong here? (See Theo-
rem 2′.)

10. Prove Theorem 2, with (i) replaced by the weaker assumption (“subuni-
form limit”)

(∀ ε > 0) (∃ δ > 0) (∀x ∈ G¬p(δ)) (∀ y ∈ G¬q(δ)) ρ(g(x), f(x, y)) < ε

and with iterated limits defined by

s = lim
x→p

lim
y→q

f(x, y)

iff (∀ ε > 0)

(∃ δ′ > 0) (∀x ∈ G¬p(δ
′)) (∃ δ′′x > 0) (∀ y ∈ G¬q(δ

′′
x)) ρ(f(x, y), s) < ε.



226 Chapter 4. Function Limits and Continuity

11. Does the continuity of f on X × Y imply the existence of (i) iterated
limits? (ii) the double limit?
[Hint: See Problem 6.]

12. Show that the standard metric in E1 is equivalent to ρ′ of Problem 7 in
Chapter 3, §11.

13. Define products of n spaces and prove Theorem 1 for such product
spaces.

14. Show that the standard metric in En is equivalent to the product metric
for En treated as a product of n spaces E1. Solve a similar problem for
Cn.
[Hint: Use Problem 13.]

15. Prove that {(xm, ym)} is a Cauchy sequence in X × Y iff {xm} and
{ym} are Cauchy. Deduce that X × Y is complete iff X and Y are.

16. Prove that X × Y is compact iff X and Y are.
[Hint: See the proof of Theorem 2 in Chapter 3, §16, for E2.]

17. (i) Prove the uniform continuity of projection maps P1 and P2 on
X × Y , given by P1(x, y) = x and P2(x, y) = y.

(ii) Show that for each open set G in X × Y , P1[G] is open in X and
P2[G] is open in Y .
[Hint: Use Corollary 1 of Chapter 3, §12.]

(iii) Disprove (ii) for closed sets by a counterexample.
[Hint: Let X × Y = E2. Let G be the hyperbola xy = 1. Use Theorem 4 of
Chapter 3, §16 to prove that G is closed.]

18. Prove that if X × Y is connected, so are X and Y .
[Hint: Use Theorem 3 of §10 and the projection maps P1 and P2 of Problem 17.]

19. Prove that if X and Y are connected, so is X × Y under the product
metric.
[Hint: Using suitable continuous maps and Theorem 3 in §10, show that any two

“lines” x = p and y = q are connected sets in X × Y . Then use Lemma 1 and
Problem 10 in §10.]

20. Prove Theorem 2 under the weaker assumptions stated in footnote 1.

21. Prove the following:

(i) If
g(x) = lim

y→q
f(x, y) and H = lim

x→p
y→q

f(x, y)

exist for x ∈ G¬p(r) and y ∈ G¬q(r), then

lim
x→p

lim
y→q

f(x, y) = H.
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(ii) If the double limit and one iterated limit exist, they are necessarily
equal.

22. In Theorem 2, add the assumptions

h(y) = f(p, y) for y ∈ Y − {q}
and

g(x) = f(x, q) for x ∈ X − {p}.
Then show that

lim
(x, y)→(p, q)

f(x, y)

exists and equals the double limits.
[Hint: Show that here (5) holds also for x = p and y ∈ G¬q(δ) and for y = q and

x ∈ G¬p(δ).]

23. From Problem 22 prove that a function f : (X × Y ) → T is continuous
at (p, q) if

f(p, y) = lim
x→p

f(x, y) and f(x, q) = lim
y→q

f(x, y)

for (x, y) in some G(p, q)(δ), and at least one of these limits is uniform.

§12. Sequences and Series of Functions

I. Let
f1, f2, . . . , fm, . . .

be a sequence of mappings from a common domain A into a metric space
(T, ρ′).1 For each (fixed) x ∈ A, the function values

f1(x), f2(x), . . . , fm(x), . . .

form a sequence of points in the range space (T, ρ′). Suppose this sequence
converges for each x in a set B ⊆ A. Then we can define a function f : B → T
by setting

f(x) = lim
m→∞

fm(x) for all x ∈ B.

This means that

(∀ ε > 0) (∀x ∈ B) (∃ k) (∀m > k) ρ′(fm(x), f(x)) < ε. (1)

Here k depends not only on ε but also on x, since each x yields a different

sequence {fm(x)}. However, in some cases (resembling uniform continuity), k

1 We briefly denote such a sequence by fm : A → (T, ρ′).
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depends on ε only ; i.e., given ε > 0, one and the same k fits all x in B. In
symbols, this is indicated by changing the order of quantifiers, namely,

(∀ ε > 0) (∃ k) (∀x ∈ B) (∀m > k) ρ′(fm(x), f(x)) < ε. (2)

Of course, (2) implies (1), but the converse fails (see examples below). This
suggests the following definitions.

Definition 1.

With the above notation, we call f the pointwise limit of a sequence of
functions fm on a set B (B ⊆ A) iff

f(x) = lim
m→∞

fm(x) for all x in B;

i.e., formula (1) holds. We then write

fm → f (pointwise) on B.

In case (2), we call the limit uniform (on B) and write

fm → f (uniformly) on B.

II. If the fm are real, complex, or vector valued (§3), we can also define
sm =

∑m
k=1 fk (= sum of the first m functions) for each m, so

(∀x ∈ A) (∀m) sm(x) =
m
∑

k=1

fk(x).

The sm form a new sequence of functions on A. The pair of sequences

({fm}, {sm})
is called the (infinite) series with general term fm; sm is called its mth partial

sum. The series is often denoted by symbols like
∑

fm,
∑

fm(x), etc.

Definition 2.

The series
∑

fm on A is said to converge (pointwise or uniformly) to a
function f on a set B ⊆ A iff the sequence {sm} of its partial sums does
as well.

We then call f the sum of the series and write

f(x) =

∞
∑

k=1

fk(x) or f =

∞
∑

m=1

fm = lim sm

(pointwise or uniformly) on B.

Note that series of constants ,
∑

cm, may be treated as series of constant
functions fm, with fm(x) = cm for x ∈ A.
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If the range space is E1 or E∗, we also consider infinite limits,

lim
m→∞

fm(x) = ±∞.

However, a series for which

∞
∑

m=1

fm = lim sm

is infinite for some x is regarded as divergent (i.e., not convergent) at that x.

III. Since convergence of series reduces to that of sequences {sm}, we shall
first of all consider sequences. The following is a simple and useful test for
uniform convergence of sequences fm : A→ (T, ρ′).

Theorem 1. Given a sequence of functions fm : A→ (T, ρ′), let B ⊆ A and

Qm = sup
x∈B

ρ′(fm(x), f(x)).

Then fm → f (uniformly on B) iff Qm → 0.

Proof. If Qm → 0, then by definition

(∀ ε > 0) (∃ k) (∀m > k) Qm < ε.

However, Qm is an upper bound of all distances ρ′(fm(x), f(x)), x ∈ B. Hence
(2) follows.

Conversely, if

(∀x ∈ B) ρ′(fm(x), f(x)) < ε,

then

ε ≥ sup
x∈B

ρ′(fm(x), f(x)),

i.e., Qm ≤ ε. Thus (2) implies

(∀ ε > 0) (∃ k) (∀m > k) Qm ≤ ε

and Qm → 0. �

Examples.

(a) We have

lim
n→∞

xn = 0 if |x| < 1 and lim
n→∞

xn = 1 if x = 1.

Thus, setting fn(x) = xn, consider B = [0, 1] and C = [0, 1).

We have fn → 0 (pointwise) on C and fn → f (pointwise) on B, with
f(x) = 0 for x ∈ C and f(1) = 1. However, the limit is not uniform on
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C, let alone on B. Indeed,

Qn = sup
x∈C
|fn(x)− f(x)| = 1 for each n.2

Thus Qn does not tend to 0, and uniform convergence fails by Theorem 1.

(b) In Example (a), let D = [0, a], 0 < a < 1. Then fn → f (uniformly) on

D because, in this case,

Qn = sup
x∈D
|fn(x)− f(x)| = sup

x∈D
|xn − 0| = an → 0.

(c) Let

fn(x) = x2 +
sinnx

n
, x ∈ E1.

For a fixed x,

lim
n→∞

fn(x) = x2 since
∣

∣

∣

sinnx

n

∣

∣

∣
≤ 1

n
→ 0.

Thus, setting f(x) = x2, we have fn → f (pointwise) on E1. Also,

|fn(x)− f(x)| =
∣

∣

∣

sinnx

n

∣

∣

∣
≤ 1

n
.

Thus (∀n) Qn ≤ 1
n → 0. By Theorem 1, the limit is uniform on all of

E1.

Note 1. Example (a) shows that the pointwise limit of a sequence of con-
tinuous functions need not be continuous. Not so for uniform limits, as the
following theorem shows.

Theorem 2. Let fm : A→ (T, ρ′) be a sequence of functions on A ⊆ (S, ρ). If
fm → f (uniformly) on a set B ⊆ A, and if the fm are relatively (or uniformly)
continuous on B, then the limit function f has the same property .

Proof. Fix ε > 0. As fm → f (uniformly) on B, there is a k such that

(∀x ∈ B) (∀m ≥ k) ρ′(fm(x), f(x)) <
ε

4
. (3)

Take any fm with m > k, and take any p ∈ B. By continuity, there is δ > 0,
with

(∀x ∈ B ∩Gp(δ)) ρ′(fm(x), fm(p)) <
ε

4
. (4)

2 Here

Qn = sup
x∈C

|xn − 0| = sup
0≤x<1

xn = lim
x→1

xn = 1

by Theorem 1 of §5, because xn increases with x ր 1, i.e., each fn is a monotone function

on C. Note that all fn are continuous on B = [0, 1], but f = lim fn is discontinuous at 1.
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Also, setting x = p in (3) gives ρ′(fm(p), f(p)) <
ε

4
. Combining this with

(4) and (3), we obtain (∀x ∈ B ∩Gp(δ))

ρ′(f(x), f(p)) ≤ ρ′(f(x), fm(x)) + ρ′(fm(x), fm(p)) + ρ′(fm(p), f(p))

<
ε

4
+
ε

4
+
ε

4
< ε.

We thus see that for p ∈ B,

(∀ ε > 0) (∃ δ > 0) (∀x ∈ B ∩Gp(δ)) ρ′(f(x), f(p)) < ε,

i.e., f is relatively continuous at p (over B), as claimed.

Quite similarly, the reader will show that f is uniformly continuous if the
fn are. �

Note 2. A similar proof also shows that if fm → f (uniformly) on B, and
if the fm are relatively continuous at a point p ∈ B, so also is f .

Theorem 3 (Cauchy criterion for uniform convergence). Let (T, ρ′) be com-

plete. Then a sequence fm : A → T , A ⊆ (S, ρ), converges uniformly on a set

B ⊆ A iff

(∀ ε > 0) (∃ k) (∀x ∈ B) (∀m,n > k) ρ′(fm(x), fn(x)) < ε. (5)

Proof. If (5) holds then, for any (fixed) x ∈ B, {fm(x)} is a Cauchy sequence

of points in T , so by the assumed completeness of T , it has a limit f(x). Thus
we can define a function f : B → T with

f(x) = lim
m→∞

fm(x) on B.

To show that fm → f (uniformly) on B, we use (5) again. Keeping ε, k,
x, and m temporarily fixed, we let n → ∞ so that fn(x) → f(x). Then by
Theorem 4 of Chapter 3, §15, ρ′(fm(x), fn(x))→ p′(f(x), fm(x)). Passing to
the limit in (5), we thus obtain (2).

The easy proof of the converse is left to the reader (cf. Chapter 3, §17,
Theorem 1). �

IV. If the range space (T, ρ′) is E1, C, or En (∗or another normed space),
the standard metric applies. In particular, for series we have

ρ′(sm(x), sn(x)) = |sn(x)− sm(x)|

=

∣

∣

∣

∣

n
∑

k=1

fk(x)−
m
∑

k=1

fk(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

n
∑

k=m+1

fk(x)

∣

∣

∣

∣

for m < n.
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Replacing here m by m− 1 and applying Theorem 3 to the sequence {sm}, we
obtain the following result.

Theorem 3′. Let the range space of fm, m = 1, 2, . . . , be E1, C, or En (∗or
another complete normed space). Then the series

∑

fm converges uniformly

on B iff

(∀ ε > 0) (∃ q) (∀n > m > q) (∀x ∈ B)

∣

∣

∣

∣

n
∑

k=m

fk(x)

∣

∣

∣

∣

< ε. (6)

Similarly, via {sm}, Theorem 2 extends to series of functions. (Observe that
the sm are continuous if the fm are.) Formulate it!

V. If
∑∞

m=1 fm exists on B, one may arbitrarily “group” the terms, i.e., re-
place every several consecutive terms by their sum. This property is stated
more precisely in the following theorem.

Theorem 4. Let

f =
∞
∑

m=1

fm (pointwise) on B.3

Let m1 < m2 < · · · < mn < · · · in N , and define

g1 = sm1
, gn = smn

− smn−1
, n > 1.

(Thus gn+1 = fmn+1 + · · ·+ fmn+1
.) Then

f =
∞
∑

n=1

gn (pointwise) on B as well ;

similarly for uniform convergence.

Proof. Let

s′n =

n
∑

k=1

gk, n = 1, 2, . . . .

Then s′n = smn
(verify!), so {s′n} is a subsequence, {smn

}, of {sm}. Hence
sm → f (pointwise) implies s′n → f (pointwise); i.e.,

f =
∞
∑

n=1

gn (pointwise).

For uniform convergence, see Problem 13 (cf. also Problem 19). �

3 Here we allow also infinite values for f(x) if the fm are real .
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Problems on Sequences and Series of Functions

1. Complete the proof of Theorems 2 and 3.

2. Complete the proof of Theorem 4.

2′. In Example (a), show that fn → +∞ (pointwise) on (1, +∞), but not
uniformly so. Prove, however, that the limit is uniform on any interval
[a, +∞), a > 1. (Define “lim fn = +∞ (uniformly)” in a suitable
manner.)

3. Using Theorem 1, discuss lim
n→∞

fn on B and C (as in Example (a)) for
each of the following.

(i) fn(x) =
x

n
; B = E1; C = [a, b] ⊂ E1.

(ii) fn(x) =
cosx+ nx

n
; B = E1.

(iii) fn(x) =

n
∑

k=1

xk; B = (−1, 1); C = [−a, a], |a| < 1.

(iv) fn(x) =
x

1 + nx
; C = [0, +∞).

[Hint: Prove that Qn = sup
1

n

(

1− 1

nx+ 1

)

=
1

n
.]

(v) fn(x) = cosn x; B =
(

0,
π

2

)

, C =
[1

4
,
π

2

)

;

(vi) fn(x) =
sin2 nx

1 + nx
; B = E1.

(vii) fn(x) =
1

1 + xn
; B = [0, 1); C = [0, a], 0 < a < 1.

4. Using Theorems 1 and 2, discuss lim fn on the sets given below, with
fn(x) as indicated and 0 < a < +∞. (Calculus rules for maxima and
minima are assumed known in (v), (vi), and (vii).)

(i)
nx

1 + nx
; [a, +∞), (0, a).

(ii)
nx

1 + n3x3
; (a, +∞), (0, a).

(iii) n
√
cosx;

(

0,
π

2

)

, [0, a], a <
π

2
.

(iv)
x

n
; (0, a), (0, +∞).

(v) xe−nx; [0, +∞); E1.

(vi) nxe−nx; [a, +∞), (0, +∞).

(vii) nxe−nx2

; [a, +∞), (0, +∞).
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[Hint: lim fn cannot be uniform if the fn are continuous on a set, but lim fn is not.

For (v), fn has a maximum at x = 1
n
; hence find Qn.]

5. Define fn:E
1 → E1 by

fn(x) =











nx if 0 ≤ x ≤ 1
n ,

2− nx if 1
n
< x ≤ 2

n
, and

0 otherwise.

Show that all fn and lim fn are continuous on each interval (−a, a),
though lim fn exists only pointwise. (Compare this with Theorem 3.)

6. The function f found in the proof of Theorem 3 is uniquely determined.
Why?

⇒7. Prove that if the functions fn are constant on B, or if B is finite, then
a pointwise limit of the fn on B is also uniform; similarly for series.

⇒8. Prove that if fn → f (uniformly) on B and if C ⊆ B, then fn → f
(uniformly) on C as well.

⇒9. Show that if fn → f (uniformly) on each of B1, B2, . . . , Bm, then fn →
f (uniformly) on

⋃m
k=1Bk.

Disprove it for infinite unions by an example. Do the same for series.

⇒10. Let fn → f (uniformly) on B. Prove the equivalence of the following
statements:

(i) Each fn, from a certain n onward, is bounded on B.

(ii) f is bounded on B.

(iii) The fn are ultimately uniformly bounded on B; that is, all function
values fn(x), x ∈ B, from a certain n = n0 onward, are in one and
the same globe Gq(K) in the range space.

For real, complex, and vector-valued functions, this means that

(∃K ∈ E1) (∀n ≥ n0) (∀x ∈ B) |fn(x)| < K.

⇒11. Prove for real, complex, or vector-valued functions fn, f , gn, g that if

fn → f and gn → g (uniformly) on B,

then also

fn ± gn → f ± g (uniformly) on B.

⇒12. Prove that if the functions fn and gn are real or complex (or if the gn
are vector valued and the fn are scalar valued), and if

fn → f and gn → g (uniformly) on B,
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then

fngn → fg (uniformly) on B

provided that either f and g or the fn and gn are bounded on B (at
least from some n onward); cf. Problem 11.

Disprove it for the case where only one of f and g is bounded.
[Hint: Let fn(x) = x and gn(x) = 1/n (constant) on B = E1. Give some other

examples.]

⇒13. Prove that if {fn} tends to f (pointwise or uniformly), so does each
subsequence {fnk

}.
⇒14. Let the functions fn and gn and the constants a and b be real or complex

(or let a and b be scalars and fn and gn be vector valued). Prove that if

f =
∞
∑

n=1

fn and g =
∞
∑

n=1

gn (pointwise or uniformly),

then

af + bg =

∞
∑

n=1

(afn + bgn) in the same sense.

(Infinite limits are excluded.)

In particular,

f ± g =

∞
∑

n=1

(fn ± gn) (rule of termwise addition)

and

af =
∞
∑

n=1

afn.

[Hint: Use Problems 11 and 12.]

⇒15. Let the range space of the functions fm and g be En (∗or Cn), and let
fm = (fm1, fm2, . . . , fmn), g = (g1, . . . , gn); see §3, part II. Prove that

fm → g (pointwise or uniformly)

iff each component fmk of fm converges (in the same sense) to the
corresponding component gk of g; i.e.,

fmk → gk (pointwise or uniformly), k = 1, 2, . . . , n.

Similarly,

g =
∞
∑

m=1

fm
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iff

(∀ k ≤ n) gk =
∞
∑

m=1

fmk.

(See Chapter 3, §15, Theorem 2).

⇒16. From Problem 15 deduce for complex functions that fm → g (pointwise
or uniformly) iff the real and imaginary parts of the fm converge to those
of g (pointwise or uniformly). That is, (fm)re → gre and (fm)im → gim;
similarly for series.

⇒17. Prove that the convergence or divergence (pointwise or uniformly) of a
sequence {fm}, or a series

∑

fm, of functions is not affected by deleting
or adding a finite number of terms.

Prove also that limm→∞ fm (if any) remains the same, but
∑∞

m=1 fm
is altered by the difference between the added and deleted terms.

⇒18. Show that the geometric series with ratio r,

∞
∑

n=0

arn (a, r ∈ E1 or a, r ∈ C),

converges iff |r| < 1, in which case

∞
∑

n=0

arn =
a

1− r

(similarly if a is a vector and r is a scalar). Deduce that
∑

(−1)n
diverges. (See Chapter 3, §15, Problem 19.)

19. Theorem 4 shows that a convergent series does not change its sum if
every several consecutive terms are replaced by their sum. Show by an
example that the reverse process (splitting each term into several terms)
may affect convergence.
[Hint: Consider

∑
an with an = 0. Split an = 1 − 1 to obtain a divergent series:

∑
(−1)n−1, with partial sums 1, 0, 1, 0, 1, . . . .]

20. Find

∞
∑

n=1

1

n(n+ 1)
.

[Hint: Verify: 1
n(n+1)

= 1
n
− 1

n+1
. Hence find sn, and let n → ∞.]

21. The functions fn : A→ (T, ρ′), A ⊆ (S, ρ) are said to be equicontinuous
at p ∈ A iff

(∀ ε > 0) (∃ δ > 0) (∀n) (∀x ∈ A ∩Gp(δ)) ρ′(fn(x), fn(p)) < ε.

Prove that if so, and if fn → f (pointwise) on A, then f is continuous
at p.
[Hint: “Imitate” the proof of Theorem 2.]
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§13. Absolutely Convergent Series. Power Series

I. A series
∑

fm is said to be absolutely convergent on a set B iff the
series

∑ |fm(x)| (briefly, ∑ |fm|) of the absolute values of fm converges on B
(pointwise or uniformly). Notation:

f =
∑

|fm| (pointwise or uniformly) on B.

In general,
∑

fm may converge while
∑ |fm| does not (see Problem 12). In

this case, the convergence of
∑

fm is said to be conditional . (It may be absolute
for some x and conditional for others.) As we shall see, absolute convergence
ensures the commutative law for series, and it implies ordinary convergence

(i.e., that of
∑

fm), if the range space of the fm is complete.

Note 1. Let

σm =

m
∑

k=1

|fk|.

Then

σm+1 = σm + |fm+1| ≥ σm on B;1

i.e., the σm(x) form a monotone sequence for each x ∈ B. Hence by Theorem 3
of Chapter 3, §15,

lim
m→∞

σm =
∞
∑

m=1

|fm| always exists in E∗;

∑ |fm| converges iff
∑∞

m=1 |fm| < +∞.

For the rest of this section we consider only complete range spaces.

Theorem 1. Let the range space of the functions fm (all defined on A) be E1,
C, or En (∗or another complete normed space). Then for B ⊆ A, we have the

following :

(i) If
∑ |fm| converges on B (pointwise or uniformly), so does

∑

fm itself .
Moreover ,

∣

∣

∣

∣

∞
∑

m=1

fm

∣

∣

∣

∣

≤
∞
∑

m=1

|fm| on B.

(ii) (Commutative law for absolute convergence.) If
∑ |fm| converges (point-

wise or uniformly) on B, so does any series
∑ |gm| obtained by rearrang-

1 We write “f ≤ g on B” for “(∀ x ∈ B) f(x) ≤ g(x);” similarly for such formulas as

“f = g on B,” “|f | < +∞ on B,” “f = c (constant) on B,” etc.
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ing the fm in any different order .2 Moreover,

∞
∑

m=1

fm =
∞
∑

m=1

gm (both exist on B).

Note 2. More precisely, a sequence {gm} is called a rearrangement of {fm}
iff there is a map u : N ←→

onto
N such that

(∀m ∈ N) gm = fu(m).

Proof.

(i) If
∑ |fm| converges uniformly on B, then by Theorem 3′ of §12,

(∀ ε > 0) (∃ k) (∀n > m > k) (∀x ∈ B)

ε >
n
∑

i=m

|fi(x)| ≥
∣

∣

∣

∣

n
∑

i=m

fi(x)

∣

∣

∣

∣

(triangle law). (1)

However, this shows that
∑

fn satisfies Cauchy’s criterion (6) of §12, so
it converges uniformly on B.

Moreover, letting n→∞ in the inequality
∣

∣

∣

∣

n
∑

m=1

fm

∣

∣

∣

∣

≤
n
∑

m=1

|fm|,

we get
∣

∣

∣

∣

∞
∑

m=1

fm

∣

∣

∣

∣

≤
∞
∑

m=1

|fm| < +∞ on B, as claimed.

By Note 1, this also proves the theorem for pointwise convergence.

(ii) Again, if
∑ |fm| converges uniformly on B, the inequalities (1) hold for

all fi except (possibly) for f1, f2, . . . , fk. Now when
∑

fm is rearranged ,
these k functions will be renumbered as certain gi. Let q be the largest
of their new subscripts i. Then all of them (and possibly some more
functions) are among g1, g2, . . . , gq (so that q ≥ k). Hence if we exclude
g1, . . . , gq, the inequalities (1) will certainly hold for the remaining gi
(i > q). Thus

(∀ ε > 0) (∃ q) (∀n > m > q) (∀x ∈ B) ε >

n
∑

i=m

|gi| ≥
∣

∣

∣

∣

n
∑

i=m

gi

∣

∣

∣

∣

. (2)

By Cauchy’s criterion, then, both
∑

gi and
∑ |gi| converge uniformly.

2 This fails for conditional convergence. See Problem 17.



§13. Absolutely Convergent Series. Power Series 239

Moreover, by construction, the two partial sums

sk =
k

∑

i=1

fi and s
′
q =

q
∑

i=1

gi

can differ only in those terms whose original subscripts (before the re-
arrangement) were > k. By (1), however, any finite sum of such terms is

less than ε in absolute value. Thus |s′q − sk| < ε.

This argument holds also if k in (1) is replaced by a larger integer.
(Then also q increases, since q ≥ k as noted above.) Thus we may let
k → +∞ (hence also q → +∞) in the inequality |s′q − sk| < ε, with ε
fixed. Then

sk →
∞
∑

m=1

fm and s′q →
∞
∑

i=1

gi,

so
∣

∣

∣

∣

∞
∑

i=1

gi −
∞
∑

m=1

fm

∣

∣

∣

∣

≤ ε.

Now let ε→ 0 to get

∞
∑

i=1

gi =

∞
∑

m=1

fm;

similarly for pointwise convergence. �

II. Next, we develop some simple tests for absolute convergence.

Theorem 2 (comparison test). Suppose

(∀m) |fm| ≤ |gm| on B.

Then

(i)
∞
∑

m=1

|fm| ≤
∞
∑

m=1

|gm| on B;

(ii)
∞
∑

m=1

|fm| = +∞ implies

∞
∑

m=1

|gm| = +∞ on B; and

(iii) If
∑

|gm| converges (pointwise or uniformly) on B, so does
∑

|fm|.

Proof. Conclusion (i) follows by letting n→∞ in

n
∑

m=1

|fm| ≤
n
∑

m=1

|gm|.

In turn, (ii) is a direct consequence of (i).
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Also, by (i),

∞
∑

m=1

|gm| < +∞ implies
∞
∑

m=1

|fm| < +∞.

This proves (iii) for the pointwise case (see Note 1). The uniform case follows
exactly as in Theorem 1(i) on noting that

n
∑

k=m

|fk| ≤
n
∑

k=m

|gk|

and that the functions |fk| and |gk| are real (so Theorem 3′ in §12 does ap-
ply). �

Theorem 3 (Weierstrass “M -test”). If
∑

Mn is a convergent series of real

constants Mn ≥ 0 and if

(∀n) |fn| ≤Mn

on a set B, then
∑ |fn| converges uniformly on B.3 Moreover ,

∞
∑

n=1

|fn| ≤
∞
∑

n=1

Mn on B.

Proof. Use Theorem 2 with |gn| =Mn, noting that
∑ |gn| converges uniformly

since the |gn| are constant (§12, Problem 7). �

Examples.

(a) Let

fn(x) =
(1

2
sinx

)n

on E1.

Then

(∀n) (∀x ∈ E1) |fn(x)| ≤ 2−n,

and
∑

2−n converges (geometric series with ratio 1
2 ; see §12, Problem 18).

Thus, settingMn = 2−n in Theorem 3, we infer that the series
∑ | 12 sinx|n

converges uniformly on E1, as does
∑

( 12 sinx)
n; moreover,

∞
∑

n=1

|fn| ≤
∞
∑

n=1

2−n = 1.

3 So does
∑

fn itself if the range space is as in Theorem 1. Note that for series with

positive terms, absolute and ordinary convergence coincide.
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Theorem 4 (necessary condition of convergence). If
∑

fm or
∑ |fm| con-

verges on B (pointwise or uniformly), then |fm| → 0 on B (in the same sense).

Thus a series cannot converge unless its general term tends to 0 (respec-
tively, 0̄).

Proof. If
∑

fm = f , say, then sm → f and also sm−1 → f . Hence

sm − sm−1 → f − f = 0̄.

However, sm − sm−1 = fm. Thus fm → 0̄, and |fm| → 0, as claimed.

This holds for pointwise and uniform convergence alike (see Problem 14 in
§12). �

Caution: The condition |fm| → 0 is necessary but not sufficient . Indeed,
there are divergent series with general term tending to 0, as we show next.

Examples (continued).

(b)
∞
∑

n=1

1

n
= +∞ (the so-called harmonic series).

Indeed, by Note 1,

∞
∑

n=1

1

n
exists (in E∗),

so Theorem 4 of §12 applies. We group the series as follows:

∑ 1

n
= 1 +

1

2
+

(1

3
+

1

4

)

+
(1

5
+

1

6
+

1

7
+

1

8

)

+
(1

9
+ · · ·+ 1

16

)

+ · · ·

≥ 1

2
+

1

2
+

(1

4
+

1

4

)

+
(1

8
+

1

8
+

1

8
+

1

8

)

+
( 1

16
+ · · ·+ 1

16

)

+ · · · .

Each bracketed expression now equals 1
2 . Thus

∑ 1

n
≥

∑

gm, gm =
1

2
.

As gm does not tend to 0,
∑

gm diverges , i.e.,
∑∞

m=1 gm is infinite, by
Theorem 4. A fortiori, so is

∑∞
n=1

1
n .

Theorem 5 (root and ratio tests). A series of constants
∑

an (|an| 6= 0)
converges absolutely if

lim n
√

|an| < 1 or lim
( |an+1|
|an|

)

< 1.
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It diverges if

lim n
√

|an| > 1 or lim
( |an+1|
|an|

)

> 1.4

It may converge or diverge if

lim n
√

|an| = 1

or if

lim
( |an+1|
|an|

)

≤ 1 ≤ lim
( |an+1|
|an|

)

.

(The an may be scalars or vectors .)

Proof. If lim n
√

|an| < 1, choose r > 0 such that

lim n
√

|an| < r < 1.

Then by Corollary 2 of Chapter 2, §13, n
√

|an| < r for all but finitely many n.
Thus, dropping a finite number of terms (§12, Problem 17), we may assume
that

|an| < rn for all n.

As 0 < r < 1, the geometric series
∑

rn converges. Hence so does
∑ |an| by

Theorem 2.

In the case

lim
( |an+1|
|an|

)

< 1,

we similarly obtain (∃m) (∀n ≥ m) |an+1| < |an|r; hence by induction,

(∀n ≥ m) |an| ≤ |am|rn−m. (Verify!)

Thus
∑ |an| converges, as before.

If lim n
√

|an| > 1, then by Corollary 2 of Chapter 2, §13, |an| > 1 for infinitely
many n. Hence |an| cannot tend to 0, and so

∑

an diverges by Theorem 4.

Similarly, if

lim
( |an+1|
|an|

)

> 1,

then |an+1| > |an| for all but finitely many n, so |an| cannot tend to 0 again.5 �

Note 3. We have

lim
( |an+1|
|an|

)

≤ lim n
√

|an| ≤ lim n
√

|an| ≤ lim
( |an+1|
|an|

)

.6

4 Note that we have “lim”, not “lim” here. However, often “lim” and “lim” coincide. This

is the case when the limit exists (see Chapter 2, §13, Theorem 3).
5 This inference would be false if we only had lim(|an+1|/|an|) > 1. Why?
6 For a proof, use Problem 33 of Chapter 3, §15 with x1 = |a1| and xk+1 = |ak+1|/|ak|.
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Thus

lim
( |an+1|
|an|

)

< 1 implies lim n
√

|an| < 1; and

lim
( |an+1|
|an|

)

> 1 implies lim n
√

|an| > 1.

Hence whenever the ratio test indicates convergence or divergence, so certainly

does the root test . On the other hand, there are cases where the root test yields
a result while the ratio test does not. Thus the root test is stronger (but the
ratio test is often easier to apply).

Examples (continued).

(c) Let an = 2−k if n = 2k − 1 (odd) and an = 3−k if n = 2k (even). Thus

∑

an =
1

21
+

1

31
+

1

22
+

1

32
+

1

23
+

1

33
+

1

24
+

1

34
+ · · · .

Here

lim
(an+1

an

)

= lim
k→∞

3−k

2−k
= 0 and lim

(an+1

an

)

= lim
k→∞

2−k−1

3−k
= +∞,

while

lim n
√
an = lim

2n−1
√
2−n =

1√
2
< 1.7 (Verify!)

Thus the ratio test fails, but the root test proves convergence.

Note 4. The assumption |an| 6= 0 is needed for the ratio test only.

III. Power Series. As an application, we now consider so-called power

series ,
∑

an(x− p)n,

where x, p, an ∈ E1 (C); the an may also be vectors .

Theorem 6. For any power series
∑

an(x − p)n, there is a unique r ∈ E∗

(0 ≤ r ≤ +∞), called its convergence radius, such that the series converges

absolutely for each x with |x−p| < r and does not converge (even conditionally)
if |x− p| > r.8

Specifically,

r =
1

d
, where d = lim n

√

|an| (with r = +∞ if d = 0).

7 Recall that lim and lim are cluster points, hence limits of suitable subsequences. See
Chapter 2, §13, Problem 4 and Chapter 3, §16, Theorem 1.

8 The case |x− p| = r remains open.
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Proof. Fix any x = x0. By Theorem 5, the series
∑

an(x0 − p)n converges

absolutely if lim n
√

|an| |x0 − p| < 1, i.e., if

|x0 − p| < r
(

r =
1

lim n
√

|a|
=

1

d

)

,

and diverges if |x0 − p| > r. (Here we assumed d 6= 0; but if d = 0, the
condition d|x0 − p| < 1 is trivial for any x0, so r = +∞ in this case.) Thus r
is the required radius, and clearly there can be only one such r. (Why?) �

Note 5. If lim
n→∞

|an+1|
|an|

exists, it equals lim
n→∞

n
√

|an|, by Note 3 (for lim and

lim coincide here). In this case, one can use the ratio test to find

d = lim
n→∞

|an+1|
|an|

and hence (if d 6= 0)

r =
1

d
= lim

n→∞
|an|
|an+1|

.

Theorem 7. If a power series
∑

an(x − p)n converges absolutely for some

x = x0 6= p, then
∑ |an(x−p)n| converges uniformly on the closed globe Gp(δ),

δ = |x0−p|. So does
∑

an(x−p)n if the range space is complete (Theorem 1).

Proof. Suppose
∑ |an(x0 − p)n| converges. Let

δ = |x0 − p| and Mn = |an|δn;

thus
∑

Mn converges.

Now if x ∈ Gp(δ), then |x− p| ≤ δ, so

|an(x− p)n| ≤ |an|δn =Mn.

Hence by Theorem 3,
∑ |an(x− p)n| converges uniformly on Gp(δ). �

Examples (continued).

(d) Consider
∑ xn

n!
Here

p = 0 and an =
1

n!
, so

|an|
|an+1|

= n+ 1→ +∞.

By Note 5, then, r = +∞; i.e., the series converges absolutely on all of
E1. Hence by Theorem 7, it converges uniformly on any G0(δ), hence on
any finite interval in E1. (The pointwise convergence is on all of E1.)
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More Problems on Series of Functions

1. Verify Note 3 and Example (c) in detail.

2. Show that the so-called hyperharmonic series of order p,

∑ 1

np
(p ∈ E1),

converges iff p > 1.
[Hint: If p ≤ 1,

∞∑

n=1

1

np
≥

∞∑

n=1

1

n
= +∞ (Example (b)).

If p > 1,

∞∑

n=1

1

np
= 1 +

( 1

2p
+

1

3p

)

+
( 1

4p
+ · · ·+ 1

7p

)

+
( 1

8p
+ · · ·+ 1

15p

)

+ · · ·

≤ 1 +
( 1

2p
+

1

2p

)

+
( 1

4p
+ · · ·+ 1

4p

)

+
( 1

8p
+ · · ·+ 1

8p

)

+ · · ·

=

∞∑

n=0

1

(2p−1)n
,

a convergent geometric series. Explain each step.]

⇒3. Prove the refined comparison test :

(i) If two series of constants,
∑ |an| and

∑ |bn|, are such that the
sequence {|an|/|bn|} is bounded in E1, then

∞
∑

n=1

|bn| < +∞ implies
∞
∑

n=1

|an| < +∞.

(ii) If

0 < lim
n→∞

|an|
|bn|

< +∞,

then
∑ |an| converges if and only if

∑ |bn| does.
What if

lim
n→∞

|an|
|bn|

= +∞?

[Hint: If (∀n) |an|/|bn| ≤ K, then |an| ≤ K|bn|.]

4. Test
∑

an for absolute convergence in each of the following. Use Prob-
lem 3 or Theorem 2 or the indicated references.

(i) an =
n+ 1√
n4 + 1

(take bn =
1

n
);

(ii) an =
cosn√
n3 − 1

(take bn =
1√
n3

; use Problem 2);
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(iii) an =
(−1)n
np

(
√
n+ 1−√n), p ∈ E1;

(iv) an = n5e−n (use Problem 18 of Chapter 3, §15);

(v) an =
2n + n

3n + 1
;

(vi) an =
(−1)n
(logn)q

;n ≥ 2;

(vii) an =
(logn)q

n(n2 + 1)
, q ∈ E1.

[Hint for (vi) and (vii): From Problem 14 in §2, show that

lim
y→+∞

y

(log y)q
= +∞

and hence

lim
n→∞

(log n)q

n
= 0.

Then select bn.]

5. Prove that
∞
∑

n=1

nn

n!
= +∞.

[Hint: Show that nn/n! does not tend to 0.]

6. Prove that lim
n→∞

xn

n!
= 0.

[Hint: Use Example (d) and Theorem 4.]

7. Use Theorems 3, 5, 6, and 7 to show that
∑ |fn| converges uniformly

on B, provided fn(x) and B are as indicated below, with 0 < a < +∞
and b ∈ E1.9 For parts (ix)–(xii), find Mn = maxx∈B |fn(x)| and use
Theorem 3. (Calculus rules for maxima are assumed known.)

(i)
x2n

(2n)!
; [−a, b].

(ii) (−1)n+1 x2n−1

(2n− 1)!
; [−a, b].

(iii)
xn

nn
; [−a, a].

(iv) n3xn; [−a, a] (a < 1).

(v)
sinnx

n2
; B = E1 (use Problem 2).

(vi) e−nx sinnx; [a, +∞).

(vii)
cosnx√
n3 + 1

; B = E1.

9 For power series, do it in two ways and find the radius of convergence.
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(viii) an cosnx, with

∞
∑

n=1

|an| < +∞; B = E1.

(ix) xne−nx; [0, +∞).

(x) xnenx; (−∞, 1
2
].

(xi) (x · log x)n, fn(0) = 0;
[

−3

2
,
3

2

]

.

(xii)
( log x

x

)n

; [1, +∞).

(xiii)
q(q − 1) · · · (q − n+ 1)xn

n!
, q ∈ E1;

[

−1

2
,
1

2

]

.

⇒8. (Summation by parts .) Let fn, hn, and gn be real or complex functions
(or let fn and hn be scalar valued and gn be vector valued). Let fn =
hn − hn−1 (n ≥ 2). Verify that (∀m > n > 1)

m
∑

k=n+1

fkgk =
m
∑

k=n+1

(hk − hk−1)gk

= hmgm − hngn+1 −
m−1
∑

k=n+1

hk(gk+1 − gk).

[Hint: Rearrange the sum.]

⇒9. (Abel’s test .) Let the fn, gn, and hn be as in Problem 8, with
hn =

∑n
i=1 fi. Suppose that

(i) the range space of the gn is complete;

(ii) |gn| → 0 (uniformly) on a set B; and

(iii) the partial sums hn =
∑n

i=1 fi are uniformly bounded on B; i.e.,

(∃K ∈ E1) (∀n) |hn| < K on B.

Then prove that
∑

fkgk converges uniformly on B if
∑ |gn+1−gn| does.

(This always holds if the gn are real and gn ≥ gn+1 on B.)
[Hint: Let ε > 0. Show that

(∃ k) (∀m > n > k)
m∑

i=n+1

|gi+1 − gi| < ε and |gn| < ε on B.

Then use Problem 8 to show that

∣
∣
∣
∣

m∑

i=n+1

figi

∣
∣
∣
∣ < 3Kε.

Apply Theorem 3′ of §12.]



248 Chapter 4. Function Limits and Continuity

⇒ 9′. Prove that if
∑

an is a convergent series of constants an ∈ E1 and if
{bn} is a bounded monotone sequence in E1, then

∑

anbn converges.
[Hint: Let bn → b. Write

anbn = an(bn − b) + anb

and use Problem 9 with fn = an and gn = bn − b.]

⇒10. Prove the Leibniz test for alternating series : If {bn}↓ and bn → 0 in
E1, then

∑

(−1)nbn converges, and the sum
∑∞

n=1(−1)nbn differs from

sn =
∑n

k=1(−1)kbk by bn+1 at most.
[Hint: Use Problem 9′.]

⇒11. (Dirichlet test .) Let the fn, gn, and hn be as in Problem 8 with
∑∞

n=0 fn
uniformly convergent on B to a function f , and with

hn = −
∞
∑

i=n+1

fi on B.

Suppose that

(i) the range space of the gn is complete; and

(ii) there is K ∈ E1 such that

|g0|+
∞
∑

n=0

|gn+1 − gn| < K on B.

Show that
∑

fngn converges uniformly on B.
[Proof outline: We have

|gn| =
∣
∣
∣
∣g0 +

n−1∑

i=0

(gi+1 − gi)

∣
∣
∣
∣ ≤ |g0|+

n−1∑

i=0

|gi+1 − gi| < K by (ii).

Also,

|hn| =
∣
∣
∣
∣

n∑

i=0

fi − f

∣
∣
∣
∣ → 0 (uniformly) on B

by assumption. Hence

(∀ ε > 0) (∃ k) (∀n > k) |hn| < ε on B.

Using Problem 8, obtain

(∀m > n > k)

∣
∣
∣
∣

m∑

i=n+i

figi

∣
∣
∣
∣ < 2Kε.]

12. Prove that if 0 < p ≤ 1, then
∑ (−1)n

np
converges conditionally .

[Hint: Use Problems 11 and 2.]
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⇒13. Continuing Problem 14 in §12, prove that if ∑ |fn| and
∑ |gn| converge

on B (pointwise or uniformly), then so do the series
∑

|afn + bgn|,
∑

|fn ± gn|, and
∑

|afn|.

[Hint: |afn + bgn| ≤ |a||fn|+ |b||gn|. Use Theorem 2.]

For the rest of the section, we define

x+ = max(x, 0) and x− = max(−x, 0).

⇒14. Given {an} ⊂ E∗ show the following:

(i)
∑

a+n +
∑

a−n =
∑ |an|.

(ii) If
∑

a+n < +∞ or
∑

a−n < +∞, then
∑

an =
∑

a+n −
∑

a−n .

(iii) If
∑

an converges conditionally , then
∑

a+n = +∞ =
∑

a−n .

(iv) If
∑ |an| < +∞, then for any {bn} ⊂ E1,

∑

|an ± bn| < +∞ iff
∑

|bn| <∞;

moreover,
∑

an ±
∑

bn =
∑

(an ± bn) if
∑

bn exists.

[Hint: Verify that |an| = a+n + a−n and an = a+n − a−n . Use the rules of §4.]

⇒15. (Abel’s theorem.) Show that if a power series

∞
∑

n=0

an(x− p)n (an ∈ E, x, p ∈ E1)

converges for some x = x0 6= p, it converges uniformly on [p, x0] (or
[x0, p] if x0 < p).
[Proof outline: First let p = 0 and x0 = 1. Use Problem 11 with

fn = an and gn(x) = xn = (x− p)n.

As fn = an1n = an(x0 − p)n, the series
∑

fn converges by assumption. The

convergence is uniform since the fn are constant. Verify that if x = 1, then

∞∑

k=1

|gk+1 − gk| = 0,

and if 0 ≤ x < 1, then

∞∑

k=0

|gk+1 − gk| =
∞∑

k=0

xk|x− 1| = (1− x)

∞∑

k=0

xk = 1 (a geometric series).

Also, |g0(x)| = x0 = 1. Thus by Problem 11 (with K = 2),
∑

fngn converges
uniformly on [0, 1], proving the theorem for p = 0 and x0 = 1. The general case

reduces to this case by the substitution x− p = (x0 − p)y. Verify!]
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16. Prove that if
0 < lim an ≤ lim an < +∞,

then the convergence radius of
∑

an(x− p)n is 1.

17. Show that a conditionally convergent series
∑

an (an ∈ E1) can be
rearranged so as to diverge, or to converge to any prescribed sum s.
[Proof for s ∈ E1: Using Problem 14(iii), take the first partial sum

a+1 + · · ·+ a+m > s.

Then adjoin terms

−a−1 , −a−2 , . . . , −a−n

until the partial sum becomes less than s. Then add terms a+k until it exceeds s.

Then adjoin terms −a−k until it becomes less than s, and so on.

As a+k → 0 and a−k → 0 (why?), the rearranged series tends to s. (Why?)

Give a similar proof for s = ±∞. Also, make the series oscillate, with no sum.]

18. Prove that if a power series
∑

an(x−p)n converges at some x = x0 6= p,
it converges absolutely (pointwise) on Gp(δ) if δ ≤ |x0 − p|.
[Hint: By Theorem 6, δ ≤ |x0 − p| ≤ r (r = convergence radius). Fix any x ∈ Gp(δ).

Show that the line
→
px, when extended, contains a point x1 such that |x − p| <

|x1 − p| < δ ≤ r. By Theorem 6, the series converges absolutely at x1, hence at x as

well, by Theorem 7.]



Chapter 5

Differentiation and Antidifferentiation

§1. Derivatives of Functions of One Real Variable

In this chapter, “E” will always denote any one of E1, E∗, C (the complex
field), En, ∗or another normed space. We shall consider functions f : E1 → E
of one real variable with values in E. Functions f : E1 → E∗ (admitting finite
and infinite values) are said to be extended real . Thus f : E1 → E may be real,
extended real, complex, or vector valued.

Operations in E∗ were defined in Chapter 4, §4. Recall, in particular, our
conventions (2∗) there. Due to them, addition, subtraction, and multiplication
are always defined in E∗ (with sums and products possibly “unorthodox”).

To simplify formulations, we shall also adopt the convention that

f(x) = 0 unless defined otherwise.

(“0” stands also for the zero-vector in E if E is a vector space.) Thus each
function f is defined on all of E1. For convenience, we call f(x) “finite” if
f(x) 6= ±∞ (also if it is a vector).

Definition 1.

For each function f : E1 → E, we define its derived function f ′ : E1 → E
by setting, for every point p ∈ E1,

f ′(p) =







lim
x→p

f(x)− f(p)
x− p if this limit exists (finite or not);

0, otherwise.

(1)

Thus f ′(p) is always defined.

If the limit in (1) exists, we call it the derivative of f at p.

If, in addition, this limit is finite, we say that f is differentiable at p.

If this holds for each p in a set B ⊆ E1, we say that f has a deriva-

tive (respectively, is differentiable) on B, and we call the function f ′ the



252 Chapter 5. Differentiation and Antidifferentiation

derivative of f on B.1

If the limit in (1) is one sided (with x → p− or x → p+), we call it a
one-sided (left or right) derivative at p, denoted f ′

− or f ′
+.

Note that the formula f ′(p) = 0 holds also if f has no derivative at p. On
the other hand, f ′(p) 6= 0 implies that f ′(p) is a genuine derivative.

Definition 2.

Given a function f : E1 → E, we define its nth derived function (or derived
function of order n), denoted f (n) : E1 → E, by induction:

f (0) = f, f (n+1) = [f (n)]′, n = 0, 1, 2, . . . .

Thus f (n+1) is the derived function of f (n). By our conventions, f (n) is
defined on all of E1 for each n and each function f : E1 → E. We have
f (1) = f ′, and we write f ′′ for f (2), f ′′′ for f (3), etc. We say that f has n
derivatives at a point p iff the limits

lim
x→q

f (k)(x)− f (k)(q)

x− q
exist for all q in a neighborhood Gp of p and for k = 0, 1, . . . , n− 2, and also

lim
x→p

f (n−1)(x)− f (n−1)(p)

x− p
exists. If all these limits are finite, we say that f is n times differentiable on
I; similarly for one-sided derivatives.

It is an important fact that differentiability implies continuity .

Theorem 1. If a function f : E1 → E is differentiable at a point p ∈ E1, it is
continuous at p, and f(p) is finite (even if E = E∗).

Proof. Setting ∆x = x− p and ∆f = f(x)− f(p), we have the identity

|f(x)− f(p)| =
∣

∣

∣

∆f

∆x
· (x− p)

∣

∣

∣
for x 6= p. (2)

By assumption,

f ′(p) = lim
x→p

∆f

∆x

exists and is finite. Thus as x→ p, the right side of (2) (hence the left side as
well) tends to 0, so

lim
x→p
|f(x)− f(p)| = 0, or lim

x→p
f(x) = f(p),

1 If B is an interval , the derivative at its endpoints (if in B) need be one sided only, as

x → p over B (see next).
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O

Y

X−4−n p xn 4−n 2 · 4−n

y = fn(x)

Figure 21

proving continuity at p.

Also, f(p) 6= ±∞, for otherwise |f(x) − f(p)| = +∞ for all x, and so
|f(x)− f(p)| cannot tend to 0. �

Note 1. Similarly, the existence of a finite left (right) derivative at p implies
left (right) continuity at p. The proof is the same.

Note 2. The existence of an infinite derivative does not imply continuity,

nor does it exclude it . For example, consider the two cases

(i) f(x) =
1

x
, with f(0) = 0, and

(ii) f(x) = 3
√
x.

Give your comments for p = 0.

Caution: A function may be continuous on E1 without being differentiable

anywhere (thus the converse to Theorem 1 fails). The first such function was
indicated by Weierstrass. We give an example due to Olmsted (Advanced
Calculus).

Examples.

(a) We first define a sequence of functions fn : E
1 → E1 (n = 1, 2, . . . ) as

follows. For each k = 0, ±1, ±2, . . . , let

fn(x) = 0 if x = k · 4−n, and fn(x) =
1
2 · 4−n if x = (k + 1

2 ) · 4−n.

Between k · 4−n and (k ± 1
2) · 4−n, fn is linear (see Figure 21), so it is

continuous on E1. The series
∑

fn converges uniformly on E1. (Verify!)

Let

f =

∞
∑

n=1

fn.

Then f is continuous on E1 (why?), yet it is nowhere differentiable.

To prove this fact, fix any p ∈ E1. For each n, let

xn = p+ dn, where dn = ±4−n−1,
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choosing the sign of dn so that p and xn are in the same half of a “saw-
tooth” in the graph of fn (Figure 21). Then

fn(xn)− fn(p) = ±dn = ±(xn − p). (Why?)

Also,

fm(xn)− fm(p) = ±dn if m ≤ n

but vanishes for m > n. (Why?)

Thus, when computing f(xn)− f(p), we may replace

f =

∞
∑

m=1

fm by f =

n
∑

m=1

fm.

Since
fm(xn)− fm(p)

xn − p
= ±1 for m ≤ n,

the fraction
f(xn)− f(p)

xn − p
is an integer , odd if n is odd and even if n is even. Thus this fraction
cannot tend to a finite limit as n → ∞, i.e., as dn = 4−n−1 → 0 and
xn = p+ dn → p. A fortiori, this applies to

lim
x→p

f(x)− f(p)
x− p .

Thus f is not differentiable at any p.

The expressions f(x)−f(p) and x−p, briefly denoted ∆f and ∆x, are called
the increments of f and x (at p), respectively.2 We now show that for differ-

entiable functions, ∆f and ∆x are “nearly proportional” when x approaches
p; that is,

∆f

∆x
= c+ δ(x)

with c constant and limx→p δ(x) = 0.

Theorem 2. A function f : E1 → E is differentiable at p, and f ′(p) = c, iff
there is a finite c ∈ E and a function δ : E1 → E such that lim

x→p
δ(x) = δ(p) = 0,

and such that

∆f = [c+ δ(x)]∆x for all x ∈ E1. (3)

2 This notation is rather incomplete but convenient. One only has to remember that both

∆f and ∆x depend on x and p.
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Proof. If f is differentiable at p, put c = f ′(p). Define δ(p) = 0 and

δ(x) =
∆f

∆x
− f ′(p) for x 6= p.

Then limx→p δ(x) = f ′(p)− f ′(p) = 0 = δ(p). Also, (3) follows.

Conversely, if (3) holds, then

∆f

∆x
= c+ δ(x)→ c as x→ p (since δ(x)→ 0).

Thus by definition,

c = lim
x→p

∆f

∆x
= f ′(p) and f ′(p) = c is finite. �

Theorem 3 (chain rule). Let the functions g : E1 → E1 (real) and f : E1 → E
(real or not) be differentiable at p and q, respectively , where q = g(p). Then

the composite function h = f ◦ g is differentiable at p, and

h′(p) = f ′(q)g′(p).

Proof. Setting

∆h = h(x)− h(p) = f(g(x))− f(g(p)) = f(g(x))− f(q),
we must show that

lim
x→p

∆h

∆x
= f ′(q)g′(p) 6= ±∞.

Now as f is differentiable at q, Theorem 2 yields a function δ : E1 → E such
that limx→q δ(x) = δ(q) = 0 and such that

(∀ y ∈ E1) f(y)− f(q) = [f ′(q) + δ(y)]∆y, ∆y = y − q.
Taking y = g(x), we get

(∀x ∈ E1) f(g(x))− f(q) = [f ′(q) + δ(g(x))][g(x)− g(p)],
where

g(x)− g(p) = y − q = ∆y and f(g(x))− f(q) = ∆h,

as noted above. Hence

∆h

∆x
= [f ′(q) + δ(g(x))] · g(x)− g(p)

x− p for all x 6= p.

Let x→ p. Then we obtain h′(p) = f ′(q)g′(p), for, by the continuity of δ ◦ g
at p (Chapter 4, §2, Theorem 3),

lim
x→p

δ(g(x)) = δ(g(p)) = δ(q) = 0. �



256 Chapter 5. Differentiation and Antidifferentiation

The proofs of the next two theorems are left to the reader.

Theorem 4. If f , g, and h are real or complex and are differentiable at p, so
are

f ± g, hf , and f

h

(the latter if h(p) 6= 0), and at the point p we have

(i) (f ± g)′ = f ′ ± g′;
(ii) (hf)′ = hf ′ + h′f ; and

(iii)
(f

h

)′
=
hf ′ − h′f

h2
.

All this holds also if f and g are vector valued and h is scalar valued. It also

applies to infinite (even one-sided) derivatives , except when the limits involved

become indeterminate (Chapter 4, §4).
Note 3. By induction, if f , g, and h are n times differentiable at a point

p, so are f ± g and hf , and, denoting by
(

n
k

)

the binomial coefficients, we have

(i∗) (f ± g)(n) = f (n) ± g(n); and

(ii∗) (hf)(n) =
n
∑

k=0

(

n

k

)

h(k)f (n−k).

Formula (ii∗) is known as the Leibniz formula; its proof is analogous to that
of the binomial theorem. It is symbolically written as (hf)(n) = (h+ f)n, with
the last term interpreted accordingly.3

Theorem 5 (componentwise differentiation). A function f : E1 → En (∗Cn)
is differentiable at p iff each of its n components (f1, . . . , fn) is , and then

f ′(p) = (f ′
1(p), . . . , f

′
n(p)) =

n
∑

k=1

f ′
k(p)ēk,

with ēk as in Theorem 2 of Chapter 3, §§1–3.
In particular, a complex function f : E1 → C is differentiable iff its real and

imaginary parts are, and f ′ = f ′
re + i · f ′

im (Chapter 4, §3, Note 5).

Examples (continued).

(b) Consider the complex exponential

f(x) = cosx+ i · sinx = exi (Chapter 4, §3).
We assume the derivatives of cosx and sinx to be known (see Problem 8).
By Theorem 5, we have

f ′(x) = − sinx+ i · cosx = cos(x+ 1
2π) + i · sin(x+ 1

2π) = e(x+
1
2
π)i.

3 In this connection, recall again the notation introduced in Chapter 4, §3 and also in

footnote 1 of Chapter 3, §9 and footnote 1 of Chapter 4, §13. We shall use it throughout.
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Hence by induction,

f (n)(x) = e(x+
1
2
nπ)i, n = 1, 2, . . . . (Verify!)

(c) Define f : E1 → E3 by

f(x) = (1, cosx, sinx), x ∈ E1.

Here Theorem 5 yields

f ′(p) = (0, − sin p, cos p), p ∈ E1.

For a fixed p = p0, we may consider the line

x̄ = ā+ t~u,

where

ā = f(p0) and ~u = f ′(p0) = (0, − sin p0, cos p0).

This is, by definition, the tangent vector at p0 to the curve f [E1] in E3.

More generally, if f : E1 → E is differentiable at p and continuous on some
globe about p, we define the tangent at p to the curve f [Gp] (in E) to be the
line

x̄ = f(p) + t · f ′(p);

f ′(p) is its direction vector in E, while t is the variable real parameter. For real
functions f : E1 → E1, we usually consider not f [E1] but the curve y = f(x)
in E2, i.e., the set

{(x, y) | y = f(x), x ∈ E1}.
The tangent to that curve at p is the line through (p, f(p)) with slope f ′(p).

In conclusion, let us note that differentiation (i.e., taking derivatives) is a
local limit process at some point p. Hence (cf. Chapter 4, §1, Note 4) the
existence and the value of f ′(p) is not affected by restricting f to some globe

Gp about p or by arbitrarily redefining f outside Gp. For one-sided derivatives,
we may replace Gp by its corresponding “half.”

Problems on Derived Functions in One Variable

1. Prove Theorems 4 and 5, including (i∗) and (ii∗). Do it for dot products
as well.

2. Verify Note 2.

3. Verify Example (a).

3′. Verify Example (b).

4. Prove that if f has finite one-sided derivatives at p, it is continuous at p.
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5. Restate and prove Theorems 2 and 3 for one-sided derivatives.

6. Prove that if the functions fi : E
1 → E∗ (C) are differentiable at p, so

is their product, and

(f1f2 · · · fm)′ =
m
∑

i=1

(f1f2 · · · fi−1f
′
ifi+1 · · ·fm) at p.

7. A function f : E1 → E is said to satisfy a Lipschitz condition (L) of

order α (α > 0) at p iff

(∃ δ > 0) (∃K ∈ E1) (∀x ∈ G¬p(δ)) |f(x)− f(p)| ≤ K|x− p|α.
Prove the following:

(i) This implies continuity at p but not conversely ; take

f(x) =
1

ln |x| , f(0) = 0.

[Hint: For the converse, start with Problem 14(iii) of Chapter 4, §2.]

(ii) L of order α > 1 implies differentiability at p, with f ′(p) = 0.

(iii) Differentiability implies L of order 1, but not conversely. (Take

f(x) = x sin
1

x
, f(0) = 0, p = 0;

then even one-sided derivatives fail to exist.)

8. Let
f(x) = sinx and g(x) = cosx.

Show that f and g are differentiable on E1, with

f ′(p) = cos p and g′(p) = − sin p for each p ∈ E1.

Hence prove for n = 0, 1, 2, . . . that

f (n)(p) = sin
(

p+
nπ

2

)

and g(n)(p) = cos
(

p+
nπ

2

)

.

[Hint: Evaluate ∆f as in Example (d) of Chapter 4, §8. Then use the continuity of
f and the formula

lim
z→0

sin z

z
= lim

z→0

z

sin z
= 1.

To prove the latter, note that

| sin z| ≤ |z| ≤ | tan z|,

whence

1 ≤ z

sin z
≤ 1

| cos z| → 1;

similarly for g.]
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9. Prove that if f is differentiable at p then

f ′(p) = lim
x→p+

y→p−

f(x)− f(y)
x− y 6= ±∞;

i.e., (∀ ε > 0) (∃ δ > 0) (∀x ∈ (p, p+ δ)) (∀ y ∈ (p− δ, p))
∣

∣

∣

f(x)− f(y)
x− y − f ′(p)

∣

∣

∣
< ε.

Disprove the converse by redefining f at p (note that the above limit
does not involve f(p)).
[Hint: If y < p < x then

∣
∣
∣
f(x)− f(y)

x− y
− f ′(p)

∣
∣
∣ ≤

∣
∣
∣
f(x)− f(p)

x− y
− x− p

x− y
f ′(p)

∣
∣
∣+

∣
∣
∣
f(p)− f(y)

x− y
− p− y

x− y
f ′(p)

∣
∣
∣

≤
∣
∣
∣
f(x)− f(p)

x− p
− f ′(p)

∣
∣
∣+

∣
∣
∣
f(p)− f(y)

p− y
− f ′(p)

∣
∣
∣ → 0.]

10. Prove that if f is twice differentiable at p, then

f ′′(x) = lim
h→0

f(p+ h) − 2f(p) + f(p− h)
h2

6= ±∞.

Does the converse hold (cf. Problem 9)?

11. In Example (c), find the three coordinate equations of the tangent line
at p = 1

2π.

12. Judging from Figure 22 in §2, discuss the existence, finiteness, and sign
of the derivatives (or one-sided derivatives) of f at the points pi indi-
cated.

13. Let f : En → E be linear , i.e., such that

(∀ x̄, ȳ ∈ En) (∀ a, b ∈ E1) f(ax̄+ bȳ) = af(x̄) + bf(ȳ).

Prove that if g : E1 → En is differentiable at p, so is h = f ◦ g and
h′(p) = f(g′(p)).
[Hint: f is continuous since f(x̄) =

∑n
k=1 xkf(ēk). See Problem 5 in Chapter 3,

§§4–6.]

§2. Derivatives of Extended-Real Functions

For a while (in §§2 and 3), we limit ourselves to extended-real functions. Below,
f and g are real or extended real (f, g : E1 → E∗). We assume, however, that
they are not constantly infinite on any interval (a, b), a < b.
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Lemma 1. If f ′(p) > 0 at some p ∈ E1, then

x < p < y

implies

f(x) < f(p) < f(y)

for all x, y in a sufficiently small globe Gp(δ) = (p− δ, p+ δ).1

Similarly , if f ′(p) < 0, then x < p < y implies f(x) > f(p) > f(y) for x, y
in some Gp(δ).

Proof. If f ′(p) > 0, the “0” case in Definition 1 of §1, is excluded, so

f ′(p) = lim
x→p

∆f

∆x
> 0.

Hence we must also have ∆f/∆x > 0 for x in some Gp(δ).

It follows that ∆f and ∆x have the same sign in Gp(δ); i.e.,

f(x)− f(p) > 0 if x > p and f(x)− f(p) < 0 if x < p.

(This implies f(p) 6= ±∞. Why?) Hence

x < p < y =⇒ f(x) < f(p) < f(y),

as claimed; similarly in case f ′(p) < 0. �

Corollary 1. If f(p) is the maximum or minimum value of f(x) for x in some

Gp(δ), then f
′(p) = 0; i .e., f has a zero derivative, or none at all , at p.

For, by Lemma 1, f ′(p) 6= 0 excludes a maximum or minimum at p. (Why?)

Note 1. Thus f ′(p) = 0 is a necessary condition for a local maximum or
minimum at p. It is insufficient , however. For example, if f(x) = x3, f has no
maxima or minima at all, yet f ′(0) = 0. For sufficient conditions, see §6.

Figure 22 illustrates these facts at the points p2, p3, . . . , p11. Note that in
Figure 22, the isolated points P, Q, R belong to the graph.

Geometrically, f ′(p) = 0 means that the tangent at p is horizontal, or that
a two-sided tangent does not exist at p.

Theorem 1. Let f : E1 → E∗ be relatively continuous on an interval [a, b],
with f ′ 6= 0 on (a, b). Then f is strictly monotone on [a, b], and f ′ is sign-

constant there (possibly 0 at a and b), with f ′ ≥ 0 if f↑, and f ′ ≤ 0 if f↓.
Proof. By Theorem 2 of Chapter 4, §8, f attains a least value m, and a largest

value M , at some points of [a, b]. However, neither can occur at an interior

point p ∈ (a, b), for, by Corollary 1, this would imply f ′(p) = 0, contrary to
our assumption.

1 This does not mean that f is monotone on any Gp (see Problem 6). We shall only say

in such cases that f increases at the point p.
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O

Y

X
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Figure 22

R P
Q

y = f(x)

Thus M = f(a) or M = f(b); for the moment we assume M = f(b) and
m = f(a). We must have m < M , for m =M would make f constant on [a, b],
implying f ′ = 0. Thus m = f(a) < f(b) =M .

Now let a ≤ x < y ≤ b. Applying the previous argument to each of the
intervals [a, x], [a, y], [x, y], and [x, b] (now using that m = f(a) < f(b) =M),
we find that

f(a) ≤ f(x) < f(y) ≤ f(b). (Why?)

Thus a ≤ x < y ≤ b implies f(x) < f(y); i.e., f increases on [a, b]. Hence
f ′ cannot be negative at any p ∈ [a, b], for, otherwise, by Lemma 1, f would
decrease at p. Thus f ′ ≥ 0 on [a, b].

In the case M = f(a) > f(b) = m, we would obtain f ′ ≤ 0. �

Caution: The function f may increase or decrease at p even if f ′(p) = 0.
See Note 1.

Corollary 2 (Rolle’s theorem). If f : E1 → E∗ is relatively continuous on

[a, b] and if f(a) = f(b), then f ′(p) = 0 for at least one interior point p ∈ (a, b).

For, if f ′ 6= 0 on all of (a, b), then by Theorem 1, f would be strictly

monotone on [a, b], so the equality f(a) = f(b) would be impossible.

Figure 22 illustrates this on the intervals [p2, p4] and [p4, p6], with f
′(p3) =

f ′(p5) = 0. A discontinuity at 0 causes an apparent failure on [0, p2].

Note 2. Theorem 1 and Corollary 2 hold even if f(a) and f(b) are infinite, if
continuity is interpreted in the sense of the metric ρ′ of Problem 5 in Chapter 3,
§11. (Weierstrass’ Theorem 2 of Chapter 4, §8 applies to (E∗, ρ′), with the
same proof.)

Theorem 2 (Cauchy’s law of the mean). Let the functions f, g : E1 → E∗ be

relatively continuous and finite on [a, b] and have derivatives on (a, b), with f ′

and g′ never both infinite at the same point p ∈ (a, b). Then

g′(q)[f(b)− f(a)] = f ′(q)[g(b)− g(a)] for at least one q ∈ (a, b). (1)
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Proof. Let A = f(b)−f(a) and B = g(b)−g(a). We must show that Ag′(q) =
Bf ′(q) for some q ∈ (a, b). For this purpose, consider the function h = Ag−Bf .
It is relatively continuous and finite on [a, b], as are g and f . Also,

h(a) = f(b)g(a)− g(b)f(a) = h(b). (Verify!)

Thus by Corollary 2, h′(q) = 0 for some q ∈ (a, b). Here, by Theorem 4 of
§1, h′ = (Ag − Bf)′ = Ag′ − Bf ′. (This is legitimate, for, by assumption, f ′

and g′ never both become infinite, so no indeterminate limits occur.) Thus
h′(q) = Ag′(q)−Bf ′(q) = 0, and (1) follows. �

Corollary 3 (Lagrange’s law of the mean). If f : E1 → E1 is relatively con-

tinuous on [a, b] with a derivative on (a, b), then

f(b)− f(a) = f ′(q)(b− a) for at least one q ∈ (a, b). (2)

Proof. Take g(x) = x in Theorem 2, so g′ = 1 on E1. �

O

Y

Xa bq

Figure 23

Note 3. Geometrically,

f(b)− f(a)
b− a

is the slope of the secant through
(a, f(a)) and (b, f(b)), and f ′(q) is
the slope of the tangent line at q.
Thus Corollary 3 states that the se-

cant is parallel to the tangent at some

intermediate point q; see Figure 23.
Theorem 2 states the same for curves
given parametrically : x = f(t), y = g(t).

Corollary 4. Let f be as in Corollary 3. Then

(i) f is constant on [a, b] iff f ′ = 0 on (a, b);

(ii) f↑ on [a, b] iff f ′ ≥ 0 on (a, b); and

(iii) f↓ on [a, b] iff f ′ ≤ 0 on (a, b).

Proof. Let f ′ = 0 on (a, b). If a ≤ x ≤ y ≤ b, apply Corollary 3 to the interval
[x, y] to obtain

f(y)− f(x) = f ′(q)(y − x) for some q ∈ (a, b) and f ′(q) = 0.

Thus f(y)− f(x) = 0 for x, y ∈ [a, b], so f is constant.

The rest is left to the reader. �
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Theorem 3 (inverse functions). Let f : E1 → E1 be relatively continuous and

strictly monotone on an interval I ⊆ E1. Let f ′(p) 6= 0 at some interior
point p ∈ I. Then the inverse function g = f−1 (with f restricted to I) has a

derivative at q = f(p), and

g′(q) =
1

f ′(p)
.

(If f ′(p) = ±∞, then g′(q) = 0.)

Proof. By Theorem 3 of Chapter 4, §9, g = f−1 is strictly monotone and
relatively continuous on f [I], itself an interval. If p is interior to I, then q = f(p)
is interior to f [I]. (Why?)

Now if y ∈ f [I], we set

∆g = g(y)− g(q), ∆y = y − q, x = f−1(y) = g(y), and f(x) = y

and obtain

∆g

∆y
=
g(y)− g(q)
y − q =

x− p
f(x)− f(p) =

∆x

∆f
for x 6= p.

Now if y → q, the continuity of g at q yields g(y) → g(q); i.e., x → p. Also,
x 6= p iff y 6= q, for f and g are one-to-one functions. Thus we may substitute
y = f(x) or x = g(y) to get

g′(q) = lim
y→q

∆g

∆y
= lim

x→p

∆x

∆f
=

1

lim
x→p

(∆f/∆x)
=

1

f ′(p)
,2 (2′)

where we use the convention 1
∞ = 0 if f ′(p) =∞. �

Examples.

(A) Let

f(x) = loga |x| with f(0) = 0.

Let p > 0. Then (∀x > 0)

∆f = f(x)− f(p) = loga x− loga p = loga(x/p)

= loga
p+ (x− p)

p
= loga

(

1 +
∆x

p

)

.

Thus
∆f

∆x
= loga

(

1 +
∆x

p

)1/∆x

.

2 More precisely, we are replacing the x by g(y) in (x− p)/[f(x)− f(p)] by Corollary 2 of

Chapter 4, §2 to obtain g′(q). The steps in (2′) should be reversed .
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Now let z = ∆x/p. (Why is this substitution admissible?) Then using
the formula

lim
z→0

(1 + z)1/z = e (see Chapter 4, §2, Example (C))

and the continuity of the log and power functions, we obtain

f ′(p) = lim
x→p

∆f

∆x
= lim

z→0
loga[(1 + z)1/z]1/p = loga e

1/p =
1

p
loga e.

The same formula results also if p < 0, i.e., |p| = −p. At p = 0, f has
one-sided derivatives (±∞) only (verify!), so f ′(0) = 0 by Definition 1
in §1.

(B) The inverse of the loga function is the exponential g : E1 → E1, with

g(y) = ay (a > 0, a 6= 1).

By Theorem 3, we have

(∀ q ∈ E1) g′(q) =
1

f ′(p)
, p = g(q) = aq.

Thus

g′(q) =
1

1
p
loga e

=
p

loga e
=

aq

loga e
.

Symbolically,

(loga |x|)′ =
1

x
loga e (x 6= 0); (ax)′ =

ax

loga e
= ax ln a. (3)

In particular, if a = e, we have loge a = 1 and loga x = lnx; hence

(ln |x|)′ = 1

x
(x 6= 0) and (ex)′ = ex (x ∈ E1). (4)

(C) The power function g : (0, +∞)→ E1 is given by

g(x) = xa = exp(a · lnx) for x > 0 and fixed a ∈ E1.

By the chain rule (§1, Theorem 3), we obtain

g′(x) = exp(a · lnx) · a
x
= xa · a

x
= a · xa−1.

Thus we have the symbolic formula

(xa)′ = a · xa−1 for x > 0 and fixed a ∈ E1. (5)
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Theorem 4 (Darboux). If f : E1 → E∗ is relatively continuous and has a

derivative on an interval I, then f ′ has the Darboux property (Chapter 4, §9)
on I.

Proof. Let p, q ∈ I and f ′(p) < c < f ′(q). Put g(x) = f(x) − cx. Assume
g′ 6= 0 on (p, q) and find a contradiction to Theorem 1. Details are left to the
reader. �

Problems on Derivatives of Extended-Real Functions

1. Complete the missing details in the proof of Theorems 1, 2, and 4,
Corollary 4, and Lemma 1.
[Hint for converse to Corollary 4(ii): Use Lemma 1 for an indirect proof.]

2. Do cases p ≤ 0 in Example (A).

3. Show that Theorems 1, 2, and 4 and Corollaries 2 to 4 hold also if f
is discontinuous at a and b but f(a+) and f(b−) exist and are finite.
(In Corollary 2, assume also f(a+) = f(b−); in Theorems 1 and 4 and
Corollary 2, finiteness is unnecessary.)
[Hint: Redefine f(a) and f(b).]

4. Under the assumptions of Corollary 3, show that f ′ cannot stay infinite
on any interval (p, q), a ≤ p < q ≤ b.
[Hint: Apply Corollary 3 to the interval [p, q].]

5. Justify footnote 1.
[Hint: Let

f(x) = x+ 2x2 sin
1

x2
with f(0) = 0.

At 0, find f ′ from Definition 1 in §1. Use also Problem 8 of §1. Show that f is not
monotone on any G0(δ).]

6. Show that f ′ need not be continuous or bounded on [a, b] (under the
standard metric), even if f is differentiable there.
[Hint: Take f as in Problem 5.]

7. With f as in Corollaries 3 and 4, prove that if f ′ ≥ 0 (f ′ ≤ 0) on (a, b)
and if f ′ is not constantly 0 on any subinterval (p, q) 6= ∅, then f is
strictly monotone on [a, b].

8. Let x = f(t), y = g(t), where t varies over an open interval I ⊆ E1, de-
fine a curve in E2 parametrically. Prove that if f and g have derivatives
on I and f ′ 6= 0, then the function h = f−1 has a derivative on f [I],
and the slope of the tangent to the curve at t0 equals g′(t0)/f ′(t0).
[Hint: The word “curve” implies that f and g are continuous on I (Chapter 4, §10),
so Theorems 1 and 3 apply, and h = f−1 is a function. Also, y = g(h(x)). Use
Theorem 3 of §1.]

9. Prove that if f is continuous and has a derivative on (a, b) and if f ′

has a finite or infinite (even one-sided) limit at some p ∈ (a, b), then
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this limit equals f ′(p). Deduce that f ′ is continuous at p if f ′(p−) and
f ′(p+) exist.
[Hint: By Corollary 3, for each x ∈ (a, b), there is some qx between p and x such
that

f ′(qx) =
∆f

∆x
→ f ′(p) as x → p.

Set y = qx, so limy→p f ′(y) = f ′(p).]

10. From Theorem 3 and Problem 8 in §1, deduce the differentiation formu-
las

(arcsinx)′ =
1√

1− x2
; (arccosx)′ =

−1√
1− x2

; (arctanx)′ =
1

1 + x2
.

11. Prove that if f has a derivative at p, then f(p) is finite, provided f is
not constantly infinite on any interval (p, q) or (q, p), p 6= q.

[Hint: If f(p) = ±∞, each Gp has points at which ∆f
∆x

= +∞, as well as those x

with ∆f
∆x

= −∞.]

§3. L’Hôpital’s Rule

We shall now prove a useful rule for resolving indeterminate limits. Below, G¬p

denotes a deleted globe G¬p(δ) in E
1, or one about ±∞ of the form (a, +∞)

or (−∞, a). For one-sided limits, replace G¬p by its appropriate “half.”

Theorem 1 (L’Hôpital’s rule). Let f, g : E1 → E∗ be differentiable on G¬p,
with g′ 6= 0 there. If |f(x)| and |g(x)| tend both to +∞,1 or both to 0, as x→ p
and if

lim
x→p

f ′(x)

g′(x)
= r exists in E∗,

then also

lim
x→p

f(x)

g(x)
= r;

similarly for x→ p+ or x→ p−.

Proof. It suffices to consider left and right limits. Both combined then yield
the two-sided limit.

First, let −∞ ≤ p < +∞,

lim
x→p+

|f(x)| = lim
x→p+

|g(x)| = +∞ and lim
x→p+

f ′(x)

g′(x)
= r (finite).

1 This includes the cases f(x) → ±∞ and g(x) → ±∞.
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Then given ε > 0, we can fix a > p (a ∈ G¬p) such that

∣

∣

∣

f ′(x)

g′(x)
− r

∣

∣

∣
< ε, for all x in the interval (p, a). (1)

Now apply Cauchy’s law of the mean (§2, Theorem 2) to each interval [x, a],
p < x < a. This yields, for each such x, some q ∈ (x, a) with

g′(q)[f(x)− f(a)] = f ′(q)[g(x)− g(a)].

As g′ 6= 0 (by assumption), g(x) 6= g(a) by Theorem 1, §2, so we may divide
to obtain

f(x)− f(a)
g(x)− g(a) =

f ′(q)

g′(q)
, where p < x < q < a.

This combined with (1) yields

∣

∣

∣

f(x)− f(a)
g(x)− g(a) − r

∣

∣

∣
< ε,

or, setting

F (x) =
1− f(a)/f(x)
1− g(a)/g(x) ,

we have
∣

∣

∣

f(x)

g(x)
· F (x)− r

∣

∣

∣
< ε for all x inside (p, a). (2)

As |f(x)| and |g(x)| → +∞ (by assumption), we have F (x)→ 1 as x→ p+.
Hence by rules for right limits, there is b ∈ (p, a) such that for all x ∈ (p, b),
both |F (x) − 1| < ε and F (x) > 1

2 . (Why?) For such x, formula (2) holds as
well. Also,

1

|F (x)| < 2 and |r − rF (x)| = |r| |1− F (x)| < |r| ε.

Combining this with (2), we have for x ∈ (p, b)

∣

∣

∣

f(x)

g(x)
− r

∣

∣

∣
=

1

|F (x)|
∣

∣

∣

f(x)

g(x)
F (x)− rF (x)

∣

∣

∣

< 2
∣

∣

∣

f(x)

g(x)
· F (x)− r + r − rF (x)

∣

∣

∣

< 2ε(1 + |r|).

Thus, given ε > 0, we found b > p such that

∣

∣

∣

f(x)

g(x)
− r

∣

∣

∣
< 2ε(1 + |r|), x ∈ (p, b).
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As ε is arbitrary , we have lim
x→p+

f(x)

g(x)
= r, as claimed.

The case limx→p+ f(x) = limx→p+ g(x) = 0 is simpler. As before, we obtain

∣

∣

∣

f(x)− f(a)
g(x)− g(a) − r

∣

∣

∣
< ε.

Here we may as well replace “a” by any y ∈ (p, a). Keeping y fixed, let x→ p+.
Then f(x)→ 0 and g(x)→ 0, so we get

∣

∣

∣

f(y)

g(y)
− r

∣

∣

∣
≤ ε for any y ∈ (p, a).

As ε is arbitrary, this implies lim
y→p+

f(y)

g(y)
= r. Thus the case x→ p+ is settled

for a finite r.

The cases r = ±∞ and x → p− are analogous, and we leave them to the
reader. �

Note 1. lim
f(x)

g(x)
may exist even if lim

f ′(x)

g′(x)
does not. For example, take

f(x) = x+ sinx and g(x) = x.

Then

lim
x→+∞

f(x)

g(x)
= lim

x→+∞

(

1 +
sinx

x

)

= 1 (why?),

but
f ′(x)

g′(x)
= 1 + cosx

does not tend to any limit as x→ +∞.

Note 2. The rule fails if the required assumptions are not satisfied, e.g., if
g′ has zero values in each G¬p; see Problem 4 below.

Often it is useful to combine L’Hôpital’s rule with some known limit formu-
las, such as

lim
z→0

(1 + z)1/z = e or lim
x→0

x

sinx
= 1 (see §1, Problem 8).

Examples.

(a) lim
x→+∞

lnx

x
= lim

x→+∞
(lnx)′

1
= lim

x→+∞
1

x
= 0.

(b) lim
x→0

ln(1 + x)

x
= lim

x→0

1/(1 + x)

1
= 1.

(c) lim
x→0

x− sinx

x3
= lim

x→0

1− cosx

3x2
= lim

x→0

sinx

6x
=

1

6
lim
x→0

sinx

x
=

1

6
.

(Here we had to apply L’Hôpital’s rule repeatedly .)
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(d) Consider

lim
x→0+

e−1/x

x
.

Taking derivatives (even n times), one gets

lim
x→0+

e−1/x

n! xn+1
, n = 1, 2, 3, . . . (always indeterminate!).

Thus the rule gives no results. In this case, however, a simple device helps
(see Problem 5 below).

(e) limn→∞ n1/n does not have the form 0
0 or ∞

∞ , so the rule does not apply
directly. Instead we compute

lim
n→∞

lnn1/n = lim
n→∞

lnn

n
= 0 (Example (a)).

Hence
n1/n = exp(lnn1/n)→ exp(0) = e0 = 1

by the continuity of exponential functions. The answer is then 1.

Problems on L’Hôpital’s Rule

Elementary differentiation formulas are assumed known.

1. Complete the proof of L’Hôpital’s rule. Verify that the differentiability
assumption may be replaced by continuity plus existence of finite or
infinite (but not both together infinite) derivatives f ′ and g′ on G¬p

(same proof).

2. Show that the rule fails for complex functions. See, however, Problems 3,
7, and 8.
[Hint: Take p = 0 with

f(x) = x and g(x) = x+ x2ei/x
2

= x+ x2

(

cos
1

x2
+ i · sin 1

x2

)

.

Then

lim
x→0

f(x)

g(x)
= 1, though lim

x→0

f ′(x)

g′(x)
= lim

x→0

1

g′(x)
= 0.

Indeed, g′(x)− 1 = (2x− 2i/x)ei/x
2

. (Verify!) Hence

|g′(x)|+ 1 ≥ |2x− 2i/x| (for |ei/x2 | = 1),

so

|g′(x)| ≥ −1 +
2

x
. (Why?)

Deduce that ∣
∣
∣

1

g′(x)

∣
∣
∣ ≤

∣
∣
∣

x

2− x

∣
∣
∣ → 0.]
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3. Prove the “simplified rule of L’Hôpital” for real or complex functions
(also for vector-valued f and scalar-valued g): If f and g are differen-
tiable at p, with g′(p) 6= 0 and f(p) = g(p) = 0, then

lim
x→p

f(x)

g(x)
=
f ′(p)

g′(p)
.

[Hint:
f(x)

g(x)
=

f(x)− f(p)

g(x)− g(p)
=

∆f

∆x

/
∆g

∆x
→ f ′(p)

g′(p)
.]

4. Why does lim
x→+∞

f(x)

g(x)
not exist, though lim

x→+∞
f ′(x)

g′(x)
does , in the fol-

lowing example? Verify and explain.

f(x) = e−2x(cosx+ 2 sinx), g(x) = e−x(cosx+ sinx).

[Hint: g′ vanishes many times in each G+∞. Use the Darboux property for the

proof.]

5. Find lim
x→0+

e−1/x

x
.

[Hint: Substitute z = 1
x
→ +∞. Then use the rule.]

6. Verify that the assumptions of L’Hôpital’s rule hold, and find the fol-
lowing limits.

(a) lim
x→0

ex − e−x

ln(e− x) + x− 1
;

(b) lim
x→0

ex − e−x − 2x

x− sinx
;

(c) lim
x→0

(1 + x)1/x − e
x

;

(d) lim
x→0+

(xq lnx), q > 0;

(e) lim
x→+∞

(x−q lnx), q > 0;

(f) lim
x→0+

xx;

(g) lim
x→+∞

(xqa−x), a > 1, q > 0;

(h) lim
x→0

( 1

x2
− cotan2 x

)

;

(i) lim
x→+∞

(π

2
− arctanx

)1/ lnx

;

(j) lim
x→0

( sinx

x

)1/(1−cosx)

.
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7. Prove L’Hôpital’s rule for f : E1 → En (C) and g : E1 → E1, with

lim
k→p
|f(x)| = 0 = lim

x→p
|g(x)|, p ∈ E∗ and r ∈ En,

leaving the other assumptions unchanged.

[Hint: Apply the rule to the components of f
g

(respectively, to
(

f
g

)

re
and

(
f
g

)

im
).]

8. Let f and g be complex and differentiable on G¬p, p ∈ E1. Let

lim
x→p

f(x) = lim
x→p

g(x) = 0, lim
x→p

f ′(x) = q, and lim
x→p

g′(x) = r 6= 0.

Prove that lim
x→p

f(x)

g(x)
=
q

r
.

[Hint:
f(x)

g(x)
=

f(x)

x− p

/
g(x)

x− p
.

Apply Problem 7 to find

lim
x→p

f(x)

x− p
and lim

x→p

g(x)

x− p
.]

∗9. Do Problem 8 for f : E1 → Cn and g : E1 → C.

§4. Complex and Vector-Valued Functions on E1

The theorems of §§2–3 fail for complex and vector-valued functions (see Prob-
lem 3 below and Problem 2 in §3). However, some analogues hold. In a sense,
they even are stronger, for, unlike the previous theorems, they do not require
the existence of a derivative on an entire interval I ⊆ E1, but only on I −Q,
where Q is a countable set , i.e., one contained in the range of a sequence,
Q ⊆ {pm}. (We henceforth presuppose §9 of Chapter 1.)

In the following theorem, due to N. Bourbaki,1 g : E1 → E∗ is extended real

while f may also be complex or vector valued. We call it the finite increments

law since it deals with “finite increments” f(b)−f(a) and g(b)−g(a). Roughly,
it states that |f ′| ≤ g′ implies a similar inequality for increments.

Theorem 1 (finite increments law). Let f : E1 → E and g : E1 → E∗ be

relatively continuous and finite on a closed interval I = [a, b] ⊆ E1, and have

derivatives2 with |f ′| ≤ g′, on I −Q where Q ⊆ {p1, p2, . . . , pm, . . . }. Then
|f(b)− f(a)| ≤ g(b)− g(a). (1)

1 This is the pen name of a famous school of twentieth-century French mathematicians.
2 Actually, right derivatives suffice, as will follow from the proof. (Left derivatives suffice

as well.)
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The proof is somewhat laborious, but worthwhile. (At a first reading, one
may omit it, however.) We outline some preliminary ideas.

Given any x ∈ I, suppose first that x > pm for at least one pm ∈ Q. In this
case, we put

Q(x) =
∑

pm<x

2−m;

here the summation is only over those m for which pm < x. If, however, there
are no pm ∈ Q with pm < x, we put Q(x) = 0. Thus Q(x) is defined for
all x ∈ I. It gives an idea as to “how many” pm (at which f may have no
derivative) precede x. Note that x < y implies Q(x) ≤ Q(y). (Why?) Also,

Q(x) ≤
∞
∑

m=1

2−m = 1.

Our plan is as follows. To prove (1), it suffices to show that for some fixed

K ∈ E1, we have

(∀ ε > 0) |f(b)− f(a)| ≤ g(b)− g(a) +Kε,

for then, letting ε→ 0, we obtain (1). We choose

K = b− a+Q(b), with Q(x) as above.

Temporarily fixing ε > 0, let us call a point r ∈ I “good” iff

|f(r)− f(a)| ≤ g(r)− g(a) + [r − a+Q(r)]ε (2)

and “bad” otherwise. We shall show that b is “good.” First, we prove a lemma.

Lemma 1. Every “good” point r ∈ I (r < b) is followed by a whole interval

(r, s), r < s ≤ b, consisting of “good” points only .

Proof. First let r /∈ Q, so by assumption, f and g have derivatives at r, with

|f ′(r)| ≤ g′(r).

Suppose g′(r) < +∞. Then (treating g′ as a right derivative) we can find s > r
(s ≤ b) such that, for all x in the interval (r, s),

∣

∣

∣

g(x)− g(r)
x− r − g′(r)

∣

∣

∣
<
ε

2
(why?);

similarly for f . Multiplying by x− r, we get

|f(x)− f(r)− f ′(r)(x− r)| < (x− r) ε
2
and

|g(x)− g(r)− g′(r)(x− r)| < (x− r) ε
2
,
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and hence by the triangle inequality (explain!),

|f(x)− f(r)| ≤ |f ′(r)|(x− r) + (x− r) ε
2

and

g′(r)(x− r) + (x− r) ε
2
< g(x)− g(r) + (x− r)ε.

Combining this with |f ′(r)| ≤ g′(r), we obtain

|f(x)− f(r)| ≤ g(x)− g(r) + (x− r)ε whenever r < x < s. (3)

Now as r is “good,” it satisfies (2); hence, certainly, as Q(r) ≤ Q(x),

|f(r)− f(a)| ≤ g(r)− g(a) + (r − a)ε+Q(x)ε whenever r < x < s.

Adding this to (3) and using the triangle inequality again, we have

|f(x)− f(a)| ≤ g(x)− g(a) + [x− a+Q(x)]ε for all x ∈ (r, s).

By definition, this shows that each x ∈ (r, s) is “good,” as claimed. Thus
the lemma is proved for the case r ∈ I −Q, with g′(r) < +∞.

The cases g′(r) = +∞ and r ∈ Q are left as Problems 1 and 2. �

We now return to Theorem 1.

Proof of Theorem 1. Seeking a contradiction, suppose b is “bad,” and let
B 6= ∅ be the set of all “bad” points in [a, b]. Let

r = inf B, r ∈ [a, b].

Then the interval [a, r) can contain only “good” points, i.e., points x such that

|f(x)− f(a)| ≤ g(x)− g(a) + [x− a+Q(x)]ε.

As x < r implies Q(x) ≤ Q(r), we have

|f(x)− f(a)| ≤ g(x)− g(a) + [x− a+Q(r)]ε for all x ∈ [a, r). (4)

Note that [a, r) 6= ∅, for by (2), a is certainly “good” (why?), and so
Lemma 1 yields a whole interval [a, s) of “good” points contained in [a, r).

Letting x→ r in (4) and using the continuity of f at r, we obtain (2). Thus
r is “good” itself. Then, however, Lemma 1 yields a new interval (r, q) of
“good” points. Hence [a, q) has no “bad” points, and so q is a lower bound of

the set B of “bad” points in I, contrary to q > r = glbB. This contradiction
shows that b must be “good,” i.e.,

|f(b)− f(a)| ≤ g(b)− g(a) + [b− a+Q(b)]ε.

Now, letting ε→ 0, we obtain formula (1), and all is proved. �
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Corollary 1. If f : E1 → E is relatively continuous and finite on I = [a, b] ⊆
E1, and has a derivative on I −Q, then there is a real M such that

|f(b)− f(a)| ≤M(b− a) and M ≤ sup
t∈I−Q

|f ′(t)|. (5)

Proof. Let
M0 = sup

t∈I−Q
|f ′(t)|.

IfM0 < +∞, put M =M0 ≥ |f ′| on I−Q, and take g(x) =Mx in Theorem 1.
Then g′ =M ≥ |f ′| on I −Q, so formula (1) yields (5) since

g(b)− g(a) =Mb−Ma =M(b− a).
If, however, M0 = +∞, let

M =
∣

∣

∣

f(b)− f(a)
b− a

∣

∣

∣
< M0.

Then (5) clearly is true. Thus the required M exists always.3 �

Corollary 2. Let f be as in Corollary 1. Then f is constant on I iff f ′ = 0
on I −Q.

Proof. If f ′ = 0 on I −Q, then M = 0 in Corollary 1, so Corollary 1 yields,
for any subinterval [a, x] (x ∈ I), |f(x) − f(a)| ≤ 0; i.e., f(x) = f(a) for all
x ∈ I. Thus f is constant on I.

Conversely, if so, then f ′ = 0, even on all of I. �

Corollary 3. Let f, g : E1 → E be relatively continuous and finite on I =
[a, b], and differentiable on I −Q. Then f − g is constant on I iff f ′ = g′ on
I −Q.

Proof. Apply Corollary 2 to the function f − g. �

We can now also strengthen parts (ii) and (iii) of Corollary 4 in §2.
Theorem 2. Let f be real and have the properties stated in Corollary 1. Then

(i) f↑ on I = [a, b] iff f ′ ≥ 0 on I −Q; and

(ii) f↓ on I iff f ′ ≤ 0 on I −Q.

Proof. Let f ′ ≥ 0 on I −Q. Fix any x, y ∈ I (x < y) and define g(t) = 0 on
E1. Then |g′| = 0 ≤ f ′ on I −Q. Thus g and f satisfy Theorem 1 (with their
roles reversed) on I, and certainly on the subinterval [x, y]. Thus we have

f(y)− f(x) ≥ |g(y)− g(x)| = 0, i.e., f(y) ≥ f(x) whenever y > x in I,

so f↑ on I.
3 Note that M as defined here depends on a and b. So does M0.
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Conversely, if f↑ on I, then for every p ∈ I, we must have f ′(p) ≥ 0, for
otherwise, by Lemma 1 of §2, f would decrease at p. Thus f ′ ≥ 0, even on all

of I, and (i) is proved. Assertion (ii) is proved similarly. �

Problems on Complex and Vector-Valued Functions on E1

1. Do the case g′(r) = +∞ in Lemma 1.
[Hint: Show that there is s > r with

g(x)− g(r) ≥ (|f ′(r)|+ 1)(x− r) ≥ |f(x)− f(r)| for x ∈ (r, s).

Such x are “good.”]

2. Do the case r = pn ∈ Q in Lemma 1.
[Hint: Show by continuity that there is s > r such that (∀x ∈ (r, s))

|f(x)− f(r)| < ε

2n+1
and |g(x)− g(r)| < ε

2n+1
.

Show that all such x are “good” since x > r = pn implies

2−n +Q(r) ≤ Q(x). (Why?)]

3. Show that Corollary 3 in §2 (hence also Theorem 2 in §2) fails for com-
plex functions.
[Hint: Let f(x) = exi = cos x+ i · sinx. Verify that |f ′| = 1 yet f(2π)− f(0) = 0.]

4. (i) Verify that all propositions of §4 hold also if f ′ and g′ are only
right derivatives on I −Q.

(ii) Do the same for left derivatives. (See footnote 2.)

5. (i) Prove that if f : E1 → E is continuous and finite on I = (a, b) and
differentiable on I −Q, and if

sup
t∈I−Q

|f ′(t)| < +∞,

then f is uniformly continuous on I.

(ii) Moreover, if E is complete (e.g., E = En), then f(a+) and f(b−)
exist and are finite.

[Hints: (i) Use Corollary 1. (ii) See the “hint” to Problem 11(iii) of Chapter 4, §8.]

6. Prove that if f is as in Theorem 2, with f ′ ≥ 0 on I − Q and f ′ > 0
at some p ∈ I, then f(a) < f(b). Do it also with f ′ treated as a right

derivative (see Problem 4).

7. Let f, g : E1 → E1 be relatively continuous on I = [a, b] and have right
derivatives f ′

+ and g′+ (finite or infinite, but not both infinite) on I−Q.

(i) Prove that if

mg′+ ≤ f ′
+ ≤Mg′+ on I −Q
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for some fixed m, M ∈ E1, then

m[g(b)− g(a)] ≤ f(b)− f(a) ≤M [g(b)− g(a)].
[Hint: Apply Theorem 2 and Problem 4 to each of Mg − f and f −mg.]

(ii) Hence prove that

m0(b− a) ≤ f(b)− f(a) ≤M0(b− a),
where

m0 = inf f ′
+[I −Q] and M0 = sup f ′

+[I −Q] in E∗.

[Hint: Take g(x) = x if m0 ∈ E1 or M0 ∈ E1. The infinite case is simple.]

8. (i) Let f : (a, b)→ E be finite, continuous, with a right derivative on
(a, b). Prove that q = lim

x→a+
f ′
+(x) exists (finite) iff

q = lim
x, y→a+

f(x)− f(y)
x− y ,

i.e., iff

(∀ ε > 0) (∃ c > a) (∀x, y ∈ (a, c) | x 6= y)
∣

∣

∣

f(x)− f(y)
x− y −q

∣

∣

∣
< ε.

[Hints: If so, let y → x+ (keeping x fixed) to obtain

(∀ x ∈ (a, c)) |f ′
+(x)− q| ≤ ε. (Why?)

Conversely, if lim
x→a+

f ′
+(x) = q, then

(∀ ε > 0) (∃ c > a) (∀ t ∈ (a, c)) |f ′
+(t)− q| < ε.

Put

M = sup
a<t<c

|f ′
+(t)− q| ≤ ε (why ≤ ε?)

and

h(t) = f(t)− tq, t ∈ (a, b).

Apply Corollary 1 and Problem 4 to h on the interval [x, y] ⊆ (a, c), to get

|f(y)− f(x)− (y − x)q| ≤ M(y − x) ≤ ε(y − x).

Proceed.]

(ii) Prove similar statements for the cases q = ±∞ and x→ b−.
[Hint: In case q = ±∞, use Problem 7(ii) instead of Corollary 1.]

9. From Problem 8 deduce that if f is as indicated and if f ′
+ is left contin-

uous at some p ∈ (a, b), then f also has a left derivative at p.

If f ′
+ is also right continuous at p, then f ′

+(p) = f ′
−(p) = f ′(p).

[Hint: Apply Problem 8 to (a, p) and (p, b).]



§4. Complex and Vector-Valued Functions on E1 277

10. In Problem 8, prove that if, in addition, E is complete and if

q = lim
x→a+

f ′
+(x) 6= ±∞ (finite),

then f(a+) 6= ±∞ exists, and

lim
x→a+

f(x)− f(a+)
x− a = q;

similarly in case limx→b− f
′
+(x) = r.

If both exist, set f(a) = f(a+) and f(b) = f(b−). Show that then f
becomes relatively continuous on [a, b], with f ′

+(a) = q and f ′
−(b) = r.

[Hint: If
lim

x→a+
f ′
+(x) = q 6= ±∞,

then f ′
+ is bounded on some subinterval (a, c), a < c ≤ b (why?), so f is uniformly

continuous on (a, c), by Problem 5, and f(a+) exists. Let y → a+, as in the hint to

Problem 8.]

11. Do Problem 9 in §2 for complex and vector-valued functions.
[Hint: Use Corollary 1 of §4.]

12. Continuing Problem 7, show that the equalities

m =
f(b)− f(a)

b− a =M

hold iff f is linear , i.e., f(x) = cx + d for some c, d ∈ E1, and then
c = m =M .

13. Let f : E1 → C be as in Corollary 1, with f 6= 0 on I. Let g be the real
part of f ′/f .

(i) Prove that |f |↑ on I iff g ≥ 0 on I −Q.

(ii) Extend Problem 4 to this result.

14. Define f : E1 → C by

f(x) =

{

x2ei/x = x2
(

cos
1

x
+ i · sin 1

x

)

if x > 0, and

0 if x ≤ 0.

Show that f is differentiable on I = (−1, 1), yet f ′[I] is not a convex
set in E2 = C (thus there is no analogue to Theorem 4 of §2).
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§5. Antiderivatives (Primitives, Integrals)

Given f : E1 → E, we often have to find a function F such that F ′ = f on I,
or at least on I −Q.1 We also require F to be relatively continuous and finite
on I. This process is called antidifferentiation or integration.

Definition 1.

We call F : E1 → E a primitive, or antiderivative, or an indefinite inte-

gral , of f on I iff

(i) F is relatively continuous and finite on I, and

(ii) F is differentiable, with F ′ = f , on I −Q at least.

We then write

F =

∫

f, or F (x) =

∫

f(x) dx, on I.

(The latter is classical notation.)

If such an F exists (which is not always the case), we shall say that
∫

f exists on I, or that f has a primitive (or antiderivative) on I, or that
f is primitively integrable (briefly integrable) on I.

If F ′ = f on a set B ⊆ I, we say that
∫

f is exact on B and call F an
exact primitive on B. Thus if Q = ∅,

∫

f is exact on all of I.

Note 1. Clearly, if F ′ = f , then also (F + c)′ = f for a finite constant
c. Thus the notation F =

∫

f is rather incomplete; it means that F is one

of many primitives. We now show that all of them have the form F + c (or
∫

f + c).

Theorem 1. If F and G are primitive to f on I, then G−F is constant on I.

Proof. By assumption, F and G are relatively continuous and finite on I;
hence so is G− F . Also, F ′ = f on I −Q and G′ = f on I − P . (Q and P are
countable, but possibly Q 6= P .)

Hence both F ′ and G′ equal f on I−S, where S = P ∪Q, and S is countable
itself by Theorem 2 of Chapter 1, §9.

Thus by Corollary 3 in §4, F ′ = G′ on I − S implies G − F = c (constant)
on each [x, y] ⊆ I; hence G− F = c (or G = F + c) on I. �

Definition 2.

If F =
∫

f on I and if a, b ∈ I (where a ≤ b or b ≤ a), we define
∫ b

a

f =

∫ b

a

f(x) dx = F (b)− F (a), also written F (x)
∣

∣

∣

b

a
. (1)

1 In this section, Q, P , and S shall denote countable sets, F ′, G′, and H′ are finite

derivatives, and I is a finite or infinite nondegenerate interval in E1.
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This expression is called the definite integral of f from a to b.2

The definite integral of f from a to b is independent of the particular choice
of the primitive F for f , and thus unambiguous , for if G is another primitive,
Theorem 1 yields G = F + c, so

G(b)−G(a) = F (b) + c− [F (a) + c] = F (b)− F (a),

and it does not matter whether we take F or G.

Note that
∫ b

a
f(x) dx, or

∫ b

a
f , is a constant in the range space E (a vector

if f is vector valued). The “x” in
∫ b

a
f(x) dx is a “dummy variable” only, and

it may be replaced by any other letter. Thus

∫ b

a

f(x) dx =

∫ b

a

f(y) dy = F (b)− F (a).

On the other hand, the indefinite integral is a function: F : E1 → E.

Note 2. We may, however, vary a or b (or both) in (1). Thus, keeping a
fixed and varying b, we can define a function

G(t) =

∫ t

a

f = F (t)− F (a), t ∈ I.

Then G′ = F ′ = f on I, and G(a) = F (a) − F (a) = 0. Thus if
∫

f exists
on I, f has a (unique) primitive G on I such that G(a) = 0. (It is unique by
Theorem 1. Why?)

Examples.

(a) Let

f(x) =
1

x
and F (x) = ln |x|, with F (0) = f(0) = 0.

Then F ′ = f and F =
∫

f on (−∞, 0) and on (0, +∞) but not on E1,
since F is discontinuous at 0, contrary to Definition 1. We compute

∫ 2

1

f = ln 2− ln 1 = ln 2.

(b) On E1, let

f(x) =
|x|
x

and F (x) = |x|, with f(0) = 1.

Here F is continuous and F ′ = f on E1 − {0}. Thus F =
∫

f on E1,
exact on E1 − {0}. Here I = E1, Q = {0}.

2 The numbers a and b are called the bounds of the integral.
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We compute

∫ 2

−2

f = F (2)− F (−2) = 2− 2 = 0

(even though f never vanishes on E1).

Basic properties of integrals follow from those of derivatives. Thus we have
the following.

Corollary 1 (linearity). If
∫

f and
∫

g exist on I, so does
∫

(pf + qg) for any

scalars p, q (in the scalar field of E).3 Moreover , for any a, b ∈ I, we obtain

(i)

∫ b

a

(pf + qg) = p

∫ b

a

f + q

∫ b

a

g;

(ii)

∫ b

a

(f ± g) =
∫ b

a

f ±
∫ b

a

g; and

(iii)

∫ b

a

pf = p

∫ b

a

f .

Proof. By assumption, there are F and G such that

F ′ = f on I −Q and G′ = g on I − P .

Thus, setting S = P ∪Q and H = pF + qG, we have

H ′ = pF ′ + qG′ = pf + qg on I − S,

with P , Q, and S countable. Also, H = pF + qG is relatively continuous and
finite on I, as are F and G.

Thus by definition, H =
∫

(pf + qg) exists on I, and by (1),

∫ b

a

(pf+qg) = H(b)−H(a) = pF (b)+qG(b)−pF (a)−qG(a) = p

∫ b

a

f+q

∫ b

a

g,

proving (i∗).

With p = 1 and q = ±1, we obtain (ii∗).

Taking q = 0, we get (iii∗). �

Corollary 2. If both
∫

f and
∫

|f | exist on I = [a, b], then

∣

∣

∣

∫ b

a

f
∣

∣

∣
≤

∫ b

a

|f |.

3 In the case f, g : E1 → E∗ (C), we assume p, q ∈ E1 (C). If f and g are scalar valued,

we also allow p and q to be vectors in E.
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Proof. As before, let

F ′ = f and G′ = |f | on I − S (S = Q ∪ P , all countable),
where F and G are relatively continuous and finite on I and G =

∫

|f | is real .
Also, |F ′| = |f | = G′ on I − S. Thus by Theorem 1 of §4,

|F (b)− F (a)| ≤ G(b)−G(a) =
∫ b

a

|f |. �

Corollary 3. If
∫

f exists on I = [a, b], exact on I −Q, then

∣

∣

∣

∫ b

a

f
∣

∣

∣
≤M(b− a)

for some real

M ≤ sup
t∈I−Q

|f(t)|.

This is simply Corollary 1 of §4, when applied to a primitive, F =
∫

f .

Corollary 4. If F =
∫

f on I and f = g on I −Q, then F is also a primitive

of g, and
∫ b

a

f =

∫ b

a

g for a, b ∈ I.

(Thus we may arbitrarily redefine f on a countable Q.)

Proof. Let F ′ = f on I−P . Then F ′ = g on I−(P ∪Q). The rest is clear. �

Corollary 5 (integration by parts). Let f and g be real or complex (or let

f be scalar valued and g vector valued), both relatively continuous on I and

differentiable on I −Q. Then if
∫

f ′g exists on I, so does
∫

fg′, and we have

∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g for any a, b ∈ I. (2)

Proof. By assumption, fg is relatively continuous and finite on I, and

(fg)′ = fg′ + f ′g on I −Q.

Thus, setting H = fg, we have H =
∫

(fg′ + f ′g) on I. Hence by Corollary 1,
if
∫

f ′g exists on I, so does
∫

((fg′ + f ′g)− f ′g) =
∫

fg′, and
∫ b

a

fg′ +

∫ b

a

f ′g =

∫ b

a

(fg′ + f ′g) = H(b)−H(a) = f(b)g(b)− f(a)g(a).

Thus (2) follows. �

The proof of the next three corollaries is left to the reader.
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Corollary 6 (additivity of the integral). If
∫

f exists on I then, for a, b, c ∈ I,
we have

(i)

∫ b

a

f =

∫ c

a

f +

∫ b

c

f ;

(ii)

∫ a

a

f = 0; and

(iii)

∫ a

b

f = −
∫ b

a

f .

Corollary 7 (componentwise integration). A function f : E1 → En (∗Cn)
is integrable on I iff all its components (f1, f2, . . . , fn) are, and then (by
Theorem 5 in §1)

∫ b

a

f =
(

∫ b

a

f1, . . . ,

∫ b

a

fn

)

=

n
∑

k=1

~ek

∫ b

a

fk for any a, b ∈ I.

Hence if f is complex ,

∫ b

a

f =

∫ b

a

fre + i ·
∫ b

a

fim

(see Chapter 4, §3, Note 5).

Examples (continued).

(c) Define f : E1 → E3 by

f(x) = (a · cosx, a · sinx, 2cx), a, c ∈ E1.

Verify that
∫ π

0

f(x) dx = (a · sinx, −a · cosx, cx2)
∣

∣

∣

π

0
= (0, 2a, cπ2) = 2a~j + cπ2~k.

(d)

∫ π

0

eix dx =

∫ π

0

(cosx+ i · sinx) dx = (sinx− i · cosx)
∣

∣

∣

π

0
= 2i.

Corollary 8. If f = 0 on I −Q, then
∫

f exists on I, and

∣

∣

∣

∫ b

a

f
∣

∣

∣
=

∫ b

a

|f | = 0 for a, b ∈ I.

Theorem 2 (change of variables). Suppose g : E1 → E1 (real) is differentiable
on I, while f : E1 → E has a primitive on g[I],4 exact on g[I −Q].

4 Note that g[I] is an interval , for g has the Darboux property (Chapter 4, §9, Note 1).
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Then
∫

f
(

g(x)
)

g′(x) dx (i .e.,

∫

(f ◦ g)g′)

exists on I, and for any a, b ∈ I, we have
∫ b

a

f
(

g(x)
)

g′(x) dx =

∫ q

p

f(y) dy, where p = g(a) and q = g(b). (3)

Thus, using classical notation, we may substitute y = g(x), provided that we

also substitute dy = g′(x) dx and change the bounds of integrals (3). Here we
treat the expressions dy and g′(x) dx purely formally, without assigning them
any separate meaning outside the context of the integrals.

Proof. Let F =
∫

f on g[I], and F ′ = f on g[I − Q]. Then the composite
function H = F ◦ g is relatively continuous and finite on I. (Why?) By
Theorem 3 of §1,

H ′(x) = F ′(g(x)
)

g′(x) for x ∈ I −Q;

i.e.,
H ′ = (F ′ ◦ g)g′ on I −Q.

Thus H =
∫

(f ◦ g)g′ exists on I, and
∫ b

a

(f ◦ g)g′ = H(b)−H(a) = F
(

g(b)
)

− F
(

g(a)
)

= F (q)− F (p) =
∫ q

p

f. �

Note 3. The theorem does not require that g be one to one on I, but if
it is, then one can drop the assumption that

∫

f is exact on g[I − Q]. (See
Problem 4.)

Examples (continued).

(e) Find

∫ π/2

0

sin2 x · cosx dx.

Here f(y) = y2, y = g(x) = sinx, dy = cosx dx, F (y) = y3/3, a = 0,
b = π/2, p = sin 0 = 0, and q = sin(π/2) = 1, so (3) yields

∫ π/2

0

sin2 x · cosx dx =

∫ 1

0

y2 dy =
y3

3

∣

∣

∣

1

0
=

1

3
− 0 =

1

3
.

For real functions, we obtain some inferences dealing with inequalities .

Theorem 3. If f, g : E1 → E1 are integrable on I = [a, b], then we have the

following :

(i) f ≥ 0 on I −Q implies
∫ b

a
f ≥ 0.

(i′) f ≤ 0 on I −Q implies
∫ b

a
f ≤ 0.
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(ii) f ≥ g on I −Q implies

∫ b

a

f ≥
∫ b

a

g (dominance law).

(iii) If f ≥ 0 on I −Q and a ≤ c ≤ d ≤ b, then
∫ b

a

f ≥
∫ d

c

f (monotonicity law).

(iv) If
∫ b

a
f = 0, and f ≥ 0 on I −Q, then f = 0 on some I −P , P countable.

Proof. By Corollary 4, we may redefine f on Q so that our assumptions in
(i)–(iv) hold on all of I. Thus we write “I” for “I −Q.”

By assumption, F =
∫

f and G =
∫

g exist on I. Here F and G are relatively
continuous and finite on I = [a, b], with F ′ = f and G′ = g on I−P , for another
countable set P (this P cannot be omitted). Now consider the cases (i)–(iv).
(P is fixed henceforth.)

(i) Let f ≥ 0 on I; i.e., F ′ = f ≥ 0 on I −P . Then by Theorem 2 in §4, F↑
on I = [a, b]. Hence F (a) ≤ F (b), and so

∫ b

a

f = F (b)− F (a) ≥ 0.

One proves (i′) similarly.

(ii) If f − g ≥ 0, then by (i),

∫ b

a

(f − g) =
∫ b

a

f −
∫ b

a

g ≥ 0,

so
∫ b

a
f ≥

∫ b

a
g, as claimed.

(iii) Let f ≥ 0 on I and a ≤ c ≤ d ≤ b. Then by (i),

∫ c

a

f ≥ 0 and

∫ b

d

f ≥ 0.

Thus by Corollary 6,

∫ b

a

f =

∫ c

a

f +

∫ d

c

f +

∫ b

d

f ≥
∫ d

c

f,

as asserted.

(iv) Seeking a contradiction, suppose
∫ b

a
f = 0, f ≥ 0 on I, yet f(p) > 0 for

some p ∈ I − P (P as above), so F ′(p) = f(p) > 0.
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Now if a ≤ p < b, Lemma 1 of §2 yields F (c) > F (p) for some c ∈ (p, b].
Then by (iii),

∫ b

a

f ≥
∫ c

p

f = F (c)− F (p) > 0,

contrary to
∫ b

a
f = 0; similarly in case a < p ≤ b. �

Note 4. Hence
∫ b

a

|f | = 0 implies f = 0 on [a, b]− P

(P countable), even for vector-valued functions (for |f | is always real , and so
Theorem 3 applies).

However,
∫ b

a
f = 0 does not suffice, even for real functions (unless f is sign-

constant). For example,

∫ 2π

0

sinx dx = 0, yet sinx 6≡ 0 on any I − P .

See also Example (b).

Corollary 9 (first law of the mean). If f is real and
∫

f exists on [a, b], exact
on (a, b), then

∫ b

a

f = f(q)(b− a) for some q ∈ (a, b).

Proof. Apply Corollary 3 in §2 to the function F =
∫

f . �

Caution: Corollary 9 may fail if
∫

f is inexact at some p ∈ (a, b). (Exactness
on [a, b] − Q does not suffice, as it does not in Corollary 3 of §2, used here.)

Thus in Example (b) above,
∫ 2

−2
f = 0. Yet for no q is f(q)(2 + 2) = 0, since

f(q) = ±1. The reason is that
∫

f is inexact just at 0, an interior point of
[−2, 2].

Problems on Antiderivatives

1. Prove in detail Corollaries 3, 4, 6, 7, 8, and 9 and Theorem 3(i′) and
(iv).

2. In Examples (a) and (b) discuss continuity and differentiability of f and
F at 0. In (a) show that

∫

f does not exist on any interval (−a, a).
[Hint: Use Theorem 1.]

3. Show that Theorem 2 holds also if g is relatively continuous on I and
differentiable on I −Q.
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4. Under the assumptions of Theorem 2, show that if g is one to one on I,
then automatically

∫

f is exact on g[I −Q] (Q countable).
[Hint: If F =

∫
f on g[I], then

F ′ = f on g[I]− P , P countable.

Let Q = g−1[P ]. Use Problem 6 of Chapter 1, §§4–7 and Problem 2 of Chapter 1,
§9 to show that Q is countable and g[I]− P = g[I −Q].]

5. Prove Corollary 5 for dot products f · g of vector-valued functions.

6. Prove that if
∫

f exists on [a, p] and [p, b], then it exists on [a, b]. By
induction, extend this to unions of n adjacent intervals.
[Hint: Choose F =

∫
f on [a, p] and G =

∫
f on [p, b] such that F (p) = G(p).

(Why do such F, G exist?) Then construct a primitive H =
∫
f that is relatively

continuous on all of [a, b].]

7. Prove the weighted law of the mean: If g is real and nonnegative on
I = [a, b], and if

∫

g and
∫

gf exist on I for some f : E1 → E, then
there is a finite c ∈ E with

∫ b

a

gf = c

∫ b

a

g.

(The value c is called a g-weighted mean of f .)

[Hint: If
∫ b
a g > 0, put

c =

∫ b

a
gf

/∫ b

a
g.

If
∫ b
a
g = 0, use Theorem 3(i) and (iv) to show that also

∫ b
a
gf = 0, so any c will do.]

8. In Problem 7, prove that if, in addition, f is real and has the Darboux
property on I, then c = f(q) for some q ∈ I (the second law of the

mean).

[Hint: Choose c as in Problem 7. If
∫ b
a g > 0, put

m = inf f [I] and M = sup f [I], in E∗,

so m ≤ f ≤ M on I. Deduce that

m

∫ b

a
g ≤

∫ b

a
gf ≤ M

∫ b

a
g,

whence m ≤ c ≤ M .

If m < c < M , then f(x) < c < f(y) for some x, y ∈ I (why?), so the Darboux

property applies.

If c = m, then g · (f − c) ≥ 0 and Theorem 3(iv) yields gf = gc on I−P . (Why?)

Deduce that f(q) = c if g(q) 6= 0 and q ∈ I − P . (Why does such a q exist?)

What if c = M?]

9. Taking g(x) ≡ 1 in Problem 8, obtain a new version of Corollary 9.
State it precisely!
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⇒10. Prove that if F =
∫

f on I = (a, b) and f is right (left) continuous and
finite at p ∈ I, then

f(p) = F ′
+(p) (respectively, F

′
−(p)).

Deduce that if f is continuous and finite on I, all its primitives on I
are exact on I.
[Hint: Fix ε > 0. If f is right continuous at p, there is c ∈ I (c > p), with

|f(x)− f(p)| < ε for x ∈ [p, c).

Fix such an x. Let

G(t) = F (t)− tf(p), t ∈ E1.

Deduce that G′(t) = f(t)− f(p) for t ∈ I −Q.

By Corollary 1 of §4,

|G(x)−G(p)| = |F (x)− F (p)− (x− p)f(p)| ≤ M(x − p),

with M ≤ ε. (Why?) Hence

∣
∣
∣
∆F

∆x
− f(p)

∣
∣
∣ ≤ ε for x ∈ [p, c),

and so

lim
x→p+

∆F

∆x
= f(p) (why?);

similarly for a left-continuous f .]

11. State and solve Problem 10 for the case I = [a, b].

12. (i) Prove that if f is constant (f = c 6= ±∞) on I −Q, then

∫ b

a

f = (b− a)c for a, b ∈ I.

(ii) Hence prove that if f = ck 6= ±∞ on

Ik = [ak, ak+1), a = a0 < a1 < · · · < an = b,

then
∫

f exists on [a, b], and

∫ b

a

f =

n−1
∑

k=0

(ak+1 − ak)ck.

Show that this is true also if f = ck 6= ±∞ on Ik −Qk.

[Hint: Use Problem 6.]

13. Prove that if
∫

f exists on each In = [an, bn], where

an+1 ≤ an ≤ bn ≤ bn+1, n = 1, 2, . . . ,
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then
∫

f exists on

I =

∞
⋃

n=1

[an, bn],

itself an interval with endpoints a = inf an and b = sup bn, a, b ∈ E∗.
[Hint: Fix some c ∈ I1. Define

Hn(t) =

∫ t

c
f on In, n = 1, 2, . . . .

Prove that

(∀n ≤ m) Hn = Hm on In (since {In}↑).

Thus Hn(t) is the same for all n such that t ∈ In, so we may simply write H for

Hn on I =
⋃∞

n=1 In. Show that H =
∫
f on all of I; verify that I is, indeed, an

interval .]

14. Continuing Problem 13, prove that
∫

f exists on an interval I iff it exists
on each closed subinterval [a, b] ⊆ I.
[Hint: Show that each I is the union of an expanding sequence In = [an, bn]. For
example, if I = (a, b), a, b ∈ E1, put

an = a+
1

n
and bn = b− 1

n
for large n (how large?),

and show that

I =
⋃

n

[an, bn] over such n.]

§6. Differentials. Taylor’s Theorem and Taylor’s Series

Recall (Theorem 2 of §1) that a function f is differentiable at p iff

∆f = f ′(p)∆x+ δ(x)∆x,

with limx→p δ(x) = δ(p) = 0. It is customary to write df for f ′(p)∆x and
o(∆x) for δ(x)∆x;1 df is called the differential of f (at p and x). Thus

∆f = df + o(∆x);

i.e., df approximates ∆f to within o(∆x).

More generally, given any function f : E1 → E and p, x ∈ E1, we define

dnf = dnf(p, x) = f (n)(p)(x− p)n, n = 0, 1, 2, . . . , (1)

1 This is the so-called “little o” notation. Given g : E1 → E1, we write o(g(x)) for any

expression of the form δ(x)g(x), with δ(x) → 0. In our case, g(x) = ∆x.
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where f (n) is the nth derived function (Definition 2 in §1); dnf is called the
nth differential , or differential of order n, of f (at p and x). In particular,
d1f = f ′(p)∆x = df .2 By our conventions, dnf is always defined, as is f (n).

As we shall see, good approximations of ∆f (suggested by Taylor) can often
be obtained by using higher differentials (1), as follows:

∆f = df +
d2f

2!
+
d3f

3!
+ · · ·+ dnf

n!
+Rn, n = 1, 2, 3, . . . , (2)

where

Rn = ∆f −
n
∑

k=1

dkf

k!
(the “remainder term”)

is the error of the approximation. Substituting the values of ∆f and dkf and
transposing f(p), we have

f(x) = f(p)+
f ′(p)

1!
(x− p) + f ′′(p)

2!
(x− p)2 + · · ·+ f (n)(p)

n!
(x− p)n +Rn. (3)

Formula (3) is known as the nth Taylor expansion of f about p (with remain-
der term Rn to be estimated). Usually we treat p as fixed and x as variable.
Writing Rn(x) for Rn and setting

Pn(x) =

n
∑

k=0

f (k)(p)

k!
(x− p)k,

we have

f(x) = Pn(x) +Rn(x).

The function Pn : E
1 → E so defined is called the nth Taylor polynomial for

f about p. Thus (3) yields approximations of f by polynomials Pn, n =
1, 2, 3, . . . . This is one way of interpreting it. The other (easy to remem-
ber) one is (2), which gives approximations of ∆f by the dkf . It remains,
however, to find a good estimate for Rn. We do it next.

Theorem 1 (Taylor). Let the function f : E1 → E and its first n derived

functions be relatively continuous and finite on an interval I and differentiable

on I −Q (Q countable). Let p, x ∈ I. Then formulas (2) and (3) hold , with

Rn =
1

n!

∫ x

p

f (n+1)(t) · (x− t)n dt (“integral form of Rn”) (3′)

and

|Rn| ≤Mn
|x− p|n+1

(n+ 1)!
for some real Mn ≤ sup

t∈I−Q
|f (n+1)(t)|. (3′′)

2 Footnote 2 of §1 applies to dnf , as it does to ∆f (and to Rn defined below).
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Proof. By definition, Rn = f − Pn, or

Rn = f(x)− f(p)−
n
∑

k=1

f (k)(p)
(x− p)k

k!
.

We use the right side as a “pattern” to define a function h : E1 → E. This
time, we keep x fixed (say, x = a ∈ I) and replace p by a variable t. Thus we
set

h(t) = f(a)− f(t)− f ′(t)

1!
(a− t)− · · · − f (n)(t)

n!
(a− t)n for all t ∈ E1. (4)

Then h(p) = Rn and h(a) = 0. Our assumptions imply that h is relatively
continuous and finite on I, and differentiable on I −Q. Differentiating (4), we
see that all cancels out except for one term

h′(t) = −f (n+1)(t)
(a− t)n
n!

, t ∈ I −Q. (Verify!) (5)

Hence by Definitions 1 and 2 of §5,

−h(t) = 1

n!

∫ a

t

f (n+1)(s)(a− s)n ds on I

and

1

n!

∫ a

p

f (n+1)(t)(a− t)n dt = −h(a) + h(p) = 0 +Rn = Rn (for h(p) = Rn).

As x = a, (3′) is proved.

Next, let

M = sup
t∈I−Q

|f (n+1)(t)|.

If M < +∞, define

g(t) =M
(t− a)n+1

(n+ 1)!
for t ≥ a and g(t) = −M (a− t)n+1

(n+ 1)!
for t ≤ a.

In both cases,

g′(t) =M
|a− t|n
n!

≥ |h′(t)| on I −Q by (5).

Hence, applying Theorem 1 in §4 to the functions h and g on the interval [a, p]
(or [p, a]), we get

|h(p)− h(a)| ≤ |g(p)− g(a)|,
or

|Rn − 0| ≤M |a− p|
n+1

(n+ 1)!
.
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Thus (3′′) follows, with Mn =M .

Finally, if M = +∞, we put

Mn = |Rn|
(n+ 1)!

|a− p|n+1
< M. �

For real functions, we obtain some additional estimates of Rn.

Theorem 1′. If f is real and n + 1 times differentiable on I, then for p 6= x
(p, x ∈ I), there are qn, q

′
n in the interval (p, x) (respectively , (x, p)) such that

Rn =
f (n+1)(qn)

(n+ 1)!
(x− p)n+1 (5′)

and

Rn =
f (n+1)(q′n)

n!
(x− p)(x− q′n)n. (5′′)

(Formulas (5′) and (5′′) are known as the Lagrange and Cauchy forms of

Rn, respectively.)

Proof. Exactly as in the proof of Theorem 1, we obtain the function h and
formula (5). By our present assumptions, h is differentiable (hence continuous)
on I, so we may apply to it Cauchy’s law of the mean (Theorem 2 of §2) on
the interval [a, p] (or [p, a] if p < a), where a = x ∈ I.

For this purpose, we shall associate h with another suitable function g (to
be specified later). Then by Theorem 2 of §2, there is a real q ∈ (a, p) (respec-
tively, q ∈ (p, a)) such that

g′(q)[h(a)− h(p)] = h′(q)[g(a)− g(p)].
Here by the previous proof, h(a) = 0, h(p) = Rn, and

h′(q) = −f
(n+1)

n!
(a− q)n.

Thus

g′(q) ·Rn =
f (n+1)(q)

n!
(a− q)n[g(a)− g(p)]. (6)

Now define g by
g(t) = a− t, t ∈ E1.

Then
g(a)− g(p) = −(a− p) and g′(q) = −1,

so (6) yields (5′′) (with q′n = q and a = x).

Similarly, setting g(t) = (a − t)n+1, we obtain (5′). (Verify!) Thus all is
proved. �
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Note 1. In (5′) and (5′′), the numbers qn and q′n depend on n and are
different in general (qn 6= q′n), for they depend on the choice of the function g.
Since they are between p and x, they may be written as

qn = p+ θn(x− p) and q′n = p+ θ′n(x− p),

where 0 < θn < 1 and 0 < θ′n < 1. (Explain!)

Note 2. For any function f : E1 → E, the Taylor polynomials Pn are partial
sums of a power series, called the Taylor series for f (about p). We say that f
admits such a series on a set B iff the series converges to f on B; i.e.,

f(x) = lim
n→∞

Pn(x) =

∞
∑

n=1

f (n)(p)

n!
(x− p)n 6= ±∞ for x ∈ B. (7)

This is clearly the case iff

lim
n→∞

Rn(x) = lim
n→∞

[f(x)− Pn(x)] = 0 for x ∈ B;

briefly, Rn → 0. Thus

f admits a Taylor series (about p) iff Rn → 0.

Caution: The convergence of the series alone (be it pointwise or uniform)
does not suffice. Sometimes the series converges to a sum other than f(x); then
(7) fails . Thus all depends on the necessary and sufficient condition: Rn → 0.

Before giving examples, we introduce a convenient notation.

Definition 1.

We say that f is of class CDn, or continuously differentiable n times , on a
set B iff f is n times differentiable on B, and f (n) is relatively continuous
on B. Notation: f ∈ CDn (on B).

If this holds for each n ∈ N , we say that f is infinitely differentiable

on B and write f ∈ CD∞ (on B).

The notation f ∈ CD0 means that f is finite and relatively continuous
(all on B).

Examples.

(a) Let

f(x) = ex on E1.

Then

(∀n) f (n)(x) = ex,

so f ∈ CD∞ on E1. At p = 0, f (n)(p) = 1, so we obtain by Theorem 1′
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(using (5′) and Note 1)

ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!
+

eθnx

(n+ 1)!
xn+1, 0 < θn < 1. (8)

Thus on an interval [−a, a],

ex ≈ 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!

to within an error Rn (> 0 if x > 0) with

|Rn| < ea
an+1

(n+ 1)!
,

which tends to 0 as n→ +∞. For a = 1 = x, we get

e = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+Rn with 0 < Rn <

e1

(n+ 1)!
. (9)

Taking n = 10, we have

e ≈ 2.7182818|011463845 . . .
with a nonnegative error of no more than

e

11!
= 0.00000006809869 . . . ;

all digits are correct before the vertical bar.

(b) Let

f(x) = e−1/x2

with f(0) = 0.

As limx→0 f(x) = 0 = f(0), f is continuous at 0.3 We now show that
f ∈ CD∞ on E1.

For x 6= 0, this is clear; moreover, induction yields

f (n)(x) = e−1/x2

x−3nSn(x),

where Sn is a polynomial in x of degree 2(n−1) (this is all we need know
about Sn). A repeated application of L’Hôpital’s rule then shows that

lim
x→0

f (n)(x) = 0 for each n.

To find f ′(0), we have to use the definition of a derivative:

f ′(0) = lim
x→0

f(x)− f(0)
x− 0

,

3 At other points, f is continuous by the continuity of exponentials.
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or by L’Hôpital’s rule,

f ′(0) = lim
x→0

f ′(x)

1
= 0.

Using induction again, we get

f (n)(0) = 0, n = 1, 2, . . . .

Thus, indeed, f has finite derivatives of all orders at each x ∈ E1, includ-
ing x = 0, so f ∈ CD∞ on E1, as claimed.

Nevertheless, any attempt to use formula (3) at p = 0 yields nothing.
As all f (n) vanish at 0, so do all terms except Rn. Thus no approximation

by polynomials results—we only get Pn = 0 on E1 and Rn(x) = e−1/x2

.
Rn does not tend to 0 except at x = 0, so f admits no Taylor series about

0 (except on E = {0}).4

Taylor’s theorem also yields sufficient conditions for maxima and minima,
as we see in the following theorem.

Theorem 2. Let f : E1 → E∗ be of class CDn on Gp(δ) for an even number

n ≥ 2, and let

f (k)(p) = 0 for k = 1, 2, . . . , n− 1,

while

f (n)(p) < 0 (respectively , f (n)(p) > 0).

Then f(p) is the maximum (respectively , minimum) value of f on some Gp(ε),
ε ≤ δ.

If , however , these conditions hold for some odd n ≥ 1 (i .e., the first non-

vanishing derivative at p is of odd order), f has no maximum or minimum

at p.

Proof. As

f (k)(p) = 0, k = 1, 2, . . . , n− 1,

Theorem 1′ (with n replaced by n− 1) yields

f(x) = f(p) + f (n)(qn)
(x− p)n

n!
for all x ∈ Gp(δ),

with qn between x and p.

Also, as f ∈ CDn, f (n) is continuous at p. Thus if f (n)(p) < 0, then f (n) < 0
on some Gp(ε), 0 < ε ≤ δ. However, x ∈ Gp(ε) implies qn ∈ Gp(ε), so

f (n)(qn) < 0,

4 Taylor’s series with p = 0 is often called the Maclaurin series (though without proper

justification). As we see, it may fail even if f ∈ CD∞ near 0.
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while
(x− p)n ≥ 0 if n is even.

It follows that

f (n)(qn)
(x− p)n

n!
≤ 0,

and so

f(x) = f(p) + f (n)(qn)
(x− p)n

n!
≤ f(p) for x ∈ Gp(ε),

i.e., f(p) is the maximum value of f on Gp(ε), as claimed.

Similarly, in the case f (n)(p) > 0, a minimum would result.

If, however, n is odd , then (x − p)n is negative for x < p but positive for
x > p. The same argument then shows that f(x) < f(p) on one side of p and
f(x) > f(p) on the other side; thus no local maximum or minimum can exist
at p. This completes the proof. �

Examples.

(a′) Let
f(x) = x2 on E1 and p = 0.

Then
f ′(x) = 2x and f ′′(x) = 2 > 0,

so
f ′(0) = 0 and f ′′(0) = 2 > 0.

By Theorem 2, f(p) = 02 = 0 is a minimum value.

It turns out to be a minimum on all of E1. Indeed, f ′(x) > 0 for x > 0,
and f ′ < 0 for x < 0, so f strictly decreases on (−∞, 0) and increases on
(0, +∞).

Actually, even without using Theorem 2, the last argument yields the
answer.

(b′) Let
f(x) = lnx on (0, +∞).

Then

f ′(x) =
1

x
> 0 on all of (0,+∞).

This shows that f strictly increases everywhere and hence can have no
maximum or minimum anywhere. The same follows by the second part
of Theorem 2, with n = 1.

(b′′) In Example (b′), consider also

f ′′(x) = − 1

x2
< 0.
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In this case, f ′′ has no bearing on the existence of a maximum or minimum
because f ′ 6= 0. Still, the formula f ′′ < 0 does have a certain meaning. In
fact, if f ′′(p) < 0 and f ∈ CD2 on Gp(δ), then (using the same argument
as in Theorem 2) the reader will easily find that

f(x) ≤ f(p) + f ′(p)(x− p) for x in some Gp(ε), 0 < ε ≤ δ. (10)

Since y = f(p)+f ′(p)(x−p) is the equation of the tangent at p, it follows
that f(x) ≤ y; i.e., near p the curve lies below the tangent at p.

Similarly, f ′′(p) > 0 and f ∈ CD2 on Gp(δ) implies that the curve near
p lies above the tangent.

Problems on Taylor’s Theorem

1. Complete the proofs of Theorems 1, 1′, and 2.

2. Verify Note 1 and Examples (b) and (b′′).

3. Taking g(t) = (a− t)s, s > 0, in (6), find

Rn =
f (n+1)(q)

n! s
(x− p)s(x− q)n+1−s (Schloemilch–Roche remainder).

Obtain (5′) and (5′′) from it.

4. Prove that Pn (as defined) is the only polynomial of degree n such that

f (k)(p) = P (k)
n (p), k = 0, 1, . . . , n.

[Hint: Differentiate Pn n times to verify that it satisfies this property.

For uniqueness, suppose this also holds for

P (x) =
n∑

k−0

ak(x− p)k.

Differentiate P n times to show that

P (k)(p) = f (k)(p) = akk!,

so P = Pn. (Why?)]

5. With Pn as defined, prove that if f is n times differentiable at p, then

f(x)− Pn(x) = o((x− p)n) as x→ p

(Taylor’s theorem with Peano remainder term).
[Hint: Let R(x) = f(x)− Pn(x) and

δ(x) =
R(x)

(x− p)n
with δ(p) = 0.

Using the “simplified” L’Hôpital rule (Problem 3 in §3) repeatedly n times, prove
that limx→p δ(x) = 0.]
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6. Use Theorem 1′ with p = 0 to verify the following expansions, and prove
that limn→∞Rn = 0.

(a) sinx = x− x3

3!
+
x5

5!
− · · · − (−1)mx2m−1

(2m− 1)!
+

(−1)mx2m+1

(2m+ 1)!
cos θmx

for all x ∈ E1;

(b) cosx = 1− x2

2!
+
x4

4!
− · · ·+ (−1)mx2m

(2m)!
− (−1)mx2m+2

(2m+ 2)!
sin θmx for

all x ∈ E1.

[Hints: Let f(x) = sinx and g(x) = cos x. Induction shows that

f (n)(x) = sin
(

x+
nπ

2

)

and g(n)(x) = cos
(

x+
nπ

2

)

.

Using formula (5′), prove that

|Rn(x)| ≤
∣
∣
∣

xn+1

(n+ 1)!

∣
∣
∣ → 0.

Indeed, xn/n! is the general term of a convergent series

∑ xn

n!
(see Chapter 4, §13, Example (d)).

Thus xn/n! → 0 by Theorem 4 of the same section.]

7. For any s ∈ E1 and n ∈ N , define
(

s

n

)

=
s(s− 1) · · · (s− n+ 1)

n!
with

(

s

0

)

= 1.

Then prove the following.

(i) lim
n→∞

n

(

s

n

)

= 0 if s > 0.

(ii) lim
n→∞

(

s

n

)

= 0 if s > −1.

(iii) For any fixed s ∈ E1 and x ∈ (−1, 1),

lim
n→∞

(

s

n

)

nxn = 0;

hence

lim
n→∞

(

s

n

)

xn = 0.

[Hints: (i) Let an =
∣
∣
∣n
(s

n

)∣
∣
∣. Verify that

an = |s|
∣
∣
∣1− s

1

∣
∣
∣

∣
∣
∣1− s

2

∣
∣
∣ · · ·

∣
∣
∣1− s

n− 1

∣
∣
∣.
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If s > 0, {an}↓ for n > s + 1, so we may put L = liman = lima2n ≥ 0. (Explain!)
Prove that

a2n

an
<

∣
∣
∣1− s

2n

∣
∣
∣
n
→ e−

1
2
s as n → ∞,

so for large n,
a2n

an
< e−

1
2
s + ε; i.e., a2n < (e−

1
2
s + ε)an.

With ε fixed, let n → ∞ to get L ≤ (e−
1
2
s+ε)L. Then with ε → 0, obtain Le

1
2
s ≤ L.

As e
1
2
s > 1 (for s > 0), this implies L = 0, as claimed.

(ii) For s > −1, s+ 1 > 0, so by (i),

(n+ 1)
(s+ 1

n+ 1

)

→ 0; i.e., (s+ 1)
(s

n

)

→ 0. (Why?)

(iii) Use the ratio test to show that the series
∑(s

n

)

nxn converges when |x| < 1.

Then apply Theorem 4 of Chapter 4, §13.]

8. Continuing Problems 6 and 7, prove that

(1 + x)s =
n
∑

k=0

(

s

k

)

xk +Rn(x),

where Rn(x)→ 0 if either |x| < 1, or x = 1 and s > −1, or x = −1 and
s > 0.
[Hints: (a) If 0 ≤ x ≤ 1, use (5′) for

Rn−1(x) =
(s

n

)

xn(1 + θnx)
s−n, 0 < θn < 1. (Verify!)

Deduce that |Rn−1(x)| ≤
∣
∣
∣

(s

n

)

xn
∣
∣
∣ → 0. Use Problem 7(iii) if |x| < 1 or Problem 7(ii)

if x = 1.

(b) If −1 ≤ x < 0, write (5′′) as

Rn−1(x) =
(s

n

)

nxn(1 + θ′nx)s
−1

( 1− θ′n
1 + θ′nx

)n−1
. (Check!)

As −1 ≤ x < 0, the last fraction is ≤ 1. (Why?) Also,

(1 + θ′nx)
s−1 ≤ 1 if s > 1, and ≤ (1 + x)s−1 if s ≤ 1.

Thus, with x fixed, these expressions are bounded , while
(s

n

)

nxn → 0 by Problem 7(i)

or (iii). Deduce that Rn−1 → 0, hence Rn → 0.]

9. Prove that

ln(1 + x) =
n
∑

k=1

(−1)k+1x
k

k
+Rn(x),

where limn→∞Rn(x) = 0 if −1 < x ≤ 1.
[Hints: If 0 ≤ x ≤ 1, use formula (5′).

If −1 < x < 0, use formula (6) with g(t) = ln(1 + t) to obtain

Rn(x) =
ln(1 + x)

(−1)n

( 1− θn

1 + θnx
· x

)n
.
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Proceed as in Problem 8.]

10. Prove that if f : E1 → E∗ is of class CD1 on [a, b] and if −∞ < f ′′ < 0
on (a, b), then for each x0 ∈ (a, b),

f(x0) >
f(b)− f(a)

b− a (x0 − a) + f(a);

i.e., the curve y = f(x) lies above the secant through (a, f(a)) and
(b, f(b)).
[Hint: This formula is equivalent to

f(x0)− f(a)

x0 − a
>

f(b)− f(a)

b− a
,

i.e., the average of f ′ on [a, x0] is strictly greater than the average of f ′ on [a, b],

which follows because f ′ decreases on (a, b). (Explain!)]

11. Prove that if a, b, r, and s are positive reals and r + s = 1, then

arbs ≤ ra+ sb.

(This inequality is important for the theory of so-called Lp-spaces .)
[Hints: If a = b, all is trivial.

Therefore, assume a < b. Then

a = (r + s)a < ra + sb < b.

Use Problem 10 with x0 = ra + sb ∈ (a, b) and

f(x) = lnx, f ′′(x) = − 1

x2
< 0.

Verify that

x0 − a = x0 − (r + s)a = s(b− a)

and r · ln a = (1− s) ln a; hence deduce that

r · ln a+ s · ln b− ln a = s(ln b− ln a) = s(f(b)− f(a)).

After substitutions, obtain

f(x0) = ln(ra + sb) > r · ln a+ s · ln b = ln(arbs).]

12. Use Taylor’s theorem (Theorem 1′) to prove the following inequalities:

(a) 3
√
1 + x < 1 +

x

3
if x > −1, x 6= 0.

(b) cosx > 1− 1

2
x2 if x 6= 0.

(c)
x

1 + x2
< arctanx < x if x > 0.

(d) x > sinx > x− 1

6
x3 if x > 0.
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§7. The Total Variation (Length) of a Function f : E1 → E

The question that we shall consider now is how to define reasonably (and
precisely) the notion of the length of a curve (Chapter 4, §10) described by a
function f : E1 → E over an interval I = [a, b], i.e., f [I].

We proceed as follows (see Figure 24).1

q0 = f(t0)

q1 = f(t1)
q2 = f(t2)

q3 = f(t3)

q = f(c)

f : E1 → E2

Figure 24

Subdivide [a, b] by a finite set of
points P = {t0, t1, . . . , tm}, with

a = t0 ≤ t1 ≤ · · · ≤ tm = b;

P is called a partition of [a, b]. Let

qi = f(ti), i = 1, 2, . . . , m,

and, for i = 1, 2, . . . , m,

∆if = qi − qi−1

= f(ti)− f(ti−1).

We also define

S(f, P ) =

m
∑

i=1

|∆if | =
m
∑

i=1

|qi − qi−1|.

Geometrically, |∆if | = |qi−qi−1| is the length of the line segment L[qi−1, qi]
in E, and S(f, P ) is the sum of such lengths, i.e., the length of the polygon

W =
m
⋃

i=1

L[qi−1, qi]

inscribed into f [I]; we denote it by

ℓW = S(f, P ).

Now suppose we add a new partition point c, with

ti−1 ≤ c ≤ ti.

Then we obtain a new partition

Pc = {t0, . . . , ti−1, c, ti, . . . , tm},
called a refinement of P , and a new inscribed polygonWc in which L[qi−1, qi] is
replaced by two segments, L[qi−1, q] and L[q, qi], where q = f(c); see Figure 24.
Accordingly, the term |∆if | = |qi − qi−1| in S(f, P ) is replaced by

|qi − q|+ |q − qi−1| ≥ |qi − qi−1| (triangle law).

1 Note that this method works even if f is discontinuous.
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It follows that

S(f, P ) ≤ S(f, Pc); i.e., ℓW ≤ ℓWc.

Hence we obtain the following result.

Corollary 1. The sum S(f, P ) = ℓW cannot decrease when P is refined .

Thus when new partition points are added, S(f, P ) grows in general; i.e.,
it approaches some supremum value (finite or not). Roughly speaking, the
inscribed polygon W gets “closer” to the curve. It is natural to define the
desired length of the curve to be the lub of all lengths ℓW , i.e., of all sums
S(f, P ) resulting from the various partitions P . This supremum is also called
the total variation of f over [a, b], denoted Vf [a, b].

2

Definition 1.

Given any function f : E1 → E, and I = [a, b] ⊂ E1, we set

Vf [I] = Vf [a, b] = sup
P
S(f, P ) = sup

P

m
∑

i=1

|f(ti)− f(ti−1)| ≥ 0 in E∗, (1)

where the supremum is over all partitions P = {t0, . . . , tm} of I. We call
Vf [I] the total variation, or length, of f on I. Briefly, we denote it by Vf .

Note 1. If f is continuous on [a, b], the image set A = f [I] is an arc

(Chapter 4, §10). It is customary to call Vf [I] the length of that arc, denoted
ℓfA or briefly ℓA. Note, however, that there may well be another function
g, continuous on an interval J , such that g[J ] = A but Vf [I] 6= Vg[J ], and
so ℓfA 6= ℓgA. Thus it is safer to say “the length of A as described by f on

I.” Only for simple arcs (where f is one to one), is “ℓA” unambiguous. (See
Problems 6–8.)

In the propositions below, f is an arbitrary function, f : E1 → E.

Theorem 1 (additivity of Vf ). If a ≤ c ≤ b, then
Vf [a, b] = Vf [a, c] + Vf [c, b];

i .e., the length of the whole equals the sum of the lengths of the parts .

Proof. Take any partition P = {t0, . . . , tm} of [a, b]. If c /∈ P , refine P to

Pc = {t0, . . . , ti, c, ti, . . . , tm}.
Then by Corollary 1, S(f, P ) ≤ S(f, Pc).

Now Pc splits into partitions of [a, c] and [c, b], namely,

P ′ = {t0, . . . , ti−1, c} and P ′′ = {c, ti, . . . , tm},

2 We also call it the length of f over [a, b]. Observe that, for real f : E1 → E1, this is not

the length of the graph in the usual sense (which is a curve in E2). See the end of §8.
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so that

S(f, P ′) + S(f, P ′′) = S(f, Pc). (Verify!)

Hence (as Vf is the lub of the corresponding sums),

Vf [a, c] + Vf [c, d] ≥ S(f, Pc) ≥ S(f, P ).

As P is an arbitrary partition of [a, b], we also have

Vf [a, c] + Vf [c, b] ≥ supS(f, P ) = Vf [a, b].

Thus it remains to show that, conversely,

Vf [a, b] ≥ Vf [a, c] + Vf [c, b].

The latter is trivial if Vf [a, b] = +∞. Thus assume Vf [a, b] = K < +∞. Let
P ′ and P ′′ be any partitions of [a, c] and [c, b], respectively. Then P ∗ = P ′∪P ′′

is a partition of [a, b], and

S(f, P ′) + S(f, P ′′) = S(f, P ∗) ≤ Vf [a, b] = K,

whence

S(f, P ′) ≤ K − S(f, P ′′).

Keeping P ′′ fixed and varying P ′, we see that K−S(f, P ′′) is an upper bound
of all S(f, P ′) over [a, c]. Hence

Vf [a, c] ≤ K − S(f, P ′′)

or

S(f, P ′′) ≤ K − Vf [a, c].

Similarly, varying P ′′, we now obtain

Vf [c, b] ≤ K − Vf [a, c]

or

Vf [a, c] + Vf [c, b] ≤ K = Vf [a, b],

as required. Thus all is proved. �

Corollary 2 (monotonicity of Vf ). If a ≤ c ≤ d ≤ b, then

Vf [c, d] ≤ Vf [a, b].

Proof. By Theorem 1,

Vf [a, b] = Vf [a, c] + Vf [c, d] + Vf [d, b] ≥ Vf [c, d]. �
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Definition 2.

If Vf [a, b] < +∞, we say that f is of bounded variation on I = [a, b], and
that the set f [I] is rectifiable (by f on I).

Corollary 3. For each t ∈ [a, b],

|f(t)− f(a)| ≤ Vf [a, b].
Hence if f is of bounded variation on [a, b], it is bounded on [a, b].

Proof. If t ∈ [a, b], let P = {a, t, b}, so
|f(t)− f(a)| ≤ |f(t)− f(a)|+ |f(b)− f(t)| = S(f, P ) ≤ Vf [a, b],

proving our first assertion.3 Hence

(∀ t ∈ [a, b]) |f(t)| ≤ |f(t)− f(a)|+ |f(a)| ≤ Vf [a, b] + |f(a)|.
This proves the second assertion. �

Note 2. Neither boundedness, nor continuity, nor differentiability of f on
[a, b] implies Vf [a, b] < +∞, but boundedness of f ′ does . (See Problems 1 and
3.)

Corollary 4. A function f is finite and constant on [a, b] iff Vf [a, b] = 0.

The proof is left to the reader. (Use Corollary 3 and the definitions.)

Theorem 2. Let f, g, h be real or complex (or let f and g be vector valued

and h scalar valued). Then on any interval I = [a, b], we have

(i) V|f | ≤ Vf ;
(ii) Vf±g ≤ Vf + Vg; and

(iii) Vhf ≤ sVf + rVh, with r = supt∈I |f(t)| and s = supt∈I |h(t)|.
Hence if f , g, and h are of bounded variation on I, so are f±g, hf , and |f |.

Proof. We first prove (iii).

Take any partition P = {t0, . . . , tm} of I. Then
|∆ihf | = |h(ti)f(ti)− h(ti−1)f(ti−1)|

≤ |h(ti)f(ti)− h(ti−1)f(ti)|+ |h(ti−1)f(ti)− h(ti−1)f(ti−1)|
= |f(ti)||∆ih|+ |h(ti−1)||∆if |
≤ r|∆ih|+ s|∆if |.

Adding these inequalities, we obtain

S(hf, P ) ≤ r · S(h, P ) + s · S(f, P ) ≤ rVh + sVf .

3 By our conventions, it also follows that |f(a)| is a finite constant, and so is Vf [a, b]+|f(a)|
if Vf [a, b] < +∞.
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As this holds for all sums S(hf, P ), it holds for their supremum, so

Vhf = supS(hf, P ) ≤ rVh + sVf ,

as claimed.

Similarly, (i) follows from
∣

∣|f(ti)| − |f(ti−1)|
∣

∣ ≤ |f(ti)− f(ti−1)|.
The analogous proof of (ii) is left to the reader.

Finally, (i)–(iii) imply that Vf , Vf±g, and Vhf are finite if Vf , Vg, and Vh
are. This proves our last assertion. �

Note 3. Also f/h is of bounded variation on I if f and h are, provided h
is bounded away from 0 on I; i.e.,

(∃ ε > 0) |h| ≥ ε on I.

(See Problem 5.)

Special theorems apply in case the range space E is E1 or En (∗or Cn).

Theorem 3.

(i) A real function f is of bounded variation on I = [a, b] iff f = g − h for

some nondecreasing real functions g and h on I.

(ii) If f is real and monotone on I, it is of bounded variation there.

Proof. We prove (ii) first.

Let f↑ on I. If P = {t0, . . . , tm}, then
ti ≥ ti−1 implies f(ti) ≥ f(ti−1).

Hence ∆if ≥ 0; i.e., |∆if | = ∆if . Thus

S(f, P ) =
m
∑

i=1

|∆if | =
m
∑

i=1

∆if =
m
∑

i=1

[f(ti)− f(ti−1)]

= f(tm)− f(t0) = f(b)− f(a)
for any P . (Verify!) This implies that also

Vf [I] = supS(f, P ) = f(b)− f(a) < +∞.
Thus (ii) is proved.

Now for (i), let f = g − h with g↑ and h↑ on I. By (ii), g and h are of
bounded variation on I. Hence so is f = g − h by Theorem 2 (last clause).

Conversely, suppose Vf [I] < +∞. Then define

g(x) = Vf [a, x], x ∈ I, and h = g − f on I,

so f = g − h, and it only remains to show that g↑ and h↑.
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To prove it, let a ≤ x ≤ y ≤ b. Then Theorem 1 yields

Vf [a, y]− Vf [a, x] = Vf [x, y];

i.e.,

g(y)− g(x) = Vf [x, y] ≥ |f(y)− f(x)| ≥ 0 (by Corollary 3). (2)

Hence g(y) ≥ g(x). Also, as h = g − f , we have

h(y)− h(x) = g(y)− f(y)− [g(x)− f(x)]
= g(y)− g(x)− [f(y)− f(x)]
≥ 0 by (2).

Thus h(y) ≥ h(x). We see that a ≤ x ≤ y ≤ b implies g(x) ≤ g(y) and
h(x) ≤ h(y), so h↑ and g↑, indeed. �

Theorem 4.

(i) A function f : E1 → En (∗Cn) is of bounded variation on I = [a, b] iff
all of its components (f1, f2, . . . , fn) are.

(ii) If this is the case, then finite limits f(p+) and f(q−) exist for every

p ∈ [a, b) and q ∈ (a, b].

Proof.

(i) Take any partition P = {t0, . . . , tm} of I. Then

|fk(ti)− fk(ti−1)|2 ≤
n
∑

j=1

|fj(ti)− fj(ti−1)|2 = |f(ti)− f(ti−1)|2;

i.e., |∆ifk| ≤ |∆if |, i = 1, 2, . . . , m. Thus

(∀P ) S(fk, P ) ≤ S(f, P ) ≤ Vf ,
and Vfk ≤ Vf follows. Thus

Vf < +∞ implies Vfk < +∞, k = 1, 2, . . . , n.

The converse follows by Theorem 2 since f =
∑n

k=1 fk~ek. (Explain!)

(ii) For real monotone functions, f(p+) and f(q−) exist by Theorem 1 of
Chapter 4, §5. This also applies if f is real and of bounded variation, for
by Theorem 3,

f = g − h with g↑ and h↑ on I,
and so

f(p+) = g(p+)− h(p+) and f(q−) = g(q−)− h(q−) exist.
The limits are finite since f is bounded on I by Corollary 3.



306 Chapter 5. Differentiation and Antidifferentiation

Via components (Theorem 2 of Chapter 4, §3), this also applies to
functions f : E1 → En. (Why?) In particular, (ii) applies to complex

functions (treat C as E2) (∗and so it extends to functions f : E1 → Cn

as well). �

We also have proved the following corollary.

Corollary 5. A complex function f : E1 → C is of bounded variation on [a, b]
iff its real and imaginary parts are. (See Chapter 4, §3, Note 5.)

Problems on Total Variation and Graph Length

1. In the following cases show that Vf [I] = +∞, though f is bounded on
I. (In case (iii), f is continuous, and in case (iv), it is even differentiable
on I.)

(i) For I = [a, b] (a < b), f(x) =

{

1 if x ∈ R (rational), and

0 if x ∈ E1 −R.
(ii) f(x) = sin

1

x
; f(0) = 0; I = [a, b], a ≤ 0 ≤ b, a < b.

(iii) f(x) = x · sin π

2x
; f(0) = 0; I = [0, 1].

(iv) f(x) = x2 sin
1

x2
; f(0) = 0; I = [0, 1].

[Hints: (i) For any m there is P , with

|∆if | = 1, i = 1, 2, . . . , m,

so S(f, P ) = m → +∞.

(iii) Let

Pm =
{

0,
1

m
,

1

m− 1
, . . . ,

1

2
, 1

}

.

Prove that S(f, Pm) ≥ ∑m
k=1

1
k
→ +∞.]

2. Let f : E1 → E1 be monotone on each of the intervals

[ak−1, ak], k = 1, . . . , n (“piecewise monotone”).

Prove that

Vf [a0, an] =

n
∑

k=1

|f(ak)− f(ak−1)|.

In particular, show that this applies if f(x) =
∑n

i=1 cix
i (polynomial),

with ci ∈ E1.
[Hint: It is known that a polynomial of degree n has at most n real roots. Thus it
is piecewise monotone, for its derivative vanishes at finitely many points (being of

degree n− 1). Use Theorem 1 in §2.]



§7. The Total Variation (Length) of a Function f : E1 → E 307

⇒3. Prove that if f is finite and relatively continuous on I = [a, b], with a
bounded derivative, |f ′| ≤M , on I −Q (see §4), then

Vf [a, b] ≤M(b− a).

However, we may have Vf [I] < +∞, and yet |f ′| = +∞ at some p ∈ I.
[Hint: Take f(x) = 3

√
x on [−1, 1].]

4. Complete the proofs of Corollary 4 and Theorems 2 and 4.

5. Prove Note 3.
[Hint: If |h| ≥ ε on I, show that

∣
∣
∣

1

h(ti)
− 1

h(ti−1)

∣
∣
∣ ≤ |∆ih|

ε2

and hence

S
( 1

h
, P

)

≤ S(h, P )

ε2
≤ Vh

ε2
.

Deduce that 1
h

is of bounded variation on I if h is. Then apply Theorem 2(iii) to
1
h
· f .]

6. Let g : E1 → E1 (real) and f : E1 → E be relatively continuous on
J = [c, d] and I = [a, b], respectively, with a = g(c) and b = g(d). Let

h = f ◦ g.

Prove that if g is one to one on J , then

(i) g[J ] = I, so f and h describe one and the same arc A = f [I] = h[J ];

(ii) Vf [I] = Vh[J ]; i.e., ℓfA = ℓhA.

[Hint for (ii): Given P = {a = t0, . . . , tm = b}, show that the points si = g−1(ti)
form a partition P ′ of J = [c, d], with S(h, P ′) = S(f, P ). Hence deduce Vf [I] ≤
Vh[J].

Then prove that Vh[J] ≤ Vf [I], taking an arbitrary P ′ = {c = s0, . . . , sm = d},
and defining P = {t0, . . . , tm}, with ti = g(si). What if g(c) = b, g(d) = a?]

7. Prove that if f, h : E1 → E are relatively continuous and one to one on
I = [a, b] and J = [c, d], respectively, and if

f [I] = h[J ] = A

(i.e., f and h describe the same simple arc A), then

ℓfA = ℓhA.

Thus for simple arcs, ℓfA is independent of f .
[Hint: Define g : J → E1 by g = f−1 ◦ h. Use Problem 6 and Chapter 4, §9,
Theorem 3. First check that Problem 6 works also if g(c) = b and g(d) = a, i.e., g↓
on J.]
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8. Let I = [0, 2π] and define f, g, h : E1 → E2 (C) by

f(x) = (sinx, cosx),

g(x) = (sin 3x, cos 3x),

h(x) =
(

sin
1

x
, cos

1

x

)

with h(0) = (0, 1).

Show that f [I] = g[I] = h[I] (the unit circle; call it A), yet ℓfA = 2π,
ℓgA = 6π, while Vh[I] = +∞. (Thus the result of Problem 7 fails for
closed curves and nonsimple arcs.)

9. In Theorem 3, define two functions G, H : E1 → E1 by

G(x) =
1

2
[Vf [a, x] + f(x)− f(a)]

and

H(x) = G(x)− f(x) + f(a).

(G and H are called, respectively, the positive and negative variation

functions for f .) Prove that

(i) G↑ and H↑ on [a, b];

(ii) f(x) = G(x)− [H(x)− f(a)] (thus the functions f and g of Theo-
rem 3 are not unique);

(iii) Vf [a, x] = G(x) +H(x);

(iv) if f = g − h, with g↑ and h↑ on [a, b], then

VG[a, b] ≤ Vg[a, b], and VH [a, b] ≤ Vh[a, b];

(v) G(a) = H(a) = 0.

∗10. Prove that if f : E1 → En (∗Cn) is of bounded variation on I = [a, b],
then f has at most countably many discontinuities in I.
[Hint: Apply Problem 5 of Chapter 4, §5. Proceed as in the proof of Theorem 4 in
§7. Finally, use Theorem 2 of Chapter 1, §9.]

§8. Rectifiable Arcs. Absolute Continuity

If a function f : E1 → E is of bounded variation (§7) on an interval I = [a, b],
we can define a real function vf on I by

vf (x) = Vf [a, x] (= total variation of f on [a, x]) for x ∈ I;
vf is called the total variation function, or length function, generated by f on
I. Note that vf↑ on I. (Why?) We now consider the case where f is also
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relatively continuous on I, so that the set A = f [I] is a rectifiable arc (see §7,
Note 1 and Definition 2).

Definition 1.

A function f : E1 → E is (weakly) absolutely continuous1 on I = [a, b] iff
Vf [I] < +∞ and f is relatively continuous on I.

Theorem 1. The following are equivalent :

(i) f is (weakly) absolutely continuous on I = [a, b];

(ii) vf is finite and relatively continuous on I; and

(iii) (∀ ε > 0) (∃ δ > 0) (∀x, y ∈ I | 0 ≤ y − x < δ) Vf [x, y] < ε.

Proof. We shall show that (ii) ⇒ (iii) ⇒ (i) ⇒ (ii).

(ii) ⇒ (iii). As I = [a, b] is compact , (ii) implies that vf is uniformly

continuous on I (Theorem 4 of Chapter 4, §8). Thus

(∀ ε > 0) (∃ δ > 0) (∀x, y ∈ I | 0 ≤ y − x < δ) vf (y)− vf (x) < ε.

However,

vf (y)− vf (x) = Vf [a, y]− Vf [a, x] = Vf [x, y]

by additivity (Theorem 1 in §7). Thus (iii) follows.
(iii) ⇒ (i). By Corollary 3 of §7, |f(x) − f(y)| ≤ Vf [x, y]. Therefore, (iii)

implies that

(∀ ε > 0) (∃ δ > 0) (∀x, y ∈ I | |x− y| < δ) |f(x)− f(y)| < ε,

and so f is relatively (even uniformly) continuous on I.

Now with ε and δ as in (iii), take a partition P = {t0, . . . , tm} of I so fine
that

ti − ti−1 < δ, i = 1, 2, . . . , m.

Then (∀ i) Vf [ti−1, ti] < ε. Adding up these m inequalities and using the
additivity of Vf , we obtain

Vf [I] =
m
∑

i=1

Vf [ti−1, ti] < mε < +∞.

Thus (i) follows, by definition.

That (i) ⇒ (ii) is given as the next theorem. �

1 In this section, we use this notion in a weaker sense than customary. The usual stronger

version is given in Problem 2. We study it in Volume 2, Chapter 7, §11.
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Theorem 2. If Vf [I] < +∞ and if f is relatively continuous at some p ∈ I
(over I = [a, b]), then the same applies to the length function vf .

Proof. We consider left continuity first, with a < p ≤ b.
Let ε > 0. By assumption, there is δ > 0 such that

|f(x)− f(p)| < ε

2
when |x− p| < δ and x ∈ [a, p].

Fix any such x. Also, Vf [a, p] = supP S(f, P ) over [a, p]. Thus

Vf [a, p]−
ε

2
<

k
∑

i=1

|∆if |

for some partition

P = {t0 = a, . . . , tk−1, tk = p} of [a, p]. (Why?)

We may assume tk−1 = x, x as above. (If tk−1 6= x, add x to P .) Then

|∆kf | = |f(p)− f(x)| <
ε

2
,

and hence

Vf [a, p]−
ε

2
<

k−1
∑

i=1

|∆if |+ |∆kf | <
k−1
∑

i=1

|∆if |+
ε

2
≤ Vf [a, tk−1] +

ε

2
. (1)

However,

Vf [a, p] = vf (p)

and

Vf [a, tk−1] = Vf [a, x] = vf (x).

Thus (1) yields

|vf (p)− vf (x)| = Vf [a, p]− Vf [a, x] < ε for x ∈ [a, p] with |x− p| < δ.

This shows that vf is left continuous at p.

Right continuity is proved similarly on noting that

vf (x)− vf (p) = Vf [p, b]− Vf [x, b] for p ≤ x < b. (Why?)

Thus vf is, indeed, relatively continuous at p. Observe that vf is also of
bounded variation on I, being monotone and finite (see Theorem 3(ii) of §7).

This completes the proof of both Theorem 2 and Theorem 1. �

We also have the following.
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Corollary 1. If f is real and absolutely continuous on I = [a, b] (weakly),
so are the nondecreasing functions g and h (f = g − h) defined in Theorem 3
of §7.

Indeed, the function g as defined there is simply vf . Thus it is relatively
continuous and finite on I by Theorem 1. Hence so also is h = f − g. Both are
of bounded variation (monotone!) and hence absolutely continuous (weakly).

Note 1. The proof of Theorem 1 shows that (weak) absolute continuity

implies uniform continuity . The converse fails, however (see Problem 1(iv)
in §7).

We now apply our theory to antiderivatives (integrals).

Corollary 2. If F =
∫

f on I = [a, b] and if f is bounded (|f | ≤ K ∈ E1) on
I −Q (Q countable), then F is weakly absolutely continuous on I.

(Actually, even the stronger variety of absolute continuity follows. See Chap-
ter 7, §11, Problem 17).

Proof. By definition, F =
∫

f is finite and relatively continuous on I, so we
only have to show that VF [I] < +∞. This, however, easily follows by Problem 3
of §7 on noting that F ′ = f on I − S (S countable). Details are left to the
reader. �

Our next theorem expresses arc length in the form of an integral.

Theorem 3. If f : E1 → E is continuously differentiable on I = [a, b] (§6),
then vf =

∫

|f ′| on I and

Vf [a, b] =

∫ b

a

|f ′|.

Proof. Let a < p < x ≤ b, ∆x = x− p, and
∆vf = vf (x)− vf (p) = Vf [p, x]. (Why?)

As a first step, we shall show that

∆vf
∆x

≤ sup
[p,x]

|f ′|. (2)

For any partition P = {p = t0, . . . , tm = x} of [p, x], we have

S(f, P ) =
m
∑

i=1

|∆if | ≤
m
∑

i=1

sup
[ti−1,ti]

|f ′| (ti − ti−1) ≤ sup
[p,x]

|f ′|∆x.

Since this holds for any partition P , we have

Vf [p, x] ≤ sup
[p,x]

|f ′|∆x,

which implies (2).
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On the other hand,

∆vf = Vf [p, x] ≥ |f(x)− f(p)| = |∆f |.
Combining, we get

∣

∣

∣

∆f

∆x

∣

∣

∣
≤ ∆vf

∆x
≤ sup

[p,x]

|f ′| < +∞ (3)

since f ′ is relatively continuous on [a, b], hence also uniformly continuous and
bounded. (Here we assumed a < p < x ≤ b. However, (3) holds also if
a ≤ x < p < b, with ∆vf = −V [x, p] and ∆x < 0. Verify!)

Now
∣

∣|f ′(p)| − |f ′(x)|
∣

∣ ≤ |f ′(p)− f ′(x)| → 0 as x→ p,

so, taking limits as x→ p, we obtain

lim
x→p

∆vf
∆x

= |f ′(p)|.

Thus vf is differentiable at each p in (a, b), with v′f (p) = |f ′(p)|. Also, vf is

relatively continuous and finite on [a, b] (by Theorem 1).2 Hence vf =
∫

|f ′|
on [a, b], and we obtain

∫ b

a

|f ′| = vf (b)− vf (a) = Vf [a, b], as asserted. � (4)

Note 2. If the range space E is En (∗or Cn), f has n components

f1, f2, . . . , fn.

By Theorem 5 in §1, f ′ = (f ′
1, f

′
2, . . . , f

′
n), so

|f ′| =
√

n
∑

k=1

|f ′
k|2 ,

and we get

Vf [a, b] =

∫ b

a

√

n
∑

k=1

|f ′
k|2 =

∫ b

a

√

n
∑

k=1

|f ′
k(t)|2 dt (classical notation). (5)

In particular, for complex functions, we have (see Chapter 4, §3, Note 5)

Vf [a, b] =

∫ b

a

√

f ′
re(t)

2 + f ′
im(t)

2 dt. (6)

In practice, formula (5) is used when a curve is given parametrically by

xk = fk(t), k = 1, 2, . . . , n,

2 Note that (3) implies the finiteness of vf (p) and vf (x).
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with the fk differentiable on [a, b]. Curves in E2 are often given in nonpara-

metric form as

y = F (x), F : E1 → E1.

Here F [I] is not the desired curve but simply a set in E1. To apply (5) here,
we first replace “y = F (x)” by suitable parametric equations,

x = f1(t) and y = f2(t);

i.e., we introduce a function f : E1 → E, with f = (f1, f2). An obvious (but
not the only) way of achieving it is to set

x = f1(t) = t and y = f2(t) = F (t)

so that f ′
1 = 1 and f ′

2 = F ′. Then formula (5) may be written as

Vf [a, b] =

∫ b

a

√

1 + F ′(x)2 dx, f(x) = (x, F (x)). (7)

Example.

Find the length of the circle

x2 + y2 = r2.

Here it is convenient to use the parametric equations

x = r cos t and y = r sin t,

i.e., to define f : E1 → E2 by

f(t) = (r cos t, r sin t),

or, in complex notation,

f(t) = reti.

Then the circle is obtained by letting t vary through [0, 2π]. Thus (5)
yields

Vf [0, 2π] =

∫ b

a

r
√

cos2 t+ sin2 t dt = r

∫ b

a

1 dt = rt
∣

∣

∣

2π

0
= 2rπ.

Note that f describes the same circle A = f [I] over I = [0, 4π]. More
generally, we could let t vary through any interval [a, b] with b − a ≥
2π. However, the length, Vf [a, b], would change (depending on b − a).
This is because the circle A = f [I] is not a simple arc (see §7, Note 1),
so ℓA depends on f and I, and one must be careful in selecting both
appropriately.
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Problems on Absolute Continuity and Rectifiable Arcs

1. Complete the proofs of Theorems 2 and 3, giving all missing details.

⇒2. Show that f is absolutely continuous (in the weaker sense) on [a, b] if
for every ε > 0 there is δ > 0 such that

m
∑

i=1

|f(ti)− f(si)| < ε whenever

m
∑

i=1

(ti − si) < δ and

a ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sm ≤ tm ≤ b.

(This is absolute continuity in the stronger sense.)

3. Prove that vf is strictly monotone on [a, b] iff f is not constant on any
nondegenerate subinterval of [a, b].
[Hint: If x < y, Vf [x, y] > 0, by Corollary 4 of §7].

4. With f, g, h as in Theorem 2 of §7, prove that if f, g, h are absolutely
continuous (in the weaker sense) on I, so are f ± g, hf , and |f |; so also
is f/h if (∃ ε > 0) |h| ≥ ε on I.

5. Prove the following:

(i) If f ′ is finite and 6= 0 on I = [a, b], so also is v′f (with one-sided

derivatives at the endpoints of the interval); moreover,

∣

∣

∣

f ′

v′f

∣

∣

∣
= 1 on I.

Thus show that f ′/v′f is the tangent unit vector (see §1).
(ii) Under the same assumptions, F = f ◦ v−1

f is differentiable on

J = [0, vf (b)] (with one-sided derivatives at the endpoints of the
interval) and F [J ] = f [I]; i.e., F and f describe the same simple
arc, with VF [I] = Vf [I].

Note that this is tantamount to a change of parameter . Setting
s = vf (t), i.e., t = v−1

f (s), we have f(t) = f(v−1
f (s)) = F (s), with

the arclength s as parameter .

§9. Convergence Theorems in Differentiation and Integration

Given

Fn =

∫

fn or F ′
n = fn, n = 1, 2, . . . ,

what can one say about
∫

lim fn or (limFn)
′ if the limits exist? Below we give

some answers, for complete range spaces E (such as En). Roughly, we have
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limF ′
n = (limFn)

′ on I −Q if

(a) {Fn(p)} converges for at least one p ∈ I and

(b) {F ′
n} converges uniformly .

Here I is a finite or infinite interval in E1 and Q is countable. We include in

Q the endpoints of I (if any), so I −Q ⊆ I0 (= interior of I).

Theorem 1. Let Fn : E
1 → E (n = 1, 2, . . . ) be finite and relatively continu-

ous on I and differentiable on I −Q. Suppose that

(a) limn→∞ Fn(p) exists for some p ∈ I;
(b) F ′

n → f 6= ±∞ (uniformly) on J −Q for each finite subinterval J ⊆ I;
(c) E is complete.

Then

(i) limn→∞ Fn = F exists uniformly on each finite subinterval J ⊆ I;
(ii) F =

∫

f on I; and

(iii) (limFn)
′ = F ′ = f = limn→∞ F ′

n on I −Q.

Proof. Fix ε > 0 and any subinterval J ⊆ I of length δ < ∞, with p ∈ J (p
as in (a)). By (b), F ′

n → f (uniformly) on J −Q, so there is a k such that for
m, n > k,

|F ′
n(t)− f(t)| <

ε

2
, t ∈ J −Q; (1)

hence

sup
t∈J−Q

|F ′
m(t)− F ′

n(t)| ≤ ε. (Why?) (2)

Now apply Corollary 1 in §4 to the function h = Fm − Fn on J . Then for
each x ∈ J , |h(x)− h(p)| ≤M |x− p|, where

M ≤ sup
t∈J−Q

|h′(t)| ≤ ε

by (2). Hence for m, n > k, x ∈ J and

|Fm(x)− Fn(x)− Fm(p) + Fn(p)| ≤ ε|x− p| ≤ εδ. (3)

As ε is arbitrary , this shows that the sequence

{Fn − Fn(p)}
satisfies the uniform Cauchy criterion (Chapter 4, §12, Theorem 3). Thus as E
is complete, {Fn−Fn(p)} converges uniformly on J . So does {Fn}, for {Fn(p)}
converges , by (a). Thus we may set

F = limFn (uniformly) on J ,
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proving assertion (i).1

Here by Theorem 2 of Chapter 4, §12, F is relatively continuous on each

such J ⊆ I, hence on all of I. Also, letting m → +∞ (with n fixed), we have
Fm → F in (3), and it follows that for n > k and x ∈ Gp(δ) ∩ I.

|F (x)− Fn(x)− F (p) + Fn(p)| ≤ ε|x− p| ≤ εδ. (4)

Having proved (i), we may now treat p as just any point in I. Thus formula
(4) holds for any globe Gp(δ), p ∈ I. We now show that

F ′ = f on I −Q; i.e., F =

∫

f on I.

Indeed, if p ∈ I − Q, each Fn is differentiable at p (by assumption), and
p ∈ I0 (since I −Q ⊆ I0 by our convention). Thus for each n, there is δn > 0
such that

∣

∣

∣

∆Fn

∆x
− F ′

n(p)
∣

∣

∣
=

∣

∣

∣

Fn(x)− Fn(p)

x− p − F ′
n(p)

∣

∣

∣
<
ε

2
(5)

for all x ∈ G¬p(δn); Gp(δn) ⊆ I.
By assumption (b) and by (4), we can fix n so large that

|F ′
n(p)− f(p)| <

ε

2

and so that (4) holds for δ = δn. Then, dividing by |∆x| = |x− p|, we have
∣

∣

∣

∆F

∆x
− ∆Fn

∆x

∣

∣

∣
≤ ε.

Combining with (5), we infer that for each ε > 0, there is δ > 0 such that
∣

∣

∣

∆F

∆x
−f(p)

∣

∣

∣
≤

∣

∣

∣

∆F

∆x
−∆Fn

∆x

∣

∣

∣
+
∣

∣

∣

∆Fn

∆x
−F ′

n(p)
∣

∣

∣
+ |F ′

n(p)−f(p)| < 2ε, x ∈ Gp(δ).

This shows that

lim
x→p

∆F

∆x
= f(p) for p ∈ I −Q,

i.e., F ′ = f on I −Q, with f finite by assumption, and F finite by (4). As F
is also relatively continuous on I, assertion (ii) is proved, and (iii) follows since
F = limFn and f = limF ′

n. �

Note 1. The same proof also shows that Fn → F (uniformly) on each closed

subinterval J ⊆ I if F ′
n → f (uniformly) on J − Q for all such J (with the

other assumptions unchanged). In any case, we then have Fn → F (pointwise)
on all of I.

We now apply Theorem 1 to antiderivatives .

1 Indeed, any J can be enlarged to include p, so (3) applies to it. Note that in (3) we may

as well vary x inside any set of the form I ∩Gp(δ).
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Theorem 2. Let the functions fn : E
1 → E, n = 1, 2, . . . , have antideriva-

tives , Fn =
∫

fn, on I. Suppose E is complete and fn → f (uniformly) on

each finite subinterval J ⊆ I, with f finite there. Then
∫

f exists on I, and
∫ x

p

f =

∫ x

p

lim
n→∞

fn = lim
n→∞

∫ x

p

fn for any p, x ∈ I. (6)

Proof. Fix any p ∈ I. By Note 2 in §5, we may choose

Fn(x) =

∫ x

p

fn for x ∈ I.

Then Fn(p) =
∫ p

p
fn = 0, and so limn→∞ Fn(p) = 0 exists, as required in The-

orem 1(a).

Also, by definition, each Fn is relatively continuous and finite on I and
differentiable, with F ′

n = fn, on I − Qn. The countable sets Qn need not be
the same, so we replace them by

Q =

∞
⋃

n=1

Qn

(including in Q also the endpoints of I, if any). Then Q is countable (see
Chapter 1, §9, Theorem 2), and I − Q ⊆ I − Qn, so all Fn are differentiable
on I −Q, with F ′

n = fn there.

Additionally, by assumption,

fn → f (uniformly)

on finite subintervals J ⊆ I. Hence

F ′
n → f (uniformly) on J −Q

for all such J , and so the conditions of Theorem 1 are satisfied.

By that theorem, then,

F =

∫

f = limFn exists on I

and, recalling that

Fn(x) =

∫ x

p

fn,

we obtain for x ∈ I
∫ x

p

f = F (x)− F (p) = limFn(x)− limFn(p) = limFn(x)− 0 = lim

∫ x

p

fn.

As p ∈ I was arbitrary, and f = lim fn (by assumption), all is proved. �
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Note 2. By Theorem 1, the convergence
∫ x

p

fn →
∫ x

p

f (i.e., Fn → F )

is uniform in x (with p fixed), on each finite subinterval J ⊆ I.
We now “translate” Theorems 1 and 2 into the language of series.

Corollary 1. Let E and the functions Fn : E
1 → E be as in Theorem 1.

Suppose the series
∑

Fn(p)

converges for some p ∈ I, and
∑

F ′
n

converges uniformly on J −Q, for each finite subinterval J ⊆ I.
Then

∑

Fn converges uniformly on each such J , and

F =

∞
∑

n=1

Fn

is differentiable on I −Q, with

F ′ =

( ∞
∑

n=1

Fn

)′
=

∞
∑

n−1

F ′
n there. (7)

In other words, the series can be differentiated termwise.

Proof. Let

sn =
n
∑

k=1

Fk, n = 1, 2, . . . ,

be the partial sums of
∑

Fn. From our assumptions, it then follows that the
sn satisfy all conditions of Theorem 1. (Verify!) Thus the conclusions of Theo-
rem 1 hold, with Fn replaced by sn.

We have F = lim sn and F ′ = (lim sn)
′ = lim s′n, whence (7) follows. �

Corollary 2. If E and the fn are as in Theorem 2 and if
∑

fn converges

uniformly to f on each finite interval J ⊆ I, then
∫

f exists on I, and

∫ x

p

f =

∫ x

p

∞
∑

n=1

fn =
∞
∑

n=1

∫ x

p

fn for any p, x ∈ I. (8)

Briefly, a uniformly convergent series can be integrated termwise.
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Theorem 3 (power series). Let r be the convergence radius of

∑

an(x− p)n, an ∈ E, p ∈ E1.

Suppose E is complete. Set

f(x) =
∞
∑

n=0

an(x− p)n on I = (p− r, p+ r).

Then the following are true:

(i) f is differentiable and has an exact antiderivative on I.

(ii) f ′(x) =
∞
∑

n=1

nan(x− p)n−1 and

∫ x

p

f =

∞
∑

n=0

an
n+ 1

(x− p)n+1, x ∈ I.

(iii) r is also the convergence radius of the two series in (ii).

(iv)

∞
∑

n=0

an(x− p)n is exactly the Taylor series for f(x) on I about p.

Proof. We prove (iii) first.

By Theorem 6 of Chapter 4, §13, r = 1/d, where

d = lim n
√
an.

Let r′ be the convergence radius of
∑

nan(x− p)n−1, so

r′ =
1

d′
with d′ = lim n

√
nan.

However, lim n
√
n = 1 (see §3, Example (e)). It easily follows that

d′ = lim n
√
nan = 1 · lim n

√
an = d.2

Hence r′ = 1/d′ = 1/d = r.

The convergence radius of
∑ an

n+ 1
(x− p)n+1 is determined similarly. Thus

(iii) is proved.

Next, let

fn(x) = an(x− p)n and Fn(x) =
an
n+ 1

(x− p)n+1, n = 0, 1, 2, . . . .

Then the Fn are differentiable on I, with F ′
n = fn there. Also, by Theorems 6

and 7 of Chapter 4, §13, the series
∑

F ′
n =

∑

an(x− p)n

2 For a proof, treat d and d′ as subsequential limits (Chapter 4, §16, Theorem 1; Chapter 2,

§13, Problem 4).
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converges uniformly on each closed subinterval J ⊆ I = (p− r, p+ r).3 Thus
the functions Fn satisfy all conditions of Corollary 1, with Q = ∅, and the fn
satisfy Corollary 2. By Corollary 1, then,

F =
∞
∑

n=1

Fn

is differentiable on I, with

F ′(x) =
∞
∑

n=1

F ′
n(x) =

∞
∑

n=1

an(x− p)n = f(x)

for all x ∈ I. Hence F is an exact antiderivative of f on I, and (8) yields the
second formula in (ii).

Quite similarly, replacing Fn and F by fn and f , one shows that f is differ-
entiable on I, and the first formula in (ii) follows. This proves (i) as well.

Finally, to prove (iv), we apply (i)–(iii) to the consecutive derivatives of f
and obtain

f (k)(x) =

∞
∑

n=k

n(n− 1) · · · (n− k + 1)an(x− p)n−k

for each x ∈ I and k ∈ N .

If x = p, all terms vanish except the first term (n = k), i.e., k! ak. Thus
f (k)(p) = k! ak, k ∈ N . We may rewrite it as

an =
f (n)(p)

n!
, n = 0, 1, 2, . . . ,

since f (0)(p) = f(p) = a0. Assertion (iv) now follows since

f(x) =

∞
∑

n=0

an(x− p)n =

∞
∑

n=0

f (n)(p)

n!
(x− p)n, x ∈ I, as required. �

Note 3. If
∑

an(x− p)n converges also for x = p− r or x = p+ r, so does
the integrated series

∑

an
(x− p)n+1

n+ 1

since we may include such x in I. However, the derived series
∑

nan(x−p)n−1

need not converge at such x. (Why?) For example (see §6, Problem 9), the
expansion

ln(1 + x) = x− x2

2
+
x3

3
− · · ·

3 For our present theorem, it suffices to show that it holds on any closed globe J = Gp(δ),

δ < r. We may therefore limit ourselves to such J (see Note 1).
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converges for x = 1 but the derived series

1− x+ x2 − · · ·

does not.

In this respect, there is the following useful rule for functions f : E1 → Em

(∗Cm).

Corollary 3. Let a function f : E1 → Em (∗Cm) be relatively continuous on

[p, x0] (or [x0, p]), x0 6= p.4 If

f(x) =

∞
∑

n=0

an(x− p)n for p ≤ x < x0 (respectively, x0 < x ≤ p),

and if
∑

an(x0 − p)n converges , then necessarily

f(x0) =

∞
∑

n=0

an(x0 − p)n.

The proof is sketched in Problems 4 and 5.

Thus in the above example, f(x) = ln(1 + x) defines a continuous function
on [0, 1], with

f(x) =
∞
∑

n=1

(−1)n−1 x
n

n
on [0, 1].

We gave a direct proof in §6, Problem 9. However, by Corollary 3, it suffices
to prove this for [0, 1), which is much easier. Then the convergence of

∞
∑

n=1

(−1)n−1

n

yields the result for x = 1 as well.

Problems on Convergence in Differentiation and Integration

1. Complete all proof details in Theorems 1 and 3, Corollaries 1 and 2, and
Note 3.

2. Show that assumptions (a) and (c) in Theorem 1 can be replaced by
Fn → F (pointwise) on I. (In this form, the theorem applies to incom-

plete spaces E as well.)
[Hint: Fn → F (pointwise), together with formula (3), implies Fn → F (uniformly)

on I.]

4 Relative continuity at x0 suffices.



322 Chapter 5. Differentiation and Antidifferentiation

3. Show that Theorem 1 fails without assumption (b), even if Fn → F
(uniformly) and if F is differentiable on I.
[Hint: For a counterexample, try Fn(x) =

1
n
sinnx, on any nondegenerate I. Verify

that Fn → 0 (uniformly), yet (b) and assertion (iii) fail.]

4. Prove Abel’s theorem (Chapter 4, §13, Problem 15) for series
∑

an(x− p)n,

with all an in Em (∗or in Cm) but with x, p ∈ E1.
[Hint: Split an(x− p)n into components.]

5. Prove Corollary 3.
[Hint: By Abel’s theorem (see Problem 4), we may put

∞∑

n=0

an(x− p)n = F (x)

uniformly on [p, x0] (respectively, [x0, p]). This implies that F is relatively contin-

uous at x0. (Why?) So is f , by assumption. Also f = F on [p, x0) ((x0, p]). Show
that

f(x0) = lim f(x) = limF (x) = F (x0)

as x → x0 from the left (right).]

6. In the following cases, find the Taylor series of F about 0 by integrating
the series of F ′. Use Theorem 3 and Corollary 3 to find the convergence
radius r and to investigate convergence at −r and r. Use (b) to find a
formula for π.

(a) F (x) = ln(1 + x);

(b) F (x) = arctanx;

(c) F (x) = arcsinx.

7. Prove that
∫ x

0

ln(1− t)
t

dt =
∞
∑

n=1

xn

n2
for x ∈ [−1, 1].

[Hint: Use Theorem 3 and Corollary 3. Take derivatives of both sides.]

§10. Sufficient Condition of Integrability. Regulated Functions

In this section, we shall determine a large family of functions that do have
antiderivatives. First, we give a general definition, valid for any range space
(T, p) (not necessarily E). The domain space remains E1.
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Definition 1.

A function f : E1 → (T, p) is said to be regulated on an interval I ⊆ E1,
with endpoints a < b, iff the limits f(p−) and f(p+), other than ±∞,1

exist at each p ∈ I. However, at the endpoints a, b, if in I, we only
require f(a+) and f(b−) to exist.

Examples.

(a) If f is relatively continuous and finite on I, it is regulated.

(b) Every real monotone function is regulated (see Chapter 4, §5, Theorem 1).

(c) If f : E1 → En (∗Cn) has bounded variation on I, it is regulated (§7,
Theorem 4).2

(d) The characteristic function of a set B, denoted CB , is defined by

CB(x) = 1 if x ∈ B and CB = 0 on −B.

For any interval J ⊆ E1, CJ is regulated on E1.

(e) A function f is called a step function on I iff I can be represented as the
union, I =

⋃

k Ik, of a sequence of disjoint intervals Ik such that f is con-
stant and 6= ±∞ on each Ik. Note that some Ik may be singletons , {p}.3

If the number of the Ik is finite, we call f a simple step function.

When the range space T is E, we can give the following convenient
alternative definition. If, say, f = ak 6= ±∞ on Ik, then

f =
∑

k

akCIk on I,

where CIk is as in (d). Note that
∑

k akCIk(x) always exists for disjoint
Ik. (Why?)

Each simple step function is regulated . (Why?)

Theorem 1. Let the functions f, g, h be real or complex (or let f, g be vector

valued and h scalar valued).

If they are regulated on I, so are f ± g, fh, and |f |; so also is f/h if h is

bounded away from 0 on I, i .e., (∃ ε > 0) |h| ≥ ε on I.

The proof, based on the usual limit properties, is left to the reader.

We shall need two lemmas. One is the famous Heine–Borel lemma.

1 This restriction is necessary in integration only, in the case T = E1 or T = E∗.
2 Actually, this applies to any f : E1 → E, with E complete and Vf [I] < +∞ (Problem 7).
3 The endpoints of the Ik may be treated as such degenerate intervals.
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Lemma 1 (Heine–Borel). If a closed interval A = [a, b] in E1 (or En) is

covered by open sets Gi (i ∈ I), i.e.,

A ⊆
⋃

i∈I

Gi,

then A can be covered by a finite number of these Gi.

The proof was sketched in Problem 10 of Chapter 4, §6.
Note 1. This fails for nonclosed intervals A. For example, let

A = (0, 1) ⊆ E1 and Gn =
( 1

n
, 1

)

.

Then

A =

∞
⋃

n=1

Gn (verify!), but not A ⊆
m
⋃

n=1

Gn

for any finite m. (Why?)

The lemma also fails for nonopen sets Gi. For example, cover A by singletons

{x}, x ∈ A. Then none of the {x} can be dropped!

Lemma 2. If a function f : E1 → T is regulated on I = [a, b], then f can be

uniformly approximated by simple step functions on I.

That is , for any ε > 0, there is a simple step function g, with ρ(f, g) ≤ ε
on I; hence

sup
x∈I

ρ(f(x), g(x)) ≤ ε.

Proof. By assumption, f(p−) exists for each p ∈ (a, b], and f(p+) exists for
p ∈ [a, b), all finite.

Thus, given ε > 0 and any p ∈ I, there is Gp(δ) (δ depending on p) such
that ρ(f(x), r) < ε whenever r = f(p−) and x ∈ (p− δ, p), and ρ(f(x), s) < ε
whenever s = f(p+) and x ∈ (p, p+ δ); x ∈ I.

We choose such a Gp(δ) for every p ∈ I. Then the open globes Gp = Gp(δ)
cover the closed interval I = [a, b], so by Lemma 1, I is covered by a finite

number of such globes, say,

I ⊆
n
⋃

k=1

Gpk
(δk), a ∈ Gp1

, a ≤ p1 < p2 < · · · < pn ≤ b.

We now define the step function g on I as follows.

If x = pk, we put

g(x) = f(pk), k = 1, 2, . . . , n.

If x ∈ [a, p1), then
g(x) = f(p−1 ).
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If x ∈ (p1, p1 + δ1), then
g(x) = f(p+1 ).

More generally, if x is in G¬pk
(δk) but in none of the Gpi

(δi), i < k, we put

g(x) = f(p−k ) if x < pk

and
g(x) = f(p+k ) if x > pk.

Then by construction, ρ(f, g) < ε on each Gpk
, hence on I. �

∗Note 2. If T is complete, we can say more: f is regulated on I = [a, b] iff
f is uniformly approximated by simple step functions on I. (See Problem 2.)

Theorem 2. If f : E1 → E is regulated on an interval I ⊆ E1 and if E is

complete, then
∫

f exists on I, exact at every continuity point of f in I0.

In particular, all continuous maps f : E1 → En (∗Cn) have exact primitives .

Proof. In view of Problem 14 of §5, it suffices to consider closed intervals.

O

Y

Xa c d b

c

d

Figure 25

Thus let I = [a, b], a < b, in
E1. Suppose first that f is the char-
acteristic function CJ of a subinter-
val J ⊆ I with endpoints c and d
(a ≤ c ≤ d ≤ b), so f = 1 on J ,
and f = 0 on I − J . We then define
F (x) = x on J , F = c on [a, c], and
F = d on [d, b] (see Figure 25). Thus
F is continuous (why?), and F ′ = f
on I − {a, b, c, d} (why?). Hence
F =

∫

f on I; i.e., characteristic func-
tions are integrable.

Then, however, so is any simple step function

f =
m
∑

k=1

akCIk ,

by repeated use of Corollary 1 in §5.4
Finally, let f be any regulated function on I. Then by Lemma 2, for any

εn = 1
n , there is a simple step function gn such that

sup
x∈I
|gn(x)− f(x)| ≤

1

n
, n = 1, 2, . . . .

As 1
n
→ 0, this implies that gn → f (uniformly) on I (see Chapter 4, §12,

Theorem 1). Also, by what was proved above, the step functions gn have

4 The corollary applies here also if the ak are vectors (CIk is scalar valued).
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antiderivatives, hence so has f (Theorem 2 in §9); i.e., F =
∫

f exists on I, as
claimed. Moreover,

∫

f is exact at continuity points of f in I0 (Problem 10 in
§5). �

In view of the sufficient condition expressed in Theorem 2, we can now re-
place the assumption “

∫

f exists” in our previous theorems by “f is regulated”
(provided E is complete). For example, let us now review Problems 7 and 8
in §5.
Theorem 3 (weighted law of the mean). Let f : E1 → E (E complete) and

g : E1 → E1 be regulated on I = [a, b], with g ≥ 0 on I.5 Then the following

are true:

(i) There is a finite c ∈ E (called the “g-weighted mean of f on I”) such

that
∫ b

a
gf = c

∫ b

a
g.

(ii) If f , too, is real and has the Darboux property on I, then c = f(q) for

some q ∈ I.

Proof. Indeed, as f and g are regulated, so is gf by Theorem 1. Hence by
Theorem 2,

∫

f and
∫

gf exist on I. The rest follows as in Problems 7 and 8
of §5. �

Theorem 4 (second law of the mean). Suppose f and g are real , f is monotone

with f =
∫

f ′ on I, and g is regulated on I; I = [a, b]. Then

∫ b

a

fg = f(a)

∫ q

a

g + f(b)

∫ b

q

g for some q ∈ I. (1)

Proof. To fix ideas, let f↑; i.e., f ′ ≥ 0 on I.

The formula f =
∫

f ′ means that f is relatively continuous (hence regulated)
on I and differentiable on I −Q (Q countable). As g is regulated,

∫ x

a

g = G(x)

does exist on I, so G has similar properties, with G(a) =
∫ a

a
g = 0.

By Theorems 1 and 2,
∫

fG′ =
∫

fg exists on I. (Why?) Hence by
Corollary 5 in §5, so does

∫

Gf ′, and we have

∫ b

a

fg =

∫ b

a

fG′ = f(x)G(x)
∣

∣

∣

b

a
−

∫ b

a

Gf ′ = f(b)G(b)−
∫ b

a

Gf ′.

Now G has the Darboux property on I (being relatively continuous), and

5 One can also assume g ≤ 0 on I; in this case, simply apply the theorem to −g.
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f ′ ≥ 0. Also,
∫

G and
∫

Gf ′ exist on I. Thus by Problems 7 and 8 in §5,
∫ b

a

Gf ′ = G(q)

∫ b

a

f ′ = G(q)f(x)
∣

∣

∣

b

a
, q ∈ I.

Combining all, we obtain the required result (1) since
∫

fg = f(b)G(b)−
∫ b

a

Gf ′

= f(b)G(b)− f(b)G(q) + f(a)G(q)

= f(b)

∫ b

q

g + f(a)

∫ q

a

g. �

We conclude with an application to infinite series. Given f : E1 → E, we
define

∫ ∞

a

f = lim
x→+∞

∫ x

a

f and

∫ a

−∞
f = lim

x→−∞

∫ a

x

f

if these integrals and limits exist.

We say that
∫∞
a
f and

∫ a

−∞ f converge iff they exist and are finite.

Theorem 5 (integral test of convergence). If f : E1 → E1 is nonnegative and

nonincreasing on I = [a, +∞), then

∫ ∞

a

f converges iff

∞
∑

n=1

f(n) does .

Proof. As f↓, f is regulated, so
∫

f exists on I = [a, +∞). We fix some
natural k ≥ a and define

F (x) =

∫ x

k

f for x ∈ I.

By Theorem 3(iii) in §5, F↑ on I. Thus by monotonicity,

lim
x→+∞

F (x) = lim
x→+∞

∫ x

k

f =

∫ ∞

k

f

exists in E∗; so does
∫ k

a
f . Since

∫ x

a

f =

∫ k

a

f +

∫ x

k

f,

where
∫ k

a
f is finite by definition, we have

∫ ∞

a

f < +∞ iff

∫ ∞

k

f < +∞.
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Similarly,
∞
∑

n=1

f(n) < +∞ iff

∞
∑

n=k

f(n) < +∞.

Thus we may replace “a” by “k.”

Let

In = [n, n+ 1), n = k, k + 1, . . . ,

and define two step functions, g and h, constant on each In, by

h = f(n) and g = f(n+ 1) on In, n ≥ k.

Since f↓, we have g ≤ f ≤ h on all In, hence on J = [k, +∞). Therefore,

∫ x

k

g ≤
∫ x

k

f ≤
∫ x

k

h for x ∈ J .

Also,
∫ m

k

h =

m−1
∑

n=k

∫ n+1

n

h =

m−1
∑

n=k

f(n),

since h = f(n) (constant) on [n, n+ 1), and so

∫ n+1

n

h(x) dx = f(n)

∫ n+1

n

1 dx = f(n) · x
∣

∣

∣

n+1

n
= f(n)(n+ 1− n) = f(n).

Similarly,
∫ m

k

g =
m−1
∑

n=k

f(n+ 1) =
m
∑

n=k+1

f(n).

Thus we obtain

m
∑

n=k+1

f(n) =

∫ m

k

g ≤
∫ m

k

f ≤
∫ m

k

h =

m−1
∑

n=k

f(n),

or, letting m→∞,

∞
∑

n=k+1

f(n) ≤
∫ ∞

k

f ≤
∞
∑

n=k

f(n).

Hence
∫∞
k
f is finite iff

∞
∑

n=1

f(n) is, and all is proved. �
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Examples (continued).

(f) Consider the hyperharmonic series

∑ 1

np
(Problem 2 of Chapter 4, §13).

Let

f(x) =
1

xp
, x ≥ 1.

If p = 1, then f(x) = 1/x, so
∫ x

1
f = lnx→ +∞ as x → +∞. Hence

∑

1/n diverges.

If p 6= 1, then
∫ ∞

1

f = lim
x→+∞

∫ x

1

f = lim
x→+∞

x1−p

1− p
∣

∣

∣

x

1
,

so
∫∞
1
f converges or diverges according as p > 1 or p < 1, and the same

applies to the series
∑

1/np.

(g) Even nonregulated functions may be integrable. Such is Dirichlet’s func-

tion (Example (c) in Chapter 4, §1). Explain, using the countability of
the rationals.

Problems on Regulated Functions

In Problems 2, 5, 6, and 8, we drop the restriction that f(p−) and f(p+) are
finite. We only require them to exist in (T, p). If T = E∗, a suitable metric
for E∗ is presupposed.

1. Complete all details in the proof of Theorems 1–3.

1′ Explain Examples (a)–(g).

∗2. Prove Note 2. More generally, assuming T to be complete, prove that if

gn → f (uniformly) on I = [a, b]

and if the gn are regulated on I, so is f .
[Hint: Fix p ∈ (a, b]. Use Theorem 2 of Chapter 4, §11 with

X = [a, p], Y = N ∪ {+∞}, q = +∞, and F (x, n) = gn(x).

Thus show that

f(p−) = lim
x→p−

lim
n→∞

gn(x) exists;

similarly for f(p+).]

3. Given f, g : E1 → E1, define f ∨ g and f ∧ g as in Problem 12 of Chap-
ter 4, §8. Using the hint given there, show that f ∨ g and f ∧ g are
regulated if f and g are.
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4. Show that the function g ◦ f need not be regulated even if g and f are.
[Hint: Let

f(x) = x · sin 1

x
, g(x) =

x

|x| , and f(0) = g(0) = 0 with I = [0, 1].

Proceed.]

⇒5. Given f : E1 → (T, ρ), regulated on I, put

j(p) = max
{

ρ
(

f(p), f(p−)
)

, ρ
(

f(p), f(p+)
)

, ρ
(

f(p−), f(p+)
)}

;

call it the jump at p.

(i) Prove that f is discontinuous at p ∈ I0 iff j(p) > 0, i.e., iff

(∃n ∈ N) j(p) >
1

n
.

(ii) For a fixed n ∈ N , prove that a closed subinterval J ⊆ I contains
at most finitely many x with j(x) > 1/n.
[Hint: Otherwise, there is a sequence of distinct points xm ∈ J, j(xm) > 1

n
,

hence a subsequence xmk
→ p ∈ J. (Why?) Use Theorem 1 of Chapter 4, §2,

to show that f(p−) or f(p+) fails to exist.]

⇒6. Show that if f : E1 → (T, ρ) is regulated on I, then it has at most count-
ably many discontinuities in I; all are of the “jump” type (Problem 5).
[Hint: By Problem 5, any closed subinterval J ⊆ I contains, for each n, at most

finitely many discontinuities x with j(x) > 1/n. Thus for n = 1, 2, . . . , obtain

countably many such x.]

7. Prove that if E is complete, all maps f : E1 → E, with Vf [I] < +∞ on
I = [a, b], are regulated on I.
[Hint: Use Corollary 1, Chapter 4, §2, to show that f(p−) and f(p+) exist.

Say,

xn → p with xn < p (xn, p ∈ I),

but {f(xn)} is not Cauchy. Then find a subsequence, {xnk
}↑, and ε > 0 such that

|f(xnk+1
)− f(xnk

) |≥ ε, k = 1, 3, 5, . . . .

Deduce a contradiction to Vf [I] < +∞.

Provide a similar argument for the case xn > p.]

8. Prove that if f : E1 → (T, ρ) is regulated on I, then f [B] (the closure
of f [B]) is compact in (T, ρ) whenever B is a compact subset of I.

[Hint: Given {zm} in f [B], find {ym} ⊆ f [B] such that ρ(zm, ym) → 0 (use

Theorem 3 of Chapter 3, §16). Then “imitate” the proof of Theorem 1 in Chap-
ter 4, §8 suitably. Distinguish the cases:

(i) all but finitely many xm are < p;

(ii) infinitely many xm exceed p; or

(iii) infinitely many xm equal p.]
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§11. Integral Definitions of Some Functions

By Theorem 2 in §10,
∫

f exists on I whenever the function f : E1 → E is
regulated on I, and E is complete. Hence whenever such an f is given, we can
define a new function F by setting

F =

∫ x

a

f

on I for some a ∈ I. This is a convenient method of obtaining new continuous
functions, differentiable on I−Q (Q countable). We shall now apply it to obtain
new definitions of some functions previously defined in a rather strenuous step-
by-step manner.

I. Logarithmic and Exponential Functions. From our former defini-
tions, we proved that

lnx =

∫ x

1

1

t
dt, x > 0.

Now we want to treat this as a definition of logarithms. We start by setting

f(t) =
1

t
, t ∈ E1, t 6= 0,

and f(0) = 0.

Then f is continuous on I = (0, +∞) and J = (−∞, 0), so it has an exact

primitive on I and J separately (not on E1). Thus we can now define the log
function on I by

∫ x

1

1

t
dt = log x (also written lnx) for x > 0. (1)

By the very definition of an exact primitive, the log function is continuous
and differentiable on I = (0, +∞); its derivative on I is f . Thus we again have
the symbolic formula

(log x)′ =
1

x
, x > 0.

If x < 0, we can consider log(−x). Then the chain rule (Theorem 3 of §1)
yields

(log(−x))′ = 1

x
. (Verify!)

Hence

(log |x|)′ = 1

x
for x 6= 0. (2)

Other properties of logarithms easily follow from (1). We summarize them
now.
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Theorem 1.

(i) log 1 =

∫ 1

1

1

t
dt = 0.

(ii) log x < log y whenever 0 < x < y.

(iii) lim
x→+∞

log x = +∞ and lim
x→0+

log x = −∞.

(iv) The range of log is all of E1.

(v) For any positive x, y ∈ E1,

log(xy) = log x+ log y and log
(x

y

)

= log x− log y.

(vi) log ar = r · log a, a > 0, r ∈ N .

(vii) log e = 1, where e = lim
n→∞

(

1 +
1

n

)n

.

Proof.

(ii) By (2), (log x)′ > 0 on I = (0, +∞), so log x is increasing on I.

(iii) By Theorem 5 in §10,

lim
x→+∞

log x =

∫ ∞

1

1

t
dt = +∞

since
∞
∑

n=1

1

n
= +∞ (Chapter 4, §13, Example (b)).

Hence, substituting y = 1/x, we obtain

lim
y→0+

log y = lim
x→+∞

log
1

x
.

However, by Theorem 2 in §5 (substituting s = 1/t),

log
1

x
=

∫ 1/x

1

1

t
dt = −

∫ x

1

1

s
ds = − log x.

Thus

lim
y→0+

log y = lim
x→+∞

log
1

x
= − lim

x→+∞
log x = −∞

as claimed. (We also proved that log 1
x = − log x.)

(iv) Assertion (iv) now follows by the Darboux property (as in Chapter 4, §9,
Example (b)).
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(v) With x, y fixed, we substitute t = xs in
∫ xy

1

1

t
dt = log xy

and obtain

log xy =

∫ xy

1

1

t
dt =

∫ y

1/x

1

s
ds

=

∫ 1

1/x

1

s
ds+

∫ y

1

1

s
ds

= − log
1

x
+ log y

= log x+ log y.

Replacing y by 1/y here, we have

log
x

y
= log x+ log

1

y
= log x− log y.

Thus (v) is proved, and (vi) follows by induction over r.

(vii) By continuity,

log e = lim
x→e

log x = lim
n→∞

log
(

1 +
1

n

)n

= lim
n→∞

log(1 + 1/n)

1/n
,

where the last equality follows by (vi). Now, L’Hôpital’s rule yields

lim
x→0

log(1 + x)

x
= lim

x→0

1

1 + x
= 1.

Letting x run over 1
n → 0, we get (vii). �

Note 1. Actually, (vi) holds for any r ∈ E1, with ar as in Chapter 2,
§§11–12. One uses the techniques from that section to prove it first for rational
r, and then it follows for all real r by continuity. However, we prefer not to use
this now.

Next, we define the exponential function (“exp”) to be the inverse of the
log function. This inverse function exists; it is continuous (even differentiable)
and strictly increasing on its domain (by Theorem 3 of Chapter 4, §9 and
Theorem 3 of Chapter 5, §2) since the log function has these properties. From
(log x)′ = 1/x we get, as in §2,

(expx)′ = expx (cf. §2, Example (B)). (3)

The domain of the exponential is the range of its inverse, i.e., E1 (cf. Theo-
rem 1(iv)). Thus expx is defined for all x ∈ E1. The range of exp is the domain
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of log, i.e., (0, +∞). Hence expx > 0 for all x ∈ E1. Also, by definition,

exp(log x) = x for x > 0, (4)

exp 0 = 1 (cf. Theorem 1(i)), and (5)

exp r = er for r ∈ N. (6)

Indeed, by Theorem 1(vi) and (vii), log er = r · log e = r. Hence (6) follows.
If the definitions and rules of Chapter 2, §§11–12 are used, this proof even
works for any r by Note 1. Thus our new definition of exp agrees with the old

one.

Our next step is to give a new definition of ar, for any a, r ∈ E1 (a > 0).
We set

ar = exp(r · log a) or (7)

log ar = r · log a (r ∈ E1). (8)

In case r ∈ N , (8) becomes Theorem 1(vi). Thus for natural r, our new
definition of ar is consistent with the previous one. We also obtain, for a, b > 0,

(ab)r = arbr; ars = (ar)s; ar+s = aras; (r, s ∈ E1). (9)

The proof is by taking logarithms. For example,

log(ab)r = r log ab = r(log a+ log b) = r · log a+ r · log b
= log ar + log br = log(arbr).

Thus (ab)r = arbr. Similar arguments can be given for the rest of (9) and other
laws stated in Chapter 2, §§11–12.

We can now define the exponential to the base a (a > 0) and its inverse, loga,
as before (see the example in Chapter 4, §5 and Example (b) in Chapter 4, §9).
The differentiability of the former is now immediate from (7), and the rest
follows as before.

II. Trigonometric Functions. These shall now be defined in a precise
analytic manner (not based on geometry).

We start with an integral definition of what is usually called the principal

value of the arcsine function,

arcsinx =

∫ x

0

1√
1− t2

dt.

We shall denote it by F (x) and set

f(x) =
1√

1− x2
on I = (−1, 1).

(F = f = 0 on E1 − I.) Thus by definition, F =
∫

f on I.
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Note that
∫

f exists and is exact on I since f is continuous on I. Thus

F ′(x) = f(x) =
1√

1− x2
> 0 for x ∈ I,

and so F is strictly increasing on I. Also, F (0) =
∫ 0

0
f = 0.

We also define the number π by setting

π

2
= 2 arcsin

√

1

2
= 2F (c) = 2

∫ c

0

f, c =

√

1

2
. (10)

Then we obtain the following theorem.

Theorem 2. F has the limits

F (1−) =
π

2
and F (−1+) = −π

2
.

Thus F becomes relatively continuous on I = [−1, 1] if one sets

F (1) =
π

2
and F (−1) = −π

2
,

i .e.,

arcsin 1 =
π

2
and arcsin(−1) = −π

2
. (11)

Proof. We have

F (x) =

∫ x

0

f =

∫ c

0

f +

∫ x

c

f, c =

√

1

2
.

By substituting s =
√
1− t2 in the last integral and setting, for brevity, y =√

1− x2 , we obtain
∫ x

c

f =

∫ x

c

1√
1− t2

dt =

∫ c

y

1√
1− s2

ds = F (c)− F (y). (Verify!)

Now as x → 1−, we have y =
√
1− x2 → 0, and hence F (y) → F (0) = 0 (for

F is continuous at 0). Thus

F (1−) = lim
x→1−

F (x) = lim
y→0

(

∫ c

0

f +

∫ c

y

f
)

=

∫ c

0

f + F (c) = 2

∫ c

0

f =
π

2
.

Similarly, one gets F (−1+) = −π/2. �

The function F as redefined in Theorem 2 will be denoted by F0. It is
a primitive of f on the closed interval I (exact on I). Thus F0(x) =

∫ x

0
f ,

−1 ≤ x ≤ 1, and we may now write

π

2
=

∫ 1

0

f and π =

∫ 0

−1

f +

∫ 1

0

f =

∫ 1

−1

f .
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Note 2. In classical analysis, the last integrals are regarded as so-called
improper integrals, i.e., limits of integrals rather than integrals proper. In our
theory, this is unnecessary since F0 is a genuine primitive of f on I.

For each integer n (negatives included), we now define Fn : E
1 → E1 by

Fn(x) = nπ + (−1)nF0(x) for x ∈ I = [−1, 1],
Fn = 0 on − I.

(12)

Fn is called the nth branch of the arcsine. Figure 26 shows the graphs of F0

and F1 (that of F1 is dotted). We now obtain the following theorem.

Theorem 3.

(i) Each Fn is differentiable on I = (−1, 1) and relatively continuous on

I = [−1, 1].
(ii) Fn is increasing on I if n is even, and decreasing if n is odd .

(iii) F ′
n(x) =

(−1)n√
1− x2

on I.

(iv) Fn(−1) = Fn−1(−1) = nπ − (−1)nπ
2
; Fn(1) = Fn−1(1) = nπ + (−1)nπ

2
.

O

Y

X

−π

2

π

2

3π

2

−1 1

Figure 26

The proof is obvious from (12) and the
properties of F0. Assertion (iv) ensures
that the graphs of the Fn add up to one

curve. By (ii), each Fn is one to one
(strictly monotone) on I. Thus it has a
strictly monotone inverse on the interval
Jn = Fn[[−1, 1]], i.e., on the Fn-image of
I. For simplicity, we consider only

J0 =
[

−π
2
,
π

2

]

and J1 =
[π

2
,
3π

2

]

,

as shown on the Y -axis in Figure 26. On
these, we define for x ∈ J0

sinx = F−1
0 (x) (13)

and

cosx =
√

1− sin2 x, (13′)

and for x ∈ J1
sinx = F−1

1 (x) (14)

and

cosx = −
√

1− sin2 x. (14′)
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On the rest of E1, we define sinx and cosx periodically by setting

sin(x+ 2nπ) = sinx and cos(x+ 2nπ) = cosx, n = 0, ±1, ±2, . . . . (15)

Note that by Theorem 3(iv),

F−1
0

(π

2

)

= F−1
1

(π

2

)

= 1.

Thus (13) and (14) both yield sinπ/2 = 1 for the common endpoint π/2 of J0
and J1, so the two formulas are consistent. We also have

sin
(

−π
2

)

= sin
(3π

2

)

= −1,

in agreement with (15). Thus the sine and cosine functions (briefly, s and c)
are well defined on E1.

Theorem 4. The sine and cosine functions (s and c) are differentiable, hence
continuous , on all of E1, with derivatives s′ = c and c′ = −s; that is ,

(sinx)′ = cosx and (cosx)′ = − sinx.

Proof. It suffices to consider the intervals J0 and J1, for, by (15), all properties
of s and c repeat themselves, with period 2π, on the rest of E1.

By (13),

s = F−1
0 on J0 =

[

−π
2
,
π

2

]

,

where F0 is differentiable on I = (−1, 1). Thus Theorem 3 of §2 shows that s
is differentiable on J0 = (−π/2, π/2) and that

s′(q) =
1

F ′
0(p)

whenever p ∈ I and q = F0(p);

i.e., q ∈ J and p = s(q). However, by Theorem 3(iii),

F ′
0(p) =

1
√

1− p2
.

Hence

s′(q) =
√

1− sin2 q = cos q = c(q), q ∈ J.

This proves the theorem for interior points of J0 as far as s is concerned.

As

c =
√

1− s2 = (1− s2) 1
2 on J0 (by (13)),

we can use the chain rule (Theorem 3 in §1) to obtain

c′ =
1

2
(1− s2)− 1

2 (−2s)s′ = −s
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on noting that s′ = c = (1− s2) 1
2 on J0. Similarly, using (14), one proves that

s′ = c and c′ = −s on J1 (interior of J1).

Next, let q be an endpoint , say, q = π/2. We take the left derivative

s′−(q) = lim
x→q−

s(x)− s(q)
x− q , x ∈ J0.

By L’Hôpital’s rule, we get

s′−(q) = lim
x→q−

s′(x)

1
= lim

x→q−

c(x)

since s′ = c on J0. However, s = F−1
0 is left continuous at q (why?); hence so

is c =
√
1− s2. (Why?) Therefore,

s′−(q) = lim
x→q−

c(x) = c(q), as required.

Similarly, one shows that s′+(q) = c(q). Hence s′(q) = c(q) and c′(q) = −s(q),
as before. �

The other trigonometric functions reduce to s and c by their defining for-
mulas

tanx =
sinx

cosx
, cot x =

cosx

sinx
, secx =

1

cosx
, and cosecx =

1

sinx
,

so we shall not dwell on them in detail. The various trigonometric laws easily
follow from our present definitions; for hints, see the problems below.

Problems on Exponential and Trigonometric Functions

1. Verify formula (2).

2. Prove Note 1, as suggested (using Chapter 2, §§11–12).
3. Prove formulas (1) of Chapter 2, §§11–12 from our new definitions.

4. Complete the missing details in the proofs of Theorems 2–4.

5. Prove that

(i) sin 0 = sin(nπ) = 0;

(ii) cos 0 = cos(2nπ) = 1;

(iii) sin
π

2
= 1;

(iv) sin
(

−π
2

)

= −1;

(v) cos
(

±π
2

)

= 0;

(vi) | sinx| ≤ 1 and | cosx| ≤ 1 for x ∈ E1.
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6. Prove that

(i) sin(−x) = − sinx and

(ii) cos(−x) = cosx for x ∈ E1.

[Hint: For (i), let h(x) = sin x+sin(−x). Show that h′ = 0; hence h is constant, say,

h = q on E1. Substitute x = 0 to find q. For (ii), use (13)–(15).]

7. Prove the following for x, y ∈ E1:

(i) sin(x+ y) = sinx cos y + cosx sin y; hence sin
(

x+
π

2

)

= cosx.

(ii) cos(x+ y) = cosx cos y − sinx sin y; hence cos
(

x+
π

2

)

= − sinx.

[Hint for (i): Fix x, y and let p = x+ y. Define h : E1 → E1 by

h(t) = sin t cos(p− t) + cos t sin(p− t), t ∈ E1.

Proceed as in Problem 6. Then let t = x.]

8. With Jn as in the text, show that the sine increases on Jn if n is even
and decreases if n is odd. How about the cosine? Find the endpoints
of Jn.
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curve, 211

globe in a metric space, 97

interval in an ordered field, 37
interval in En, 77

line segment in En, 72

sets in metric spaces, 103, 138

Closures of sets in metric spaces, 137

Closure laws

in a field, 23

in En, 65
of integers in a field, 35

of rationals in a field, 35

Cluster points

of sequences in E∗, 60
of sequences and sets in metric spaces,

115

Commutative laws
in a field, 23

of addition of vectors in En, 65

of inner products of vectors in En, 67

Compact sets, 186, 193

Cantor’s principle of nested closed sets,

188
are totally bounded, 188

in E1, 195

continuity on, 194
generalized Heine–Borel theorem, 193

Heine–Borel theorem, 324
sequentially, 186

Comparison test, 239

refined, 245

Complement of a set (−), 2

Complete
metric spaces, 143

ordered fields, 38; see also Field, com-

plete ordered

Completeness axiom, 38

Completion of metric spaces, 146

Complex exponential, 173

derivatives of the, 256

Complex field, see C

Complex functions, 170

Complex numbers, 81. See also C

conjugate of, 81

imaginary part of, 81
nth roots of, 85

polar form of, 83

real part of, 81
trigonometric form of, 83

Complex vector spaces, 87

Componentwise
continuity of functions, 172

convergence of sequences, 121

differentiation, 256
integration, 282

limits of functions, 172

Composite functions, 163

chain rule for derivatives of, 255

continuity of, 163

Concurrent sequences, 144

Conditionally convergent series of func-

tions, 237

rearrangement of, 250

Conjugate of complex numbers, 81

Connected sets, 212

arcs as, 214
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arcwise-, 211
curves as, 214

polygon-, 204

Continuous functions

on metric spaces, 149

differentiable functions are, 252
left, 153

relatively, 152

right, 153
uniformly, 197

(weakly) absolutely continuous, 309

Continuity. See also Continuous functions

componentwise, 172

in one variable, 174
jointly, 174

of addition and multiplication in E1, 168

of composite functions, 163
of inverse functions, 195, 207

of the exponential function, 184
of the logarithmic function, 208

of the power function, 209

of the standard metric on E1, 168
of the sum, product, and quotient of

functions, 170

on compact sets, 194
sequential criterion for, 161

uniform, 197

Contracting sequence of sets, 17

Contraction mapping, 198

Convergence of sequences of functions
Cauchy criterion for uniform, 231

convergence of integrals and derivatives,
315

pointwise, 228

uniform, 228

Convergence radius of power series, 243

Convergence tests for series
Abel’s test, 247

comparison test, 239

Dirichlet test, 248
integral test, 327

Leibniz test for alternating series, 248

ratio test, 241
refined comparison test, 245

root test, 241
Weierstrass M-test for functions, 240

Convergent

absolutely convergent series of functions,
237

conditionally convergent series of func-
tions, 237

sequences of functions, 228; see also

Limits of sequences of functions
sequences in metric spaces, 115

series of functions, 228; see also Limits

of series of functions

Convex sets, 204

piecewise, 204

Coordinate equations of a line in En, 72

Countable set, 18

rational numbers as a, 19

Countable union of sets, 20

Covering, open, 192

Cross product of sets (×), 2

Curves, 211

as connected sets, 214
closed, 211

length of, 300
parametric equations of, 212

tangent to, 257

Darboux property, 203

Bolzano theorem, 205

of the derivative, 265

de Moivre’s formula, 84

Definite integrals, 279
additivity of, 282

change of variables in, 282

dominance law for, 284
first law of the mean for, 285

integration by parts, 281

linearity of, 280
monotonicity law for, 284

weighted law of the mean for, 286, 326

Degenerate intervals in En, 78

Degree

of a monomial, 173
of a polynomial, 173

Deleted δ-globes about points in metric
spaces, 150

Dense subsets in metric spaces, 139

Density
of an ordered field, 45

of rationals in an Archimedean field, 45

Dependent vectors
in En, 69

Derivatives of functions on E1, 251
convergence of, 315

Darboux property of, 265

derivative of the exponential function,
264

derivative of the inverse function, 263
derivative of the logarithmic function,

263
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derivative of the power function, 264
with extended-real values, 259

left, 252

one-sided, 252
right, 252

Derived functions on E1, 251

nth, 252

Diagonal of an interval in En, 77

Diagonal process, Cantor’s, 21. See also

Sets

Diameter
of sets in metric spaces, 109

Difference

of elements of a field, 26
of sets (−), 2

Differentials of functions on E1, 288

of order n, 289

Differentiable functions on E1, 251
Cauchy’s laws of the mean, 261

cosine function, 337

are continuous, 252
exponential function, 333

infinitely, 292
logarithmic function, 332

n-times continuously, 292

n-times, 252
nowhere, 253

Rolle’s theorem, 261

sine function, 337

Differentiation, 251

chain rule for, 255

componentwise, 256
of power series, 319

rules for sums, products, and quotients,

256
termwise differentiation of series, 318

Directed

lines in En, 74
planes in En, 74

Direction vectors of lines in En, 71

Dirichlet function, 155, 329

Dirichlet test, 248

Disconnected sets, 212
totally, 217

Discontinuity points of functions on metric

spaces, 149

Discontinuous functions on metric spaces,

149

Discrete
metric, 96

metric space, 96

Disjoint sets, 2

Distance

between a point and a plane in En, 76

between sets in metric spaces, 110
between two vectors in En, 64

between two vectors in Euclidean spaces,

89
in normed linear spaces, 92

norm-induced, 92
translation-invariant, 92

Distributive laws

in En, 65

in a field, 24
of inner products of vectors in En, 67

of union and intersection of sets, 7

Divergent
sequences in metric spaces, 115

Domain

of a relation, 9
of a sequence, 15

space of functions on metric spaces, 149

Double limits of functions, 219, 221

Double sequence, 20, 222, 223

Dot product

in Cn, 87

in En, 64

Duality laws, de Morgan’s, 3. See also Sets

e (the number), 122, 165, 293

E1 (the real numbers), 23. See also Field,

complete ordered
associative laws in, 23

axioms of arithmetic in, 23

axioms of order in, 24
closure laws in, 23

commutative laws in, 23

continuity of addition and multiplication
in, 168

continuity of the standard metric on,
168

distributive law in, 24

inverse elements in, 24
monotonicity in, 24

neighborhood of a point in, 58

natural numbers in, 28
neutral elements in, 23

transitivity in, 24
trichotomy in, 24

En (Euclidean n-space), 63. See also Vec-

tors in En

convex sets in, 204

as a Euclidean space, 88
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as a normed linear space, 91
associativity of vector addition in, 65

additive inverses of vector addition, 65

basic unit vector in, 64
Bolzano-Weierstrass theorem, 136

Cauchy-Schwarz inequality in, 67
closure laws in, 65

commutativity of vector addition in, 65

componentwise convergence of sequences
in, 121

distributive laws in, 65

globe in, 76
hyperplanes in, 72; see also Planes in

En

intervals in, 76; see also Intervals in En

line segments in, 72; see also Line seg-

ments in En

linear functionals on, 74, 75; see also

Linear functionals on En

lines in, 71; see also Lines in En

neutral element of vector addition in, 65

planes in, 72; see also Planes in En

point in, 63

scalar of, 64

scalar product in, 64
sphere in, 76

standard metric in, 96

standard norm in, 91
triangle inequality of the absolute value

in, 67
triangle inequality of the distance in, 68

unit vector in, 65

vectors in, 63
zero vector in, 63

E∗ (extended real numbers), 53
as a metric space, 98

cluster point of a sequence in, 60
globes in, 98

indeterminate expressions in, 178

intervals in, 54
limits of sequences in, 58

metrics for, 99

neighborhood of a point in, 58
operations in, 177

unorthodox operations in, 180

Edge-lengths of an interval in En, 77

Elements of a set (∈), 1
Empty set (∅), 1
Endpoints

of an interval in En, 77

of line segments in En, 72

Equality of sets, 1

Equicontinuous functions, 236

Equivalence class relative to an equivalence

relation, 13
generator of an, 13

representative of an, 13

Equivalence relation, 12
equivalence class relative to an, 13

Euclidean n-space, see En

Euclidean spaces, 87
as normed linear spaces, 91

absolute value in, 88
Cn as a, 88

Cauchy-Schwarz inequality in, 88

distance in, 89
En as a, 88

line segments in, 89

lines in, 89
planes in, 89

triangle inequality in, 88

Exact primitive, 278

Existential quantifier (∃), 4
Expanding sequence of sets, 17

Exponential, complex, 173

Exponential function, 183, 333
continuity of the, 184

derivative of the, 264

inverse of the, 208

Extended real numbers, see E∗.

Factorials, definition of, 31

Family of sets, 3

intersection of a (
⋂
), 3

union of a (
⋃
), 3

Fields, 25
associative laws in, 23

axioms of arithmetic in, 23

binomial theorem, 34
closure laws in, 23

commutative laws in, 23

difference of elements in, 26
distributive law in, 24

first induction law in, 28
inductive definitions in, 31

inductive sets in, 28

integers in, 34
inverse elements in, 24

irrationals in, 34

Lagrange identity in, 71
natural elements in, 28

neutral elements in, 23
quotients of elements in, 26

rational subfields of, 35
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rationals in, 34

Fields, Archimedean, 43. See also Fields,

ordered

density of rationals in, 45
integral parts of elements of, 44

Fields, complete ordered, 38. See also

Field, Archimedean

Archimedean property of, 43

completeness axiom, 38
density of irrationals in, 51

existence of irrationals in, 46

powers with rational exponents in, 47
powers with real exponents in, 50

principle of nested intervals in, 42
roots in, 46

Fields, ordered, 25. See also Field

absolute value in, 26
axioms of order in, 24

Bernoulli inequalities in, 33
bounded sets in, 36

closed intervals in, 37

density of, 45
greatest lower bound (glb) of sets in, 38

half-closed intervals in, 37

half-open intervals in, 37
infimum (inf) of sets in, 38

intervals in, 37

least upper bound (lub) of sets in, 37
monotonicity in, 24

negative elements in, 25
open intervals in, 37

positive elements in, 25

rational subfield in, 35
second induction law in, 30

supremum (sup) of sets in, 38

transitivity in, 24
trichotomy in, 24

well-ordering of naturals in, 30

Finite

increments law, 271

intervals, 54
sequence, 16

set, 18

First

induction law, 28

law of the mean, 285

Functions, 10. See also Functions on E1

and Functions on metric spaces

binary operations, 12
bounded, 96

Cantor’s function, 186
characteristic, 323

complex, 170

Dirichlet function, 155, 329
equicontinuous, 236

graphs of, 153

isometry, 201
limits of sequences of, see Limits of se-

quences of functions
limits of series of, see Limits of series of

functions

monotone, 181
nondecreasing, 181

nonincreasing, 181

one-to-one, 10
onto, 11

product of, 170
quotient of, 170

real, 170

scalar-valued, 170
sequences of, 227; see also Sequences of

functions

series of, 228; see also Limits of series of
functions

signum function (sgn), 156
strictly monotone, 182

sum of, 170

function value, 10
uniformly continuous, 197

vector-valued, 170

Functions on E1

antiderivatives of, 278

definite integrals of, 279
derivatives of, 251

derived, 251

differentials of, 288; see also Differentials
of functions on E1

differentiable, 251; see also Differentiable

functions on E1

exact primitives of, 278

of bounded variation, 303
indefinite integrals of, 278

integrable, 278; see also Integrable func-

tions on E1

length of, 301

Lipschitz condition for, 258

negative variation functions for, 308
nowhere differentiable, 253

positive variation functions for, 308
primitives of, 278

regulated, see Regulated functions

simple step, 323
step, 323

total variation of, 301

(weakly) absolutely continuous, 309

Functions on metric spaces,149
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bounded, 111
continuity of composite, 163

continuity of the sum, product, and quo-

tient of, 170
continuous, 149

discontinuous, 149
discontinuity points of, 149

domain space of, 149

limits of, 150
projection maps, 174, 198, 226

range space of, 149

General term of a sequence, 16

Generator of an equivalence class, 13

Geometric series

limit of, 128, 236
sum of n terms of a, 33

Globes
closed globes in metric spaces, 97

deleted δ-globes about points in metric

spaces, 150
in En, 76

in E∗, 98

open globes in metric space, 97

Graphs of functions, 153

Greatest lower bound (glb) of a set in an
ordered field, 38

Half-closed

interval in an ordered field, 37

interval in En, 77
line segment in En, 72

Half-open
interval in an ordered field, 37

interval in En, 77

line segment in En, 72

Harmonic series, 241

Hausdorff property, 102

Heine–Borel theorem, 324

generalized, 193

Hölder’s inequality, 93

Hyperharmonic series, 245, 329

Hyperplanes in En, 72. See also Planes in
En

iff (“if and only if”), 1

Image

of a set under a relation, 9

Imaginary

part of complex numbers, 81
numbers in C, 81

unit in C, 81

Inclusion relation of sets (⊆), 1

Increments
finite increments law, 271

of a function, 254

Independent
vectors in En, 70

Indeterminate expressions in E∗, 178

Index notation, 16. See also Sequence

Induction, 27

first induction law, 28
inductive definitions, 31; see also Induc-

tive definitions
proof by, 29

second induction law, 30

Inductive definitions, 31

factorial, 31
powers with natural exponents, 31

ordered n-tuple, 32
products of n field elements, 32

sum of n field elements, 32

Inductive sets in a field, 28

Infimum (inf) of a set in an ordered field,
38

Infinite

countably, 21
intervals, 54

sequence, 15

set, 18

Infinity
plus and minus, 53

unsigned, 179

Inner products of vectors in En, 64
commutativity of, 67

distributive law of, 67

Integers in a field, 34
closure of addition and multiplication of,

35

Integrability, sufficient conditions for, 322.

See also Regulated functions on inter-
vals in E1

Integrable functions on E1, 278. See also

Regulated functions on intervals in E1

Dirichlet function, 329

primitively, 278

Integral part of elements of Archimedean
fields, 44

Integral test of convergence of series, 315

Integrals

convergence of, 315
definite, 279; see also Definite integrals

indefinite, 278
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Integration, 278
componentwise, 282

by parts, 281

of power series, 319

Interior

of a set in a metric space, 101

points of a set in a metric space, 101

Intermediate value property, 203

Intersection

of a family of sets (
⋂
), 3

of closed sets in metric spaces, 104
of open sets in metric spaces, 103

of sets (∩), 2
Intervals in En, 76

boundary of, 77
center of, 77

closed, 77
degenerate, 78

diagonal of, 77

edge-lengths of, 77
endpoints of, 77

half-closed, 77

half-open, 77
midpoints of, 77

open, 77
principle of nested, 189

volume of, 77

Intervals in E1

partitions of, 300

Intervals in E∗, 54

finite, 54

infinite, 54

Intervals in an ordered field, 37
closed, 37

half-closed, 37
half-open, 37

open, 37

principle of nested, 42

Inverse elements
in a field, 24

of vector addition in En, 64, 65

Inverse function, see Inverse of a relation
continuity of the, 195, 207 derivative of

the, 263

Inverse image of a set under a relation, 9

Inverse pair, 8

Inverse of a relation, 8

Irrationals
density of irrationals in a complete field,

51
existence of irrationals in a complete

field, 46

in a field, 34

Isometric metric spaces, 146

Isometry, 201. See also Functions

Iterated limits of functions, 221, 221

Jumps of regulated functions, 330

Kuratowski’s definition of ordered pairs, 7

Lagrange form of the remainder term of

Taylor expansions, 291

Lagrange identity, 71

Lagrange’s law of the mean, 262

Laws of the mean
Cauchy’s, 261

first, 285
Lagrange’s, 262

second, 286, 326

weighted, 286, 326

Leading term of a polynomial, 173

Least upper bound (lub) of a set in an or-

dered field, 37

Lebesgue number of a covering, 192

Left

bounded sets in an ordered field, 36
continuous functions, 153

derivatives of functions, 252

jump of a function, 184
limits of functions, 153

Leibniz

formula for derivatives of a product, 256

test for convergence of alternating series,
248

Length

function, 308

of arcs, 301, 311
of curves, 300

of functions, 301

of line segments in En, 72
of polygons, 300

of vectors in En, 64

L’Hôpital’s rule, 266

Limits of functions

Cauchy criterion for, 162
componentwise, 172

double, 219, 221

iterated, 221, 221
jointly, 174

left, 153
on E∗, 151

in metric spaces, 150
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limits in one variable, 174
L’Hôpital’s rule, 266

relative, 152

relative, over a line, 174
right, 153

subuniform, 225
uniform, 220, 230

Limits of sequences

in E1, 5, 54

in E∗, 55, 58, 152
in metric spaces, 115

lower, 56
subsequential limits, 135

upper, 56

Limits of sequences of functions

pointwise, 228
uniform, 228

Limits of series of functions

pointwise, 228
uniform, 228

Weierstrass M-test, 240

Linear combinations of vectors in En, 66

Line segments in En, 72

closed, 72
endpoints of, 72

half-closed, 72
half-open, 72

length of, 72

midpoint of, 72
open, 72

principle of nested, 205

Linear functionals on En, 74, 75
equivalence between planes and nonzero,

76

representation theorem for, 75

Linear polynomials, 173

Linear spaces, see Vector spaces

Linearity of the definite integral, 280

Lines in En, 71

coordinate equations of, 72

directed, 74
direction vectors of, 71

normalized equation of, 73

parallel, 74
parametric equations of, 72

perpendicular, 74
symmetric form of the normal equations

of, 74

Lipschitz condition, 258

Local
maximum and minimum of functions,

260

Logarithmic function, 208
continuity of the, 208

derivative of the, 263

integral definition of the, 331
as the inverse of the exponential func-

tion, 208
natural logarithm (lnx), 208

properties of the, 332

Logical formula, negation of a, 5

Logical quantifier, see Quantifier, logical

Lower bound of a set in an ordered field,

36

Lower limit of a sequence, 56

Maclaurin series, 294

Mapping, see Function
contraction, 198

projection, 174, 198, 226

Master set, 2

Maximum
local, of a function, 260, 294

of a set in an ordered field, 36

Mean, laws of. See Laws of the mean

Metrics, 95. See also Metric spaces

axioms of, 95

discrete, 96
equivalent, 219

for E∗, 99

standard metric in En, 96

Metric spaces, 95. See also Metrics

accumulation points of sets or sequences

in, 115
boundaries of sets in, 108

bounded functions on sets in, 111
bounded sequences in, 111

bounded sets in, 109

Cauchy sequences in, 141
Cauchy’s convergence criterion for se-

quences in, 143

clopen sets in, 103
closed balls in, 97

closed sets in, 103, 138
closures of sets in, 137

compact sets in, 186

complete, 143
completion of, 146

concurrent sequences in, 144

connected, 212
constant sequences in, 116

continuity of the metric on, 223
convergent sequences in, 115

cluster points of sets or sequences in,
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115
deleted δ-globes about points in, 150

diameter of sets in, 109

disconnected, 212
dense subsets in, 139

discrete, 96
distance between sets in, 110

divergent sequences in, 115

En as a metric space, 96
E∗ as a metric space, 98

functions on, 149; see also Functions on

metric spaces
Hausdorff property in, 102

interior of a set in a, 101
interior points of sets in, 101

isometric, 146

limits of sequences in, 115
nowhere dense sets in, 141

open balls in, 97

open sets in, 101
open globes in, 97

neighborhoods of points in, 101
perfect sets in, 118

product of, 218

sequentially compact sets in, 186
spheres in, 97

totally bounded sets in, 113

Midpoints
of line segments in En, 72

of intervals in En, 77

Minimum

local, of a function, 260, 294

of a set in an ordered field, 36

Minkowski inequality, 94

Monomials in n variables, 173. See also

Polynomials in n variables

degree of, 173

Monotone sequence of numbers, 17
nondecreasing, 17

nonincreasing, 17
strictly, 17

Monotone functions, 181

left and right limits of, 182
nondecreasing, 181

nonincreasing, 181

strictly, 182

Monotone sequence of sets, 17

Monotonicity
in an ordered field, 24

of definite integrals, 284

Moore–Smith theorem, 223

de Morgan’s duality laws, 3. See also Sets

Natural elements in a field, 28
well-ordering of naturals in an ordered

field, 30

Natural numbers in E1, 28

Negation of a logical formula, 5

Negative

elements of an ordered field, 25

variation functions, 308

Neighborhood
of a point in E1, 58

of a point in E∗, 58

of a point in a metric space, 101

Neutral elements
in a field, 23

of vector addition in En, 65

Nondecreasing

functions, 181
sequences of numbers, 17

Nonincreasing

functions, 181

sequences of numbers, 17

Normal to a plane in En, 73

Normalized equations

of a line, 73
of a plane, 73

Normed linear spaces, 90

absolute value in, 90

Cn as a, 91
distances in, 92

En as a, 91
Euclidean spaces as, 91

norm in, 90

translation-invariant distances in, 92
triangle inequality in, 90

Norms

in normed linear spaces, 90

standard norm in Cn, 91
standard norm in En, 91

Nowhere dense sets in metric spaces, 141

Open
ball in a metric space, 97

covering, 192

globe in a metric space, 97
interval in an ordered field, 37

interval in En, 77

line segment in En, 72
sets in a metric space, 101

Ordered field, see Field, ordered

Ordered n-tuple, 1

inductive definition of an, 32
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Ordered pair, 1
inverse, 8

Kuratowski’s definition of an, 7

Orthogonal vectors in En, 65

Orthogonal projection
of a point onto a plane in En, 76

Osgood’s theorem, 221, 223

Parallel

lines in En, 74
planes in En, 74

vectors in En, 65

Parametric equations
of curves in En, 212

of lines in En, 72

Partitions of intervals in E1, 300

refinements of, 300

Pascal’s law, 34

Peano form of the remainder term of Tay-

lor expansions, 296

Perfect sets in metric spaces, 118

Cantor’s set, 120

Perpendicular
lines in En, 74

planes in En, 74
vectors in En, 65

Piecewise convex sets, 204

Planes in En, 72

directed, 74

distance between points and, 76
equation of, 73

equivalence of nonzero linear functionals
and, 76

general equation of, 73

normal to, 73
normalized equations of, 73

orthogonal projection of a point onto, 76

parallel, 74
perpendicular, 74

Point in En, 63

distance from a plane to a, 76
orthogonal projection onto a plane, 76

Pointwise limits

of sequences of functions, 228
of series of functions, 228

Polar coordinates in C, 83

Polar form of complex numbers, 83

Polygons

connected sets, 204
joining two points, 204

length of, 300

Polygon-connected sets, 204

Polynomials in n variables, 173

continuity of, 173
degree of, 173

leading term of, 173

linear, 173

Positive

elements of an ordered field, 25

variation functions, 308

Power function, 208

continuity of the, 209
derivative of the, 264

Power series, 243

Abel’s theorem for, 249
differentiation of, 319

integration of, 319

radius of convergence of, 243
Taylor series, 292

Powers
with natural exponents in a field, 31

with rational exponents in a complete

field, 47
with real exponents in a complete field,

50

Primitive, 278. See also Integral, indefinite

exact, 278

Principle of nested
closed sets, 188

intervals in complete ordered fields, 189

intervals in En, 189
intervals in ordered fields, 42

line segments, 205

Products of functions, 170

derivatives of, 256

Leibniz formula for derivatives of, 256

Product of metric spaces, 218

Projection maps, 174, 198, 226

Proper subset of a set (⊂), 1

Quantifier, logical, 3
existential (∃), 4
universal (∀), 4

Quotient of elements of a field, 26

Quotient of functions, 170

derivatives of, 256

Radius of convergence of a power series,

243

Range

of a relation, 9
of a sequence, 16

space of functions on metric spaces, 149
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Ratio test for convergence of series, 241

Rational functions, 173
continuity of, 173

Rational numbers, 19

as a countable set, 19

Rationals
closure laws of, 35

density of rationals in an Archimedean
field, 45

incompleteness of, 47

in a field, 34
as a subfield, 35

Real

functions, 170

numbers, see E1

part of complex numbers, 81

points in C, 81
vector spaces, 87

unit in C, 81

Rearrangement

of absolutely convergent series of func-
tions, 238

of conditionally convergent series of
functions, 250

Rectifiable

arc, 309

set, 303

Recursive definition, 31. See also Inductive

definition

Refined comparison test for convergence of

series, 245

Refinements of partitions in E1, 300

Reflexive relation, 12

Regulated functions on intervals in E1, 323

approximation by simple step functions,

324
characteristic functions of intervals, 323

jumps of, 330
are integrable, 325

simple step functions, 323

Relation, 8. See also Sets

domain of a, 9
equivalence, 12

image of a set under a, 9
inverse, 8

inverse image of a set under a, 9

range of a, 9
reflexive, 12

symmetric, 12

transitive, 12

Relative

continuity of functions, 152, 174

limits of functions, 152, 174

Remainder term of Taylor expansions, 289
Cauchy form of the, 291

integral form of the, 289

Lagrange form of the, 291
Peano form of the, 296

Schloemilch–Roche form of the, 296

Representative of an equivalence class, 13

Right

bounded sets in an ordered field, 36
continuous functions, 153

derivatives of functions, 252
jump of a function, 184

limits of functions, 153

Rolle’s theorem, 261

Root test for convergence of series, 241

Roots

in C, 85

in a complete field, 46

Scalar field of a vector space, 86

Scalar products
in En, 64

Scalar-valued functions, 170

Scalars

of En, 64

of a vector space, 86

Schloemilch–Roche form of the remainder
term of Taylor expansions, 296

Second induction law, 30

Second law of the mean, 286, 326

Sequences, 15
bounded, 111

Cauchy, 141
Cauchy’s convergence criterion for, 143

concurrent, 144

constant, 116
convergent, 115

divergent, 115

domain of, 15
double, 20, 222, 223

cluster points of sequences in E∗, 60
finite, 16

general terms of, 16

index notation, 16
infinite, 15

limits of sequences in E1, 5, 54

limits of sequences in E∗, 55, 58, 152
limits of sequences in metric spaces, 115

lower limits of, 56
monotone sequences of numbers, 17

monotone sequences of sets, 17
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nondecreasing sequences of numbers, 17
nonincreasing sequences of numbers, 17

range of, 16

of functions, 227; see also Sequences of
functions

strictly monotone sequences of numbers,
17

subsequences of, 17

subsequential limits of, 135
totally bounded, 188

upper limits of, 56

Sequences of functions
limits of, see Limits of sequences of

functions
uniformly bounded, 234

Sequential criterion

for continuity, 161
for uniform continuity, 203

Sequentially compact sets, 186

Series. See also Series of functions

Abel’s test for convergence of, 247

alternating, 248
geometric, 128, 236

harmonic, 241

hyperharmonic, 245, 329
integral test of convergence of, 327

Leibniz test for convergence of alternat-
ing series, 248

ratio test for convergence of, 241

refined comparison test, 245
root test for convergence of, 241

summation by parts, 247

Series of functions, 228; see also Limits of

series of functions
absolutely convergent, 237

conditionally convergent, 237

convergent, 228
Dirichlet test, 248

differentiation of, 318

divergent, 229
integration of, 318

limit of geometric series, 128
power series, 243; see also Power series

rearrangement of, 238

sum of n terms of a geometric series, 33

Sets, 1

Cantor’s diagonal process, 21

Cantor’s set, 120
Cartesian product of (×), 2

characteristic functions of, 323
compact, 186, 193

complement of a set (−), 2

connected, 212
convex, 204

countable, 18

countable union of, 20
cross product of (×), 2

diagonal process, Cantor’s, 21
difference of (−), 2

disjoint, 2

distributive laws of, 7
contracting sequence of, 17

elements of (∈), 1
empty set (∅), 1
equality of, 1

expanding sequence of, 17
family of, 3

finite, 18

inclusion relation of, 1
infinite, 18

intersection of a family of (
⋂
), 3

intersection of (∩), 2
master set, 2

monotone sequence of, 17
de Morgan’s duality laws, 3

perfect sets in metric spaces, 118

piecewise convex, 204
polygon-connected, 204

proper subset of a set (⊂), 1

rectifiable, 303
relation, 8

sequentially compact, 186
subset of a set (⊆), 1

superset of a set (⊇), 1

uncountable, 18
union of a family of (

⋃
), 3

union of (∪), 2
Signum function (sgn), 156

Simple arcs, 211

endpoints of, 211

Simple step functions, 323

approximating regulated functions, 324

Singleton, 103

Span of a set of vectors in a vector space,
90

Sphere
in En, 76

in a metric space, 97

Step functions, 323

simple, 323

Strictly monotone functions, 182

Subsequence of a sequence, 17

Subsequential limits, 135

Subset of a set (⊆), 1
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proper (⊂), 1

Subuniform limits of functions, 225

Sum of functions, 170

Summation by parts, 247

Superset of a set (⊇), 1

Supremum (sup) of a bounded set in an
ordered field, 38

Symmetric relation, 12

Tangent

lines to curves, 257
vectors to curves, 257

unit tangent vectors, 314

Taylor. See also Taylor expansions
expansions, 289

polynomial, 289

series, 292; see also power series
series about zero (Maclaurin series), 294

Taylor expansions, 289. See also Remain-
der term of Taylor expansions

for the cosine function, 297

for the exponential function, 293
for the logarithmic function, 298

for the power function, 298
for the sine function, 297

Termwise

differentiation of series of functions, 318
integration of series of functions, 318

Total variation, 301

additivity of, 301
function, 308

Totally bounded sets in metric spaces, 113

Totally disconnected sets, 217

Transitive relation, 12

Transitivity in an ordered field, 24

Triangle inequality

in Euclidean spaces, 88
in normed linear spaces, 90

of the absolute value in En, 67

of the distance in En, 68

Trichotomy in an ordered field, 24

Trigonometric form of complex numbers,
83

Trigonometric functions

arcsine, 334
cosine, 336

integral definitions of, 334

sine, 336

Uncountable set, 18
Cantor’s diagonal process, 21

the real numbers as a, 20

Uniform continuity, 197
sequential criterion for, 203

Uniform limits

of functions, 220, 230

of sequences of functions, 228
of series of functions, 228

Uniformly continuous functions, 197

Union
countable, 20

of a family of sets (
⋃
), 3

of closed sets in metric spaces, 104
of open sets in metric spaces, 103

of sets (∪), 2
Unit vector

tangent, 314
in En, 65

Universal quantifier (∀), 4
Unorthodox operations in E∗, 180

Upper bound of a set in an ordered field,
36

Upper limit of a sequence, 56

Variation

bounded, 303

negative variation functions, 308
positive variation functions, 308

total; see Total variation

Vector-valued functions, 170

Vectors in En, 63

absolute value of, 64
angle between, 70

basic unit, 64

components of, 63
coordinates of, 63

dependent, 69

difference of, 64
distance between two, 64

dot product of two, 64
independent, 70

inner product of two, 64; see also Inner

products of vectors in En

inverse of, 65

length of, 64

linear combination of, 66
orthogonal, 65

parallel, 65
perpendicular, 65

sum of, 64

unit, 65
zero, 63

Vector spaces, 86

complex, 87



Index 355

Euclidean spaces, 87
normed linear spaces, 90

real, 87

scalar field of, 86
span of a set of vectors in, 90

Volume of an interval in En, 77
additivity of the, 79

Weierstrass M-test for convergence of se-
ries, 240

Weighted law of the mean, 286, 326

Well-ordering property, 30

Zero vector in En, 63
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