
2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Screaming Fast Galois Field Arithmetic
Using Intel SIMD Instructions

Ethan L. Miller
Center for Research in Storage Systems

University of California, Santa Cruz
(and Pure Storage)

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Authors

2

Jim Plank
Univ. of Tennessee

Kevin Greenan
EMC/Data Domain
(now at Box.com)

Ethan Miller
UC Santa Cruz

(and Pure Storage)

These slides are derived from the presentation Jim gave at FAST 2013
(used with permission).

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

RAID Systems

Archival Systems

Data
Centers

Clouds

Erasure codes are everywhere

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

XOR-Only Codes
Are Fast

Reed Solomon
Codes are Slow

Conventional wisdom (FAST 2009)

Why?

Because the underlying
Galois field multiplication
is too slow!

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Conventional wisdom

 Inconvenient: Reed-Solomon codes are
powerful, general and flexible

 Led to a proliferation of XOR-based codes

Stepped Combination Codes

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Conventional wisdom says…

 However, in recent years….
Eerily smug reports of doing Reed-Solomon

coding at “cache line speeds”
No need for messy XOR codes!
But what’s the secret handshake?

 In this talk, we reveal the secret handshake
No prior experience with Galois field

arithmetic necessary!

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Core takeaways

 Using Intel’s SSE3 SIMD instructions gets you
Galois field arithmetic fast enough that

performance is limited by L2/L3 cache
 Factor of 2.7x to 12x faster than previous

implementations
All on a single general-purpose CPU core!

 Open source library: GF-Complete
Gives you the secret handshake in a neat

package
 Flexible BSD license

7

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

What is a Galois field?

 Galois field is also known as a finite field
 Contains a finite set of elements

 Field with k elements is called GF(k)
Often, k is a power of 2: GF(2w)

 Supports two operations: add & multiply
All results must be elements in the field
Additive inverse and multiplicative inverse
Usual rules apply (associative, distributive, etc.)
Add is done by XOR
Multiplication is … more difficult

 8

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

If w = 8, this is a byte and this is a kilobyte

How do storage systems use
Galois field arithmetic?
 Erasure codes are structured as linear combinations

of w-bit data words in a Galois Field GF(2w)

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Larger, more complex coding systems
More expensive to implement

How do we pick w?

 w: the number of bits in each element
Small w limits the width of each stripe

w = 4 w = 8 w = 16 w = 32 w = 64 w = 128

Microsoft
Azure

Most RAID systems
(including Linux RAID-6)

RSA’s
HAIL

Bigger w has (historically) been slower

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

What operations do we need?

 Required operations are
XOR two regions of memory together (addition)
Multiply a region of memory by a constant in GF(2w)

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Using multiplication and XOR to
generate a code symbol
 Requires n-1 XORs and n-1 multiplications

Need to multiply each data symbol by a (usually
different) constant

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Performing fast multiplication

13

Common (non-trivial) operation:
multiply a 1K (large) vector of words (bi) in GF(28) by a constant a

Result should look like 1024 individual multiplications…

=

… but doing 1024 individual multiplications can be slow!

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Solution: use vector instructions

 Modern Intel processors support vector operations:
Intel “Streaming SIMD” instructions
 128 bits per vector

256 for some instructions in newest CPUs
Operations done on all elements in parallel

Some instructions operate bitwise (e.g., XOR)
Others operate on k-bit words (k=8, 16, 32, 64)

 Other architectures support similar instructions
ARM
Power

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Bitwise SIMD instructions

 Bitwise operations
XOR: v = _mm_xor_si128 (a, b)
AND: v = _mm_and_si128 (a, b)

 Other bitwise operations also supported

15

a:

v:

b:

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Word-oriented instructions

16

 Shift left (operates on 64-bit words):
v = _mm_slli_epi64 (a, x)

 “Load one” (put same value into all 8-bit elements):
v = _mm_set1_epi8 (b)

 Not a single instruction—compiler expands it

v:

a:

v:

v = _mm_slli_epi64 (a, 8)

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

 Shuffle instruction: v = _mm_shuffle_epi8 (a, x)
 Performs 16 simultaneous table lookups using

 a: 16 element table
 b: 16 indices, each 4 bits long

Killer instruction: shuffle

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Buffer-constant multiply in GF(24)

 We can use a single lookup to multiply in GF(24)
 Example: multiply 16 bytes A by 7 in GF(24)

18

Byte position

l_tbl

h_tbl

l_mask

h_mask

A:

Calculate l_tbl
h_tbl = _mm_slli_epi64(l_tbl, 4)
l_mask = _mm_set1_epi8(0xf)
h_mask = _m_slli_epi64(l_mask, 4)

Setup
Since 5 × 7 = 6,
the low order bits should be 6

Since a × 7 = 3,
the high order bits should be 3

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Where does that table come from?

 The multiplication table is calculated using
slower arithmetic
Not that slow…

 Similar to calculating multiplication tables for
base-10 arithmetic
Done by repeated multiply-by-two and

reduction
 Details aren’t important for now: just treat the

table like a lookup table

19

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Buffer-constant multiply in GF(24)

 Example: multiply 16 bytes A by 7 in GF(24)

20

Byte position
l_tbl

h_tbl
l_mask

h_mask

A:

L = _mm_and_si128(A, l_mask)

L = _mm_shuffle_epi8(L, l_tbl)

Create indices from the low-order bits of each byte in the vector

Perform the table lookup using a shuffle

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Buffer-constant multiply in GF(24)

 Example: multiply 16 bytes A by 7 in GF(24)

21

Byte position
l_tbl

h_tbl
l_mask

h_mask

A:

L = _mm_and_si128(A, l_mask)
L = _mm_shuffle_epi8(L, l_tbl)

Create indices from the high-order bits

Perform the table lookup using a shuffle

H = _mm_andi_si128(A, h_mask)

H = _mm_shuffle_epi8(H, h_tbl)
H = _mm_srli_epi64(H, 4)

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Buffer-constant multiply in GF(24)

 Example: multiply 16 bytes A by 7 in GF(24)

22

Byte position
l_tbl

h_tbl
l_mask

h_mask

A:

L = _mm_and_si128(A, l_mask)
L = _mm_shuffle_epi8(L, l_tbl)

H = _mm_andi_si128(A, h_mask)

H = _mm_shuffle_epi8(H, h_tbl)
H = _mm_srli_epi64(H, 4)

R = _mm_xor_si128 (H, L)
XOR the two products, and you’re done!

6 instructions ➡
32 multiplications!

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

ab = (ahigh << 4)b ⊕ alowb

How about GF(28)?

 Split each symbol into two 4-bit pieces
 Use the distributive law of multiplication
 All operands and results are 8 bits

23

a = (ahigh << 4) ⊕ alow

Example: 0xe4 = 0xe0 ⊕ 0x04 0x85 × 0xe4 = 0x85 × 0xe0 ⊕ 0x85 × 0x
 Two different tables!

 Need to calculate h_tbl in a similar way to how
we calculated l_tbl

 Otherwise, code is identical to GF(24)!

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Does this work for GF(216)?

 We can still use the distributive law, but…
 Operands and results are 16 bits

 Tables can only handle 8 bits at a time!

24

ab = (a3 << 12)b ⊕ (a2 << 8)b ⊕ (a1 << 4)b ⊕ a0b

Table for high byte
of the product

Table for low byte
of the product

Use two tables for each subproduct

4 pieces in each 16-bit word, and 2 tables per piece = 8 total tables

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Mapping of words to memory matters

 Standard mapping of 16-bit words a-h to 128 bit
vector (each box is 4 bits)

 Requires 8 table lookups for 8 products

25

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Mapping of words to memory matters

 Alternate mapping: split each 16-bit word over
two 128-bit vectors

 Still requires 8 table lookups for 8 products, but
now we get 256 bits for our effort

26

Vector of high bytes Vector of low bytes

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

GF(216) mappings

 This is called the alternate mapping
Has all the properties needed for Reed-

Solomon coding
May be confusing: it’s harder to “read”

memory
 Conversions are simple and fast
Standard ➡ alternate: 7 SIMD instructions
Alternate ➡ standard: 2 SIMD instructions
But you don’t need to do this if you don’t

want to!

27

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Does this work for GF(232)?

 Again, we can use the distributive law, but…
 Operands and results are now 32 bits

 8 sub-products × 4 tables each ➡ 32 tables!

28

Table T3

The same alternate mapping trick can be used here, too.

Table T2 Table T1 Table T0

ab = (a7 << 28)b ⊕ (a6 << 24)b ⊕ (a5 << 20)b ⊕ (a4 << 16)b
 (a3 << 12)b ⊕ (a2 << 8)b ⊕ (a1 << 4)b ⊕ a0b

Use four tables for each subproduct

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Performance: overview

 3.4 GHz Intel Core i7-3770
 256 KB L2 cache, 8 MB L3 cache

 Running buffer-constant multiply on various buffer
sizes

 Lots of comparisons…

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

 3.4 GHz Intel Core i7-3770
 256 KB L2 cache, 8 MB L3 cache

 Running buffer-constant multiply on various buffer
sizes

 Lots of comparisons…

Performance: experiments

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

 3.4 GHz Intel Core i7-3770
 256 KB L2 cache, 8 MB L3 cache

 Running buffer-constant multiply on various buffer
sizes

 Lots of comparisons…

Performance: experiments

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

 Memcpy & XOR are as you’d think
 Anvin*2 is a technique for multiplying

128 bits by 2 in any Galois field in a
few SIMD instructions (from code in
the Linux kernel RAID6 driver)

Performance: baselines

 3.4 GHz Intel Core i7-3770
 256 KB L2 cache, 8 MB L3 cache

 Running buffer-constant multiply on various buffer
sizes

 Lots of comparisons…

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

 3.4 GHz Intel Core i7-3770
 256 KB L2 cache, 8 MB L3 cache

 Running buffer-constant multiply on various buffer
sizes

 Lots of comparisons…

 If your operations are fast enough, you
can see cache saturation
L2 and L3 caches saturate at

different points and speeds

Performance: cache saturation

Too big for cache!

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Performance: traditional

 Traditional techniques don’t come close to
cache line speeds
Rizzo, Jerasure, Onion Networks

34

NOTE: Both axes use log-scaling

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Performance: non-traditional

 Non-traditional techniques do better
Require amortization for w=8 and w=16
Not effective for w=32

 Still below cache-line speeds
35

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Performance: Intel SIMD

 Our techniques perform identically to Anvin*2 for
w=4,8,16: cache-limited

 Alternate mapping makes a significant difference
 w=16 and w=32 show some amortization effects

36

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Performance improvement

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

GF-Complete library now available

 Big open-source GF arithmetic library in C

 BSD license
 Please use it, and let us know when you do

38

SIMD instructions
Logarithm tables

Split tables Lazy tables
Standard tables

Composite fields
Anvin’s “by-two” method

Cauchy’s XOR conversion
Bit grouping

Euclid’s inverse determination

w = 4, 8, 16, 32, 64, 128

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Where did this work come from?

 2009: H. Peter Anvin publishes a code sequence for
doing fast Galois field arithmetic for RAID6*

 2010: I implement fast Galois field arithmetic for
Pure Storage

 2012: Jim Plank and I discuss writing a paper at a
conference in Asilomar

 2012–13: We work with Kevin Greenan and some
undergrads to write the library
Add some new optimizations (you’ll learn about)

39

*http://web.archive.org/web/20090807060018/http://www.kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Where is it going?

 Incorporating new optimizations for the latest Intel
instruction sets
 256-bit vectors
Carry-free multiply for large fields
Other optimizations

 Adding erasure code implementations
 Investigating optimizations for doing the codes

themselves
Example: calculate codes across or down?

 We’re open to suggestions!

40

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

This is a game-changer!

 When Galois field arithmetic runs at XOR speed,
it frees up code design
Rotated Reed-Solomon array codes
Pyramid/LRC codes (Microsoft)
PMDS codes (IBM)
SD codes
Regenerating codes

 Erasure code designers are no longer
handcuffed to XORs

41

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Conclusions

 GF-Complete is
Cool
Fast
Open-source
Ready to use!

42

2013 Storage Developer Conference.
© Ethan L. Miller & James S. Plank All Rights Reserved.

Questions?

43

http://bitbucket.org/ethanmiller/gf-complete

Thanks to my collaborators:
Jim Plank, Kevin Greenan, and an army of undergrads at UTK

	Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions
	Authors
	Erasure codes are everywhere
	Conventional wisdom (FAST 2009)
	Conventional wisdom
	Conventional wisdom says…
	Core takeaways
	What is a Galois field?
	How do storage systems use�Galois field arithmetic?
	How do we pick w?
	What operations do we need?
	Using multiplication and XOR to�generate a code symbol
	Performing fast multiplication
	Solution: use vector instructions
	Bitwise SIMD instructions
	Word-oriented instructions
	Killer instruction: shuffle
	Buffer-constant multiply in GF(24)
	Where does that table come from?
	Buffer-constant multiply in GF(24)
	Buffer-constant multiply in GF(24)
	Buffer-constant multiply in GF(24)
	How about GF(28)?
	Does this work for GF(216)?
	Mapping of words to memory matters
	Mapping of words to memory matters
	GF(216) mappings
	Does this work for GF(232)?
	Performance: overview
	Performance: experiments
	Performance: experiments
	Performance: baselines
	Performance: cache saturation
	Performance: traditional
	Performance: non-traditional
	Performance: Intel SIMD
	Performance improvement
	GF-Complete library now available
	Where did this work come from?
	Where is it going?
	This is a game-changer!
	Conclusions
	Questions?

