
1

RVSDG: An Intermediate Representation for Optimizing Compilers

NICO REISSMANN, Norwegian University of Science and Technology, Norway

JAN CHRISTIAN MEYER, Norwegian University of Science and Technology, Norway

HELGE BAHMANN, Auterion AG, Switzerland

MAGNUS SJÄLANDER, Norwegian University of Science and Technology and Uppsala University, Sweden

Intermediate Representations (IRs) are central to optimizing compilers as the way the program is represented may enhance or

limit analyses and transformations. Suitable IRs focus on exposing the most relevant information and establish invariants that

different compiler passes can rely on. While control-flow centric IRs appear to be a natural fit for imperative programming

languages, analyses required by compilers have increasingly shifted to understand data dependencies and work at multiple

abstraction layers at the same time. This is partially evidenced in recent developments such as the MLIR proposed by Google.

However, rigorous use of data flow centric IRs in general purpose compilers has not been evaluated for feasibility and usability

as previous works provide no practical implementations.

We present the Regionalized Value State Dependence Graph (RVSDG) IR for optimizing compilers. The RVSDG is a data

flow centric IR where nodes represent computations, edges represent computational dependencies, and regions capture the

hierarchical structure of programs. It represents programs in demand-dependence form, implicitly supports structured control

flow, and models entire programs within a single IR. We provide a complete specification of the RVSDG, construction and

destruction methods, as well as exemplify its utility by presenting Dead Node and Common Node Elimination optimizations.

We implemented a prototype compiler and evaluate it in terms of performance, code size, compilation time, and representational

overhead. Our results indicate that the RVSDG can serve as a competitive IR in optimizing compilers while reducing complexity.

CCS Concepts: • Software and its engineering→Compilers; •Theory of computation→ Functional constructs; Control

primitives.

Additional Key Words and Phrases: Regionalized Value State Dependence Graph, RVSDG, LLVM, Intermediate Representation

ACM Reference Format:
Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander. 2020. RVSDG: An Intermediate Representation

for Optimizing Compilers. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2020), 25 pages. https://doi.org/10.1145/

3391902

1 INTRODUCTION
Intermediate representations (IRs) are at the heart of every modern compiler. These data structures represent

programs throughout compilation, connect individual compiler stages, and provide abstractions to facilitate the

implementation of analyses, optimizations, and program transformations. A suitable IR highlights and exposes

Authors’ addresses: Nico Reissmann, nico.reissmann@ntnu.no, Norwegian University of Science and Technology, Trondheim, 7491, Norway;

Jan Christian Meyer, jan.christian.meyer@ntnu.no, Norwegian University of Science and Technology, Trondheim, 7491, Norway; Helge

Bahmann, hcb@chaoticmind.net, Auterion AG, Zürich, 8820, Switzerland; Magnus Själander, magnus.sjalander@ntnu.no, Norwegian

University of Science and Technology, Trondheim, 7491, and Uppsala University, Uppsala, 75236, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2020/1-ART1 $15.00

https://doi.org/10.1145/3391902

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3391902
https://doi.org/10.1145/3391902
https://doi.org/10.1145/3391902

1:2 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

program properties that are important to the transformations in a specific compiler stage. This reduces the

complexity of optimizations and simplifies their implementation.

Modern embedded systems have become increasingly parallel as system designers strive to improve their

computational power and energy efficiency. Increasing the number of cores in a system enables each core to be

operated at a lower clock frequency and supply voltage, improving overall energy efficiency while providing

sufficient system performance. Multi-core systems also reduce the total system cost by enabling the consolidation

of multiple functionalities onto a single chip. In order to take full advantage of these systems, optimizing compilers

need to expose a program’s available parallelism. This has led to an interest in developing more efficient program

representations [11, 23] and methodologies and frameworks [7] for exposing the necessary information.

Data flow centric IRs, such as the Value (State) Dependence Graph (V(S)DG) [19, 20, 24, 42, 43, 48], show

promises as a new class of IRs for optimizing compilers. These IRs are based on the observation that many

optimizations require data flow rather than control flow information, and shift the focus to explicitly expose data

instead of control flow. They represent programs in demand-dependence form, encode structured control flow, and

explicitly model data flow between operations. This raises the IR’s abstraction level, permits simple and powerful

implementations of data flow optimizations, and helps to expose the inherent parallelism in programs [20, 24, 43].

However, the shift in focus from explicit control flow to only structured and implicit control flow requires more

sophisticated construction and destruction methods [24, 42, 48]. In this context, Bahmann et al. [3] presents the

Regionalized Value State Dependence Graph (RVSDG) and conclusively addresses the problem of intra-procedural

control flow recovery for demand-dependence graphs. They show that the RVSDG’s restricted control flow

constructs do not limit the complexity of the recoverable control flow.

In this work, we are concerned with the aspects of unified program representation in the RVSDG.We present the

required RVSDG constructs, consider construction and destruction at the program level, and show feasibility and

practicality of this IR for optimizations by providing a practical compiler implementation. Specifically, wemake the

following contributions: i) A complete RVSDG specification, including intra- and inter-procedural constructs. ii) A

complete description of RVSDG construction and destruction, augmenting the previously proposed algorithms

with the construction and destruction of inter-procedural constructs, as well as the handling of intra-procedural

dependencies during construction. iii) A presentation of Common Node Elimination (CNE) and Dead Node

Elimination (DNE) optimizations to demonstrate the RVSDG’s utility. CNE permits the removal of redundant

computations by detecting congruent operations. DNE combines dead and unreachable code elimination, as well

as dead function removal. iv) A publicly available prototype compiler [35] that implements the discussed concepts.

It consumes and produces LLVM IR, and is to our knowledge the first optimizing compiler that uses a demand

dependence graph as IR. v) An evaluation of the RVSDG in terms of performance and size of the produced code,

as well as compile time and representational overhead.

Our results show that the RVSDG can serve as the IR in a compiler’s optimization stage, producing competitive

code even with a conservative modeling of programs using a single memory state. Even though this leaves

significant parallelization potential unused, it already yields satisfactory results compared to control-flow based

approaches. This work paves the way for further exploration of the RVSDG’s properties and their effect on

optimizations and analyses, as well as its usability in code generation for dataflow and parallel architectures.

2 MOTIVATION
Contemporary optimizing compilers are mainly based on variants of the control flow graph as imperative program

representations. These representations preserve sequential execution semantics of the input program, such as

access order of aliased references. The LLVM representation is based on the instruction set of a virtual CPU

with operation semantics resembling real CPUs. This choice of representation is somewhat at odds with the

requirements of code optimization analysis, which often focuses on data dependence instead. As Table 1 shows,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:3

most executed optimization passes are concerned with data flow analysis in the form of SSA construction and

interpretation, or in-memory data structures in the form of alias analysis and/or memory SSA.

We propose the data-dependence centric RVSDG as an alternative. While it requires more effort to construct

the RVSDG from imperative programs and recover control flows for code generation, we believe this cost is more

than recovered by benefits to analyses and optimizations. The following sections provide illustrative examples.

2.1 Simplified Compilation by Strong Representation Invariants

Table 1. Thirteen most invoked LLVM 7.0.1 passes at O3.

Optimization # Invocations

1. Alias Analysis (-aa) 19

2. Basic Alias Analysis (-basicaa) 18

3. Optimization Remark Emitter (-opt-remark-emitter) 15

4. Natural Loop Information (-loops) 14

5. Lazy Branch Probability Analysis (-lazy-branch-prob) 14

6. Lazy Block Frequency Analysis (-lazy-block-freq) 14

7. Dominator Tree Construction (-domtree) 13

8. Scalar Evolution Analysis (-scalar-evolution) 10

9. CFG Simplifier (-simplifycfg) 8

10. Redundant Instruction Combinator (-instcombine) 8

11. Natural Loop Canonicalization (-loop-simplify) 8

12. Loop-Closed SSA Form (-lcssa) 7

13. Loop-Closed SSA Form Verifier (-lcssa-verification) 7

Total 155

SSA Restoration 14

The Control Flow Graph (CFG) in Static Single Assign-

ment (SSA) form [12] is the dominant IR for optimiza-

tions in modern imperative language compilers [44].

Its nodes represent a list of totally ordered operations,

and its edges a program’s possible control flow paths,

permitting efficient control flow optimizations and

simple code generation. The CFG’s translation to SSA

form improves the efficiency of many data flow opti-

mizations [37, 47]. Figure 1a shows a function with a

simple loop and a conditional, and Figure 1b shows

the corresponding CFG in SSA form.

SSA form is not an intrinsic property of the CFG, but

a specialized variant that must be actively maintained.

Compiler passes such as jump threading or live-range splitting may perform transformations that cause the CFG

to no longer satisfy this form. As shown in Table 1, LLVM requires SSA restoration [8] in 14 different passes.

Moreover, CFG-based compilers must frequently (re-)discover and canonicalize loops, or establish various

invariants besides SSA form. Table 1 shows that six of the 13 most invoked passes in LLVM only perform such

tasks, and account for 21% of all invocations. This lack of invariants complicates implementation of optimizations

and analyses, increases engineering effort, prolongs compilation time, and leads to compiler bugs [25–27].

In contrast, the RVSDG is always in strict SSA form as edges connect each operand input to only one output.

It explicitly exposes program structures such as loops in a tree structure (Section 4), similarly to the Program

Structure Tree [21]. This makes SSA restoration and the other helper passes from Table 1 redundant. Figure 1c

shows the RVSDG corresponding to Figure 1a. It is an acyclic demand-dependence graph where nodes represent

simple operations or control flow constructs, and edges represent dependencies between computations (Section 4).

In Figure 1c, simple operations are colored yellow, conditionals are green, loops are red, and functions are blue.

2.2 Unified Representation of Different Levels of Program Structures
While the CFG can represent a single procedure, representation of programs as a whole requires additional data

structures such as call graphs. The RVSDG can represent a program as a unified data structure where a def-use

dependency of one function on another is modeled the same way as the def-use dependency of scalar quantities.

This makes it possible to apply the same transformation at multiple levels, and considerably reduce the number

of transformation passes and algorithms, e.g., by uniform treatment of unreachable code, dead function analysis,

and dead variable analysis (Section 6.2).

2.3 Strongly Normalized Representation
The RVSDG program representation is much more strongly normalized than control flow representations.

Programs differing only in the ordering of (independent) operations result in the same RVSDG representation,

while state edges ensure the correct evaluation order of stateful computations. Loops and conditionals always take

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

int
f(int a, int b, int c, int d)
{
 int li1, li2;
 int cse, epr;
 do {
 li1 = b+c;
 li2 = d-b;
 a = a*li1;
 int down = a%c;
 int dead = a+d;
 if(a > d) {
 int acopy = a;
 a = 3+down;
 cse = acopy<<b;
 } else {
 cse = a<<b;
 }
 epr = a<<b;
 } while(a > cse);
 return li2+epr;

}

(a) Code

Enter

Exit

a2:=phi(a5,a1)
b2:=phi(b2,b1)
c2:=phi(c2,c1)
d2:=phi(d2,d1)
li13:=phi(li14,li11)
li23:=phi(li24,li21)
epr2:=phi(epr3,epr1)
li14:=b2+c2
li24:=d2-b2
a3:=a2*li14
down:=a3%c2
dead:=a3+c2
branch a3>d2

a4:=3+down
cse2:=a3<<b2

cse1:=a3<<b2

epr3:=a5<<b2
branch a5>cse3

r:=li24+epr3
return r

a5:=phi(a3,a4)
cse3:=phi(cse1,cse2)

li11:=ud

epr1:=ud
li21:=ud

0 1

01

(b) CFG in SSA form

lambda f

theta

+

-

*

%

+

gamma
0 1

+
<<

3
<<

<<

>

>

ud ud ud

+

(c) Unoptimized RVSDG

lambda f

theta-

*

+

gamma
0 1

+

3

<<

<<

>

>

ud

+

%

(d) Optimized RVSDG

int
f(int* x, float* y, int k)
{
 *x = 5;
 *y = 6.0;
 int i=0;
 int f=1;
 int sum=0;
 int fac=1;
 do {
 sum += i;
 i++;
 } while(i < k);
 do {
 fac *= f;
 f++;
 } while(f < k);
 return fac+sum;

}

(e) Code

lambda f

Store

5 6.0

Store

theta

<

+

0

1

0

+

theta

<

+

1

1

1

*

merge

+ merge

(f) RVSDG of Code 1e

Fig. 1. RVSDG Examples

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:5

a single canonical form. These normalizations already simplify the implementation of transformations [20, 24, 48]

and eliminate the need for (repeated) compiler analysis passes such as loop detection.

Some common program optimizing transformations take a particular simple form in the RVSDG representation.

For example, Figure 1d shows the optimized RVSDG of Figure 1c, illustrating some of these optimizations: The

inputs to the “upper left” plus operation are easily recognized as loop invariant because their “loop entry ports”

connect directly to the corresponding “loop exit ports” (operations, ports, and edges highlighted in purple). A

simple push strategy allows to recursively identify data dependent operations as invariant and hoist them out

of the loop: The addition and subtraction computing li1 and li2 are moved out of the loop (theta) as their

operands, i.e., b, c, and d, are loop invariant (all three of them connect the entry of the loop to the exit). Similarly,

the shift operation common to both conditional branches is hoisted and combined, while the division operation

is moved into the conditional as it is only used in one alternative. In contrast to CFG-based compilers, all these

optimizations are performed directly on the unoptimized RVSDG of Figure 1c and can be performed in a single

regular pass. No additional data structures or helper passes are required. See also Section 6 for further details.

2.4 Exposing Independent Computations
CFGs implicitly represent a single global machine state by sequencing every operation that affects it. While

RVSDGs can model the same machine, they are not limited to this interpretation. RVSDGs can also model systems

consisting of multiple independent states. Figures 1e and 1f illustrate this concept with a function that contains

two non-aliasing store operations (targeting memory objects of incompatible types) and two independent loops.

In a CFG, both stores and loops are strictly ordered. Their mutual independence needs to be established by

explicit compiler passes (and may need to be re-established multiple times during the compilation process as

the number of alias analysis passes in Table 1 illustrate) and represented using auxiliary data structures and/or

annotations. In contrast, the RVSDG can encode such information directly in the graph, as shown in Figure 1f.

Disjoint memory regions (consisting of int-typed and float-typed memory objects) are modeled as disjoint

states, exposing the independence of affecting operations in the representation. RVSDG can in principle go even

further in representing a memory SSA form that is not formally any different from value SSA form, enabling the

same kind of optimizations to be applied to both.

2.5 Multiple Levels of Abstraction
The RVSDG can contain operational nodes at vastly different abstraction levels: operational nodes may closely

correspond to “source code” level constructs operating on data structures modeled as state, or may map to

individual machine instructions affecting machine and memory state. This allows compilers to be structured so

that they preserve considerably more source code semantics and utilize it at any later stage in the translation. The

contents of two distinct std::vector instances can e.g. never alias by language semantics, but this fact is lost in

present-day compilers due to early lowering into a machine-like representation that discards high-level semantics.

The RVSDG does not have such limitations (vector contents can be modeled as independent states from the

beginning), can optimize at multiple abstraction levels, and can preserve vital invariants across abstraction levels.

We expect this effect to become particularly pronounced the more input programs are formulated above the

abstraction level of the C language, e.g., functional languages or languages expressing contracts on affected state.

2.6 Summary
The RVSDG raises the IR abstraction level by enforcing desirable properties, such as SSA form, explicitly

encoding important structures, such as loops, and relaxing the strict order of the input program. This gives a

more normalized program representation, avoids many idiosyncrasies and artifacts of other IRs, and exposes

parallelism in programs.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

3 RELATED WORK
A cornucopia of IRs has been presented in the literature to better expose desirable program properties for

optimizations. For brevity, we restrict our discussion to the most prominent IRs, only highlighting their strengths

and weaknesses in comparison to the RVSDG, and refer the reader to Stanier et al. [44] for a greater survey.

3.1 Control (Data) Flow Graph
The Control Flow Graph (CFG) [1] exposes the intra-procedural control flow of a function. Its nodes represent

basic blocks, i.e., an ordered list of operations without branches or branch targets, and its edges represent the

possible control flow paths between these nodes. This explicit exposure of control flow simplifies certain analyses,

such as loop identification or irreducibility detection, and enables simple target code generation. The CFG’s

translation to SSA form [12], or one of its variants, such as gated SSA [46], thinned gated SSA [16], or future

gated SSA [14], additionally improves the efficiency of data flow optimizations [37, 47]. These properties along

with its simple construction from a language’s abstract syntax tree made the CFG in SSA form the predominant

IR for imperative language compilers [44], such as LLVM [22] and GCC [10]. However, the CFG has also been

criticized as an IR for optimizing compilers [15, 19, 20, 24, 48–50]:

(1) It is incapable of representing inter-procedural information. It requires additional IRs, e.g., the call graph,

to represent such information.

(2) It provides no structural information about a procedure’s body. Important structures, such as loops, and

their nesting needs to be constantly (re-)discovered for optimizations, as well as normalized to make them

amenable for transformations.

(3) It emphasizes control dependencies, even though many optimizations are based on the flow of data. This is

somewhat mitigated by translating it to SSA form or one of its variants, but in turn requires SSA restoration

passes [8] to ensure SSA invariants.

(4) It is an inherently sequential IR. The operations in basic blocks are listed in a sequential order, even if they

are not dependent on each other. Moreover, this sequentialization also exists for structures such as loops,

as two independent loops can only be represented in sequential order. Thus, the CFG is by design incapable

of explicitly encoding independent operations.

(5) It provides no means to encode additional dependencies other than control and true data dependencies.

Other information, such as loop-carried dependencies or alias information, must regularly be recomputed

and/or memoized in addition to the CFG.

The Control Data Flow Graph (CDFG) [30] tries to mitigate the sequential nature of the CFG by replacing the

sequence of operations in basic blocks with the Data Flow Graph (DFG) [13], an acyclic graph that represents

the flow of data between operations. This relaxes the strict ordering within a basic block, but does not expose

instruction level parallelism beyond basic block boundaries or between program structures.

3.2 Program Dependence Graph/Web
The Program Dependence Graph (PDG) [15, 17] combines control and data flow within a single representation. It

features data and control flow edges, as well as statement, predicate, and region nodes. Statement nodes represent

operations, predicate nodes represent conditional choices, and region nodes group nodes with the same control

dependency. If a region’s control dependencies are fulfilled, then its children can be executed in parallel. Horwitz

et al. [18] extended the PDG to model inter-procedural dependencies by incorporating procedures into the graph.

The PDG improves upon the CFG by employing region nodes to relax the overly restrictive sequence of

operations. This relaxed sequence combined with the unified representation of data and control dependencies

simplifies complex optimizations, such as code vectorization [4] or the extraction of thread-level parallelism [32,

39]. However, the unified data and control flow representation results in a large number of edge types, five in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:7

Ferrante et al. [15] and four in Horwitz et al. [17], which need to be maintained to ensure the graph’s invariants.

The PDG suffers from aliasing and side-effect problems, as it supports no clear distinction between data held in

registers and memory. This complicates or can even preclude its construction altogether [20]. Moreover, program

structure and SSA form still need to be discovered and maintained.

The Program Dependence Web (PDW) [31] extends the PDG and gated SSA [46] to provide a unified repre-

sentation for the interpretation of programs using control-, data-, or demand-driven execution models. This

simplifies the mapping of programs written in different paradigms, such as the imperative or functional paradigm,

to different architectures, such as Von-Neumann and dataflow architectures. In addition to the elements of the

PDG, the PDW adds ` nodes to manage initial and loop-carried values and [nodes to manage loop-exit values.

Campbell et al. [5] further refined the definition of the PDW by replacing ` nodes with 𝛽 nodes and eliminating

[nodes. As the PDW is based on the PDG, it suffers from the same aliasing and side-effect problems. The PDW’s

additional constructs further complicate graph maintenance and its construction is elaborate, requiring three

additional passes over a PDG, and is limited to programs with reducible control flow.

3.3 Value (State) Dependence Graph
The Value Dependence Graph (VDG) [48] abandons the explicit representation of control flow and only models

the flow of values using ports. Its nodes represent simple operations, the selection between values, or functions,

using recursive functions to model loops. The VDG is implicitly in SSA form and abandons the sequential order

of operations from the CFG, as each node is only dependent on its values. However, modeling only data flow

between stateful computations raises a significant problem in terms of preservation of program semantics, as the

"evaluation of the VDG may terminate even if the original program would not..." [48].

The Value State Dependence Graph (VSDG) [19, 20] addresses the VDG’s termination problem by introducing

state edges. These edges are used to model the sequential execution of stateful computations. In addition to nodes

for representing simple operations and selection, it introduces nodes to explicitly represent loops. Like the VDG,

the VSDG is implicitly in SSA form, and nodes are solely dependent on required operands, avoiding a sequential

order of operations. However, the VSDG supports no inter-procedural constructs, and its selection operator is

only capable of selecting between two values based on a predicate. This complicates destruction, as selection

nodes must be combined to express conditionals. Even worse, the VSDG represents all nodes as a flat graph, which

simplifies optimizations [20], but has a severe effect on evaluation semantics. Operations with side-effects are no

longer guarded by predicates, and care must be taken to avoid duplicated evaluation of these operations. In fact,

for graphs with stateful computations, lazy evaluation is the only safe strategy [24]. The restoration of a program

with an eager evaluation semantics complicates destruction immensely, and requires a detour over the PDG

to arrive at a unique CFG [24]. Zaidi et al. [49, 50] adapted the VSDG to spatial hardware and sidestepped this

problem by introducing a predication-based eager/dataflow semantics. The idea is to effectively enforce correct

evaluation of operations with side-effects by using predication. While this seems to circumvent the problem for

spatial hardware, it is unclear what the performance implications would be for conventional processors.

The RVSDG solves the VSDG’s eager evaluation problem by introducing regions. These regions enable the

modeling of control flow constructs as nested nodes, and the guarding of operations with side-effects. This avoids

any possibility of duplicated evaluation, and in turn simplifies RVSDG destruction. Moreover, nested nodes permit

the explicit encoding of a program’s hierarchical structure into the graph, further simplifying optimizations.

4 THE REGIONALIZED VALUE STATE DEPENDENCE GRAPH
A Regionalized Value State Dependence Graph (RVSDG) is an acyclic hierarchical multigraph consisting of nested

regions. A region R = (𝐴, 𝑁, 𝐸, 𝑅) represents a computation with argument tuple 𝐴, nodes 𝑁 , edges 𝐸, and result

tuple 𝑅, as illustrated in Figure 2a. A node can be either simple, i.e., it represents a primitive operation, or structural,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

n: node

e: edge

i: input
o: output

a: argument
r: result

4

0 1

n (simple)

a

i

o

o

region

n (structural)

r

e:(g,u)

g: origin
u: user

(a) Notation

*x += 4;
*y += 5;

5Load

+

Store

Load 4

Store

+

y sx

(b) Simple nodes

switch(x){
 case 0: y=1; break;
 case 1: y=x; break;
 default: y=2; break;

}

gamma

1 2

x

0 1 2

map ev0

ex0

(c) 𝛾-node

int r=1, n=1;
do {
 r=n*r;
 n++;
} while(n<5);

theta

< *

+ 5

1

1

lv0 lv1

(d) \ -node

Fig. 2. Notation and examples of simple, 𝛾- and \ -nodes. Fig. 2c annotates the 𝛾-node’s only entry and exit variable. Fig. 2d
annotates the \ -node’s two loop variables.

i.e., it contains regions. Each node 𝑛 ∈ 𝑁 has a tuple of inputs 𝐼 and outputs𝑂 . For simple nodes they correspond

to arguments and results of the represented operation, whereas for structural nodes they map to arguments and

results of contained regions. For nodes 𝑛
1
, 𝑛

2
∈ 𝑁 , an edge (𝑔,𝑢) ∈ 𝐸 connects either output 𝑔 ∈ 𝑂𝑛1

or argument

𝑔 ∈ 𝐴 to either input 𝑢 ∈ 𝐼𝑛2
or result 𝑢 ∈ 𝑅 of matching type. We refer to 𝑔 as the origin of an edge, and to 𝑢 as

the user of an edge. Every input or result is the user of exactly one edge, whereas outputs or arguments can be

the origins of multiple edges. All inputs or results of an origin are called its users. The corresponding node of an

origin is called its producer, whereas the corresponding node of a user is called consumer. Correspondingly, the

set of nodes of all users of an origin are referred to as its consumers. The types of inputs and outputs are either

values, representing arguments or results of computations, or states, used to impose an order on operations with

side-effects. A node’s signature is the types of its inputs and outputs, whereas a region’s signature is the types of

its arguments and results. Throughout this paper, we use 𝑛 , 𝑒 , 𝑖 , 𝑜 , 𝑎 , and 𝑟 with sub- and superscripts to denote

individual nodes, edges, inputs, outputs, arguments, and results, respectively. We use 𝑔 and 𝑢 to denote an edge’s

origin and user, respectively. An edge 𝑒 from origin 𝑔 to user 𝑢 is also denoted as 𝑒 : (𝑔,𝑢), or short (𝑔,𝑢).
The RVSDG can model programs at different abstraction levels. It can represent simple data-flow graphs such

as those used in machine learning frameworks, as well as machine level programs used for code generation in

compiler back-ends. This flexibility makes it possible to use the RVSDG for the entire compilation pipeline. In this

paper, we target an abstraction level similar to that of LLVM IR. This permits us to illustrate all of the RVSDG’s

features without involving architecture-specific details. The rest of this section defines the necessary constructs.

4.1 Intra-Procedural Nodes
This section defines the nodes for representing the intra-procedural aspects of programs. It explains simple nodes

and discusses the two structural nodes required for modeling intra-procedural program behavior:

(1) Gamma-Nodes model conditionals with symmetric split and joins, such as if-then-else statements.

(2) Theta-Nodes represent tail-controlled loops, i.e., do-while loops.

4.1.1 Simple nodes. Simple nodes model primitive operations such as addition, subtraction, load, and store. They

have an operator associated with them, and a node’s signature must correspond to the signature of its operator.

Simple nodes map their input value tuple to their output value tuple by evaluating their operator with the inputs

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:9

as arguments, and associating the results with their outputs. Figure 2b illustrates the use of simple nodes as well

as value and state edges. Solid lines represent value edges, whereas dashed red lines represent state edges. Nodes

have as many value inputs and outputs as their corresponding operations demand. The ordering of the load and

store nodes is preserved by sequentializing them with the help of state edges.

4.1.2 Gamma-Nodes. A 𝛾-node models a decision point and contains regions R0, ...,R𝑘 | 𝑘 > 0 of matching

signature. Its first input is a predicate, which determines the region under evaluation. It evaluates to an integer 𝑣

with 0 ≤ 𝑣 ≤ 𝑘 . The values of all other inputs are mapped to the corresponding arguments of region R𝑣 , R𝑣 is

evaluated, and the values of its results are mapped to the outputs of the 𝛾-node.

𝛾-nodes represent conditionals with symmetric control flow splits and joins, such as if-then-else or switch
statements without fall-throughs. Figure 2c shows a 𝛾-node. It contains three regions: one for each case, and

a default region. The map node takes the value of 𝑥 as input and maps it to zero, one, or two, determining the

region under evaluation. This region is evaluated and its result is mapped to the 𝛾-node’s output.

We define the entry variable of a 𝛾-node as a pair of an input and the arguments the input maps to during

evaluation, and the exit variable as a pair of an output and the results the output could receive its value from:

Definition 1. The pair 𝑒𝑣𝑙 = (𝑖
𝑙+1, 𝐴𝑙) is the 𝑙-th entry variable of a 𝛾-node with 𝑘 + 1 regions. It consists of the

𝑙 + 1-th input and tuple 𝐴𝑙 = {𝑎R0

𝑙
, ..., 𝑎

R𝑘

𝑙
} with the 𝑙-th argument from each region. We refer to the set of all entry

variables as 𝐸𝑉 .

Definition 2. The pair 𝑒𝑥𝑙 = (𝑅𝑙 , 𝑜𝑙) is the 𝑙-th exit variable of a 𝛾-node with 𝑘 + 1 regions. It consists of a tuple

𝑅𝑙 = {𝑟 R0

𝑙
, ..., 𝑟

R𝑘

𝑙
} of the 𝑙-th result from each region and the 𝑙-th output they would map to. We refer to the set of all

exit variables as 𝐸𝑋 .

4.1.3 Theta-Nodes. A \ -node models a tail-controlled loop. It contains one region that represents the loop body.

The length and signature of its input tuple equals that of its output, or the region’s argument tuple. The first

region result is a predicate. Its value determines the continuation of the loop. When a \ -node is evaluated, the

values of all its inputs are mapped to the corresponding region arguments and the body is evaluated. When the

predicate is true, all other results are mapped to the corresponding arguments for the next iteration. Otherwise,

the result values are mapped to the corresponding outputs. The loop body of an iteration is always fully evaluated

before the evaluation of the next iteration. This avoids “deadlock“ problems between computations of the loop

body and the predicate, and results in well-defined behavior for non-terminating loops that update external state.

\ -nodes permit the representation of do-while loops. In combination with 𝛾-nodes, it is possible to model

head-controlled loops, i.e., for and while loops. Thus, employing tail-controlled loops as basic loop construct

enables us to express more complex loops as a combination of basic constructs. This normalizes the representation

and reduces the complexity of optimizations as there exists only one construct for loops. Another benefit of

tail-controlled loops is that their body is guaranteed to execute at least once, enabling the unconditional hoisting

of invariant code with side-effects.

Figure 2d shows a \ -node with two loop variables, 𝑛 and 𝑟 , and an additional result for the predicate. When the

predicate evaluates to true, the results for 𝑛 and 𝑟 of the current iteration are mapped to the region arguments to

continue with the next iteration. When the predicate evaluates to false, the loop exits and the results are mapped

to the node’s outputs. We define a loop variable as a quadruple that represents a value routed through a \ -node:

Definition 3. The quadruple 𝑙𝑣𝑙 = (𝑖
𝑙
, 𝑎

𝑙
, 𝑟

𝑙+1, 𝑜𝑙) is the 𝑙-th loop variable of a \ -node. It consists of the 𝑙-th input

𝑖
𝑙
, argument 𝑎

𝑙
, and output 𝑜

𝑙
, and the 𝑙 + 1-th result of a \ -node. We refer to the set of all loop variables as 𝐿𝑉 .

4.2 Inter-Procedural Nodes
This section defines the four structural nodes used for modeling the inter-procedural aspects of programs:

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

lambda

gamma
0 1

>

omega

max

static int
max(int x, int y){
 return x > y ? x : y;
}

omega

lambda lambda

gamma

0 1

lambda f

apply apply

delta

aryconst

m a x \0 delta

cv0 cv1 cv2

(a) RVSDG with _- and 𝛿-nodes

lambda

gamma
0 1

-

*

1

apply

1

!=

1

phi
omega

f

unsigned int
f(unsigned int x){
 if (1!=x)
 return x*f(x-1);
 return 1;

}

omega

phi

lambda

gamma

0 1

rv0

(b) RVSDG with a 𝜙-node

Fig. 3. Usage of _-, 𝛿-, and 𝜙-nodes, and corresponding region trees. Fig. 3b annotates the 𝜙-node’s recursion variable.

(1) Lambda-Nodes are used for modeling procedures and functions.

(2) Delta-Nodes model global variables.

(3) Phi-Nodes represent mutually recursive environments, such as (mutually) recursive functions.

(4) Omega-Nodes represent translation units.

4.2.1 Lambda-Nodes. A _-node models a function and contains a single region representing a function’s body. It

features a tuple of inputs and a single output. The inputs refer to external variables the _-node depends on, and

the output represents the _-node itself. The region has a tuple of arguments comprised of a function’s external

dependencies and its arguments, and a tuple of results corresponding to a function’s results.

An 𝑎𝑝𝑝𝑙𝑦-node represents a function invocation. Its first input takes a _-node’s output as origin, and all other

inputs represent the function arguments. In the rest of the paper, we refer to an 𝑎𝑝𝑝𝑙𝑦-node’s first input as its

function input, and to all its other inputs as its argument inputs. Invocation maps the values of a _-node’s input

𝑘-tuple to the first 𝑘 arguments of the _-region, and the values of the function arguments of the 𝑎𝑝𝑝𝑙𝑦-node to

the rest of the arguments of the _-region. The function body is evaluated and the values of the _-region’s results

are mapped to the outputs of the 𝑎𝑝𝑝𝑙𝑦-node.

Figure 3a shows an RVSDG with two _-nodes. Function 𝑓 calls functions 𝑝𝑢𝑡𝑠 and 𝑚𝑎𝑥 with the help of

𝑎𝑝𝑝𝑙𝑦-nodes. The function𝑚𝑎𝑥 is part of the translation unit, while 𝑝𝑢𝑡𝑠 is external and must be imported (see

the paragraph about 𝜔-nodes for more details). We further define the context variable of a _-node. A context

variable provides the corresponding input and argument for a variable that a _-node depends on.

Definition 4. The pair 𝑐𝑣𝑙 = (𝑖
𝑙
, 𝑎

𝑙
) is a _-node’s 𝑙-th context variable. It consists of the 𝑙-th input and argument.

We refer to the set of all context variables as 𝐶𝑉 .

Figure 3a shows the three context variables of fuction 𝑓 annotated: one for function𝑚𝑎𝑥 , one for function

𝑝𝑢𝑡𝑠 , and one for the global variable representing the string argument to 𝑝𝑢𝑡𝑠 .

Definition 5. The _-node connected to a function input is the callee of an 𝑎𝑝𝑝𝑙𝑦-node, and an 𝑎𝑝𝑝𝑙𝑦-node is the

caller of a _-node. We refer to the set of all callers of a _-node as 𝐶𝐿𝐿.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:11

4.2.2 Delta-Nodes. A 𝛿-node models a global variable and contains a single region representing the constants’

value. It features a tuple of inputs and a single output. The inputs refer to the external variables the 𝛿-node

depends on, and the output represents the 𝛿-node itself. The region has a tuple of arguments representing a

global variable’s external dependencies and a single result corresponding to its right-hand side value.

Figure 3a shows an RVSGD with a 𝛿-node. Function 𝑝𝑢𝑡𝑠 takes a string as argument that is the right-hand side

of a global variable. Similarly to _-nodes, we define the context variable of a 𝛿-node. It provides the corresponding

input and argument for a variable a 𝛿-node depends on.

Definition 6. The pair 𝑐𝑣𝑙 = (𝑖
𝑙
, 𝑎

𝑙
) is a 𝛿-node’s 𝑙-th context variable. It consists of the 𝑙-th input and argument.

We refer to the set of all context variables as 𝐶𝑉 .

4.2.3 Phi-Nodes. A 𝜙-node models an environment with mutually recursive functions, and contains a single

region with _-nodes. Each single output of these _-nodes serves as origin to a single result in the 𝜙-region. A

𝜙-node’s outputs expose the individual functions to callers outside the 𝜙-region, and must therefore have the

same arity and signature as the results of the 𝜙-region. The first input of an 𝑎𝑝𝑝𝑙𝑦-node from outside the 𝜙-region

takes these outputs as origin to invoke one of the functions.

The inputs of a 𝜙-node refer to variables that the contained functions depend on and are mapped to corre-

sponding arguments in the 𝜙-region when a function is invoked. In addition, a 𝜙-region has arguments for each

contained function. An 𝑎𝑝𝑝𝑙𝑦-node from inside a 𝜙-region takes these as origin to its function input.

𝜙-nodes permit a program’s mutually recursive functions to be expressed in the RVSDG without the intro-

duction of cycles. Figure 3b shows an RVSDG with a 𝜙-node. The function 𝑓 calls itself, and therefore needs to

be in a 𝜙-node to preserve the RVSDG’s acyclicity. The region in the 𝜙-node has one input, representing the

declaration of 𝑓 , and one output, representing the definition of 𝑓 . The 𝜙-node has one output so that 𝑓 can be

called from outside the recursive environment.

We define context variables and recursion variables. Context variables provide corresponding inputs and

arguments for variables the _-nodes from within a 𝜙-region depend on. Recursion variables provide the argument

and output an 𝑎𝑝𝑝𝑙𝑦-node’s function input connects to.

Definition 7. The pair 𝑐𝑣𝑙 = (𝑖
𝑙
, 𝑎

𝑙
) is the 𝑙-th context variable of a 𝜙-node. It consists of the 𝑙-th input and

argument. We call the set of all context variables 𝐶𝑉 .

Definition 8. For a 𝜙-node with 𝑛 context variables, the triple 𝑟𝑣𝑙 = (𝑟
𝑙
, 𝑎

𝑙+𝑛, 𝑜𝑙) is the 𝑙-th recursion variable. It

consists of the 𝑙-th result and 𝑙 + 𝑛-th argument of the 𝜙-region as well as the 𝑙-th output of the 𝜙-node. We refer to

the set of all recursion variables as 𝑅𝑉 .

4.2.4 Omega-Nodes. An 𝜔-node models a translation unit. It is the top-level node of an RVSDG and has no

inputs or outputs. It contains exactly one region. This region’s arguments represent entities that are external to

the translation unit and therefore need to be imported. Its results mark all exported entities in the translation

unit. Figure 3a and 3b illustrate the usage of 𝜔-nodes. The 𝜔-region in Figure 3a has one argument, representing

the import of function puts, and one result, representing the export of function f. The 𝜔-region in Figure 3b has

only one export for function f.

4.3 Edges
Edges connect node outputs or region arguments to a node input or region result, and are either value typed, i.e.,

represent the flow of data between computations, or state typed, i.e., impose an ordering on operations with

side-effects. State edges are used to preserve the observational semantics of the input program by ordering its

side-effecting operations. Such operations include memory read and writes, as well as exceptions.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

In practice, a richer type system permits further distinction between different kind of values or states. For

example, different types for fixed- and floating-point values helps to distinguish between these arithmetics, and a

type for functions permits to correctly specify the output types of _-nodes and the function input of 𝑎𝑝𝑝𝑙𝑦-nodes.

5 CONSTRUCTION & DESTRUCTION
RVSDG construction and destruction generate an RVSDG from an input program and reestablish control flow for

code generation, respectively. We present both stages with an Inter-Procedure Graph (IPG) and a CFG as input

and output. The IPG is an extension of a call graph and captures all static dependencies between functions and

global variables, incorporating not only those originating from (direct) calls, but also those from other references

within a function. In the IPG, an edge from node 𝑛1 to node 𝑛2 exists, if the body of a function/global variable

corresponding to 𝑛1 references a function/global variable represented by 𝑛2. The utilization of an IPG and a CFG

permits a language-independent presentation of RVSDG construction and destruction.

5.1 Construction
RVSDG construction maps all constructs, concepts, and abstractions of an input language to the RVSDG. The

mapping is language-specific, and depends on the language’s features. Languages that permit unstructured

control flow, such as C or C++, cannot be mapped directly to the RVSDG and require a CFG as a stepping stone,

while languages such as Haskell permit direct construction [34]. In this section, we present RVSDG construction

for the former case as it encompasses the latter. Conceptually, RVSDG construction can be split in two phases:

(1) Inter-Procedural Translation (Inter-PT) translates functions, global variables, and inter-procedural depen-

dencies, creating _-, 𝛿-, and 𝜙-nodes.

(2) Intra-Procedural Translation (Intra-PT) translates intra-procedural control and data flow, creating a𝛿-/_-region

from a function’s/global variables’ body.

Inter-PT invokes Intra-PT for each function’s or global variables’ body, and both phases interact through

a common symbol table. The table maps function and CFG variables to RVSDG arguments or outputs, and is

updated with every creation of a node or region. We omit the updates from our algorithm descriptions for brevity.

5.1.1 Inter-Procedural Translation. Inter-PT converts all functions and global variables from the Inter-Procedure

Graph (IPG) of a translation unit to _-nodes and 𝛿-nodes, respectively. Figure 4b shows the IPG for the code in

Figure 4a. The code consists of four functions, with function sum performing two indirect calls. The corresponding

IPG consists of four nodes and three edges. All edges originate from node 𝑡𝑜𝑡 , as it is the only function that

explicitly references other functions, i.e. sum for a direct call, and f and g to pass as argument. No edge originates

from node sum, as the corresponding function does not explicitly reference any other functions, and the functions

for the indirect calls are provided as arguments.

The RVSDG puts two constraints on the translation from an IPG. Firstly, mutually recursive entities need

to be created within 𝜙-nodes to preserve the RVSDG’s acyclicity. Secondly, Inter-PT must respect the calling

dependencies of functions to ensure that _-nodes are created before 𝑎𝑝𝑝𝑙𝑦-nodes. In order to embed mutually

recursive entities into 𝜙-nodes, we need to identify the strongly connected components (SCCs). We consider an

SCC trivial, if it consists of a single node with no self-referencing edges. Otherwise, it is non-trivial. Moreover, a

trivial SCC might not have a CFG associated with it, and is therefore defined in another translation unit.

Algorithm I outlines the RVSDG construction from an IPG. It finds all SCCs and converts trivial SCCs to

individual 𝛿-/_-nodes, while the 𝛿-/_-nodes created from non-trivial SCCs are embedded in 𝜙-nodes. This sat-

isfies the first constraint. The second constraint is satisfied by processing SCCs in topological order, creating

_-nodes before their 𝑎𝑝𝑝𝑙𝑦-nodes. Identification and ordering of SCCs can be done in a single step with Tarjan’s

algorithm [45], which returns identified SCCs in reverse topological order. Figure 4c shows the RVSDG after

application of Algorithm I to the IPG in Figure 4b. In addition to a function’s arguments, Algorithm I adds a state

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:13

static int
f(){ return 3; }

static int
g(){ return 5; }

static int
sum(int(*x)(), int(*y)()) {
 return x() + y();

}

int
tot(int z) {
 return z + sum(f, g);

}

(a) Code

tot

sum

f

g

(b) IPG

omega

lambda tot

+

lambda f
3

lambda g

5

apply

lambda sum

+

apply

apply

(c) RVSDG

Fig. 4. Inter-Procedural Translation

Algorithm I: Inter-Procedural Translation
Compute all SCCs in an IPG and process them in topological order of the directed acyclic graph formed by the SCCs as follows:

(1) Trivial SCC:

(a) Function with CFG: Begin a _-node by adding all context variables, function arguments, and an additional state argument to

the _-region. Translate the CFG with Intra-PT as explained in Section 5.1.2, and finish the _-node by adding the function results

and the state result to the _-region. If a function is exported, add a result to the 𝜔-region and connect the _-node’s output to it.

(b) Global variable with CFG: Begin a 𝛿-node by adding all context variables to the 𝛿-region. Translate the CFG with Intra-PT

as eplained in Section 5.1.2, and finish the 𝛿-node by adding the result to the 𝛿-region. If a global variable is exported, add a result

to the 𝜔-region and connect the 𝛿-node’s output to it.

(c) Without CFG: Add a 𝜔-region argument for the external entity.

(2) Non-trivial SCC: Begin a 𝜙-node by adding all functions/global variables as well as context variables to the 𝜙-region. Translate

each entity in the SCC according to Trivial SCC without exporting them. Finish the 𝜙-node by adding all outputs as results to the

𝜙-region. If an entity is exported, add a result to the 𝜔-region and connect the 𝜙-node’s output to it.

argument and result to _-regions (the red dashed line in Figure 4c), to sequence stateful computations. Nodes

representing operations with side-effects consume this state and produce a new state for the next node.

5.1.2 Intra-Procedural Translation. The RVSDG puts several constraints on the translation of intra-procedural

control and data flow. Firstly, it requires that the control flow only consists of constructs that can be translated

to 𝛾- and \ -nodes, i.e. it can only consist of tail-controlled loops and conditionals with symmetric control flow

splits and joins. Secondly, the nesting and relation of these constructs to each other is required as the RVSDG is a

hierarchical representation. Thirdly, it is necessary to know the data dependencies of these structures in order to

construct 𝛾- and \ -nodes. While these constraints are beneficial for optimizations by substantially simplifying

their implementation, they render RVSDG construction non-trivial.

This section’s construction algorithm enables the translation of any data and control flow, irregardless of its

complexity, to the RVSDG. It creates a 𝛿-/_-region from a global variables’ or function’s body in four stages:

(1) Control Flow Restructuring (CFR) restructures a CFG to make it amenable to RVSDG construction.

(2) Structural Analysis constructs a control tree [29], discovering the CFG’s individual control flow regions.

(3) Demand Annotation annotates the discovered control flow regions with the variables that are demanded by

the instructions within these regions.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

(4) Control Tree Translation converts the annotated control tree into a 𝛿-/_-region.

CFR ensures the first requirement by translating a function’s control flow to a form that is amenable to RVSDG

construction. It restructures control flow to a form that enables the direct mapping of a CFG’s control flow regions

to the RVSDG’s 𝛾- and \ -nodes. CFR can be omitted for languages with limited control flow structures, such as

Haskell or Scheme. Structural analysis ensures the second requirement by constructing a control tree from the

CFG, exposing the control regions nesting and the relation to each other. Demand annotation fulfills the third

requirement by annotating the control tree’s nodes with their data dependencies. Finally, the annotated control

tree can be translated to a 𝛿-/_-region. The rest of this section covers the four stages in detail.

Control Flow Restructuring: CFR converts a CFG to a form that only contains tail-controlled loops and con-

ditionals with properly nested splits and joins. This stage is only necessary for languages that support more

complex control flow constructs, such as goto statements or short-circuit operators, but can be omitted for

languages with more limited control flow. CFR consists of two interlocked phases: loop restructuring and branch

restructuring. Loop restructuring transforms all loops to tail-controlled loops, while branch restructuring ensures

conditionals with symmetric control flow splits and joins. We omit an extensive discussion of CFR as it is detailed

in Bahmann et al. [3]. In contrast to node splitting approaches [51], CFR avoids the possibility of exponential

code blowup [6] by inserting additional predicates and branches instead of cloning nodes. Moreover, it does not

require a CFG in SSA form as this form is automatically established throughout construction.

Structural Analysis: After CFR, a restructured CFG consists of 3 single-entry/single-exit control flow regions:

- Linear Region: A linear subgraph where the entry node and all intermediate nodes have only one outgoing

edge, and the exit node as well as all intermediate nodes have only one incoming edge.

- Branch Region: An subgraph with the entry and exit node representing the control flow split and join,

respectively, and each branch alternative consisting of a single node.

- Loop Region: A single node where an edge originates and targets this node.

These control flow regions and their corresponding nesting structure can be exposed by performing an

interval [29] or structural [40] analysis. The analysis result is a control tree [29] with basic blocks as leaves and

abstract nodes representing the control flow regions as branches.

A linear region maps to a linear node in the control tree with the linear subgraph’s entry and exit node as the

node’s left and right most child, respectively. A branch region maps to two control tree nodes: a branch node

and a linear node. The branch node represents the region’s alternatives with the corresponding nodes as its

children. A linear node with three children can then be used to capture the rest of the branch region. Its first

child is the region’s entry node, the second child the branch node representing the alternatives, and the third

child the region’s exit node. Finally, a loop region maps to a loop node with the region’s single node as its child.

Figure 5a shows Euclid’s algorithm as a CFG, and Figure 5b shows the same CFG after CFR, which restructured

the head-controlled loop to a tail-controlled loop. The left of Figure 5c shows the corresponding control tree.

Demand Annotation: Structural analysis exposes necessary control flow regions for a direct translation to

RVSDG. A control flow tree’s branch and loop nodes map directly to 𝛾- and \ -nodes, and individual instructions

to simple nodes, but it is further necessary to expose the data dependencies of these nodes for efficient generation.

This is the task of demand annotation. It exposes these data dependencies by annotating control tree nodes

with the variables that are demanded by the instructions within control flow regions. It accomplishes this using a

read-write and demand-set annotation pass. The read-write pass annotates each control tree node with the set

of read and written variables of the corresponding control flow region, while the demand-set pass uses these

variables to annotate each control tree node with the set of demanded variables, i.e. variables that are necessary

to fulfill the dependencies of the instructions within a control flow region.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:15

Enter

Exit

return x

t:=y
y:=x%y
x:=t

branch c
01

c:=0!=y

(a) CFG

Enter

branch c

t:=y
y:=x%y
x:=t

r:=1 r:=0

branch r

return x

Exit

1 0

1 0

c:=0!=y

(b) Restructured CFG

Linear

Enter Loop return x Exit

t:=y
y:=x%y
x:=t

r:=1

branch r

Linear

Branch

Linear r:=0

B:

branch cc:=0!=y

A

B C D E

F

G H

I

J

K L

M N

Read-Write
Annotation

Demand-Set
Annotation

G:

M:
H:

N:
K:
L:
I:
J:
F:
C:
D:
E:
A:

Read Write

{} {}
{y} {c}
{c} {}
{x,y} {x,y,t}
{} {r}
{x,y} {r,x,y,t}
{} {r}

{r}{x,y}
{r} {}

{r,c}{x,y}
{x,y} {r,c}
{x} {}
{} {}

{r,c}{x,y}

E:
D:

J:
C:

L:
N:
M:
K:
I:
H:
G:
F:
B:
A:

{}
{x}
{x,y}
{x,y,r}
{x,y}
{x,y}
{x,y}
{x,y}
{x,y}
{x,y,c}
{x,y}
{x,y}
{x,y}
{x,y}

(c) Annotated control tree

gamma
0 1

%

!=

0

theta

1 0

yx

yx

(d) RVSDG

Fig. 5. Intra-Procedural Translation

Algorithm II: Demand Annotation

(1) Read-Write Annotation: Process the control tree nodes in post-order as follows:

- Basic Block: For each instruction 𝑖 processed bottom-up, the read set is 𝑅 = (𝑅 \𝑊𝑖) ∪ 𝑅𝑖 . The write set is𝑊 =
⋃
𝑊𝑖 .

- Linear Node: For each child 𝑐 processed right to left, the read set is 𝑅 = (𝑅 \𝑊𝑐) ∪ 𝑅𝑐 . The write set is𝑊 =
⋃
𝑊𝑐 .

- Branch Node: For each child 𝑐 , the read set and write set is 𝑅 =
⋃
𝑅𝑐 and𝑊 =

⋂
𝑊𝑐 , respectively.

- Loop Node: For the child 𝑐 , the read set and write set is 𝑅 = 𝑅𝑐 and𝑊 =𝑊𝑐 , respectively.

(2) Demand-Set Annotation: Process the control tree nodes with an empty demand set 𝐷𝑡 as follows:

- Basic Block: Set 𝐷 = 𝐷𝑡 = (𝐷𝑡 \𝑊) ∪ 𝑅 and continue processing.

- Linear Node: Recursively process the children right to left. Set 𝐷 = 𝐷𝑡 = (𝐷𝑡 \𝑊) ∪ 𝑅. and continue processing.

- Branch Node: Set 𝐷𝑡𝑚𝑝 = 𝐷𝑡 . Recursively process each child with a copy of 𝐷𝑡 . Set 𝐷 = 𝐷𝑡 = (𝐷𝑡𝑚𝑝 \𝑊) ∪𝑅 and continue

processing.

- Loop Node: Set 𝐷 = 𝐷𝑡 ∪ 𝑅. Recursively process the child with 𝐷𝑡 = 𝐷 and continue processing.

Algorithm II shows the details of the two passes. The read-write pass annotates each node with the read set 𝑅

and write set𝑊 . It processes the tree in post-order, building up the two sets from the innermost to the outermost

nested control flow region. For linear nodes, the children are processed from right to left, i.e. bottom-up in the

restructured CFG, to create the two sets. For branch nodes, a variable is only considered to be written, if it is in

the write set of all the node’s children, i.e. it was written in all alternatives of a conditional.

The demand-set pass uses the read set 𝑅 and write set𝑊 to construct a demand set 𝐷 for each node. The

algorithm is initialized with an empty set 𝐷𝑡 , which is used to keep track of demanded variables during traversal.

The demand-set pass traverses the tree such that it follows a bottom-up traversal of the restructured CFG, adding

and removing variables from 𝐷𝑡 during this traversal according to each node’s rules. For branch nodes, each child

is processed with a copy of 𝐷𝑡 , as the corresponding alternatives of the conditional are independent from another.

For loop nodes, the \ -node’s requirement that inputs and outputs must have the same signature necessitates that

𝑅 is added to 𝐷𝑡 before the loop’s body is processed. The right of Figure 5c shows the traversal order for the two

passes along with the read, write, and demand set for each node of the control tree on the left.

Control Tree Translation: After demand annotation, each node of the control tree is annotated with the set of

variables that its instructions require, i.e. their data dependencies. Finally, the control tree translation constructs

a 𝛿-/_-region from the control tree along with its annotated demand sets. Algorithm III shows the details.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

Algorithm III: Control Tree Translation
Process the control tree nodes as follows:

- Basic Block: Process the node’s operations top-down creating simple nodes in the RVSDG.

- Linear Node: Recursively process the node’s children top-down.

- Branch Node:Begin a 𝛾 -node with inputs according to the node’s demand set. Create subregions by recursively processing the

node’s children. Finish the 𝛾 -node with outputs according to its right sibling node’s demand set.

- Loop Node: Begin a \ -node with inputs according to the node’s demand set. Create its region by recursively processing its child.

Finish the \ -node with outputs according to its demand set.

The algorithm processes each node in the control tree creating 𝛾- and \ -nodes for all branch and loop nodes,

respectively. It uses the demand set of the right sibling for the outputs of gamma nodes, corresponding to the

branch region’s join node in the CFG. Figure 5d shows the resulting RVSDG nodes for the example.

5.1.3 Modeling Stateful Computations. Algorithm I adds an additional state argument and result to every _-node.

This state is used to sequentialize all stateful computations within a function. Nodes with side-effects consume

this state and produce a new state for consumption by the next node. This single state ensures that the order

of operations with side-effects in the RVSDG is according to the total order specified in the original program,

ensuring correct observable behavior. Specifically, the use of a single state for sequentializing stateful operations

ensures that the order of these operations in the RVSDG is equivalent to the order in the restructured CFG.

The utilization of a single state is, however, overly conservative, as different computations can have mutually

exclusive side-effects. For example, the side-effect of a non-terminating loop is unrelated to a non-dereferencable

load. These stateful computations can be modeled independently with the help of distinct states, as depicted

in Figure 1f. This results in the explicit exposure of more concurrent computations, as loops with no memory

operations would become independent from other loops with memory operations. Moreover, the possibility of

encoding independent states can also be leveraged by analyses and optimizations. For example, alias analysis can

directly encode independent memory operations into the RVSDG by introducing additional memory states. Pure

functions could be easily recognized and optimized, as they would contain no operations that use the added states

and therefore would only pass it through, i.e., the origin of the state result would be the _-region’s argument.

5.2 Destruction
The destruction stage reestablishes control flow by extracting an IPG from an RVSDG and generating CFGs from

individual _-regions. Inter-Procedural Control Flow Recovery (Inter-PCFR) creates an IPG from _-nodes, while

Intra-Procedural Control Flow Recovery (Intra-PCFR) extracts control flow from 𝛾- and \ -nodes and generates

basic blocks with corresponding operations for primitive nodes. A _-region without 𝛾- and \ -nodes trivially

transforms into a linear CFG, while _-regions with these nodes require construction of branches and/or loops.

This section discusses Inter-PCFR in detail. Detailed discussion of Intra-PCFR is found in Bahmann et al. [3].

5.2.1 Inter-Procedural Control Flow Recovery. Inter-PCFR recovers an IPG from an RVSDG. IPG nodes are created

for _-/𝛿-nodes as well as arguments of the 𝜔-region, while IPG edges are inserted to capture the dependencies

between these nodes. Algorithm IV starts by creating IPG nodes for all arguments of the𝜔-region, i.e., all external

functions. It continues by recursively traversing the region tree, creating IPG nodes for encountered _-/𝛿-nodes

and IPG edges for their dependencies. For the region of every _-/𝛿-node, it invokes Intra-PCFR to create a CFG.

5.2.2 Intra-Procedural Control Flow Recovery. Bahmann et al. [3] explored two different approaches for CFG

generation: Structured Control Flow Recovery (SCFR) and Predicative Control Flow Recovery (PCFR). SCFR uses the

region hierarchy within a _-region to recover control flow, while PCFR generates branches for predicate producers

and follows the predicate consumers to the eventual destination. Both schemes reestablish evaluation-equivalent

CFGs, but differ in the recoverable control flow. SCFR recovers only control flow that resembles the structural

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:17

Algorithm IV: Inter-Procedural Control Flow Recovery

(1) Create IPG nodes for all arguments of the 𝜔-region.

(2) Process all nodes of the 𝜔-region in topological order as follows:

- _-nodes: Create an IPG node, and mark it exported if the _-node’s output has a 𝜔-region’s result as user. For every context

variable 𝑐𝑣 = (𝑖 , 𝑎) , add an edge from the _-node’s IPG node to the corresponding IPG node of the producer of 𝑖 . Create a CFG

from the _-node’s subregion and attach it to the IPG node.

- 𝛿-nodes: Create an IPG node, and mark it exported if the 𝛿-node’s output has a 𝜔-region’s result as user. For every context

variable 𝑐𝑣 = (𝑖 , 𝑎) , add an edge from the 𝛿-node’s IPG node to the corresponding IPG node of the producer of 𝑖 . Create the

expression from the 𝛿-node’s subregion and attach it to the IPG node.

- 𝜙-nodes: For every argument of the 𝜙-region, create an IPG node for the corresponding 𝛿-/_-node and add IPG edges from this

node to the corresponding IPG nodes of the context variables. Translate the 𝛿-/_-nodes in the 𝜙-region according to the rules above.

Mark the IPG node as exported if the corresponding 𝜙-node’s output has a 𝜔-region’s result as user.

nodes in _-regions, i.e., control flow equivalent to if-then-else, switch, and do-while statements, while PCFR

can recover arbitrary complex control flow, i.e., control flow that is not restricted to RVSDG constructs. PCFR

reduces the number of static branches in the resulting control flow [3], but might also result in undesirable

control flow for certain architectures, such as graphic processing units [36]. For the sake of brevity, we omit a

discussion of SCFR and PCFR as the algorithms are extensively described by Bahmann et al. [3].

6 OPTIMIZATIONS
The properties of the RVSDG make it an appealing IR for optimizing compilers. Many optimizations can be

expressed as simple graph traversals, where subgraphs are rewritten, nodes are moved between regions, nodes

or edges are marked, or edges are diverted. In this section, we present Common and Dead Node Elimination

optimizations that exploit the RVSDG’s properties to unify traditionally distinct transformations.

6.1 Common Node Elimination
Common Node Elimination (CNE) permits the removal of redundant computations by detecting congruent nodes.

These nodes always produce the same results, enabling the redirection of their result edges to a single node. This

renders the other nodes dead, permitting Dead Node Elimination to remove them. CNE is similar to common

subexpression elimination and value numbering [2] in that it detects equivalent computations, but as the RVSDG

represents all computations uniformly as nodes, it can be extended to conditionals [38], loops, and functions.

We consider two simple nodes 𝑛1 and 𝑛2 congruent, or 𝑛1 � 𝑛2, if they represent the same computation,

have the same number of inputs, i.e.,

��𝐼𝑛1

�� = ��𝐼𝑛2

��
, and the inputs 𝑖𝑘𝑛1

and 𝑖𝑘𝑛2

are congruent, or 𝑖𝑘𝑛1

� 𝑖𝑘𝑛2

, for all

𝑘 = [0..
��𝐼𝑛1

��]. Two inputs are congruent if their respective origins 𝑔𝑘𝑛1

and 𝑔𝑘𝑛2

are congruent, i.e., 𝑔𝑘𝑛1

� 𝑔𝑘𝑛2

. By

definition, the origins of inputs are either outputs of simple or structural nodes, or arguments of regions. Origins

from simple nodes are only equivalent when their respective producers are computationally equivalent, whereas

for the other cases, it must be guaranteed that they always receive the same value.

The implementation of CNE consists of two phases: mark and divert. The mark phase identifies congruent

simple nodes, while the divert phase diverts all edges of their origins to a single node, rendering all other nodes

dead. Both phases of Algorithm V perform a simple top-down traversal, recursively processing subregions of

structural nodes annotating inputs, outputs, arguments, and results, as well as simple nodes as congruent. For

𝛾-nodes, the algorithm marks only computations within a single region as congruent and performs no analysis

between regions. In the case of \ -nodes, computations are only congruent when they are congruent before and

after the loop execution, i.e., the inputs and results of two loop variables must be congruent. Figure 6b shows the

RVSDG for the code in Figure 6a, and Figure 6c the RVSDG after CNE. Two of the four multiplications take the

same inputs and therefore are congruent to each other, resulting in the redirection of their result edges.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

Algorithm V: Common Node Elimination

(1) Mark: Process all nodes in topological order as follows:

- Simple nodes: Denote this node as 𝑛 . Mark 𝑛 as congruent to all nodes 𝑛′ which represent the same operation and where

|𝐼𝑛 | = |𝐼𝑛′ | ∧ 𝑖𝑘𝑛 � 𝑖𝑘
𝑛′ for all 𝑘 = [0.. |𝐼𝑛 |]. Mark all outputs 𝑜𝑘𝑛 � 𝑜𝑘

𝑛′ for all 𝑘 = [0.. |𝑂𝑛 |].
- 𝛾-node: For all entry variables 𝑒𝑣1, 𝑒𝑣2 ∈ 𝐸𝑉 where 𝑖𝑒𝑣1 � 𝑖𝑒𝑣2 , mark 𝑎𝑘𝑒𝑣1 � 𝑎𝑘𝑒𝑣2 for all 𝑘 ∈ [0..

��𝐴𝑒𝑣1

��]. Recursively process

the 𝛾 -regions. For all exit variables 𝑒𝑥1, 𝑒𝑥2 ∈ 𝐸𝑋 where 𝑟𝑘𝑒𝑥1 � 𝑟𝑘𝑒𝑥2 for all 𝑘 ∈ [0..
��𝑅𝑒𝑥1 ��], mark 𝑜𝑒𝑥1 � 𝑜𝑒𝑥2 .

- \ -node: For all loop variables 𝑙𝑣1, 𝑙 𝑣2 ∈ 𝐿𝑉 where 𝑖
𝑙𝑣1
� 𝑖

𝑙𝑣2
∧ 𝑟

𝑙𝑣1
� 𝑟

𝑙𝑣2
, mark 𝑎

𝑙𝑣1
� 𝑎

𝑙𝑣2
and 𝑜

𝑙𝑣1
� 𝑜

𝑙𝑣2
. Recursively

process the \ -region.

- _-node: For all context variables 𝑐𝑣1, 𝑐𝑣2 ∈ 𝐶𝑉 where 𝑖𝑐𝑣1 � 𝑖𝑐𝑣2 , mark 𝑎𝑐𝑣1 � 𝑎𝑐𝑣2 . Recursively process the _-region.

- 𝜙-node: For all context variables 𝑐𝑣1, 𝑐𝑣2 ∈ 𝐶𝑉 where 𝑖𝑐𝑣1 � 𝑖𝑐𝑣2 , mark 𝑎𝑐𝑣1 � 𝑎𝑐𝑣2 . Recursively process the 𝜙-region.

- 𝜔-node: Recursively process the 𝜔-region.

(2) Divert: Process all nodes in topological order as follows:

- Simple nodes: Denote this node as𝑛 . For all nodes𝑛′ which are congruent to𝑛 , divert all outputs 𝑜𝑘
𝑛′ to 𝑜

𝑘
𝑛 for all 𝑘 = [0.. |𝑂𝑛 |].

- 𝛾-node: For all entry variables 𝑒𝑣1, 𝑒𝑣2 ∈ 𝐸𝑉 where 𝑖𝑒𝑣1 � 𝑖𝑒𝑣2 , divert all edges from 𝑎𝑘𝑒𝑣2 to 𝑎𝑘𝑒𝑣1 for all 𝑘 ∈ [0..
��𝐴𝑒𝑣1

��].
Recursively process the 𝛾 -regions. For all exit variables 𝑒𝑥1, 𝑒𝑥2 ∈ 𝐸𝑋 where 𝑟𝑘𝑒𝑥1 � 𝑟𝑘𝑒𝑥2 for all 𝑘 ∈ [0..

��𝑅𝑒𝑥1 ��], divert all edges
from 𝑜𝑒𝑥2 to 𝑜𝑒𝑥1 .

- \ -node: For all induction variables 𝑙𝑣1, 𝑙 𝑣2 ∈ 𝐿𝑉 where 𝑎
𝑙𝑣1
� 𝑎

𝑙𝑣2
∧ 𝑜

𝑙𝑣1
� 𝑜

𝑙𝑣2
, divert all edges from 𝑎

𝑙𝑣2
to 𝑎

𝑙𝑣1
and from

𝑜
𝑙𝑣2

to 𝑜
𝑙𝑣1

. Recursively process the \ -region.

- _-node: For all context variables 𝑐𝑣1, 𝑐𝑣2 ∈ 𝐶𝑉 where 𝑖𝑐𝑣1 � 𝑖𝑐𝑣2 , divert all edges from 𝑎𝑐𝑣2 to 𝑎𝑐𝑣1 . Recursively process the

_-region.

- 𝜙-node: For all context variables 𝑐𝑣1, 𝑐𝑣2 ∈ 𝐶𝑉 where 𝑖𝑐𝑣1 � 𝑖𝑐𝑣2 , divert all edges from 𝑎𝑐𝑣2 to 𝑎𝑐𝑣1 . Recursively process the

𝜙-region.

- 𝜔-node: Recursively process the 𝜔-region.

For simple nodes, the algorithm marks all nodes within a region that are congruent to a node 𝑛 . In order to

avoid costly traversals of all nodes for every node 𝑛 , the mark phase takes the candidates from the users of the

origin of 𝑛 ’s first input. If there is another input from a simple node 𝑛′
with the same operation and number

of inputs among them, the other inputs from both nodes can be compared for congruence. Moreover, a region

must store constant nodes, i.e. nodes without inputs, separately from other nodes so that the candidate nodes for

constants are available. For commutative simple nodes, the inputs should be sorted before their comparison.

The presented algorithm only detects congruent simple nodes within a region. For 𝛾-nodes, congruence can

also exist between nodes of different 𝛾-regions, and extending the algorithm would eliminate these redundancies.

Another extension would be to detect congruent structural nodes, to implement conditional fusion [38] and loop

fusion [28]. In the case of 𝛾-nodes, it is sufficient to ensure that two nodes have congruent predicates, while

\ -nodes require congruence detection between different \ -regions to ensure that their predicates are the same.

6.2 Dead Node Elimination
Dead Node Elimination (DNE) is a combination of dead and unreachable code elimination, and removes all nodes

that do not contribute to the result of a computation. Dead nodes are generated by unreachable and dead code

from the input program, as well as by other optimizations such as Common Node Elimination. An operation is

considered dead code when its results are either not used or only by other dead operations. Thus, an output of a

node is dead, if it has no users or all its users are dead. We consider a node to be dead, if all its outputs are dead.

It follows that a node’s inputs are dead, if the node itself is dead. We call all entities that are not dead alive.

The implementation of DNE consists of two phases: mark and sweep. The mark phase identifies all outputs

and arguments that are alive, while the sweep phase removes all dead entities. The mark phase traverses RVSDG

edges according to the rules in Algorithm VI. If a structural node is dead, the mark phase skips the traversal of its

subregions as well as all of the contained computations, as it never reaches the node in the first place. The mark

phase is invoked for all result origins of the 𝜔-region.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:19

int y = 6;
if (99 > x) {
 z = (x*x)-(y*y)
 / (y*y)+(x*x);
 w = -y;

} else {
 do {
 x++;
 } while(50 < x);
 z = x;
 w = y;

}

(a) Code

50

+

theta

1

<

gamma
0 1

*

*

*

*

- +

/ -

99

> 6

x

(b) RVSDG

50

+

theta

1

<

gamma
0 1

*

*

*

*

- +

/ -

99

> 6

x

(c) After CNE

50

+

theta

1

<

gamma
0 1

*

*

*

*

- +

/ -

99

> 6

x

(d) After DNE mark

Fig. 6. Dead and Common Node Elimination

Algorithm VI: Dead Node Elimination

(1) Mark: Mark output or argument as alive and continue as follows:

- 𝜔-region argument: Stop marking.

- 𝜙-node output: Mark the result origin of the corresponding recursion variable.

- 𝜙-region argument: Mark the input origin if the argument belongs to a context variable. Otherwise, mark the output of the

corresponding recursion variable.

- _-node output: Mark all result origins of the _-region.

- _-region argument: Mark the input origin if the argument is a dependency.

- \ -node output: Mark the \ -node’s predicate origin as well as the result and input origin of the corresponding loop variable.

- \ -region argument: Mark the input origin and output of the corresponding loop variable.

- 𝛾-node output: Mark the 𝛾 -node’s predicate origin as well as the origins of all results of the corresponding exit variable.

- 𝛾-region argument: Mark the input origin of the corresponding entry variable.

- Simple node output: Mark the origin of all inputs.

(2) Sweep: Process all nodes in reverse topological order and remove them if they are dead. Otherwise, process them as follows:

- 𝜔-node: Recursively process the 𝜔-region. Remove all dead arguments.

- 𝛾-node: For all exit variables (𝑅,𝑜) ∈ 𝐸𝑋 where 𝑜 is dead, remove 𝑜 and all 𝑟 ∈ 𝑅. Recursively process the 𝛾 -regions. For all

entry variables (𝑖, 𝐴) ∈ 𝐸𝑉 where all 𝑎 ∈ 𝐴 are dead, remove all 𝑎 ∈ 𝐴 and 𝑖 .

- \ -node: For all loop variables (𝑖, 𝑎, 𝑟, 𝑜) ∈ 𝐿𝑉 where 𝑎 and 𝑜 are dead, remove 𝑜 and 𝑟 . Recursively process the \ -region. Remove

𝑖 and 𝑎.

- _-node: Recursively process the _-region. For all context variables (𝑖, 𝑎) ∈ 𝐶𝑉 where 𝑎 is dead, remove 𝑎 and 𝑖 .

- 𝜙-node: For all recursion variables (𝑟, 𝑎, 𝑜) ∈ 𝑅𝑉 where 𝑎 and 𝑜 are dead, remove 𝑜 and 𝑟 . Recursively process the 𝜙-region.

Remove 𝑎. For all context variables (𝑖, 𝑎) ∈ 𝐶𝑉 where 𝑎 is dead, remove 𝑎 and 𝑖 .

The sweep phase performs a simple bottom-up traversal of an RVSDG, recursively processing subregions

of structural nodes as long as these nodes are alive. A dead structural node is removed with all its contained

computations. The RVSDG’s uniform representation of all computations as nodes permits DNE to not only remove

simple computations, but also compound computations such as conditionals, loops, or even entire functions.

Moreover, its nested structure avoids the processing of entire branches of the region tree if they are dead.

Figure 6d shows the RVSDG from Figure 6c after the mark phase. Grey colored entities are dead. The mark

phase traverses the graph’s edges, marking the 𝛾-node’s leftmost output alive. This renders the corresponding

result origins of the 𝛾-regions alive, then the leftmost output of the \ -node, and so forth. After the mark phase

annotated all outputs and arguments as alive, the sweep phase removes all dead entities.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

*.ll

S
S
A

D
es

tr
uc

ti
on

In
te

r-
 a

nd
In

tr
a-

PT

Construction

R
V
S
D

G
O

pt
im

iz
at

io
ns

C
on

tr
ol

 F
lo

w
R
ec

ov
er

y

S
S
A

C
on

st
ru

ct
io

n

Destruction

*.ll

(a) Jlm compilation pipeline.

*.c clang -O0 opt -mem2reg llc -O3
opt -O?

*.o

(b) Evaluation setup.

Fig. 7. Jlm’s compilation pipeline and evaluation setup.

7 IMPLEMENTATION AND EVALUATION
This section aims to demonstrate that the RVSDG has no inherent impediment that prevents it from producing

competitive code, and that it can serve as the IR in a compiler’s optimization stage. The goal is not to outperform

mature compilers like LLVM or GCC, as it would require engineering effort far beyond the scope of this article. We

evaluate the RVSDG by generated code performance and size, compilation time, and representational overhead.

7.1 Implementation
We have implemented jlm, a publicly available prototype compiler [35] that uses the RVSDG for optimizations.

Its compilation pipeline is outlined in Figure 7a. Jlm takes LLVM IR as input, constructs an RVSDG, transforms

and optimizes this RVSDG, and destructs it again to LLVM IR. The SSA form of the input is destructed before

RVSDG construction proceeds with Inter- and Intra-PT. This additional step is required due to the control flow

restructuring phase of Intra-PT. Destruction discovers control flow by employing SCFR before it constructs

SSA form to output LLVM IR. Jlm supports LLVM IR function, integer, floating point, pointer, array, structure,

and vector types as well as their corresponding operations. Exceptions and intrinsic functions are currently

unsupported. The compiler uses two distinct states to model side-effects: one for memory accesses and one for

non-terminating loops. We implemented the following optimizations in addition to CNE and DNE:

- Inlining (ILN): Simple function inlining.

- Invariant Value Redirection (INV): Redirects invariant values from \ - and 𝛾-nodes.

- Node Push-out (PSH): Moves all invariant nodes out of 𝛾- and \ -regions.

- Node Pull-in (PLL): Moves all nodes that are only used in one 𝛾-region into the 𝛾-node. This ensures their

conditional execution, while avoiding code bloat.

- Node Reduction (RED): Performs simplifications, such as constant folding or strength reduction, similarly to

LLVM’s redundant instruction combinator (-instcombine), albeit by far not as many.

- Loop Unrolling (URL): Unrolls all inner loops by a factor of four. Higher factors gave no significant perfor-

mance improvements in return for the increased code size.

- \ −𝛾 Inversion (IVT): Inverts 𝛾- and \ -nodes where both nodes have the same predicate origin. This replaces

the loop containing a conditional with a conditional that has a loop in its then-case.

We use optimization order ILN,INV,RED,DNE,IVT,INV,DNE,PSH,INV,DNE,URL,INV,RED,CNE,DNE,PLL,INV,DNE.

7.2 Evaluation Setup
Figure 7b outlines our evaluation setup. We use clang 7.0.1 [9] to convert C files to LLVM IR, pre-optimize

the IR with LLVM’s opt, and then optimize it either with jlm, or opt using different optimization levels. The

optimized output is converted to an object file with LLVM’s llc. The pre-optimization step is necessary to avoid

a re-implementation of LLVM’s mem2reg pass, since clang allocates all values on the stack by default due to

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:21

 2

 4

 6

 8

 10

2mm 3mm adi atax bicg cholesky correlation covariance deriche doitgen durbin fdtd-2d floyd-warshall gemm gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm syr2k syrk trisolv trmm gmean

Speedup

opt -O1 opt -O3 opt -O3-no-vec opt -O3-no-vec-strippedjlm

Fig. 8. Speedup relative to O0 at different optimization levels.

LLVM IR only supporting CFGs in SSA form. We use the polybench 4.2.1 beta benchmark suite [33] to evaluate

the RVSDG’s usability and efficacy. This benchmark suite provides structurally small benchmarks, and therefore

reduces the implementation effort for RVSDG construction and destruction, as well as the number and complexity

of optimizations. The experiments are performed on an Intel Xeon E5-2695v4 running CentOS 7.4. The core

frequency is pinned to 2.0 GHz to avoid performance variations and thermal throttling effects. All outputs of the

benchmark runs are verified to equal the corresponding outputs of the executables produced by clang.

7.3 Performance
Figure 8 shows the speedup at five different optimization levels. The O0 optimization level serves as baseline.

The O3-no-vec optimization level is the same as O3, but without slp- and loop-vectorization. Optimization level

O3-no-vec-stripped is the same as O3-no-vec, but the IR is stripped of named metadata and attribute groups

before invoking llc. Since jlm does not support metadata and attributes yet, this optimization level permits us to

compare the pure optimized IR against jlm without the optimizer providing hints to llc. We omit optimization

level O2 as it was very similar to O3. The gmean column in Figure 8 shows the geometric mean of all benchmarks.

The results show that the executables produced by jlm (gmean 2.70) are faster than O1 (gmean 2.49), but slower

than O3 (gmean 3.22), O3-no-vec (gmean 2.95), and O3-no-vec-stripped (gmean 2.91). Optimization level O3
attempts to vectorize twenty benchmarks, but only produces measurable results for eight of them: atax, durbin,

fdtd-2d, gemm, gemver, heat-3d, jacobi-1d, and jacobi-2d. Jlm would require a vectorizer to achieve such speedups.

Disabling vectorization with O3-no-vec and O3-no-vec-stripped shows that jlm achieves similar speedups

for fdtd-2d, gemm, heat-3d, javobi-1d, and jacobi-2d. The metadata transferred between the optimizer and llc
only makes a significant difference for durbin, floyd-warshall, gesummv, jacobi-1d, and nussinov. In the case

of gesummv and jacobi-1d, performance drops below jlm. Jlm is outperformed by optimization level O1 at four
benchmarks: adi, durbin, seidel-2d, and syrk. We inspected the output files and found the following causes:

- adi: Jlm fails to eliminate load instructions from the two innermost loops. These loads have loop-carried

dependencies with a distance of one to store instructions in the same loop, and can be eliminated by

propagating the stored value to the users of the load’s output. The corresponding LLVM pass is loop load

elimination (-loop-load-elim). Jlm performance equals O1 if this transformation is performed by hand.

- durbin: Jlm fails to transform a loop that copies values between arrays to a memcpy intrinsic. This impedes

LLVM’s code generator to produce better code. The LLVM pass responsible for this transformation is the

loop-idiom pass (-loop-idiom). If the loop is replaced with a call to memcpy, then jlm is better than O1.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

 0

 1

 2

 3

 4

 5

 6

 7

2mm 3mm adi atax bicg cholesky correlation covariance deriche doitgen durbin fdtd-2d floyd-warshall gemm gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm syr2k syrk trisolv trmm amean

.text section size [kB]

opt -O3 opt -O3-no-vecopt -Os jlmjlm -no-unroll

Fig. 9. Code size at different optimization levels.

- seidel-2d: Similarly to adi, jlm fails to eliminate load instructions from the innermost loop. If the load

elimination is performed by hand, then jlm achieves the same performance as O1.
- syrk: Jlm fails to satisfactorily apply CNE due to an overly strict sequentialization of load and store

instructions. Loads from the same address are not detected as congruent due to different state edge origins.

An alias analysis pass would resolve this problem.

Figure 8 shows that it is feasible to produce competitive code using the RVSDG, but also that more optimizations

and analyses are required in order to reliably do so. Performance differences are not caused by inherent RVSDG

characteristics, but can be attributed to missing analyses, optimizations, and heuristics for their application. The

above results and Table 1 indicate that an alias analysis pass is particluarly required.

7.4 Code Size
Figure 9 shows the code size for O3, O3-no-vec, Os, and for jlm with and without loop unrolling. The amean

column shows the arithmetic mean of all benchmarks. Optimization level O3 produces on average text sections that
are 11% bigger than O3-no-vec. Vectorization often requires loop transformations to make loops amenable to the

vectorizer, and the insertion of pre- and post-loop code. This affects code size negatively, but can result in better

performance. The results also show that Os produces smaller text sections than O3-no-vec. This is due to more

conservative optimization heuristics and the omission of optimizations, e.g., aggressive instruction combination

(-aggressive-instcombine) or the promotion of by-reference arguments to scalars (-argpromotion).
Jlm produces ca. 39% bigger text sections compared to Os. The results without loop unrolling show that this

can be attributed to the naive heuristic used. Jlm does not take code size into account and unrolls every inner

loop unconditionally four times, leading to excessive code expansion. Avoiding unrolling completely results in

text sections that are on average between O3-no-vec and Os. This indicates that the excessive code size is due to
naive heuristics and shortcomings in the implementation, but not to inherent characteristics of the RVSDG.

7.5 Compilation Overhead
Figure 10 shows overhead in terms of IR size and time, with Figure 10a relating LLVM instruction count to

number of RVSDG nodes, and Figure 10b relating it to time spent on RVSDG translation and optimizations.

Figure 10a shows a clear linear relationship for all cases, confirming the observations by Bahmann et al. [3]

that the RVSDG is feasible in terms of space requirements. Figure 10b also indicates a linear dependency, but with

larger variations for similar input sizes. We attribute this variation to the fact that construction, optimizations,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:23

 200

 300

 400

 500

 600

 700

 50 100 150 200 250 300 350 400 450 500 550

RVSDG Nodes

Instructions

(a) Representational overhead.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 150 200 250 300 350 400 450 500 550

Time [ms]

Instructions

(b) Compilation times.

Fig. 10. Compilation overhead of jlm.

and destruction are also compounded by input structure. Structural differences in the inter-procedure and control

flow graphs lead to runtime variations in RVSDG construction and destruction, as well as different runtimes

for optimizations. For example, the presence of loops in a translation unit determines whether loop unrolling is

performed, while their absence incurs no runtime overhead. Figure 10 shows that the RVSDG is feasible as an IR

for optimizing compilers in terms of compilation overhead.

7.6 Comparison to LLVM
LLVM 7.0.1 invokes 85 different analyses and optimization passes at optimization level O3. Many of these passes

are repeatedly invoked, resulting in a total of 266 invocations. Section 2.1 already highlighted that 57, or 21%, of

these invocations are from six helper passes that only establish invariants and detect structures necessary for

optimizations. Table 1 in Section 2.1 also shows that LLVM necessitates SSA restoration in fourteen optimization

passes. Because LLVM’s CFG representation does not maintain necessary invariants and structures, it requires

(re-)computation of their information, which leads to a high number of helper pass invocations. This can be

observed in LLVM’s optimization pipeline for loop optimizations: ... -loops -loop-simplify -lcssa-verification -lcssa ...

-loop-rotate -licm -loop-unswitch -loop-simplify -lcsse-verification -lcssa -loop-idiom -loop-deletion -loop-unroll

... -loops -loop-simplify -lcssa-verification -lcssa ... -loop-rotate -loop-accesses Depending on an optimization’s

position in the pipeline, several helper passes must be executed before an optimization can be invoked. This is

necessary to ensure that the required information for an optimization is present, and up to date after invocation

of other optimizations, e.g., jump threading (-jump-threading) or CFG simplification (-simplifycfg). Thus,
each added loop optimization can necessitate several more helper passes in the optimization pipeline. A similar

pattern is seen with (basic) alias analysis (-basicaa and -aa), which are invoked 37 times in total.

In contrast, the RVSDG establishes the necessary invariants and structures during construction, and maintains

them throughout compilation. The result is that jlm requires none of the aforementioned helper passes and SSA

restoration, e.g., loop unrolling (URL) can be readily performed without the need to detect loops, their entry, and

exits. The cost is a more elaborate construction, which requires the detection of the necessary information, and

destruction, which requires the recovery of control flow. However, RVSDG construction and destruction only

need to be performed once and, as demonstrated in Section 10 and in Bahman et al. [3], are practically feasible.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 • Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander

8 CONCLUSION
This paper presents a complete specification of the RVSDG IR for an optimizing compiler. We provide construc-

tion and destruction algorithms, and show the RVSDG’s efficacy as an IR for analyses and optimizations by

presenting Dead Node and Common Node Elimination. We implemented jlm, a publicly available compiler [35]

that uses the RVSDG for optimizations, and evaluate it in terms of performance, code size, compilation time, and

representational overhead. The results suggest that the RVSDG combines the abstractions of data centric IRs with

the CFG’s advantages to optimize and generate efficient control flow. This makes the RVSDG an appealing IR for

optimizing compilers. A natural direction for future work is to explore how features such as exceptions can be

efficiently mapped to the RVSDG. Another research direction would be to extend the number of optimizations and

their heuristics in jlm to a competitive level with CFG-based compilers. This would provide further information

about the number of necessary optimizations, their complexity, and consequently the required engineering effort.

ACKNOWLEDGMENTS
This work was funded by Vetenskapsrådet under grant agreement 2015-05159. The computations were performed

on resources provided by the NTNU EPIC compute cluster [41].

REFERENCES
[1] Frances E Allen. 1970. Control flow analysis. In ACM Sigplan Notices, Vol. 5. ACM, 1–19.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. 1988. Detecting Equality of Variables in Programs. In Proceedings of the ACM SIGPLAN

Symposium on Principles of Programming Languages. ACM, 1–11.

[3] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian Meyer. 2015. Perfect Reconstructability of Control Flow from

Demand Dependence Graphs. ACM Transactions on Architecture and Code Optimization 11, 4 (2015), 66:1–66:25.

[4] W. Baxter and H. R. Bauer, III. 1989. The Program Dependence Graph and Vectorization. In Proceedings of the ACM SIGPLAN Symposium

on Principles of Programming Languages. ACM, 1–11.

[5] Philip L Campbell, Ksheerabdhi Krishna, and Robert A Ballance. 1993. Refining and Defining the Program Dependence Web. Technical

Report. University of New Mexico.

[6] Larry Carter, Jeanne Ferrante, and Clark Thomborson. 2003. Folklore Confirmed: Reducible Flow Graphs are Exponentially Larger. In

Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages, Vol. 38. ACM, 106–114.

[7] Jeronimo Castrillon. 2013. Programming Heterogeneous MPSoCs: Tool Flows to Close the Software Productivity Gap. Ph.D. Dissertation.

RWTH Aachen Univeristy.

[8] Jong-Deok Choi, Vivek Sarkar, and Edith Schonberg. 1996. Incremental computation of static single assignment form. In Proceedings of

the International Conference on Compiler Construction. Springer-Verlag, 223–237.

[9] Clang. 2017. Clang: A C Language Family Frontend for LLVM. https://clang.llvm.org. Accessed: 2019-10-30.

[10] GNU Compiler Collection. 2018. https://gcc.gnu.org/. Accesssed: 2019-08-05.

[11] Daniel Cordes, Peter Marwedel, and Arindam Mallik. 2010. Automatic parallelization of embedded software using hierarchical task

graphs and integer linear programming. In Proceedings of the ACM/IEEE International Conference on Hardware/Software Codesign and

System Synthesis. 267–276.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. K Zadeck. 1991. Efficiently Computing Static Single Assignment

Form and the Control Dependence Graph. Technical Report.

[13] Jack Bonnell Dennis. 1980. Data flow supercomputers. Computer 13, 11 (1980), 48–56.

[14] Shuhan Ding, John Earnest, and Soner Önder. 2014. Single Assignment Compiler, Single Assignment Architecture: Future Gated Single

Assignment Form. In Proceedings of the International Symposium on Code Generation and Optimization. ACM.

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in Optimization. ACM

Transactions on Programming Languages and Systems 9, 3 (1987), 319–349.

[16] Paul Havlak. 1993. Construction of Thinned Gated Single-Assignment Form. In Proceedings of the International Workshop on Languages

and Compilers for Parallel Computing-Revised Papers. Springer, 477–499.

[17] S. Horwitz, J. Prins, and T. Reps. 1988. On the Adequacy of Program Dependence Graphs for Representing Programs. In Proceedings of

the ACM SIGPLAN Symposium on Principles of Programming Languages. ACM, 146–157.

[18] S. Horwitz, T. Reps, and D. Binkley. 1988. Interprocedural Slicing Using Dependence Graphs. Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation 23, 7, 35–46.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://clang.llvm.org
https://gcc.gnu.org/

RVSDG: An Intermediate Representation for Optimizing Compilers • 1:25

[19] Neil Johnson and Alan Mycroft. 2003. Combined Code Motion and Register Allocation Using the Value State Dependence Graph. In

Proceedings of the International Conference on Compiler Construction. Springer-Verlag, 1–16.

[20] Neil E. Johnson. 2004. Code size optimization for embedded processors. Technical Report. University of Cambridge, Computer Laboratory.

[21] Richard Johnson, David Pearson, and Keshav Pingali. 1994. The Program Structure Tree: Computing Control Regions in Linear Time.

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 171–185.

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In Proceedings

of the International Symposium on Code Generation and Optimization.

[23] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas

Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law. arXiv:2002.11054 [cs.PL]

[24] Alan C. Lawrence. 2007. Optimizing compilation with the Value State Dependence Graph. Technical Report. University of Cambridge.

[25] LLVM. 2018. https://bugs.llvm.org/show_bug.cgi?id=31851. Accesssed: 2020-04-05.

[26] LLVM. 2018. https://bugs.llvm.org/show_bug.cgi?id=37202. Accesssed: 2020-04-05.

[27] LLVM. 2018. https://bugs.llvm.org/show_bug.cgi?id=31183. Accesssed: 2020-04-05.

[28] Naraig Manjikian and Tarek S Abdelrahman. 1997. Fusion of loops for parallelism and locality. IEEE Transactions on Parallel and

Distributed Systems 8, 2 (1997), 193–209.

[29] Steven S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.

[30] R. Namballa, N. Ranganathan, and A. Ejnioui. 2004. Control and Data Flow Graph Extraction for High-Level Synthesis. In IEEE Computer

Society Annual Symposium on VLSI. 187–192.

[31] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990. The Program Dependence Web: A Representation Supporting

Control-, Data-, and Demand-driven Interpretation of Imperative Languages. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, 257–271.

[32] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. 2005. Automatic Thread Extraction with Decoupled Software

Pipelining. In Proceedings of the ACM/IEEE International Symposium on Microarchitecture. IEEE, 105–118.

[33] Louis-Noël Pouchet. 2017. Polybench/C 4.2. http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/. Accessed: 2019-11-11.

[34] Nico Reissmann. 2012. Utilizing the Value State Dependence Graph for Haskell. (2012).

[35] Nico Reissmann. 2017. jlm. https://github.com/phate/jlm. Accessed: 2020-04-05.

[36] Nico Reissmann, Thomas L. Falch, Benjamin A. Bjørnseth, Helge Bahmann, Jan Christian Meyer, and Magnus Jahre. 2016. Efficient

control flow restructuring for GPUs. In Proceedings of the International Conference on High Performance Computing and Simulation.

48–57.

[37] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global value numbers and redundant computations. In Proceedings of the ACM

SIGPLAN Symposium on Principles of Programming Languages. ACM, 12–27.

[38] Radu Rugina and Martin C. Rinard. 2001. Recursion Unrolling for Divide and Conquer Programs. In Proceedings of the International

Workshop on Languages and Compilers for Parallel Computing-Revised Papers. Springer-Verlag, 34–48.

[39] V. Sarkar. 1991. Automatic Partitioning of a Program Dependence Graph into Parallel Tasks. IBM Journal of Research and Development

35, 5-6 (1991), 779–804.

[40] M. Sharir. 1980. Structural analysis: A new approach to flow analysis in optimizing compilers. Computer Languages 5, 3 (1980), 141–153.

[41] Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. 2019. EPIC: An Energy-Efficient, High-Performance GPGPU

Computing Research Infrastructure. arXiv:1912.05848 [cs.DC]

[42] James Stanier. 2012. Removing and Restoring Control Flow with the Value State Dependence Graph. Ph.D. Dissertation. University of

Sussex.

[43] James Stanier and Alan Lawrence. 2011. The Value State Dependence Graph Revisited. In Proceedings of the Workshop on Intermediate

Representations. 53–60.

[44] James Stanier and Des Watson. 2013. Intermediate Representations in Imperative Compilers: A Survey. Comput. Surveys 45, 3 (2013).

[45] R. Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.

[46] Peng Tu and David Padua. 1995. Efficient Building and Placing of Gating Functions. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, 47–55.

[47] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant propagation with conditional branches. ACM Transactions on Programming

Languages and Systems 13, 2 (1991), 181–210.

[48] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. 1994. Value Dependence Graphs: Representation Without Taxation.

In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages. ACM, 297–310.

[49] Ali Mustafa Zaidi. 2015. Accelerating control-flow intensive code in spatial hardware. Technical Report. University of Cambridge.

[50] Ali Mustafa Zaidi and David Greaves. 2015. Value State Flow Graph: A Dataflow Compiler IR for Accelerating Control-Intensive Code

in Spatial Hardware. ACM Transactions on Reconfigurable Technology and Systems 9, 2 (2015), 14:1–14:22.

[51] F. Zhang and E.H. D’Hollander. 2004. Using hammock graphs to structure programs. IEEE Transactions on Software Engineering 30, 4

(2004), 231–245.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://arxiv.org/abs/2002.11054
https://bugs.llvm.org/show_bug.cgi?id=31851
https://bugs.llvm.org/show_bug.cgi?id=37202
https://bugs.llvm.org/show_bug.cgi?id=31183
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/phate/jlm
http://arxiv.org/abs/1912.05848

	Abstract
	1 Introduction
	2 Motivation
	2.1 Simplified Compilation by Strong Representation Invariants
	2.2 Unified Representation of Different Levels of Program Structures
	2.3 Strongly Normalized Representation
	2.4 Exposing Independent Computations
	2.5 Multiple Levels of Abstraction
	2.6 Summary

	3 Related Work
	3.1 Control (Data) Flow Graph
	3.2 Program Dependence Graph/Web
	3.3 Value (State) Dependence Graph

	4 The Regionalized Value State Dependence Graph
	4.1 Intra-Procedural Nodes
	4.2 Inter-Procedural Nodes
	4.3 Edges

	5 Construction & Destruction
	5.1 Construction
	5.2 Destruction

	6 Optimizations
	6.1 Common Node Elimination
	6.2 Dead Node Elimination

	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Evaluation Setup
	7.3 Performance
	7.4 Code Size
	7.5 Compilation Overhead
	7.6 Comparison to LLVM

	8 Conclusion
	References

