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Statistical Physics & Neural Networks: A Long History

60s:
I J. D. Cowan, Statistical Mechanics of Neural Networks, 1967.

70s:
I W. A. Little, “The existence of persistent states in the brain,” Math.

Biosci., 1974.
80s:

I H. Sompolinsky, “Statistical mechanics of neural networks,” Physics
Today, 1988.

90s:
I D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, “Rigorous learning

curve bounds from statistical mechanics,” Machine Learning, 1996.
00s:

I A. Engel and C. P. L. Van den Broeck, Statistical mechanics of
learning, 2001.
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Hopfield model
Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” PNAS 1982.

Hopfield model:
Recurrent artificial neural network model
Equivalence between behavior of NNs with symmetric connections and the
equilibrium statistical mechanics behavior of certain magnetic systems.
Can design NNs for associative memory and other computational tasks

Phase diagram with three kinds of phases (α is load parameter):
Very low α regime: model has so so much capacity, it is a prototype method
Intermediate α: spin glass phase, which is “pathologically non-convex”
Higher α: generalization phase

But:
Lots of subsequent work focusing on spin glasses, replica theory, etc.

Let’s go back to the basics!
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Restricted Boltzmann Machines and Variational Methods

RBMs = Hopfield + temperature + backprop:
RBMs and other more sophisticated variational free energy methods

They have an intractable partition function.
Goal: try to approximate partition function / free energy.
Also, recent work on their phase diagram.

We do NOT do this.
Memorization, then and now.

Three (then) versus two (now) phases.
Modern “memorization” is probably more like spin glass phase.

Let’s go back to the basics!
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Some other signposts

Cowen’s introduction of sigmoid into neuroscience.

Parisi’s replica theory computations.

Solla’s statistical analysis.

Gardner’s analysis of annealed versus quenched entropy.

Saad’s analysis of dynamics of SGD.

More recent work on dynamics, energy langscapes, etc.

Lots more . . .
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Important: Our Methodological Approach

Most people like training and validating ideas by training.
We will use pre-trained models.

Many state-of-the-art models are publicly available.
They are “machine learning models that work” . . . so analyze them.
Selection bias: you can’t talk with deceased patients.

Of course, one could use these methods to improve training . . . we won’t.
Benefits of this methodological approach.

Can develop a practical theory.
(Current theory isn’t . . . loose bounds and convergence rates.)
Can evaluate theory on state-of-the-art models.
(Big models are different than small . . . easily-trainable models.)
Can be more reproducible.
(Training isn’t reproducible . . . too many knobs.)

You can “pip install weightwatcher”
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PAC/VC versus Statistical Mechanics Approaches (1 of 2)

Basic Student-Teacher Learning Setup:
Classify elements of input space X into {0, 1}
Target rule / teacher T ; and hypothesis space F of possible mappings
Given T for X ⊂ X , the training set, select a student f ∗ ∈ F , and evaluate how
well f ∗ approximates T on X
Generalization error (ε): probability of disagreement bw student and teacher on X
Training error (εt): fraction of disagreement bw student and teacher on X
Learning curve: behavior of |εt − ε| as a function of control parameters

PAC/VC Approach:
Related to statistical problem of convergence of frequencies to probabilities

Statistical Mechanics Approach:
Exploit the thermodynamic limit from statistical mechanics
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PAC/VC versus Statistical Mechanics Approaches (2 of 2)
PAC/VC: get bounds on worst-case results

View m = |X | as the main control parameter; fix the function class F ; and ask
how |εt − ε| varies
Natural to consider γ = P [|εt − ε| > δ]

I Related to problem of convergence of frequencies to probabilities
I Hoeffding-type approach not appropriate (f ∗ depends on training data)

Fix F and construct uniform bound P [maxh∈F |εt(h)− ε(h)| > δ] ≤ 2 |F| e−2mδ2

I Straightforward if |F| <∞; use VC dimension (etc.) otherwise
Statistical Mechanics: get precise results for typical configurations

Function class F = FN varies with m; and let m and (size of F) vary in
well-defined manner
Thermodynamic limit: m,N →∞ s.t. α = m

N (like load in associative memory
models).

I Limit s.t. (when it exists) certain quantities get sharply peaked around
their most probable value.

I Describe learning curve as competition between error (energy) and log
of number of functions with that energy (entropy)

I Get precise results for typical (most probably in that limit) quantities
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Rethinking generalization requires revisiting old ideas
Martin and Mahoney https://arxiv.org/abs/1710.09553

Very Simple Deep Learning (VSDL) model:

DNN is a black box, load-like parameters α, & temperature-like parameters τ

Adding noise to training data decreases α

Early stopping increases τ

Nearly any non-trivial model‡ exhibits “phase diagrams,” with qualitatively
different generalization properties, for different parameter values.

(a) Training/general-
ization error.

(b) Learning phases in
τ -α plane.

(c) Noisifying data and
adjusting knobs.

‡when analyzed via the Statistical Mechanics Theory of Generalization (SMToG)
Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 12 / 98

https://arxiv.org/abs/1710.09553


Remembering Regularization
Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics (1990s): (this) Overtraining → Spin Glass Phase

Binary Classifier with N Random Labelings:

2N over-trained solutions: locally (ruggedly) convex, very high barriers, all unable to generalize
implication: solutions inside basins should be more similar than solutions in different basins
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Given N labeled data points

Imagine a Teacher Network T that maps data to labels

Learning finds a Student J similar to the Teacher T

Consider all possible Student Networks J for all possible teachers T

The Generalization error ε is related to the phase space volume Ωε of all possible
Student-Teacher overlaps for all possible J,T

ε = arccos R, R = 1
N J†T
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics Foundations:
Spherical (Energy) Constraints: δ(Tr [J2]− N)
Teacher Overlap (Potential): δ( 1

NTr [J†T]− cos(πε))
Teacher Phase Space Volume (Density of States):

ΩT (ε) =
∫
dJδ(Tr [J2]− N)δ( 1

NTr [J†T]− cos(πε))

Comparison to traditional Statistical Mechanics:
Phase Space Volume, free particles:

ΩE =
∫
dNr

∫
dNpδ

( N∑
i

p2i
2mi
− E

)
∼ V N

Canonical Ensemble: Legendre Transform in R = cos(πε):
actually more technical, and must choose sign convention on Tr [J†T], H

Ωβ(R) ∼
∫

dµ(J)e−λTr [J†T] ∼
∫
dqNdpNe−βH(p,q)
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Early Models: Perception: J,T N-dim vectors

Continuous Perception Ji ∈ R (not so intersting)

Ising Perception Ji = ±1 (sharp transitions, requires Replica theory)

Our Proposal: J,T (N ×M) Real (possibly Heavy Tailed) matrices

Practical Applications: Hinton, Bengio, etc.

Related to complexity of (Levy) spin glasses (Bouchaud)

Our Expectation:

Heavy-tailed structure means there is less capacity/entropy available for
integrals, which will affect generalization properties non-trivially

Multi-class classification is very different than binary classification
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Student Teacher: Recent Practical Application
“Similarity of Neural Network Representations Revisited”
Kornblith, Norouzi, Lee, Hinton; https://arxiv.org/abs/1905.00414

Examined different Weight matrix similarity metrics

Best method: Canonical Correlation Analysis (CCA): ‖Y†X‖2F

Figure: Diagnostic Tool for both individual and comparative DNNs
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Student Teacher: Recent Generalization vs. Memorization
“Insights on representational similarity in neural networks with canonical correlation”
Morcos, Raghu, Bengio; https://arxiv.org/pdf/1806.05759.pdf

Compare NN representations and how they evolve during training
Projection weighted Canonical Correlation Analysis (PWCCA)

Figure: Generalizing networks converge to more similar solutions than memorizing
networks.
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Motivations: Theoretical AND Practical
Theoretical: deeper insight into Why Deep Learning Works?

convex versus non-convex optimization?

explicit/implicit regularization?

is / why is / when is deep better?

VC theory versus Statistical Mechanics theory?

. . .

Practical: use insights to improve engineering of DNNs?
when is a network fully optimized?

can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?

. . .
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Motivations: towards a Theory of Deep Learning

DNNs as
spin glasses,
Choromanska
et al. 2015

Looks exactly
like old protein
folding results
(late 90s)

Energy Landscape Theory

Completely
different
picture
of DNNs

Raises broad questions about Why Deep Learning Works
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Motivations: regularization in DNNs?

ICLR 2017 Best paper
Large neural network models can easily overtrain/overfit on randomly
labeled data
Popular ways to regularize (basically minx f (x) + λg(x), with “control
parameter” λ) may or may not help.

Understanding deep learning requires rethinking generalization??
https://arxiv.org/abs/1611.03530

Rethinking generalization requires revisiting old ideas: statistical
mechanics approaches and complex learning behavior!!

https://arxiv.org/abs/1710.09553 (Martin & Mahoney)
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Motivations: stochastic optimization DNNs?
Theory (from convex problems):

First order (SGD, e.g., Bottou 2010)
larger “batches” are better (at least up to statistical noise)
Second order (SSN, e.g., Roosta and Mahoney 2016)
larger “batches” are better (at least up to statistical noise)
Large batch sizes have better computational properties!

So, people just increase batch size (and compensate with other parameters)
Practice (from non-convex problems):

SGD-like methods “saturate”
(https://arxiv.org/abs/1811.12941)
SSN-like methods “saturate”
(https://arxiv.org/abs/1903.06237)
Small batch sizes have better statistical properties!

Is batch size a computational parameter, or a statistical parameter, or what?

How should batch size be chosen?
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Set up: the Energy Landscape
Energy/Optimization function:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Train this on labeled data {di , yi} ∈ D, using Backprop, by minimizing loss L:

min
Wl ,bl

L

(∑
i

EDNN(di )− yi

)

EDNN is “the” Energy Landscape:

The part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined
by the data {di , yi} ∈ D

Pass the data through the Energy function EDNN multiple times, as we run
Backprop training

The Energy Landscape§ is changing at each epoch

§i.e., the optimization function that is nominally being optimized
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Problem: How can this possibly work?

Expected

Highly non-convex?

Observed

Apparently not!

It has been known for a long time that local minima are not the issue.
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Problem: Local Minima?

Duda, Hart and Stork, 2000

Solution: add more capacity and regularize, i.e., over-parameterization
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Motivations: what is regularization?

(a) Dropout. (b) Early Stopping.

(c) Batch Size. (d) Noisify Data.

Every adjustable knob and switch—and there are many¶—is regularization.
¶https://arxiv.org/pdf/1710.10686.pdf
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Basics of Regularization

Ridge Regression / Tikhonov-Phillips Regularization

Ŵx = y

x =
(
ŴTŴ + αI

)−1
ŴTy

{
Moore-Penrose pseudoinverse (1955)
Ridge regularization (Phillips, 1962)

min
x
‖Ŵx− y‖22 + α‖x̂‖22 familiar optimization problem

Softens the rank of Ŵ to focus on large eigenvalues.

Related to Truncated SVD, which does hard truncation on rank of Ŵ

Early stopping, truncated random walks, etc. often implicitly solve
regularized optimiation problems.
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How we will study regularization
The Energy Landscape is determined by layer weight matrices WL:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Traditional regularization is applied to WL:

min
Wl ,bl

L
(∑

i
EDNN(di )− yi

)
+ α

∑
l
‖Wl‖

Different types of regularization, e.g., different norms ‖ · ‖, leave different
empirical signatures on WL.

What we do:
Turn off “all” regularization.
Systematically turn it back on, explicitly with α or implicitly with
knobs/switches.
Study empirical properties of WL.
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Lots of DNNs Analyzed
Question: What happens to the layer weight matrices WL?

(Don’t evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.

Two other small models:
3-Layer MLP
Mini AlexNet

Conv2D  MaxPool Conv2D MaxPool       FC1 FC2 FC

Wide range of state-of-the-art pre-trained models:
AlexNet, Inception, etc.
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Matrix complexity: Matrix Entropy and Stable Rank

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(e) MLP3 Entropies. (f) MLP3 Stable Ranks.

Figure: Matrix Entropy & Stable Rank show transition during Backprop training.
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Matrix complexity: Scree Plots

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(a) Initial Scree Plot. (b) Final Scree Plot.

Figure: Scree plots for initial and final configurations for MLP3.
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Matrix complexity: Singular/Eigen Value Densities

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values νi and associated Eigenvalues λi = ν2i .
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ESD: detailed insight into WL
Empirical Spectral Density (ESD: eigenvalues of X = WT

L WL)

import keras
import numpy as np

import matplotlib.pyplot as plt

…

W = model.layers[i].get_weights()[0]

…

X = np.dot(W, W.T)

evals, evecs = np.linalg.eig(W, W.T)

plt.hist(X, bin=100, density=True)

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 37 / 98



ESD: detailed insight into WL

Empirical Spectral Density (ESD: eigenvalues of X = WT
L WL)

Eopch 0:
Random
Matrix

Eopch 36:
Random
+ Spiles

Entropy decrease corresponds to:
modification (later, breakdown) of random structure and
onset of a new kind of self-regularization.
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102: Marchenko-Pastur

Let W be an N ×M random matrix, with elements Wij ∼ N(0, σ2mp).

Then, the ESD of X = WTW, converges to a deterministic function:

ρN(λ) := 1
N

M∑
i=1

δ (λ− λi )

N→∞−−−−→
Q fixed


Q

2πσ2mp

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 otherwise.

with well-defined edges (which depend on Q, the aspect ratio):

λ± = σ2mp

(
1± 1√

Q

)2
Q = N/M ≥ 1.
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Random Matrix Theory 102’: Marchenko-Pastur

(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.

Important points:

Global bulk stats: The overall shape is deterministic, fixed by Q and σ.

Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



Fitting Heavy-tailed Distributions

Figure: The log-log histogram plots of the ESD for three Heavy-Tailed random
matrices M with same aspect ratio Q = 3, with µ = 1.0, 3.0, 5.0, corresponding to
the three Heavy-Tailed Universality classes (0 < µ < 2 vs 2 < µ < 4 and 4 < µ).
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Non-negligible finite size effects

(a) M = 1000,N = 2000. (b) Fixed M. (c) Fixed N.

Figure: Dependence of α (the fitted PL parameter) on µ (the hypothesized
limiting PL parameter).
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Heavy Tails (!) and Heavy-Tailed Universality (?)

Universality: large-scale properties are independent of small-scale details
Mathematicians: justify proving theorems in random matrix theory
Physicists: derive new phenomenological relations and predict things
Gaussian Universality is most common, but there are many other types.

Heavy-Tailed Phenomenon
Rare events are not extraordinarily rare, i.e., are heavier than Gaussian tails
Modeled with power law and related functions
Seen in finance, structural glass theory, etc.

Heavy-Tailed Random Matrix Theory
Phenomenological work by physicists (Bouchard, Potters, Sornette, 90s)
Theorem proving by mathematicians (Auffinger, Ben Arous, Burda, Peche, 00s)
Universality of Power Laws, Levy-based dynamics, finite-size attractors, etc.
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Heavy-Tailed Universality: Earthquake prediction
“Complex Critical Exponents from Renormalization Group Theory of Earthquakes . . . ” Sornette et al. (1985)

Power law fit‖ of the regional strain ε (a measure of seismic release) before the
critical time tc (of the earthquake)

dε
dt = A + B(t − tc)m

(a) (b)

Figure: (a) Cumulative Beniolf strain released by magnitude 5 and greater
earthquakes in the San Francisco Bay area prior to the 1989 Loma Prieta
eaerthquake. (b) Fit of Power Law exponent (m).

‖More sophisticated Renormalization Group (RG) analysys uses complex critical exponents, giving log-peripdic corrections.
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Heavy-Tailed Universality: Market Crashes
“Why Stock Markets Crash: Critical Events in Complex Financial Systems” by D. Sornette (book, 2003)

Simple Power Law

log p(t) = A + B(t − tc)β

Complex Power Law (RG Log Periodic corrections)

log p(t) = A + B(t − tc)β + C(t − tc)β(cos(ωlog(t − tc)− φ)

(a) Dow Jones 1929 crash (b) Universal parameters, fit to RG model
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Heavy-Tailed Universality: Neuronal Avalanches
Neuronal avalanche dynamics indicates different universality classes in neuronal cultures; Scienfic Reports 3417 (2018)

(c) Spiking activity of cultured neurons

(d) Critical exponents, fit to scalaing model
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Experiments: just apply this to pre-trained models
https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-...
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Experiments: just apply this to pre-trained models
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RMT: LeNet5 (an old/small NN example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Marchenko-Pastur Bulk + Spikes
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RMT: AlexNet (a typical modern/large DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Marchenko-Pastur Bulk-decay + Heavy-tailed
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RMT: InceptionV3 (a particularly unusual example)

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Marchenko-Pastur bulk decay, onset of Heavy Tails
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Convolutional 2D Feature Maps

We analyze Conv2D layers by extracting the feature maps individually,
i.e., A (3× 3× 64× 64) Conv2D layer yields 9 (64× 64) Feature Maps

(a) α = 1.38 (b) α = 2.74 (c) α = 3.02

Figure: Select Feature Maps from different Conv2D layers of VGG16.
Fits shown with PDF (blue) and CDF (red)
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Open AI GPT2 Attention Matrices

NLP Embedding and Attention Matrices are Dense/Linear, but generally have
large aspect ratios

(a) α = (b) α = (c) α =

Figure: Selected ESDs from Open AI GPT2 (Huggingface implementation)
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RMT-based 5+1 Phases of Training

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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RMT-based 5+1 Phases of Training
We model “noise” and also “signal” with random matrices:

W 'Wrand + ∆sig . (1)

Operational
Definition

Informal
Description
via Eqn. (1)

Edge/tail
Fluctuation
Comments

Illustration
and

Description

Random-like ESD well-fit by MP
with appropriate λ+

Wrand random;
‖∆sig‖ zero or small

λmax ≈ λ+ is
sharp, with
TW statistics

Fig. 15(a)

Bleeding-out
ESD Random-like,
excluding eigenmass

just above λ+

W has eigenmass at
bulk edge as

spikes “pull out”;
‖∆sig‖ medium

BPP transition,
λmax and
λ+ separate

Fig. 15(b)

Bulk+Spikes
ESD Random-like
plus ≥ 1 spikes
well above λ+

Wrand well-separated
from low-rank ∆sig ;
‖∆sig‖ larger

λ+ is TW,
λmax is
Gaussian

Fig. 15(c)

Bulk-decay
ESD less Random-like;
Heavy-Tailed eigenmass
above λ+; some spikes

Complex ∆sig with
correlations that

don’t fully enter spike

Edge above λ+

is not concave Fig. 15(d)

Heavy-Tailed
ESD better-described
by Heavy-Tailed RMT
than Gaussian RMT

Wrand is small;
∆sig is large and
strongly-correlated

No good λ+;
λmax � λ+ Fig. 15(e)

Rank-collapse ESD has large-mass
spike at λ = 0

W very rank-deficient;
over-regularization — Fig. 15(f)

The 5+1 phases of learning we identified in DNN training.



RMT-based 5+1 Phases of Training

Lots of technical issues ...
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Bulk+Spikes: Small Models ∼ Tikhonov regularization

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|

2

N

)(
1 + N
|∆|2

)
|∆| > (Q)−

1
4

λ+

simple scale threshold

x =
(
X̂ + αI

)−1
ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Bulk → Spikes
↙

Smaller, older models like LeNet5 exhibit traditional regularization and can
be described perturbatively with Gaussian RMT
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

We model strongly-correlated systems by heavy-tailed random matrices
I.e., we model signal (not noise) by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc)

AlexNet
ReseNet50
Inception V3
DenseNet201
...

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Heavy-tailed Self-regularization

Summary of what we “suspect” today
No single scale threshold.
No simple low rank approximation for WL.
Contributions from correlations at all scales.
Can not be treated perturbatively.

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Spikes: carry more “information” than the Bulk

Spikes have less entropy, are more localized than bulk.

(a) Vector Entropies. (b) Localization Ratios. (c) Participation Ratios.

Figure: Eigenvector localization metrics for the FC1 layer of MiniAlexNet.

Information begins to concentrate in the spikes.
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Power Law Universality: ImageNet and AllenNLP

All these models display remarkable Heavy Tailed Universality
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Power Law Universality: ImageNet

7500 matrices (and Conv2D feature maps)

over 50 architectures

Linear layers and Conv2D feature maps

80− 90% < 5

All these models display remarkable Heavy Tailed Universality
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Power Law Universality: Open AI GPT versus GPT2

GPT versus GPT2: (Huggingface implementation)
example of a class of models that “improves” over time.
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Mechanisms?

Spiked-Covariance Model
Statistical model: Johnstone, “On the distribution . . . ” 2001.
Simple self-organization model: Malevergne and Sornette, “Collective
Origin of the Coexistence of Apparent RMT Noise and Factors in
Large Sample Correlation Matrices,” 2002.
Low-rank perturbative variant of Gaussian randomness modeling noise

Heavy-tailed Models: Self-organized criticality (and others ...)
Johansen, Sornette, and Ledoit, “Predicting financial crashes using
discrete scale invariance,” 1998.
Markovic and Gros, “Power laws and self-organized criticality in
theory and nature,” 2013.
Non-perturbative model where heavy-tails and power laws are used to
model strongly correlated systems
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Self-regularization: Batch size experiments

A theory should make predictions:

We predict the existence of 5+1 phases of increasing implicit
self-regularization

We characterize their properties in terms of HT-RMT

Do these phases exist? Can we find them?

There are many knobs. Let’s vary one—batch size.

Tune the batch size from very large to very small

A small (i.e., retrainable) model exhibits all 5+1 phases

Large batch sizes => decrease generalization accuracy

Large batch sizes => decrease implicit self-regularization

Generalization Gap Phenomena: all else being equal, small batch sizes lead to
more implicitly self-regularized models.
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Batch size and the Generalization Gap
Large versus small batches?

Larger is better:
I Convex theory: SGD is closer to gradient descent
I Implementations: Better parallelism, etc.

(But see Golmant et al. (arxiv:1811.12941) and Ma et al.
(arxiv:1903.06237) for “inefficiency” of SGD and KFAC.)

Smaller is better:
I Empirical: Hoffer et al. (arXiv:1705.08741) and Keskar et al.

(arXiv:1609.04836)
I Information: Schwartz-Ziv and Tishby (arxiv:1703.00810)

(This is like a “supervised” version of our approach.)

Connection with weight norms?
Older: Bartlett, 1997; Mahoney and Narayanan, 2009.
Newer: Liao et al., 2018; Soudry et al., 2017; Poggio et al., 2018;
Neyshabur et al., 2014; 2015; 2017a; Bartlett et al., 2017; Yoshida and
Miyato, 2017; Kawaguchi et al., 2017; Neyshabur et al., 2017b; Arora et al.,
2018b;a; Zhou and Feng, 2018.
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Batch Size Tuning: Generalization Gap

Figure: Varying Batch Size: Stable Rank and MP Softrank for FC1 and FC2
Training and Test Accuracies versus Batch Size for MiniAlexNet.

Decreasing batch size leads to better results—it induces strong
correlations in W.

Increasing batch size leads to worse results—it washes out strong
correlations in W.
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Batch Size Tuning: Generalization Gap

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5
of the main phases of training by varying only the batch size.

Decreasing batch size induces strong correlations in W, leading to a more
implicitly-regularized model.
Increasing batch size washes out strong correlations in W, leading to a less
implicitly-regularized model.
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Summary so far

applied Random Matrix Theory (RMT)

self-regularization ∼ entropy / information decrease

5+1 phases of learning

small models ∼ Tinkhonov-like regularization

modern DNNs ∼ heavy-tailed self-regularization

Remarkably ubiquitous

How can this be used?

Why does deep learning work?
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Open source tool: weightwatcher
https://github.com/CalculatedContent/WeightWatcher

A python tool to analyze weight matrices in Deep Neural Networks.

All our results can be reproduced by anyone on a basic laptop
using widely available, open source, pretained models:

(keras, pytorch, osmr/imgclsmob, huggingface, allennlp, distiller, modelzoo, etc.)
and without even needing the test or training data!
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WeightWatcher

WeightWatcher is an open source to analyze DNNs with our heavy tailed α and
weighted α̂ metric (and other userful theories)

goal: to develop a useful, open source tool

supports: Keras, PyTorch, some custom libs (i.e. huggingface)

implements: various norm and rank metrics

pip install weightwatcher

current version: 0.1.2

latest from source: 0.1.3

looking for: users and contributors

https://github.com/CalculatedContent/WeightWatcher
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WeightWatcher: Usage

Usage
import weightwatcher as ww
watcher = ww.WeightWatcher(model=model)
results = watcher.analyze()

watcher.get_summary()
watcher.print_results()

Advanced Usage
def analyze(self, model=None, layers= [],

min_size= 50, max_size= 0,
compute_alphas=True,
compute_lognorms=True,
compute_spectralnorms=True,

...
plot=True):
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WeightWatcher: example VGG19_BN

import weightwatcher as ww
import torchvision.models as models

model = models.vgg19_bn(pretrained=True)
watcher = ww.WeightWatcher(model=model)
results = watcher.analyze(compute_alphas=True)
data.append(“name”: “vgg19bntorch”, “summary”: watcher.get_summary())

’name’: ’vgg19bntorch’,
’summary’: ’lognorm’: 0.8185,
’lognorm_compound’: 0.9365,
’alpha’: 2.9646,
’alpha_compound’: 2.8479
’alpha_weighted’: 1.1588
’alpha_weighted_compound’: 1.5002

We also provide a pandas dataframe with detailed results for each layer
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Bounding Generalization Error
BTW, Bounding Generalization Error 6= Predicting Test Accuracies

A lot of recent interest, e.g.:
Bartlett et al: (arxiv:1706.08498): bounds based on ratio of output margin distribution
and spectral complexity measure
Neyshabur et al. (arxiv:1707.09564,arxiv:1706.08947): bounds based on the product
norms of the weights across layers
Arora et al. (arxiv:1802.05296): bounds based on compression and noise stability
properties
Liao et al. (arxiv:1807.09659): normalized cross-entropy measure that correlates well
with test loss
Jiang et al. (arxiv:1810.00113): measure based on distribution of margins at multiple
layers that correlates well with test loss∗∗

These use/develop learning theory bounds and then apply to training of
MNIST/CIFAR10/etc.

Question: How do these norm-based metrics perform on state-of-the-art pre-trained
models?

∗∗and released DEMOGEN pretrained models (after our 1901.08278 paper).
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Predicting test accuracies (at scale): Product norms
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

The product norm is a VC-like data-dependent capacity metric for DNNs.
People prove theorems and then may use it to guide training.
But how does it perform on state-of-the-art production-quality models?

We can predict trends in the test accuracy in state-of-the-art production-quality
models—without peeking at the test data!

“pip install weightwatcher”
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Universality, capacity control, and norm-powerlaw relations
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

“Universality” suggests the power law exponent α would make a good, Universal,
DNN capacity control metric.
For multi-layer NN, consider a weighted average

α̂ = 1
N
∑

l,i

bl,iαl,i

To get weights bl,i , relate Frobenius norm and Power Law exponent.
Create a random Heavy-Tailed (Pareto) matrix:

Pr
(
W rand

i,j
)
∼ 1

x1+µ

Examine norm-powerlaw relations:

log ‖W‖2F
log λmax

versus α

Argue†† that:
PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

††Open problem: make the “heuristic” argument more “rigorous.”
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Predicting test accuracies better: Weighted Power Laws
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

Use the weighted PL metric: α̂ = 1
N
∑

l,i log(λmax
l,i )αl,i , instead of the product norm.

We can predict trends in the test accuracy—without peeking at the test data!
“pip install weightwatcher”
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Predicting test accuracies better: Distilled Models
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

Question: Is the weighted PL metric simply a repackaging of the product norm?
Answer: No!
For some Intel Distiller models, the Spectral Norm behaves atypically, and α does not
change noticibly

(a) PL Exponents (α) (b) Spectral Norm (λmax )

Figure: (a) PL exponents α and (b) Spectral Norm (λmax ) for each layer of ResNet20,
with Intel Distiller Group Regularization method applied (before and after).
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WeighWatcher: ESDs of GANs
GANs also display Heavy Tailed ESDs, however:

There are more exceptions
Many ESDs appear to display significant rank collapse and only weak
correlations

(a) Histogram of αs (b) Anamolous ESD.

Figure: (a) Distribution of all power law exponents α for DeepMind’s BigGAN
(Huggingface implementation). (b) Example of anamolous ESD.
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Summary of “Validating and Using”
Some things so far:

We can: explain the generalization gap.
We can: “pip install weightwatcher” and use this source tool.
We can: predict trends in test accuracies on production-quality models.

Some things we are starting to look at:
Better metrics for monitoring and/or improving training.
Better metrics for robustness to, e.g., adversarial perturbation, model
compression, etc., that don’t involve looking at data.
Better phenomenological load-like and temperature-like metrics to guide
data collection, algorithm/parameter/hyperparameter selection, etc.
What else?

Join us:
“pip install weightwatcher”—contribute to the repo.‡‡

‡‡Don’t do everything from scratch in a non-reproducible way. Make it reproducible!
Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 91 / 98



Outline
1 Prehistory and History

Older Background
A Very Simple Deep Learning Model
More Immediate Background

2 Preliminary Results
Regularization and the Energy Landscape
Preliminary Empirical Results
Gaussian and Heavy-tailed Random Matrix Theory

3 Developing a Theory for Deep Learning
More Detailed Empirical Results
An RMT-based Theory for Deep Learning
Tikhonov Regularization versus Heavy-tailed Regularization

4 Validating and Using the Theory
Varying the Batch Size: Explaining the Generalization Gap
Using the Theory: pip install weightwatcher
Diagnostics at Scale: Predicting Test Accuracies

5 More General Implications and Conclusions



Implications: RMT and Deep Learning

Where are the local minima?
How is the Hessian behaved?
Are simpler models misleading?
Can we design better learning
strategies?

(tradeoff between Energy and Entropy minimization)

How can RMT be used to understand the Energy Landscape?
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Implications: Minimizing Frustration and Energy Funnels
As simple as can be?, Wolynes, 1997

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding
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Implications: The Spin Glass of Minimal Frustration
https://calculatedcontent.com/2015/03/25/why-does-deep-learning-work/

↖ ↗
low lying Energy state in Spin Glass ∼ spikes in RMT
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Implications: Rugged Energy Landscapes of Heavy-tailed
Models
Martin and Mahoney https://arxiv.org/abs/1710.09553

Spin Glasses with Heavy Tails?
Local minima do not concentrate
near the ground state
(Cizeau and Bouchaud 1993)
Configuration space with a “rugged
convexity”

Contrast with (Gaussian) Spin Glass
model of Choromanska et al. 2015

If Energy Landscape is ruggedly funneled, then no “problems” with local minima!
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Conclusions: “pip install weightwatcher”

Statistical mechanics and neural networks
Long history
Revisit due to recent “crisis” in why deep learning works
Use ideas from statistical mechanics of strongly-correlated systems
Develop a theory that is designed to be used

Main Empirical/Theoretical Results
Use Heavy-tailed RMT to construct a operational theory of DNN learning
Evaluate effect of implicit versus explicit regularization
Exhibit all 5+1 phases by adjusting batch size: explain the generalization gap
Methodology: Observations → Hypotheses → Build a Theory → Test the Theory.

Many Implications:
Explain the generalization gap
Rationalize claims about rugged convexity of Energy Landscape
Predict test accuracies in state-of-the-art models
“pip install weightwatcher”
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If you want more ... “pip install weightwatcher” ...
Background paper:

Rethinking generalization requires revisiting old ideas: statistical mechanics approaches
and complex learning behavior
(https://arxiv.org/abs/1710.09553)

Main paper (full):
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix
Theory and Implications for Learning
(https://arxiv.org/abs/1810.01075)
Code: https://github.com/CalculatedContent/ImplicitSelfRegularization

Main paper (abridged):
Traditional and Heavy-Tailed Self Regularization in Neural Network Models
(https://arxiv.org/abs/1901.08276)
Code: https://github.com/CalculatedContent/ImplicitSelfRegularization

Applying the theory paper:
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained
Deep Neural Networks
(https://arxiv.org/abs/1901.08278)
Code: https://github.com/CalculatedContent/PredictingTestAccuracies
https://github.com/CalculatedContent/WeightWatcher
“pip install weightwatcher”

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 98 / 98

https://arxiv.org/abs/1710.09553
https://arxiv.org/abs/1810.01075
https://github.com/CalculatedContent/ImplicitSelfRegularization
https://arxiv.org/abs/1901.08276
https://github.com/CalculatedContent/ImplicitSelfRegularization
https://arxiv.org/abs/1901.08278
https://github.com/CalculatedContent/PredictingTestAccuracies
https://github.com/CalculatedContent/WeightWatcher

	Prehistory and History
	Older Background
	A Very Simple Deep Learning Model
	More Immediate Background

	Preliminary Results
	Regularization and the Energy Landscape
	Preliminary Empirical Results
	Gaussian and Heavy-tailed Random Matrix Theory

	Developing a Theory for Deep Learning
	More Detailed Empirical Results
	An RMT-based Theory for Deep Learning
	Tikhonov Regularization versus Heavy-tailed Regularization

	Validating and Using the Theory
	Varying the Batch Size: Explaining the Generalization Gap
	Using the Theory: pip install weightwatcher
	Diagnostics at Scale: Predicting Test Accuracies

	More General Implications and Conclusions

