
SLAC PUB-3477 

STAN-LCS 005 

October 1984 

(M) 

A VARUBLE SPAN SMOOTHER* 

JEROME H. FRIEDMAN 
Stanford Linear Accelerator Center 

and 
Departrnent of Statistics, Stanford University 

Stanford, California 

1 

ABSTRACT 

A variable span smoother based on local linear fits is described. Local cross- 

validation is used to estimate the optimal span as a function of abscissa value. Com- 

putationally efficient algorithms making use of updating formulas are presented. 
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1. Introduction 

A smoother is a procedure applied to bivariate data (~1, ~1) . . . (zn, yn) that pro- 

duces a decomposition 

Yi =s(Zi)+riy i= l...n, (1) 

where 8 is a smooth function, often simply called the smooth, and the ri are residuals. 

It is possible to formally define smoothness, but for our purposes an intuitive notion will 

be sufficient. Smoothers are used to summarize the association between the predictor 

variable X and the response Y. It was pointed out by Cleveland (1979) and is a commonly 

held belief, that when looking at a scatterplot the eye is distracted by the extreme points 

in the point cloud, i.e., the fuzzy background, and tends to miss structure in the bulk 

of the data. Augmentation of the plot by a smooth is a possible remedy. 

More formally, one can consider a probabilistic framework in which the data are 

an i.i.d random sample from some joint distribution X,Y. One can define an optimal 

function j for predicting Y as a function of X that minimizes the expected squared 

difference between Y and f(X). That is, 

Ex,r IY - /(WI2 = mjn Ex,y [Y - S(X)1 (2) 

where g ranges over all functions. The function f(X) is also the transformation of X 

that is maximally correlated to Y. The solution function f is 

f(z)=E[Y 1X=2]. 

Smoothers can be regarded as procedures for estimating the conditional expectation of 

Y given X = z. In many cases, one imagines the joint distribution X,Y to be generated 

from the process 

Y=f(X)+t (3) 

where f(X) is a smooth function and e is an i.i.d random variable with zero expectation. 

Clearly, E [Y 1 X = Z] = f(z), so that the smooth s can be considered an estimate 

for f. 
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Recently, smoothers have found new uses in multiple regression algorithms (F’ried- 

man and Stuetzle, 1981, Breiman and Friedman, 1984, Hastie and Tibshirani, 1984, and 

Friedman, 1984). In these procedures, a smoother is used as a primitive operation re- 

peatedly applied to varying projections of the data; the quality of the smooth (2) is used 

as a figure-of-merit driving the algorithm. In such applications, the smoother must be 

both very flexible and rapidly computable. This paper describes such a smoother, and 

is, in fact, the one currently in use with all but one of these algorithms. 

2. Basic Concepts 

Assume the data are generated according to (3). W e are interested in procedures that 

can approximate f arbitrarily closely, given a dense enough sample. A straightforward 

estimator of a conditional expectation would be a conditional average 

it(Y 1 Xi) = ave(y 1 Xi) = yim 

Although this estimate is unbiased, it can have high variance. Also, this estimate need 

not approach f as the sample becomes denser. A more reasonable estimate is based on 

local averaging. Take s(Zi) to be the average of the responses y for those observations 

with predictor values z in a neighborhood Ni of Xi: 

A critical parameter to be chosen is the SPAN, the size of the neighborhood over which 

averaging takes place. It controls the smoothness of S. The bigger the span, the smoother 

s will be. To obtain consistency, i.e., to make sure that s gets arbitrarily close to f as the 

sampling rate increases, one must shrink the diameter of the neighborhood in such a way 

that the number of observations in the neighborhood still grows to infinity. Shrinking the 

neighborhood makes the systematic or bias component in the estimation error diminish, 

while increasing the neighborhood sample size guarantees that the variance component 

of the error goes to zero as well. 

3. A Simple Nonresistant Smoother 

With a local averaging smoother (4), th e size of the neighborhood is usually specified 

by the span, the number J of observations to be included in the averaging. We will 
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assume J to be odd and the abscissas xi to be in increasing order. The neighborhood 

can be chosen either symmetrically, containing J/2 observations to the left of Xi and 

the same number to the right, or it can be chosen to contain the J nearest neighbors 

of rip including xi. (We assume that J/2 is computed by integer division.) There are 

no general results on which of these two possibilities is better. The nearest neighbors 

approach generalizes to higher dimensions, but the choice of a symmetric neighborhood 

is computationally simpler in that exactly one point enters and one point leaves the 

neighborhood as one moves from observation i to observation i + 1. We will, in the 

following, use symmetric neighborhoods. Near the boundaries, it is, of course, not 

possible to keep N symmetric. The average (4) need not be recomputed every time. 

It can be updated, reducing the computation from nJ to n. Such updating can be 

done for all the smoothers we will consider, and is highly desirable because in typical 

applications J is 5% to 50% of n, and thus the savings are substantial. 

The simple moving average smoother has some serious shortcomings. One disturbing 

property is that it does not reproduce straight lines if the abscissa values are not equi- 

spaced. Another disturbing feature is bad behavior at the boundaries. If, for example, 

the slope of the underlying function f is positive at the right boundary, the estimate for 

observations close to the boundary will be biased downwards; if the slope is negative, the 

estimate is biased upwards. Both problems can be alleviated by fitting a least squares 

straight line to the observations in the neighborhood instead of fitting a constant (zero 

slope) and taking the value of the line at Xi as the smoothed value. (This keeps the bias 

of the curve estimate strictly proportional to d2f 1 dx2.) For the computation, again 

updating formulas can be used. The slope p and intercept CY of the least squares straight 

line through a set of points (xl, ~1). . . (XJ, ye) are given by 

with (5) 

ZJ = CZ~/J, 

BJ = C YjlJ, 
CJ = c(zj - zJ)(Yj - SJh 

VJ = C(Xj - Z J)2. 



I 

When we want to add an observation (2 J+I, y J+I ), we can make use of the following 

easily derived formulas: 

zJ+l = @J + zJ+l)/(J+ l), 

gJ+l = (JgJ + YJ+l)/tJ + l), 

cJ+l = CJ +y@J+l - zJ+lhJ+l - %J+lh 

vJ+l = VJ + ~bJ+l - aJ+d2. 

Analogous formulas can be used for removal of an observation from the set. 

4. Choice of Span 

:;: 

The most important choice in the use of a local averaging smoother is the choice of 

the span value. If the smoother is regarded as an estimator for f(x) (3), then the span 

controls the trade off between bias and variance of the estimate. We illustrate this for 

the case of a simple moving average smoother (4). In this case, the smoothed value at 

point xi is given by 
. 

S(XJ = f 
i+J 2 

d Yj- 
-. i-J/2 

If we assume that the errors ei are i.i.d. with expected value zero and variance u2, then 

the expected squared error at point Xi is 

i+ J/2 
e2(xi 1 J)=(f(Xi)-f iq,2 f(zj))2+fc2* (6) 

Increasing the span J will (if d2f/dx2 # 0) increase the first term, the bias component 

of the estimation error and decrease the second term, the variance component; decreasing 

the span will have the opposite effect. Stated more geometrically, a larger span makes 

the smooth appear less wiggly by more strongly damping high frequency components of 

the series (Xi, yi). 

One can estimate the optimal span value in a particular situation as that value that 

minimizes an estimate for 

e2( J) = J?Z~,~ [Y - s(X 1 J)12. 
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Using the average squared residual of the data from the smooth 

ii2(J) =; 2 [Yi - dxi I J)12 
i=l 

for this purpose is not appropriate since this is always minimized by the span value 

J = 1. A better estimate is provided by a method referred to as “cross-validation” (M. 

Stone, 1974) or “predictive sample reuse” (Geisser, 1975). Each observation is in turn 

deleted and the value of the smooth S(i)(Xi ] J) a Xi is calculated from the other n - 1 t 

observations. The cross-validated estimate of the integrated square error is 

afv (J) = k 2 
i=l 

[Yi - s(i)(xi I 5)12 * (7) 

Clearly, E [;‘&I equals th e expected squared error obtained by applying the procedure to 

a sample of n - 1 observations from the same distribution. The cross-validated estimate 

for the optimal span value is taken to be the value Jcv that minimizes (7), 

Model selection through cross-validation has been remarkably successful in a wide variety 

of situations (see M. Stone, 1974, Geisser, 1975, Craven and Wahba, 1979, C. Stone, 

1981). 

For the moving average smoothers discussed above, the cross-validated residuals 

r(i)( J, = Yi - s(i)(xi I J, 

are simply related to the ordinary residuals 

ri( J) = yi - s(Xi I J) 

owing to the fact that these smoothers are linear. A linear smoother is one for which 

the value of the smooth for a particular observation is a linear combination of the y 

values for all of the observations, i.e., 

s(xi 1 J) = 5 Hij( J)Yj. 
j=l 
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The linear combination Hij may be different for each observation i and depends on J. 
(Note that if Xj is not in the neighborhood of Xi, Hij( J) = 0.) For linear smoothers, 

the cross-validated residual is given by 

r(;)(J) = ri( J)/(l - Hid J))- 

For the local straight line smoother discussed above, it is straightforward to calculate 

I (Xi-ZJ)2 
Hii( J) = 7 + 

VJ 

with Z J and VJ given by (5). Therefore, 

E&(J)=f $[yi-s(xi I J)12/ l-$-(xi vJzJ) 
22 

. 
i- 1 

. 

For small to moderate changes in J, i& (J) changes very little so that it is adequate 

to evaluate it for several (3 to 5) discrete values of J in the range [0 < J < n]. The 

value of J corresponding to the smallest of these 2& (J) values is then used. This can 

be accomplished by maintaining several running average smoothers - one for each span 
_ value - in the pass over the data, thus keeping the computational cost linear in n. 

5. Variable Span Smoother 

So far, we have been assuming that the (number of counts in the) span remains 

constant over the whole range of predictor x values. This is not optimal if either the 

variance of the random component and/or the second derivative of the underlying func- 

tion f change over the range of predictor values. A local increase in error variance 

would call for an increase in span, whereas an increase in second derivative of f would 

require a decrease. It is, therefore, desirable to allow the span value to adapt to these 

changing conditions. This requires that the optimal span value be chosen locally rather 

than using a single global value. 

More formally, one can estimate an optimal span value for each X, as well as the 

corresponding optimal smooth value, by minimizing an estimate for 

e2(s, J) = EX,Y IY - 4x I JW)12 
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with respect to both functions s(x) and J(x). Th e resulting function s( 2) is then taken 

as our smooth. Re-expressing this criterion as 

e2(s, J) = ExJ%- KY - 4X I J(X))2 I Xl , 

we see that s(x) (and J(x)) can be found by minimizing 

e2(s, J I x) = I+ [(Y - s(x I J))2 I x] (8) 

with respect to s and J for each value of x. This will result in smaller e2 than con- 

straining J(x) to be constant. (This is not necessarily true for the estimates however. 

The decrease in bias associated with the variable span may be more than offset by the 

increased variance associated with estimating the additional function J(X).) 

. 

As with the constant span case, we begin by applying the local linear smoother 

several times with several discrete values of J in the range 0’ < J < n. In our 

implementation, we use three values J = O.OSn, 0.2n, and 0.5~ These are intended 

to reproduce the three main parts of the frequency spectrum of f(x) and are referred 

to as the tweeter, midrange, and woofer smoothers respectively. It is then necessary to 

estimate (8) at each data value Xi for each smoother. Simply using the cross-validated 

residual 

r(i)(J) = [yi - a( xi 1 J)] / 1 - f - (xi L: J)2) 

results in estimates with too much variance since each estimate is based on only one 

observation. Better estimates can be obtained by smoothing rfi,( J) against Xi (with the 

midrange smoother) and using the smoothed values as the estimates i2 (s, J I Xi). For 

stability reasons, it turns out to be a little better to smooth Ir(i)( J)l against Xi using 

the resulting estimates 2 (8, J I xi) to select the best span value: 

2(s, Jcv(si) I xi) = rnjntz(~, J I xi) (10) 

where J takes on the tweeter, midrange and woofer span values. The smoothed response 

value S*( Xi) at each Xi can then be taken as the smoother (tweeter, midrange, or woofer) 

value associated with the optimal span estimate 

s*(xi) = s(xi 1 Jcv(xi))* 
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When obtained in this manner, the optimal span (and curve) estimates can have 

unnecessarily high variance. This is because the estimated span value Jc,(xi) is not 

constrained to vary smoothly from one observation to the next (as ordered on Xi). It is 

possible that two (or more) smoothers can have very similar e values in a region of X, 

but different values of S. Due to variance in the estimates ;(s, J I Xi), different span 

(and curve) values can be choosen for neighboring Xi. Better optimal span (and resulting 

curve) estimates are obtained by smoothing the values Jcv(xi) (10) against Xi (again 

with the midrange smoother). The result is an estimated span for each observation with 

a value between the tweeter and woofer values. The resulting curve estimate is obtained 

by interpolating between the two (out of the three) smoothers with closest span values. 

It is often known (or suspected) that the underlying true curve f(x) (3) is very 

smooth. When this is, in fact, the case, more accurate curve estimates can be obtained 

by biasing the span selection procedure toward larger span values. Even when this is 

not the case, people often find smoother curves more visually pleasing and are willing to 

sacrifice a degree of accuracy for an estimate that is less rough. We, therefore, need a 

method for enhancing the low frequency (bass) component of the smoother output. For 

this purpose, we introduce a bass (tone) control. 

The idea is to increase the span value selected at each Xi in inverse proportion to 

the increase in predicted-absolute-error 2 associated with the span increase. Let Jcv(xi) 
be the estimated optimal span and Jw the woofer span. The span value for each Xi is 

taken to be 

J(xi) = Jc,(xi) + (Jw - J~v(xi))Rf”-” 

with (11) 

Here 0 5 Q 5 10 is a user specified parameter (tone control). The value a = 0 cor- 

responds to J(xi) N Jcv(si) (very little bass enhancement) while Q = 10 corresponds 

to J(xi) = Jw (maximum bass). Values of Q between these extremes cause different 

degrees of bass enhancement. For a given value of cr, the amount of bass increase is 

controlled by the ratio Rim The larger this ratio, the smaller the loss in increasing the 

span, and thus, the more it is increased. This tone control is applied before the spans 
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are smoothed. Note that the amount of bass enhancement is highly nonlinear in the 

parameter Q. Increases for small values of cr have much less effect than the same sized 

increases at larger cr values. Figure 1 shows the amount of bass enhancement as a func- 

tion of Ri for several values of Q. 

The resulting variable span smoother makes nine passes over the data: 

1. Primary data smooths with tweeter, midrange, and woofer spans. 

2. Smooth cross-validated absolute residuals (9) for each of the primary smooths 

with midrange span. 

3. Select best span as minimizing the output of Step 2 for each observation. (Apply 

low frequency bass enhancement if desired.) 

4. Smooth best span estimates with midrange span. 

5. Use smoothed span estimates to interpolate between primary smoother values. 

It is important to note that using cross-validated residuals as a basis for choosing 

. span value is highly sensitive to lack of independence among the ei (3) as ordered on 

x. If there is a large positive (negative) correlation among observations with similar x 

values, substantial under (over) estimates will result. In situations where a high degree 
_ 

of auto-correlation is suspected, these span selection procedures should be used with 

caution. 

6. An Example 

in this section, we present a simulated example intended to illustrate a situation 

where variable span is important. The data for this example consist of n = 200 pairs 

(Xi, Yi) with the Xi drawn randomly (i.i.d) from a uniform distribution in the interval 

[O,l]. The Yi are obtained from 

Yi = SitZ(274 1 - Xi)2) + XiCi (12) 

with the ei i.i.d standard normal. This example simulates a situation in which the 

curvature of f decreases and the variance of the random component increases with 

increasing x. In the first set of examples, no bass enhancement was used. Figure 2a shows 

a scatterplot of these data with the resulting variable span smooth S(X) superimposed. 
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Figure 2b shows the individual tweeter, midrange, and woofer smooths. Figure 2c shows 

the estimated optimal span J(x) = J&x) as a function of x. 

In the low noise high curvature region (x < 0.2), the tweeter span is selected. In 

the, high noise low curvature region x > 0.8, the span increases rapidly to the woofer 

value. In the region where both curvature and noise are moderate, the selected span 

averages just below the midrange value. The resulting composite smooth s(x) (Fig. 2a) 

is seen to be much better than any of the individual (tweeter, midrange, or woofer) 

smooths (Fig. 2b). 

. 

In order to see to what extent these results reflect general behavior, 1000 data sets 

were generated, all with identical set of xi, but each with a different random set Ci. The 

yi were constructed as in (12). Figure 2d shows the estimated optimal span function 

J(x) averaged over these 1000 runs. This J(X) re ec fl t s similar behavior to that of the 

first run, J(z). The span is seen to rise a bit more rapidly in the region of middle x 

values, but not to as high a value for large x. Figure 2e shows the average accuracy of 

the composite smooth, as well as each of the three primary smooths, as a function of X. 

The absolute error 

e(Xi) = lS(Xi) - sin [2741 - Xi)2]l 

was averaged over the 1000 runs for each xi. (The points for each smoother are connected 

by straight lines.) The composite variable span smooth is again seen to be much better 

than any of the three constant span primary smooths. It incurs none of the (very large) 

bias associated with the midrange and woofer spans for low x values, and its absolute 

error is about one-half that of the tweeter for the larger x values. Over the entire range 

of x values, the variable span smoother has performance comparable to the best of the 

primary smoothers at each x value. Only for the very largest x values (X > 0.7), the 

woofer smoother incurs about 2070 less error. Figure 2e also illustrates the problems 

associated with end effects. The average error for points near the very edges of the x 

interval is about twice that for close-by interior points. 

Figures 3a-3e show the corresponding results for data generated as above but with 

n = 100. The results for this smaller sample size reflect the same general behavior 

described above. The average absolute error is somewhat higher, especially in the high 

variance (large 5) region. 
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Figure 4a shows the same data as that of Figure 2a, but the superimposed smooth 

is the result of applying some bass enhancement, Q = 5 (11). The result is visually 

more pleasing in that it is less wiggly in the high variance region (x > 0.5). There 

appears to be an increase in bias, however, in that the curve seems to lie above the data 

near 2 = 0.1 and undershoot the data near x = 0.5. These suspicions are verified in 

Figure 4b where the average absolute error (over 1000 runs) of the composite variable 

span smoother, as well as the three primary smoothers, are shown. Although the error 

is reduced to that of the woofer for x > 0.6, it is dramatically increased in the high 

curvature regions 0.05 < x 5 0.20 and 0.35 5 x 5 0.60. Figure 4c shows the 

average span function J(x). Except for the very low noise high curvature region (Z < 

0.1) the selected span value is generally larger than the estimated optimal span J,,(x) 
(Figure 2d). 

This example was deliberately constructed to be difficult and to test the variable 

span aspect of the smoothing procedure. It shows that the method can readily adapt to 

changing circumstances (function curvature and/or error variance). Not all situations 

encountered in practice are this dramatic and in less dramatic situations the gain using 

variable span will be correspondingly less. In some settings, the additional variance 

encountered in estimating the m functions s(x) and J(x) can more than offset the de- 

crease in bias so that using an optimally estimated constant span will incur less absolute 

error. This becomes more likely for small sample sizes (n < 40). Even in these cases, 

however, the variable span smoother is usually almost as good as the best single span 

smoother, especially if some bass enhancement is employed. 

7. Discussion 

Cleveland (1979) suggested a smoother also based on local linear fits. It differs from 

the one described in this report mainly in three respects: 

- It does not automatically choose the span by cross-validation. 

- It does not use variable span. 

- In the fit of the local straight line determining the smooth S( Xi) for predictor value 

Xi, the observations are weighted according to their distance from Xi; observa- 

tions towards the extremes of the span receive lower weights than observations 
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with predictor values close to Xiv Asymptotic calculations suggest that asqign- 

ing unequal weights should reduce the error of the curve estimate, but there is 

no evidence that it makes a substantial difference for sample sizes occurring in 

practice. It does, however, produce a smoother looking estimate. 

Updating formulas cannot be used in this scheme, making it comparatively expen- 

sive in terms of computing. To reduce computation, Cleveland suggests evaluating the 

smooth only for every (e < < n) predictor value. The smoothing procedure described in -- 
this report was developed because the best span value is usually not known in advance, 

a variable span is often important, and because the use of updating formulas dramati- 

cally reduces computation. This is critical when the smoother is repeatedly applied as 

a primitive operation in more complicated algorithms. 

Another class of procedures suggested for smoothing are based on splines. A spline 

function s of order e with knots at al . . . ok is a function satisfying the following two 

conditions: 

- In each of the intervals (-00, zl), (~1, ~2) . . . (.3-l, 4, (zk, 4, s is a polyno- 
mial of degree e - 1; 

.- s has e - 2 continuous derivatives. 

One way to use spline functions in smoothing is to fit a spline function with knots 

%l . . . .~k to the data (xl, ~1). . . (x,, y,), either by least squares or by some resistant 

method. The degree of smoothness is determined by the number and position of the 

knots. A major disadvantage of this method is that k + 1 parameters must be chosen: 

the number and the positions of the knots. Usually some heuristic procedure is used 

to place the knots once k has been Ilxed (Jupp, 1978). This leaves the number of knots 

to be determined. This number plays the role of the span in determining the degree 

of smoothing. Unfortunately, the output of the smoother can depend on k in a very 

nonlinear way; it is easy to construct examples where the addition of one more knot 

substantially decreases the residual sum of squares, whereas further knots hardly make 

any difference. This makes k more difficult to choose than the span in a local averag- 

ing smoother. Furthermore, least squares fit of splines is substantially slower so that 

choosing k through cross-validation is usually too expensive. 

Another way is to use smoothing splines in the sense of Reinsch (1967). A smoothing 
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spline s of order 2e for smoothing parameter X is the function that minimizes 

C (yi - f(xi))2 + X / zn f@J2(x)dx 
21 

:. 
. 

among all functions f with e derivatives. The solution turns out to be a spline function 

of order 2e with knots ~1 . . .xn; the name is thus justified. The larger X is chosen, 

the smoother s becomes; thus, X here plays the role of the span. Computation of the 

spline for given X requires the solution of a banded n * n linear system. A drawback 

of the method, as described here, is that it is impossible to obtain an intuitive feeling 

for the choice of X in a given example. So, one usually ties not X, but the residual 

sum of squares around the smooth. The corresponding value of X then has to be found 

iteratively by repeatedly solving the minimization problem. This substantially increases 

the necessary amount of computation. Algorithms to determine the optimal X by cross- 

validation usually require computation of the singular value decomposition of an n * n 
matrix; they are expensive and infeasible for sample sizes larger than 200-300. An 

approximate method has recently been proposed (Silverman, 1984) however, that is 

much faster, thereby extending the use of smoothing splines to larger samples. 

To summarize, the local averaging smoother described in this report has two desir- 

able properties that set it apart from other smoothers: it is both very fast to compute 

and t,he value of the parameter that controls the amount of smoothing is automatically 

optimized locally (through cross-validation), allowing it to adapt to the response func- 

tion over the range of predictor values. Listing of a FORTRAN program implementing 

the procedure described herein is available from the author. 
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FIGURE CAPTIONS 

Figure 1: 

Figure 2a: 

Figure 2b: 

Figure 2c: 

Figure 2d: 

Figure 2e: 

Figure 3a: Scatterplot of data with composite smooth superimposed. 

Figure 3b: Individual tweeter, midrange and woofer smooths. 

i .: 
. Figure 3c: 

Figure 3d: 

Figure 3e: 

Figure 4a: 

Figure 4b: 

Figure 4c: 

Bass amplification factor as a function predictive-absolute-error 
ratio for various tone control settings. 

Scatterplot of data with composite smooth superimposed. 

Individual tweeter, midrange and woofer smooths. 

Selected span Jcv(x). 

Expected estimated optimal span zcV (2). 

Expected absolute error of three primary smooths and composite 
variable span smooth. 

Selected span J,,(x). 

Expected estimated optimal span Jc, (5). 

Expected absolute error of three primary smooths and composite 
variable span smooth. 

Scatterplot of data with composite smooth superimposed. 

Expected absolute error of three primary smooths and composite 
variable span smooth. 

Expected chosen span 7 (5). 
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