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RAID Systems 

Archival Systems 

Data 
Centers 

Clouds 

Erasure codes are everywhere 
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XOR-Only Codes 
Are Fast 

Reed Solomon 
Codes are Slow 

Conventional wisdom (FAST 2009) 

Why? 

Because the underlying 
Galois field multiplication 
is too slow! 
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Conventional wisdom 

 Inconvenient: Reed-Solomon codes are 
powerful, general and flexible 

 Led to a proliferation of XOR-based codes 

Stepped Combination Codes 
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Conventional wisdom says… 

 However, in recent years…. 
Eerily smug reports of doing Reed-Solomon 

coding at “cache line speeds” 
No need for messy XOR codes! 
But what’s the secret handshake? 

 In this talk, we reveal the secret handshake 
No prior experience with Galois field 

arithmetic necessary! 
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Core takeaways 

 Using Intel’s SSE3 SIMD instructions gets you 
Galois field arithmetic fast enough that 

performance is limited by L2/L3 cache 
 Factor of 2.7x to 12x faster than previous 

implementations 
All on a single general-purpose CPU core! 

 Open source library: GF-Complete 
Gives you the secret handshake in a neat 

package 
 Flexible BSD license 

7 
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What is a Galois field? 

 Galois field is also known as a finite field 
 Contains a finite set of elements 

 Field with k elements is called GF(k) 
Often, k is a power of 2: GF(2w) 

 Supports two operations: add & multiply 
All results must be elements in the field 
Additive inverse and multiplicative inverse 
Usual rules apply (associative, distributive, etc.) 
Add is done by XOR 
Multiplication is … more difficult 

 
 8 



2013 Storage Developer Conference. 
© Ethan L. Miller & James S. Plank   All Rights Reserved. 

If w = 8, this is a byte and this is a kilobyte 

How do storage systems use 
Galois field arithmetic? 
 Erasure codes are structured as linear combinations 

of w-bit data words in a Galois Field GF(2w) 
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Larger, more complex coding systems 
More expensive to implement 

How do we pick w? 

 w: the number of bits in each element 
Small w limits the width of each stripe 

w = 4 w = 8 w = 16 w = 32 w = 64 w = 128 

Microsoft 
Azure 

Most RAID systems 
(including Linux RAID-6) 

RSA’s 
HAIL 

Bigger w has (historically) been slower 
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What operations do we need? 

 Required operations are 
XOR two regions of memory together (addition) 
Multiply a region of memory by a constant in GF(2w) 
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Using multiplication and XOR to 
generate a code symbol 
 Requires n-1 XORs and n-1 multiplications 

Need to multiply each data symbol by a (usually 
different) constant 
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Performing fast multiplication 

13 

Common (non-trivial) operation: 
multiply a 1K (large) vector of words (bi) in GF(28) by a constant a 

Result should look like 1024 individual multiplications… 

= 

… but doing 1024 individual multiplications can be slow! 
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Solution: use vector instructions 

 Modern Intel processors support vector operations: 
Intel “Streaming SIMD” instructions 
 128 bits per vector 

256 for some instructions in newest CPUs 
Operations done on all elements in parallel 

Some instructions operate bitwise (e.g., XOR) 
Others operate on k-bit words (k=8, 16, 32, 64) 

 Other architectures support similar instructions 
ARM 
Power 



2013 Storage Developer Conference. 
© Ethan L. Miller & James S. Plank   All Rights Reserved. 

Bitwise SIMD instructions 

 Bitwise operations 
XOR: v = _mm_xor_si128 (a, b) 
AND: v = _mm_and_si128 (a, b) 

 Other bitwise operations also supported 

15 

a: 

v: 

b: 
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Word-oriented instructions 
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 Shift left (operates on 64-bit words): 
v = _mm_slli_epi64 (a, x) 

 “Load one” (put same value into all 8-bit elements): 
v = _mm_set1_epi8 (b) 

 Not a single instruction—compiler expands it 

v: 

a: 

v: 

v = _mm_slli_epi64 (a, 8) 
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 Shuffle instruction: v = _mm_shuffle_epi8 (a, x) 
 Performs 16 simultaneous table lookups using 

 a: 16 element table 
 b: 16 indices, each 4 bits long 

Killer instruction: shuffle 



2013 Storage Developer Conference. 
© Ethan L. Miller & James S. Plank   All Rights Reserved. 

Buffer-constant multiply in GF(24) 

 We can use a single lookup to multiply in GF(24) 
 Example: multiply 16 bytes A by 7 in GF(24) 

18 

Byte position 

l_tbl 

h_tbl 

l_mask 

h_mask 

A: 

Calculate l_tbl 
h_tbl = _mm_slli_epi64(l_tbl, 4) 
l_mask = _mm_set1_epi8(0xf) 
h_mask = _m_slli_epi64(l_mask, 4) 

Setup 
Since 5 × 7 = 6, 
the low order bits should be 6 

Since a × 7 = 3, 
the high order bits should be 3 
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Where does that table come from? 

 The multiplication table is calculated using 
slower arithmetic 
Not that slow… 

 Similar to calculating multiplication tables for 
base-10 arithmetic 
Done by repeated multiply-by-two and 

reduction 
 Details aren’t important for now: just treat the 

table like a lookup table 

19 
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Buffer-constant multiply in GF(24) 

 Example: multiply 16 bytes A by 7 in GF(24) 

20 

Byte position 
l_tbl 

h_tbl 
l_mask 

h_mask 

A: 

L = _mm_and_si128(A, l_mask) 

L = _mm_shuffle_epi8(L, l_tbl) 

Create indices from the low-order bits of each byte in the vector 

Perform the table lookup using a shuffle 
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Buffer-constant multiply in GF(24) 

 Example: multiply 16 bytes A by 7 in GF(24) 
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Byte position 
l_tbl 

h_tbl 
l_mask 

h_mask 

A: 

L = _mm_and_si128(A, l_mask) 
L = _mm_shuffle_epi8(L, l_tbl) 

Create indices from the high-order bits 

Perform the table lookup using a shuffle 

H = _mm_andi_si128(A, h_mask) 

H = _mm_shuffle_epi8(H, h_tbl) 
H = _mm_srli_epi64(H, 4) 
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Buffer-constant multiply in GF(24) 

 Example: multiply 16 bytes A by 7 in GF(24) 

22 

Byte position 
l_tbl 

h_tbl 
l_mask 

h_mask 

A: 

L = _mm_and_si128(A, l_mask) 
L = _mm_shuffle_epi8(L, l_tbl) 

H = _mm_andi_si128(A, h_mask) 

H = _mm_shuffle_epi8(H, h_tbl) 
H = _mm_srli_epi64(H, 4) 

R = _mm_xor_si128 (H, L) 
XOR the two products, and you’re done! 

6 instructions ➡ 
32 multiplications! 
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ab = (ahigh << 4)b ⊕ alowb 

How about GF(28)? 

 Split each symbol into two 4-bit pieces 
 Use the distributive law of multiplication 
 All operands and results are 8 bits 

23 

a = (ahigh << 4 ) ⊕ alow 

Example: 0xe4 = 0xe0 ⊕ 0x04 0x85 × 0xe4 = 0x85 × 0xe0 ⊕ 0x85 × 0x  
 Two different tables! 

 Need to calculate h_tbl in a similar way to how 
we calculated l_tbl 

 Otherwise, code is identical to GF(24)! 



2013 Storage Developer Conference. 
© Ethan L. Miller & James S. Plank   All Rights Reserved. 

Does this work for GF(216)? 

 We can still use the distributive law, but… 
 Operands and results are 16 bits 

 Tables can only handle 8 bits at a time! 

24 

ab = (a3 << 12 )b ⊕ (a2 << 8)b ⊕ (a1 << 4)b ⊕ a0b 

Table for high byte 
of the product 

Table for low byte 
of the product 

Use two tables for each subproduct 

4 pieces in each 16-bit word, and 2 tables per piece = 8 total tables 
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Mapping of words to memory matters 

 Standard mapping of 16-bit words a-h to 128 bit 
vector (each box is 4 bits) 
 

 Requires 8 table lookups for 8 products 

25 
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Mapping of words to memory matters 

 Alternate mapping: split each 16-bit word over 
two 128-bit vectors 
 
 

 Still requires 8 table lookups for 8 products, but 
now we get 256 bits for our effort 

26 

Vector of high bytes Vector of low bytes 
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GF(216) mappings 

 This is called the alternate mapping 
Has all the properties needed for Reed-

Solomon coding 
May be confusing: it’s harder to “read” 

memory 
 Conversions are simple and fast 
Standard ➡ alternate: 7 SIMD instructions 
Alternate ➡ standard: 2 SIMD instructions 
But you don’t need to do this if you don’t 

want to! 

27 
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Does this work for GF(232)? 

 Again, we can use the distributive law, but… 
 Operands and results are now 32 bits 

 8 sub-products × 4 tables each ➡ 32 tables! 

28 

Table T3 

The same alternate mapping trick can be used here, too. 

Table T2 Table T1 Table T0 

ab = (a7 << 28)b ⊕ (a6 << 24)b ⊕ (a5 << 20)b ⊕ (a4 << 16)b  
 (a3 << 12)b ⊕ (a2 << 8)b ⊕ (a1 << 4)b ⊕ a0b 

Use four tables for each subproduct 
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Performance: overview 

 3.4 GHz Intel Core i7-3770 
 256 KB L2 cache, 8 MB L3 cache 

 Running buffer-constant multiply on various buffer 
sizes 

 Lots of comparisons… 
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 3.4 GHz Intel Core i7-3770 
 256 KB L2 cache, 8 MB L3 cache 

 Running buffer-constant multiply on various buffer 
sizes 

 Lots of comparisons… 

Performance: experiments 
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 3.4 GHz Intel Core i7-3770 
 256 KB L2 cache, 8 MB L3 cache 

 Running buffer-constant multiply on various buffer 
sizes 

 Lots of comparisons… 

Performance: experiments 
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 Memcpy & XOR are as you’d think 
 Anvin*2 is a technique for multiplying 

128 bits by 2 in any Galois field in a 
few SIMD instructions (from code in 
the Linux kernel RAID6 driver) 

Performance: baselines 

 3.4 GHz Intel Core i7-3770 
 256 KB L2 cache, 8 MB L3 cache 

 Running buffer-constant multiply on various buffer 
sizes 

 Lots of comparisons… 
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 3.4 GHz Intel Core i7-3770 
 256 KB L2 cache, 8 MB L3 cache 

 Running buffer-constant multiply on various buffer 
sizes 

 Lots of comparisons… 

 If your operations are fast enough, you 
can see cache saturation 
L2 and L3 caches saturate at 

different points and speeds 

Performance: cache saturation 

Too big for cache! 
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Performance: traditional 

 Traditional techniques don’t come close to 
cache line speeds 
Rizzo, Jerasure, Onion Networks 

34 

NOTE: Both axes use log-scaling 
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Performance: non-traditional 

 Non-traditional techniques do better 
Require amortization for w=8 and w=16 
Not effective for w=32 

 Still below cache-line speeds 
35 
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Performance: Intel SIMD 

 Our techniques perform identically to Anvin*2 for 
w=4,8,16: cache-limited 

 Alternate mapping makes a significant difference 
 w=16 and w=32 show some amortization effects 

36 
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Performance improvement 
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GF-Complete library now available 

 Big open-source GF arithmetic library in C 
 
 
 
 
 
 

 BSD license 
 Please use it, and let us know when you do 

38 

SIMD instructions 
Logarithm tables 

Split tables Lazy tables 
Standard tables 

Composite fields 
Anvin’s “by-two” method 

Cauchy’s XOR conversion 
Bit grouping 

Euclid’s inverse determination 

w = 4, 8, 16, 32, 64, 128 
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Where did this work come from? 

 2009: H. Peter Anvin publishes a code sequence for 
doing fast Galois field arithmetic for RAID6* 

 2010: I implement fast Galois field arithmetic for 
Pure Storage 

 2012: Jim Plank and I discuss writing a paper at a 
conference in Asilomar 

 2012–13: We work with Kevin Greenan and some 
undergrads to write the library 
Add some new optimizations (you’ll learn about) 

39 

*http://web.archive.org/web/20090807060018/http://www.kernel.org/pub/linux/kernel/people/hpa/raid6.pdf 
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Where is it going? 

 Incorporating new optimizations for the latest Intel 
instruction sets 
 256-bit vectors 
Carry-free multiply for large fields 
Other optimizations 

 Adding erasure code implementations 
 Investigating optimizations for doing the codes 

themselves 
Example: calculate codes across or down? 

 We’re open to suggestions! 

40 
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This is a game-changer! 

 When Galois field arithmetic runs at XOR speed, 
it frees up code design 
Rotated Reed-Solomon array codes 
Pyramid/LRC codes (Microsoft) 
PMDS codes (IBM) 
SD codes 
Regenerating codes 

 Erasure code designers are no longer 
handcuffed to XORs 

41 
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Conclusions 

 GF-Complete is 
Cool 
Fast 
Open-source 
Ready to use! 

42 
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Questions? 

43 

http://bitbucket.org/ethanmiller/gf-complete 

Thanks to my collaborators: 
Jim Plank, Kevin Greenan, and an army of undergrads at UTK 
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