

Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions

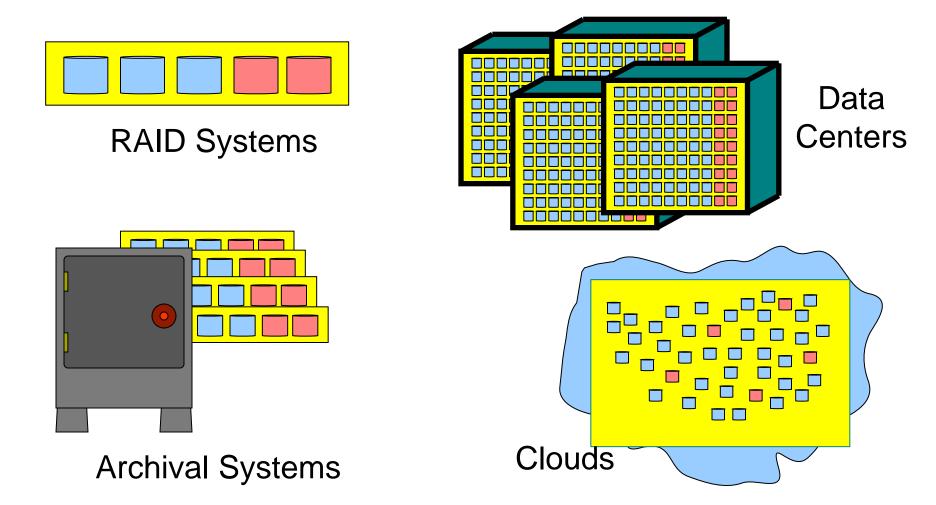
Ethan L. Miller Center for Research in Storage Systems University of California, Santa Cruz (and Pure Storage)

Authors

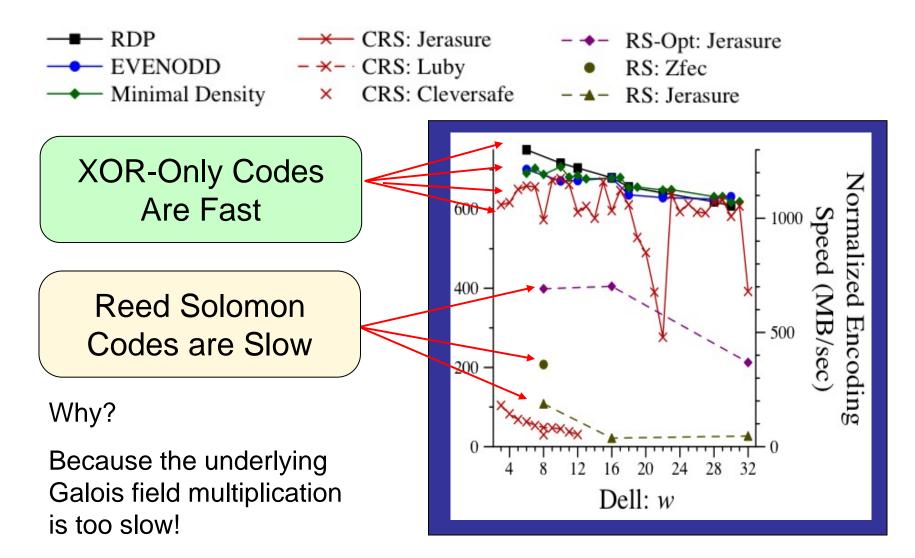
Jim Plank Univ. of Tennessee Kevin Greenan EMC/Data Domain (now at Box.com) Ethan Miller UC Santa Cruz (and Pure Storage)

These slides are derived from the presentation Jim gave at FAST 2013 (used with permission).

Erasure codes are everywhere



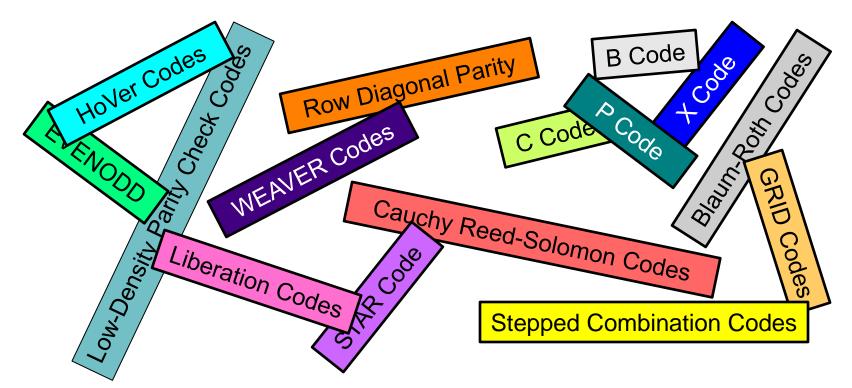
Conventional wisdom (FAST 2009)



Conventional wisdom

Inconvenient: Reed-Solomon codes are powerful, general and flexible

Led to a proliferation of XOR-based codes



□ However, in recent years....

- Eerily smug reports of doing Reed-Solomon coding at "cache line speeds"
- No need for messy XOR codes!
- But what's the secret handshake?
- □ In this talk, we reveal the secret handshake

No prior experience with Galois field arithmetic necessary!

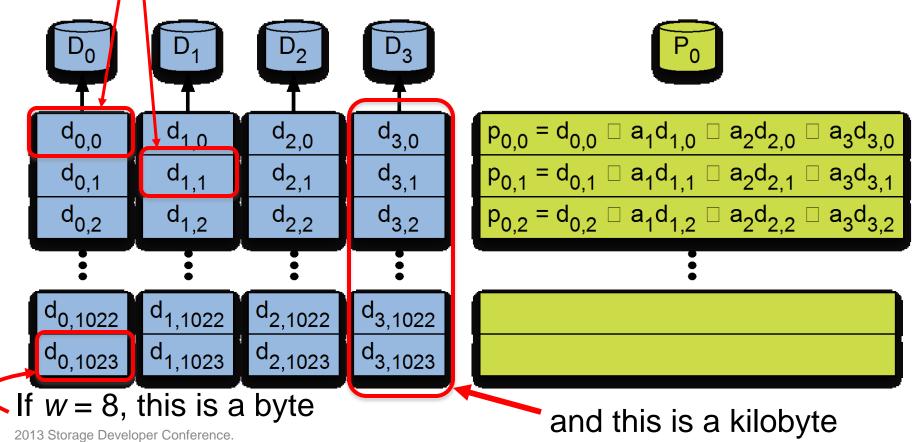
Using Intel's SSE3 SIMD instructions gets you

- Galois field arithmetic fast enough that performance is limited by L2/L3 cache
- Factor of <u>2.7x</u> to <u>12x</u> faster than previous implementations
- All on a single general-purpose CPU core!
- Open source library: GF-Complete
 - Gives you the secret handshake in a neat package
 - Flexible BSD license

- Galois field is also known as a finite field
- Contains a finite set of elements
 - **\Box** Field with *k* elements is called GF(*k*)
 - □ Often, k is a power of 2: GF(2^{*w*})
- Supports two operations: add & multiply
 - All results must be elements in the field
 - Additive inverse and multiplicative inverse
 - Usual rules apply (associative, distributive, etc.)
 - Add is done by XOR
 - Multiplication is ... more difficult

How do storage systems use Galois field arithmetic?

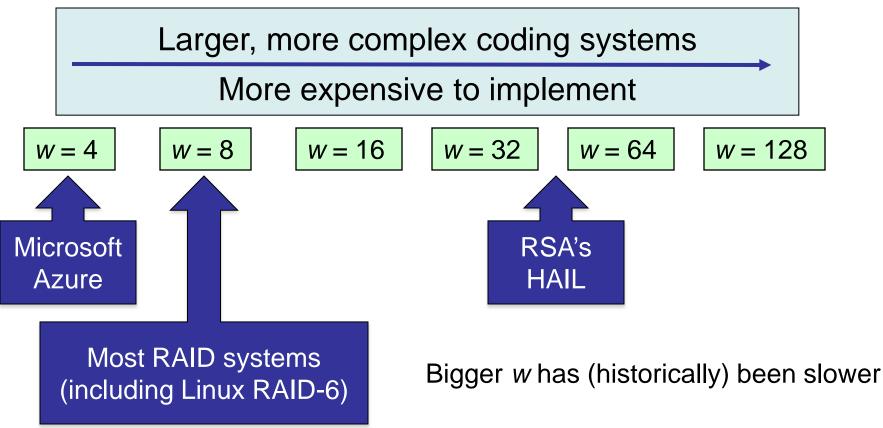
Erasure codes are structured as linear combinations of <u>w-bit data words</u> in a Galois Field GF(2^w)



© Ethan L. Miller & James S. Plank All Rights Reserved.

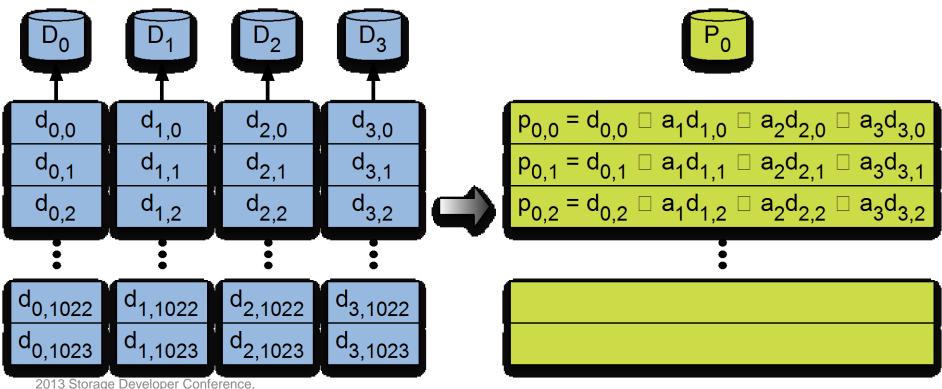
w: the number of bits in each element

Small w limits the width of each stripe



What operations do we need?

- Required operations are
 - XOR two regions of memory together (addition)
 - **–** Multiply a region of memory by a constant in $GF(2^w)$

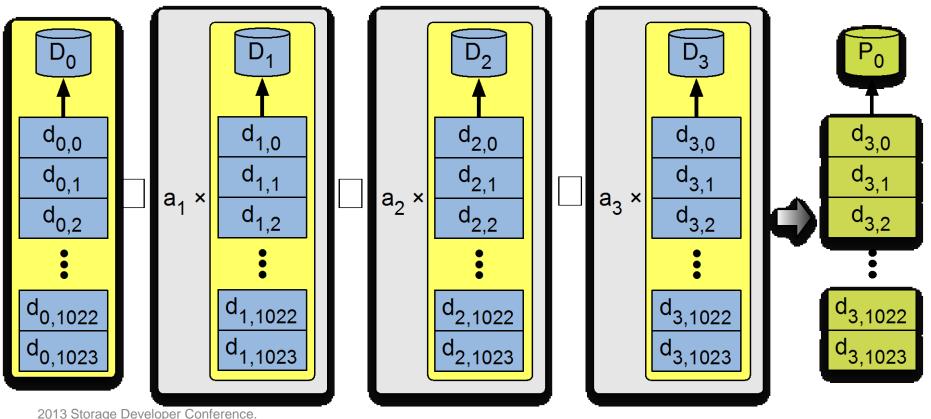


© Ethern L. Miller & Jorgen C. Dierk, All Die

© Ethan L. Miller & James S. Plank All Rights Reserved.

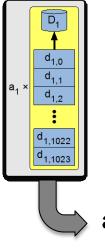
Using multiplication and XOR to generate a code symbol

Requires *n*-1 XORs and *n*-1 multiplications
 Need to multiply each data symbol by a (usually different) constant

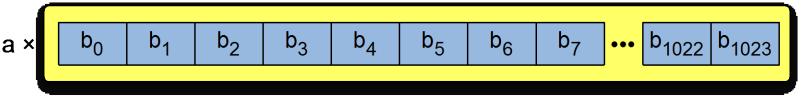


© Ethan L. Miller & James S. Plank All Rights Reserved.

Performing fast multiplication



Common (non-trivial) operation: multiply a 1K (large) vector of words (b_i) in GF(2⁸) by a constant *a*



Result should look like 1024 individual multiplications...

$$ab_0$$
 ab_1 ab_2 ab_3 ab_4 ab_5 ab_6 ab_7 \cdots ab_{1022} ab_{1023}

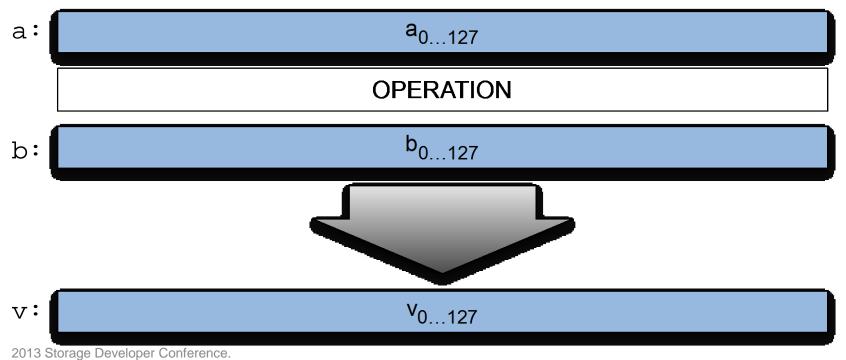
... but doing 1024 individual multiplications can be slow!

Modern Intel processors support vector operations: Intel "Streaming SIMD" instructions

- 128 bits per vector
 - □ 256 for some instructions in newest CPUs
- Operations done on all elements in parallel
 - □ Some instructions operate bitwise (*e.g.*, XOR)
 - □ Others operate on *k*-bit words (k=8, 16, 32, 64)
- Other architectures support similar instructions
 ARM
 Power

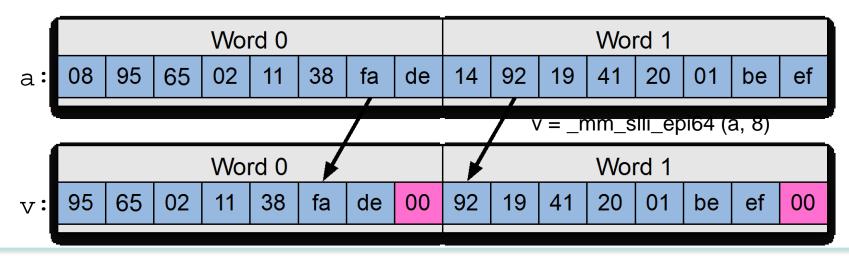
Bitwise operations XOR: v = _mm_xor_sillows AND: v = _mm_and_sillows (a, b)

Other bitwise operations also supported



© Ethan L. Miller & James S. Plank All Rights Reserved.

Shift left (operates on 64-bit words):
v = _mm_slli_epi64 (a, x)



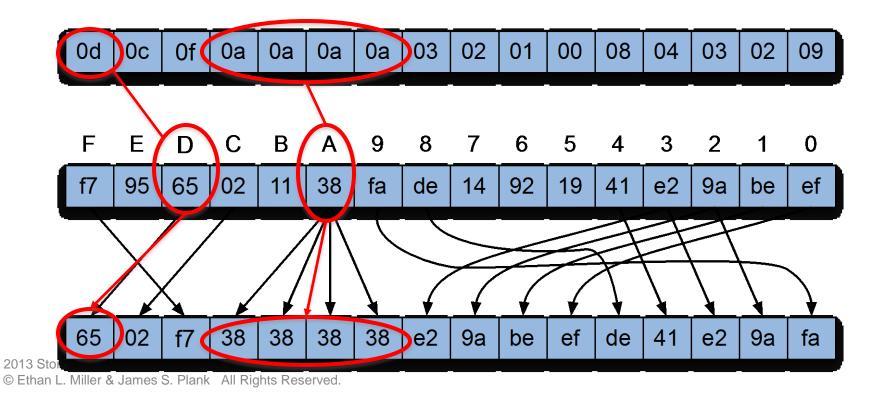
- "Load one" (put same value into all 8-bit elements):
 v = _mm_set1_epi8 (b)
- Not a single instruction—compiler expands it

2013 Storage Developer Conference.

© Ethan L. Miller & James S. Plank All Rights Reserved.

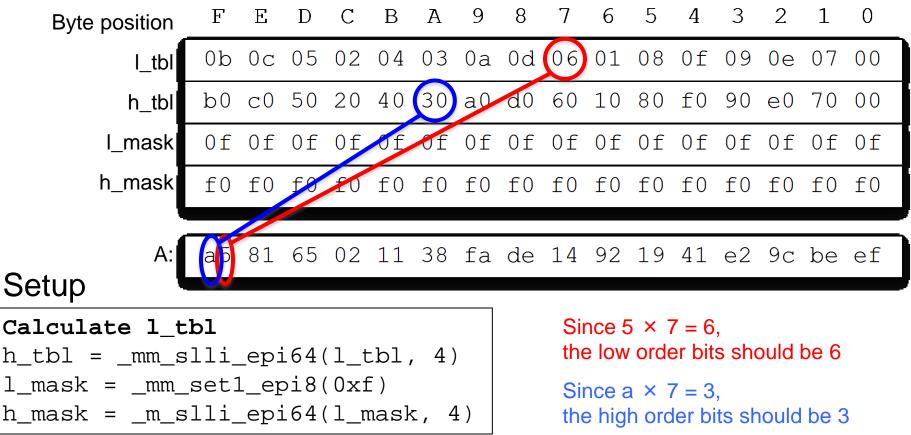
Killer instruction: shuffle

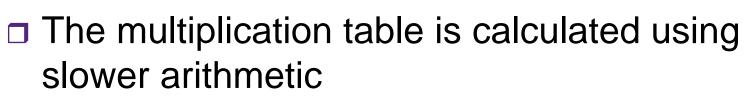
- □ Shuffle instruction: v = _mm_shuffle_epi8 (a, x)
- Performs 16 simultaneous table lookups using
 - a: 16 element table
 - b: 16 indices, each 4 bits long



Buffer-constant multiply in GF(2⁴)

We can use a single lookup to multiply in GF(2⁴)
 Example: multiply 16 bytes A by 7 in GF(2⁴)

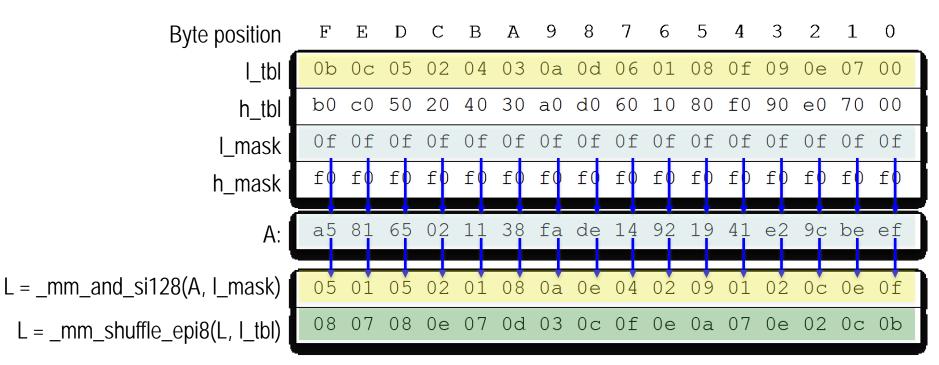




- □ Not that slow...
- Similar to calculating multiplication tables for base-10 arithmetic
 - Done by repeated multiply-by-two and reduction
- Details aren't important for now: just treat the table like a lookup table

YEAR

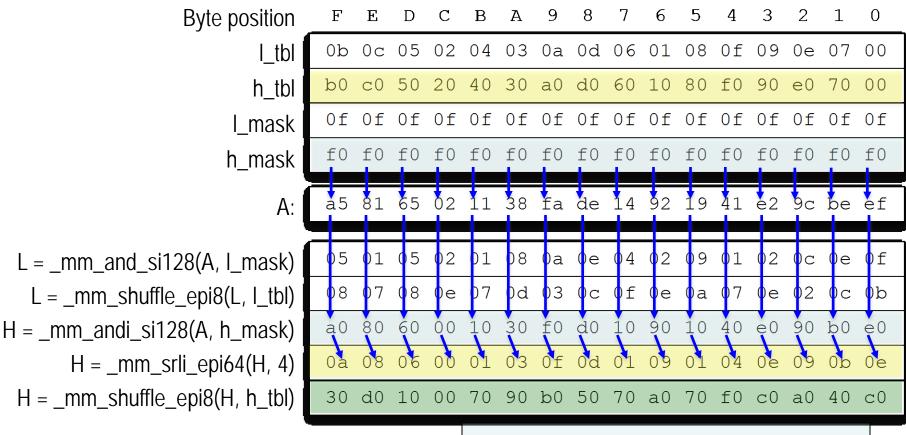
□ Example: multiply 16 bytes A by 7 in GF(2⁴)



Create indices from the low-order bits of each byte in the vector

Perform the table lookup using a shuffle

□ Example: multiply 16 bytes A by 7 in $GF(2^4)$



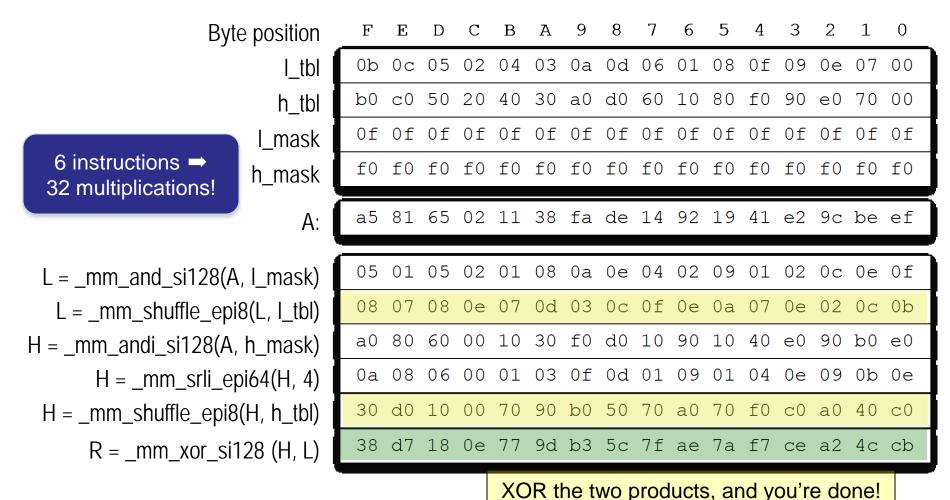
Create indices from the high-order bits

Perform the table lookup using a shuffle

2013 Storage Developer Conference.

© Ethan L. Miller & James S. Plank All Rights Reserved.

\square Example: multiply 16 bytes *A* by 7 in GF(2⁴)



2013 Storage Developer Conference.

© Ethan L. Miller & James S. Plank All Rights Reserved.

Split each symbol into two 4-bit pieces
 Use the distributive law of multiplication
 All operands and results are 8 bits

$$a = (a_{high} << 4) \oplus a_{low} \rightarrow ab = (a_{high} << 4)b \oplus a_{low}b$$

Two different tables!

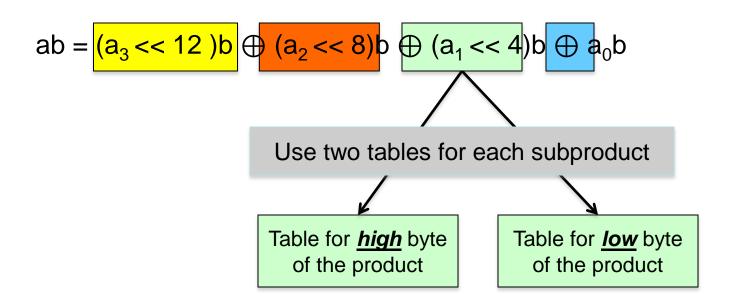
Example: $0xe4 = 0xe0 \oplus 0x04 \longrightarrow 0x85 \times 0xe4 = 0x85 \times 0xe0 \oplus 0x85 \times 0xe4$

Need to calculate h_tbl in a similar way to how we calculated l_tbl

□ Otherwise, code is identical to GF(2⁴)!

Does this work for GF(2¹⁶)?

We can still use the distributive law, but...
 Operands and results are 16 bits
 Tables can only handle 8 bits at a time!

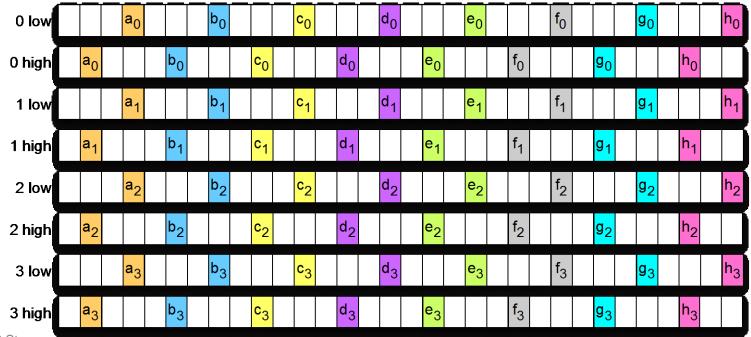


4 pieces in each 16-bit word, and 2 tables per piece = 8 total tables

Mapping of words to memory matters

Standard mapping of 16-bit words a-h to 128 bit vector (each box is 4 bits)

Requires 8 table lookups for 8 products



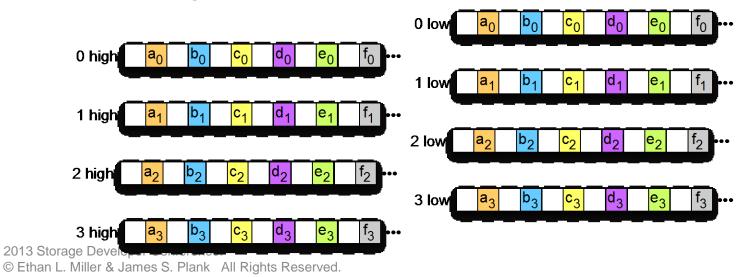
2013 Storage Developer Conference.

© Ethan L. Miller & James S. Plank All Rights Reserved.

Mapping of words to memory matters

Alternate mapping: split each 16-bit word over two 128-bit vectors

Still requires 8 table lookups for 8 products, but now we get <u>256</u> bits for our effort



□ This is called the *alternate mapping*

- Has all the properties needed for Reed-Solomon coding
- May be confusing: it's harder to "read" memory

Conversions are simple and fast

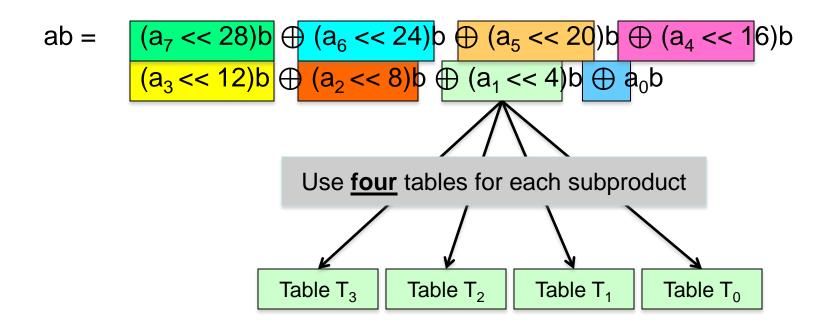
- □ Standard → alternate: 7 SIMD instructions
- □ Alternate → standard: 2 SIMD instructions

But you don't need to do this if you don't want to!

Does this work for GF(2³²)?

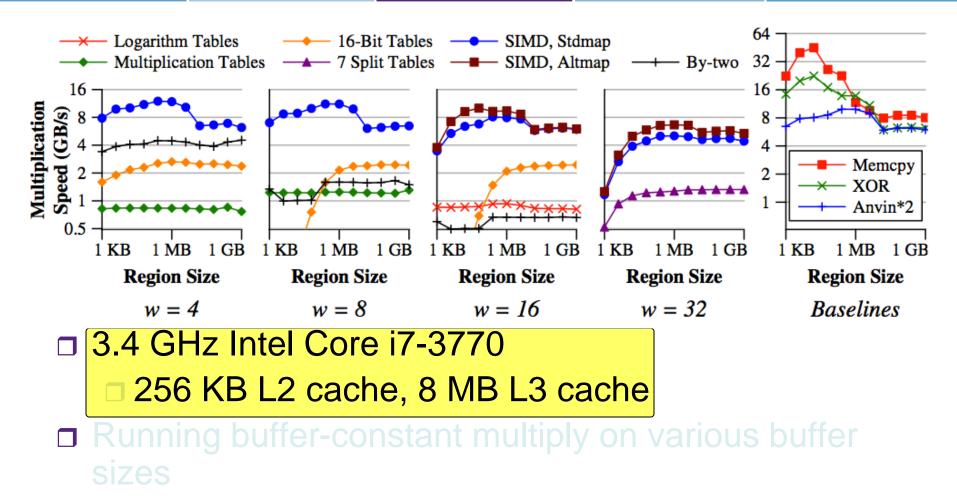
Again, we can use the distributive law, but...
 Operands and results are now 32 bits

8 sub-products × 4 tables each ⇒ 32 tables!



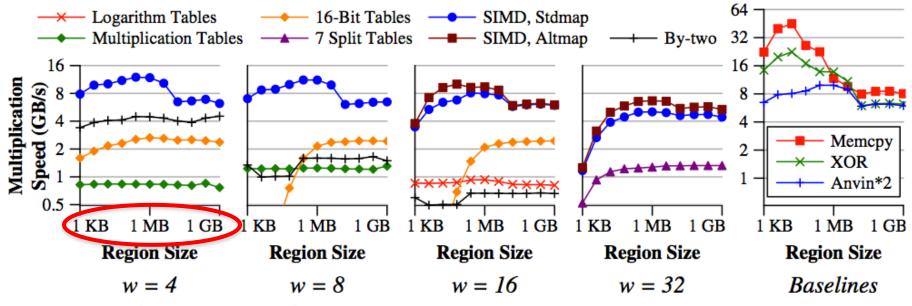
The same alternate mapping trick can be used here, too.

Performance: overview



□ Lots of comparisons...

Performance: experiments



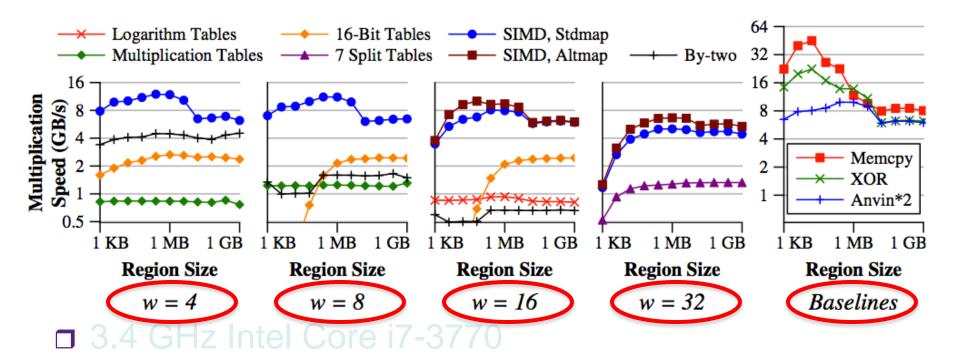
3.4 GHz Intel Core i7-3770

256 KB L2 cache, 8 MB L3 cache

Running buffer-constant multiply on various buffer sizes

Lots of comparisons...

Performance: experiments

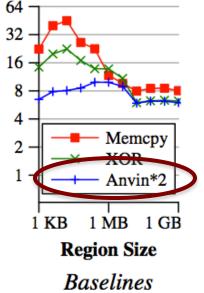


□ 256 KB L2 cache, 8 MB L3 cache

Running buffer-constant multiply on various buffer sizes

Lots of comparisons...

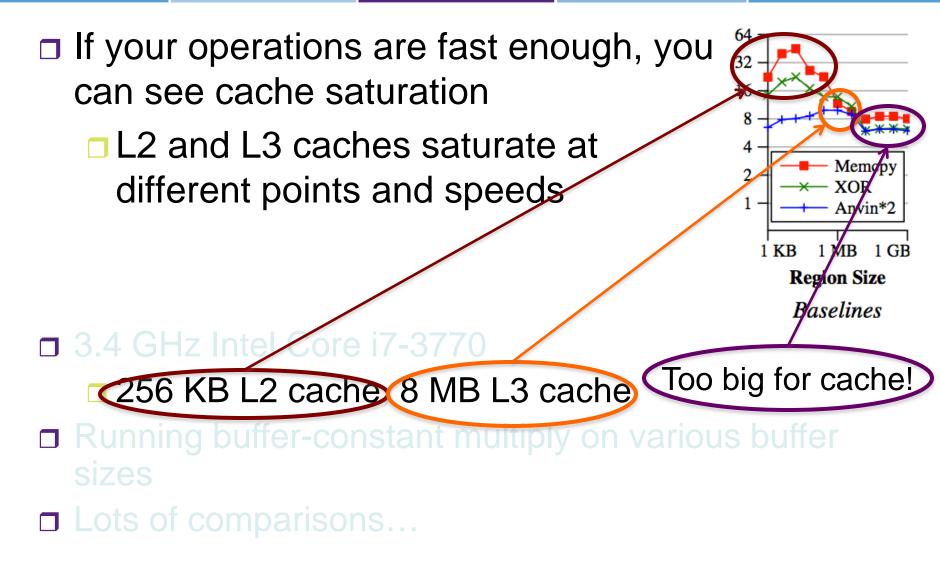
- Memcpy & XOR are as you'd think
- Anvin*2 is a technique for multiplying 128 bits by 2 in any Galois field in a few SIMD instructions (from code in the Linux kernel RAID6 driver)



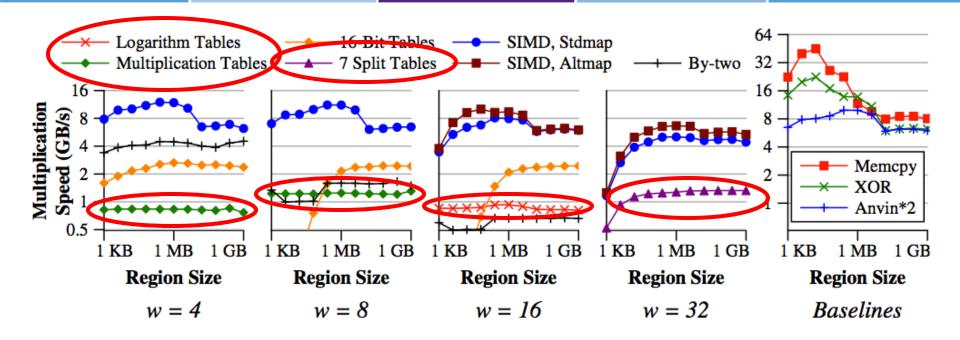
3.4 GHz Intel Core i7-3770 256 KB L2 cache, 8 MB L3 cache

- Running buffer-constant multiply on various buffer sizes
- □ Lots of comparisons...

Performance: cache saturation



Performance: traditional

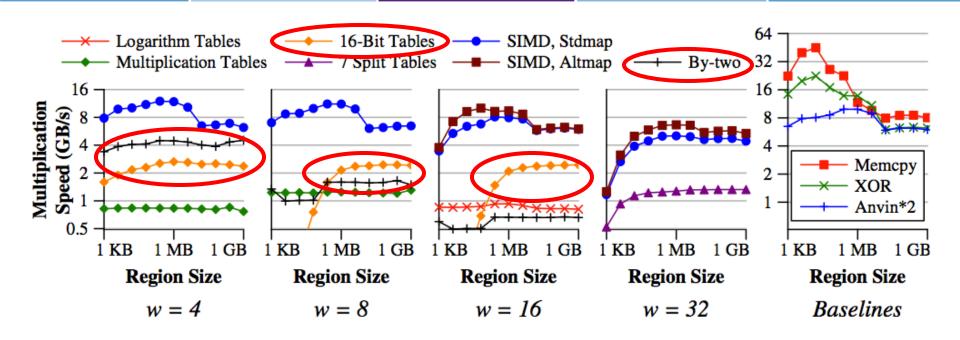


Traditional techniques don't come close to cache line speeds

Rizzo, Jerasure, Onion Networks

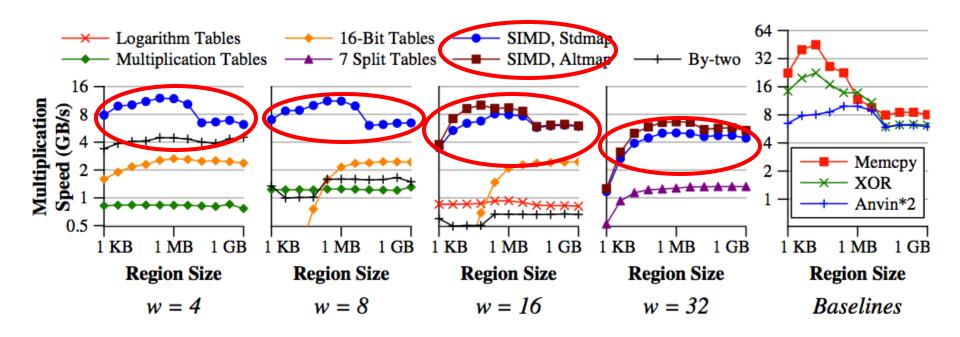
NOTE: Both axes use log-scaling

Performance: non-traditional



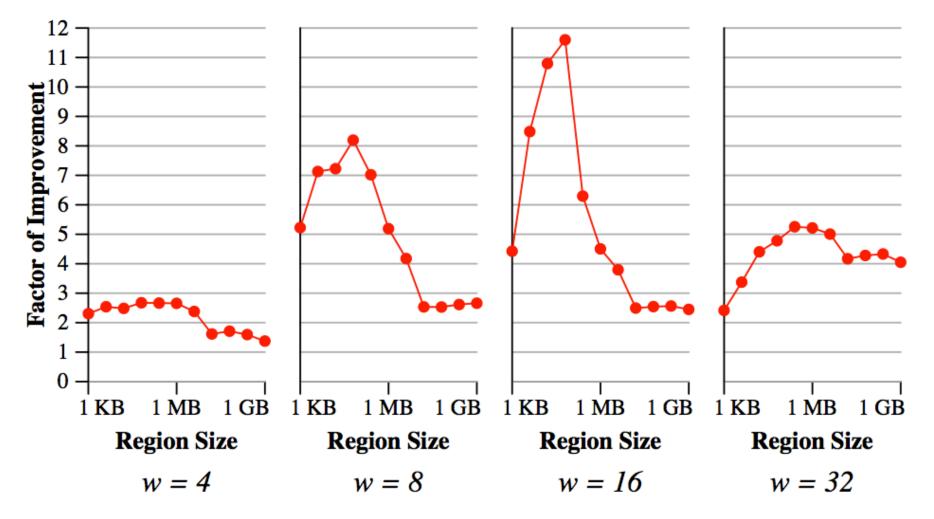
Non-traditional techniques do better
 Require amortization for w=8 and w=16
 Not effective for w=32
 Still below cache-line speeds

Performance: Intel SIMD



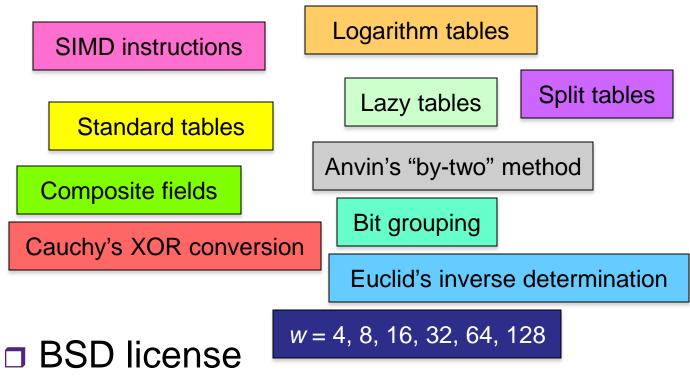
- Our techniques perform identically to Anvin*2 for w=4,8,16: cache-limited
- Alternate mapping makes a significant difference
 w=16 and w=32 show some amortization effects

Performance improvement



GF-Complete library now available

□ Big open-source GF arithmetic library in C



Please use it, and let us know when you do

- 2009: H. Peter Anvin publishes a code sequence for doing fast Galois field arithmetic for RAID6*
- 2010: I implement fast Galois field arithmetic for Pure Storage
- 2012: Jim Plank and I discuss writing a paper at a conference in Asilomar
- 2012–13: We work with Kevin Greenan and some undergrads to write the library

Add some new optimizations (you'll learn about)

*http://web.archive.org/web/20090807060018/http://www.kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

- Incorporating new optimizations for the latest Intel instruction sets
 - 256-bit vectors
 - Carry-free multiply for large fields
 - Other optimizations
- Adding erasure code implementations
 - Investigating optimizations for doing the codes themselves
 - Example: calculate codes across or down?
- □ We're open to suggestions!

When Galois field arithmetic runs at XOR speed, it frees up code design

- Rotated Reed-Solomon array codes
- Pyramid/LRC codes (Microsoft)
- PMDS codes (IBM)
- □ SD codes
- Regenerating codes
- Erasure code designers are no longer handcuffed to XORs

GF-Complete is

- Cool
- Fast
- Open-source
- Ready to use!

http://bitbucket.org/ethanmiller/gf-complete

Thanks to my collaborators:

Jim Plank, Kevin Greenan, and an army of undergrads at UTK