
Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Scan-Line Fill
• Can also fill by maintaining a data

structure of all intersections of polygons
with scan lines

• Sort by scan line

• Fill each span
vertex order generated

 by vertex list

desired order

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Scan-Line Algorithm

For each scan line:

1. Find the intersections of the scan line with
all edges of the polygon.

2. Sort the intersections by increasing x-
coordinate.

3. Fill in all pixels between pairs of
intersections.

Problem:

Calculating intersections is slow.

Solution:

Incremental computation / coherence

For scan line number 8 the sorted
list of x-coordinates is (2,4,9,13)
(b and c are initially no integers)

Therefore fill pixels with x-
coordinates 2-4 and 9-13.

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Edge
Coherence

• Observation: Not all edges intersect each scanline.

• Many edges intersected by scanline i will also be
intersected by scanline i+1

• Formula for scanline s is y = s, for an edge is y = mx + b

• Their intersection is

 s = mxs + b --> xs = (s-b)/m

• For scanline s + 1,

 xs+1 = (s+1 - b)/m = xs + 1/m

Incremental calculation: xs+1 = xs + 1/m

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Processing Polygons

• Polygon edges are sorted according to their minimum / maximum Y.

• Scan lines are processed in increasing (upward) / decreasing (downward) Y order.

• When the current scan line reaches the lower / upper endpoint of an edge it
becomes active.

• When the current scan line moves above the upper / below the lower endpoint,
the edge becomes inactive.

Active Edges

Not yet active

edges

Ignored horizontal edge

Finished edge

• Active edges are sorted according to increasing X. Filling the scan line

starts at the leftmost edge intersection and stops at the second. It

restarts at the third intersection and stops at the fourth. . . (spans)

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Polygon fill rules
(to ensure consistency)

1. Horizontal edges: Do not include in edge table

2. Horizontal edges: Drawn either on the bottom or on the top.

3. Vertices: If local max or min, then count twice, else count
once.

4. Either vertices at local minima or at local maxima are drawn.

5. Only turn on pixels whose centers are interior to the polygon:

 round up values on the left edge of a span, round down on the
right edge

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Polygon fill example

19 NULL

18 NULL

17 NULL

16 NULL

15 NULL

14 NULL

13 NULL

12 -> 15 8 -2 -> 18 8 4/3 NULL

11 NULL

10 NULL

9 NULL

8 NULL

7 NULL

6 -> 18 16 0 NULL

5 NULL

4 NULL

3 -> 15 2 0 NULL

2 NULL

1 -> 3 8 -3 -> 6 8 8/5 NULLB (8,1)

A (2,3)

F
(2,15)

D (16,18)

E
(8,12)

C
(16,6)

• The edge table (ET) with edges entries sorted in increasing y and x of the lower end.

• ymax: max y-coordinate of edge

• xmin: x-coordinate of lowest edge point

• 1/m: x-increment used for stepping
from one scan line to the next

ymax xmin 1/m ymax xmin 1/m

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

1. Set y to smallest y with entry in ET,
i.e., y for the first non-empty bucket

2. Init Active Edge Table (AET) to be empty

3. Repeat until AET and ET are empty:

1. Move form ET bucket y to the AET those edges whose ymin=y (entering edges)

2. Remove from AET those edges for which y=ymax (not involved in next scan line), then

sort AET (remember: ET is presorted)

3. Fill desired pixel values on scan line y by using pairs of x-coords from AET

4. Increment y by 1 (next scan line)

5. For each nonvertical edge remaining in AET, update x for new y

Processing steps

 9 2 0 9 2 -5/2

FA EFAET pointer

 11 12 6/
4

11 13 0 !

DE CDAET pointer

11 10 6/
4

DE

11 13 0 !

CD

ymax x 1/m

scan line 9:

scan line 10:

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Aliasing

• Aliasing is caused by finite addressability of the display.

• Approximation of lines and circles with discrete points often
gives a staircase appearance or "Jaggies".

• Ideal rasterized line should be 1 pixel wide

• Choosing best y for each x (or visa versa) produces aliased
raster lines

Desired line

Aliased rendering of the line

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Aliasing / Antialiasing Examples

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Antialiasing - solutions

• Aliasing can be smoothed out by using higher addressability.

• If addressability is fixed but intensity is variable, use the intensity to control the
address of a "virtual pixel".

• Two adjacent pixels can be be used to give the impression of a point part way between
them.

• The perceived location of the point is dependent upon the ratio of the intensities used at
each.

• The impression of a pixel located halfway between two addressable points can be given
by having two adjacent pixels at half intensity.

• An antialiased line has a series of virtual pixels each located at the proper address.

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Antialiasing by Area Averaging

• Color multiple pixels for each x depending on
coverage by ideal line

original antialiased

magnified

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Polygon Aliasing

• Aliasing problems can be serious for polygons
• Jaggedness of edges

• Small polygons neglected

• Need compositing, so color

of one polygon does not

totally determine color of

pixel

All three polygons should contribute to color

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Antialiased Bresenham Lines

• Line drawing algorithms such as Bresenham's can easily be modified to
implement virtual pixels. We use the distance (e = di/a) value to determine

pixel intensities.

• Three possible cases which occur during the Bresenham algorithm:

AA

B

C

e

B

C

e

A

B

C

e

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0
B = 1 - abs(e+0.5)
C = -0.5 - e

e > 0 0 > e > -0.5 e < -0.5

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Clipping and Visibility

• Clipping has much in common with hidden-
surface removal

• In both cases, we are trying to remove objects
that are not visible to the camera

• Often we can use visibility or occlusion testing
early in the process to eliminate as many
polygons as possible before going through the
entire pipeline

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Hidden Surface Removal

• Object-space approach: use pairwise testing
between polygons (objects)

• Worst case complexity O(n2) for n polygons
partially obscuring can draw independently

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Painter’s Algorithm

• Render polygons a back to front order so that
polygons behind others are simply painted over

B behind A as seen by viewer Fill B then A

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Depth Sort

• Requires ordering of polygons first
• O(n log n) calculation for ordering

• Not every polygon is either in front or behind all other
polygons

• Order polygons and deal with

easy cases first, harder later

Polygons sorted by
distance from COP

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Depth sort cases
• Easy cases:

• Lies behind all other polygons (can render):

• Polygons overlap in z but not in either x or y

(can render independently):

• Hard cases:

Overlap in all
directions but can
one is fully on one
side of the other cyclic overlap penetration

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Back-Face Removal (Culling)

"

• face is visible iff 90 # " # -90

equivalently cos " # 0

or v • n # 0

• plane of face has form ax + by +cz +d =0

but after normalization n = (0 0 1 0)T

• need only test the sign of c

• In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Image Space Approach

• Look at each projector (nm for an n x m frame
buffer) and find closest of k polygons

• Complexity O(nmk)

• Ray tracing

• z-buffer

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

z-Buffer Algorithm
• Use a depth buffer called the z-buffer

to store the depth of the closest object
at each pixel found so far

• As we render each polygon, compare the
depth of each pixel to depth in z buffer

• If less, place shade of pixel in color
buffer and update z buffer

• Efficency:

• If we work scan line by scan line as we
move across a scan line,
the depth changes
satisfy a$x+b$y+c$z=0

• Along scan line

• In screen space $x = 1

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Scan-Line Algorithm

• Can combine shading and hsr through scan
line algorithm

scan line i: no need for depth
information, can only be in no

or one polygon

scan line j: need depth
information only when in
more than one polygon

Realtime 3D Computer Graphics / Virtual Reality – WS 2006/2007 – Marc Erich Latoschik

Visibility Testing
• In realtime applications, eliminate as many objects as possible within the

application
• Reduce burden on pipeline
• Reduce traffic on bus

• Partition space with Binary Spatial Partition (BSP) Tree

• Easy example: Consider 6 parallel polygons. The
plane of A separates B and C from D, E and F

• Can continue recursively
• Plane of C separates B from A
• Plane of D separates E and F

• Can put this information in a BSP tree
• Use for visibility and occlusion testing

top view

B C

A
E

D

F

