RVSDG: An Intermediate Representation for the Multi-Core Era

Nico Reissmann, Jan Christian Meyer, and Magnus Sjalander
Norwegian University of Science and Technology
Trondheim, Norway
firstname.middlename.lastname@ntnu.no

ABSTRACT

The embrace of chip multiprocessors by the microprocessor indus-
try moved thread-level parallelism (TLP) into the limelight. As the
manual creation of multi-threaded code is difficult, error prone, and
time consuming, it is desirable to find automatic ways to extract
TLP from programs. Current state-of-the-art compilers, however,
are ill-equipped for this task, as they employ inherently sequential
intermediate representations (IRs).

This paper advocates a paradigm shift in compiler IRs, and
presents the Regionalized Value State Dependence Graph (RVSDG)
as a concurrent alternative. The RVSDG represents programs in
demand-dependence form, implicitly supports structured control
flow, and explicitly models the flow of data. It is capable of repre-
senting an entire program within a single IR, exposes structures
and enforces invariants that are beneficial for optimizations, and
simplifies the extraction of concurrent computations in programs.
This makes RVSDG an appealing IR for optimizing and parallelizing
compilers.

1 INTRODUCTION

Static exploitation of parallelism has become the primary way to
improve performance and power efficiency. Modern processors
feature multiple cores and rely on multi-threaded code to fully
utilize these cores and gain performance. The task of producing
multi-threaded code could be left to developers, but this approach
has several drawbacks. First, writing parallel code is demonstrably
more difficult than writing sequential code. It requires developers
to reason about new sources of bugs, such as data races, deadlocks,
and livelocks. Second, it can lead to new performance bottlenecks,
such as lock contention and synchronization overheads. These per-
formance issues are often difficult to identify and might (re-)appear
for different architectures. Third, there exists many legacy applica-
tions that were written for single-core processors. It would require
an enormous programming effort to parallelize these programs.

The alternative to manual parallelization is to let the compiler
handle the task. This relieves the programmer from the burden of
code parallelization and permits the compiler to target the paral-
lelization to the underlying architecture. Automatic parallelization
has been extensively studied in the domain of scientific and numeric
computing, where programs contain a lot of data-level parallelism
in the form of DOALL loops. Progress has also been made for inher-
ently sequential programs, where the Helix project [1] and methods
such as Decoupled Software Pipelining [10] managed to extract
thread-level parallelism (TLP) from individual loops and achieved
considerable speedups.

MCC’18, November 2018, Gothenburg, Sweden

Even though these techniques only transform local loop struc-
tures, they crucially rely on global program information to resolve
dependencies between loop iterations and of operations within
a loop. The more dependencies the compiler manages to resolve,
the easier it is to extract profitable TLP. The task of resolving de-
pendencies, however, is currently overly complicated by the used
compiler IRs. The employed representations, such as the control
flow graph (CFG), fail to expose the necessary program structures,
such as loops, provide no global program view, and are unable to
encode the (in-)dependence between operations and/or program
structures. For example, even if the compiler manages to detect
that two loops are independent, it has no way to encode this in-
formation in the IR. The CFG is an inherently sequential IR and a
remnant of the sequential programming era, where the majority
of the performance improvements were achieved transparent to
the software. It is unsuitable in a time where the exploitation of
parallelism is paramount to performance improvements.

This paper advocates for a fundamental change in compiler
IRs. A good IR provides abstractions to facilitate the implemen-
tation of analyses, optimizations, and program transformations. It
should highlight and expose program properties that are impor-
tant to transformations, reducing their complexity and simplifying
their implementation. We present the Regionalized Value State
Dependence Graph (RVSDG) as an alternative IR for optimizing
and parallelizing compilers. The RVSDG represents programs in
demand-dependence form, only encodes structured control flow,
and explicitly models the data flow between operations. This raises
the IR’s abstraction level, permits simple and powerful implementa-
tions of optimizations, and helps to expose the parallelism inherent
in programs.

The remainder of this paper introduces the RVSDG through
examples and illustrates its benefits in Section 2. We provide some
preliminary results from jlm!, a compiler that uses the RVSDG for
optimizations, in Section 3, and conclude in Section 4.

2 MOTIVATION

This section motivates the use of the RVSDG as an IR for optimizing
and parallelizing compilers. It illustrates its potential to simplify
conventional compilation and to expose concurrent computations.
We show that the RVSDG raises the IR abstraction level by en-
forcing desirable properties, such as SSA form, explicitly encodes
important structures, such as loops, and relaxes the overly strict or-
der of the input program. This leads to a more normalized program
representation and avoids many idiosyncrasies and artifacts from
other IRs and helps to expose parallelism in programs.

!https://github.com/phate/jlm

https://github.com/phate/jlm

MCC’18, November 2018, Gothenburg, Sweden

N. Reissmann et al.

[ambda i f

=

(c) Unoptimized RVSDG (d) Optimized RVSDG

Figure 1: Simplifying conventional compilation.

lil;=ud
li2;=ud
epr;=ud
int] i !
; ; ; ; a i(as,a
f(int a, int b, int ¢, int d) bi Bhl 5 1%
{ o)
int li1, 1i2; d =p l|1d2hd1 .
; . il;=phi i
int cse, epr; i23= ph.Enzi,nz 3
do { epr,=phi(eprs,epr;)
lil = b+c; ily= 2+Cz
li2 = d-b; h2a
a = a*li1; down a33/uc2
int down = a%c; dead=as+c,
int dead = a+d: branch 33>d2
’ 0 1
if(a > d) { Z o
int acopy = a; |cse1=a3<<b|2 e ownL
7 ,=a3<<b
a = 3+down;
cse = acopy<<b; as=phi(as,a.)
} else { g%e3 g <fgsel,csez)
_ . r
cse = a<<b; bra|31ch5a5> &
b i
epr = a<<b; r=li2,+epr
} while(a > cse); return r
return li2+epr;
¥
(a) Code (b) CFG in SSA form
Table 1: Ten most invoked LLVM passes at 03.
Optimization ‘ # Invocations
1. Alias Analysis (-aa) 16
2. Dominator Tree Construction (-domtree) 14
3. Basic Alias Analysis (-basicaa) 13
4. Scalar Evolution Analysis (-scalar-evolution) 10

5. Natural Loop Canonicalization (-loop-simplify) 9
6. Redundant Instruction Combinator (-instcombine) 8
7. Loop-Closed SSA Form (-1cssa) 8
8. Loop-Closed SSA Form Verifier (-lcssa-verification) 8
9. CFG Simplifier (-simplifycfg) 7
10. Natural Loop Information (-1oops) 6

Total 99
SSA Restoration 12

2.1 Simplifying Conventional Compilation

Figure 1a shows a function with a simple loop and a conditional,
and Figure 1b shows the corresponding control flow graph (CFG)
in static single assignment (SSA) form [4]. The CFG in SSA form
is the predominant IR for optimizations in modern imperative lan-
guage compilers [14]. Its nodes represent a list of totally ordered
operations and its edges a program’s possible control flow paths,
permitting efficient control flow optimizations and simple code gen-
eration. The CFG’s translation to SSA form improves the efficiency
of many data flow optimizations [13, 15].

While the CFG is simple to construct and destruct, it provides
few abstractions and invariants to facilitate the implementation of
optimizations and analyses. CFG-based compilers must constantly
(re-)discover and canonicalize loops, establish invariants, or restore

SSA form. Table 1 shows the ten most invoked LLVM passes and
highlights the helper passes in bold that only or partially perform
such tasks. They amount to 52 pass invocations (excluding SSA
restoration, as it is implemented ad-hoc), or 23% of all pass invoca-
tions. This lack of enforced invariants complicates the implemen-
tation of optimizations and analyses, increases engineering effort,
unnecessarily prolongs compilation time, and leads to compiler
bugs [7-9].

In contrast, the RVSDG exposes program structure and enforces
invariants beneficial for optimizations and analyses. Figure 1c
shows the RVSDG corresponding to Figure 1a. It is an acyclic
demand-dependence graph where nodes represent simple oper-
ations or control flow constructs, and edges the dependencies be-
tween computations. In Figure 1c, simple operations are colored
yellow, conditionals are green, loops are red, and functions are blue.

The RVSDG is a data centric IR focusing on explicit data flow
instead of control flow. This leads to a more normalized program
representation and simplifies the implementation of transforma-
tions [5, 6, 16]. For example, the RVSDG is always in strict SSA
form as edges connect each operand input to only one output, elim-
inating the need for SSA restoration passes [2]. The representation
of intra- and inter-procedural control flow as nodes permits to en-
code the entire program within a single representation, and avoids
additional data structures, such as the call graphs, or passes, such
as loop detection and normalization.

These properties combined with its explicit data flow enable
simple and powerful optimizations. Figure 1d shows the optimized
RVSDG of Figure 1c, illustrating some of these optimizations. For
example, the dead addition can be removed from the loop as it
has no users. The addition and subtraction computing 1i1 and
1i2 are moved out of the loop as their operands, i.e. b, ¢, and d,

RVSDG: An Intermediate Representation for the Multi-Core Era

lambda
p—

int

f(int* x, float* vy,
int k)

{

sum +=i;

i++;
} while(i < k);
do {

fac *=f;

f++;
} while(f < k);
return fac+sum;

b

(a) Code (b) RVSDG

Figure 2: Exposing concurrent computations.

are loop invariant (all three of them connect the entry of the loop
to the exit). The shift operations from the conditional are hoisted
out and combined, while the division operation is moved into the
conditional as it is only used in one alternative. In contrast to CFG-
based compilers, all these optimizations are performed directly on
the unoptimized RVSDG of Figure 1c. No additional data structures
or helper passes are required.

2.2 Exposing Concurrent Computations

The RVSDG'’s explicit representation of program states enables it
to encode the relations of side-effecting operations in the graph,
as illustrated in Figure 2. The depicted function contains two non-
aliasing store operations and two independent loops. In a CFG, the
stores and loops are strictly ordered, and optimizations require an
additional data structure for alias information, as well as passes to
determine the independence of these loops. The CFG is incapable
to encode such information directly in the graph.

In contrast, the RVSDG permits to represent this information in
the graph, as shown in Figure 2b. The function has two additional
input states (red dotted lines) that are used for sequentializing
memory operations and (potentially non-terminating) loops, re-
spectively. The first state is used to express that both stores are
non-aliasing, while the second state preserves (potentially) non-
terminating loops. This exposes the parallelism of these loops, as
they are represented explicitly as nodes and share no dependencies.

Generally, the extraction of concurrent computations in the
RVSDG can be accomplished using graph refinement. The overly
conservative and sequential execution order of the input program
can be relaxed by splitting and redirecting state edges to encode
the results of analyses, such as alias analysis, in the graph. This
exposes concurrent operations and program parts, which could
subsequently be exploited for parallel execution.

MCC’18, November 2018, Gothenburg, Sweden

3 EVALUATION

We have implemented jlm, a publicly available [12] prototype com-
piler that uses the RVSDG for optimizations. Jlm takes LLVM IR as
input, constructs an RVSDG, transforms and optimizes this RVSDG,
and destructs it again to LLVM IR. Jlm’s LLVM IR support is cur-
rently limited to function, integer, floating point, pointer, array,
structure, and vector types as well as their corresponding opera-
tions. Moreover, no support exists in the current implementation
for exceptions and intrinsic functions.

We use the polybench 4.2.1 beta benchmark suite [11] to eval-
uate the RVSDG’s usability and efficacy. This benchmark suite
provides structurally small benchmarks, and therefore reduces the
implementation effort, as well as the number and complexity of
optimizations.

We use clang 4.0.1 [3] to convert C files to LLVM IR, pre-optimize
the IR with LLVM’s opt, and then optimize it either with j1m, or
opt using different optimization levels. The optimized output is con-
verted to an object file with LLVM’s 11c. The pre-optimization step
is necessary to avoid a re-implementation of LLVM’s mem2reg pass,
since clang allocates all values on the stack by default. We imple-
mented several optimizations, such as inlining, code motion, loop
unrolling, and some operation simplifications. The experiments
are performed on an Intel Core i7-4790 running Ubuntu 17.10. The
core frequency is pinned to 1.0 GHz to avoid performance varia-
tions due to frequency scaling. The lowest frequency is chosen to
avoid thermal throttling effects. All outputs of the benchmark runs
are verified to equal the corresponding outputs of the executables
produced by clang.

3.1 Performance

Figure 3 shows the speedup at five different optimization levels. The
00 optimization level serves as baseline. The 03-no-vec optimiza-
tion level is the same as 03, but without slp- and loop-vectorization.
Optimization level 03-no-vec-stripped is the same as 03-no-vec,
but the IR is stripped of named metadata and attribute groups before
invoking llc. Since jlm does not support metadata and attributes yet,
this optimization level permits us to compare the pure optimized
IR against jlm without the optimizer providing hints to llc. We
omit optimization level 02 as it was very similar to 03. The gmean
column in Figure 3 shows the geometric mean of all benchmarks.

The results show that the executables produced by jlm (gmean
1.22) are faster than 01 (gmean 1.17), but slower than 03 (gmean
1.38), 03-no-vec (gmean 1.28), and 03-no-vec-stripped (gmean
1.26). Optimization level 03 tries to vectorize twenty benchmarks,
but only produces measurable improvements for eight of them,
namely atax, durbin, fdtd-2d, gemm, gemver, heat-3d, jacobi-1d,
and jacobi-2d. JIm would require a vectorizer to achieve similar
speedups.

Disabling vectorization with 03-no-vec and 03-no-vec-stripped
shows that jlm achieves similar speedups for fdtd-2d, gemm, heat-
3d, javobi-1d, and jacobi-2d. The metadata transferred between the
optimizer and llc only makes a significant difference for doitgen,
durbin, fdtd-2d, floyd-warshall, gemm, jacobi-1d, and jacobi-2d. In
the case of fdtd-2d, gemm, jacobi-1d, and jacobi-2d, performance
drops below jlm. JIm is outperformed by optimization level 01 at
four benchmarks: adi, durbin, ludecmp, and seidel-2d. We inspected

MCC’18, November 2018, Gothenburg, Sweden

N. Reissmann et al.

25

Speedup
n
T

15 |

mmmmm opt -O3-no-vec

m— jlm

opt -O3 opt -O3-no-vec-stripped

Figure 3: Speedup relative to 00 at different optimization levels.

.text section size [kB]

opt -O3 mmmmm opt -O3-no-vec

mmmm opt -Os

m— jlm

jim -no-unroll

Figure 4: Code size at different optimization levels.

the output files and found that it is due to missing optimizations,
such loop load elimination (-loop-load-elim) and loop idiom
recognition (-loop-idiom).

Figure 3 shows that it is feasible to produce competitive code
using the RVSDG, but also that more optimizations and analyses are
required to reliably do so. The differences in performance are not
due to inherent characteristics of the RVSDG, but can be attributed
to missing analyses, optimizations, as well as heuristics for their
application. Specifically, jlm requires more complex analyses, such
as alias analysis and value range propagation, as well as more
optimizations exploiting the results of these analyses to compete
with mature compilers at more complex benchmarks.

3.2 Code Size

Figure 4 shows the code size for 03, 03-no-vec, Os, and for jlm
with and without loop unrolling. The amean column shows the
arithmetic mean of all benchmarks.

The code size for optimization levels 03 and Os are almost iden-
tical, with noticeable differences only for doitgen, symm, or trmm.
Moreover, the average code size of 03-no-vec is smaller than Os.
Inspecting the individual optimizations for 03 and Os reveals that
both levels differ only in two optimization. Optimization level 03
adds -argpromotion, which promotes by-reference arguments to
scalars, and -libcalls-shrinkwrap, which conditionally elimi-
nates dead library calls.

In comparison to Os, jlm produces ca. 40% bigger text sections.
The experiments without loop unrolling show that this can be at-
tributed to the naive heuristic used for this optimization. Jlm does

not take code size into account and unrolls every inner loop uncon-
ditionally four times, leading to excessive code expansion. Avoiding
unrolling completely results in text section sizes that are on average
smaller than Os. This indicates that the excessive code size is due
to naive heuristics and shortcomings in the implementation, but
not to inherent characteristics of the RVSDG.

4 CONCLUSION AND FUTURE WORK

This paper presents the RVSDG as an IR for optimizing and paral-
lelizing compilers. We implemented jlm, a publicly available com-
piler that uses the RVSDG for optimizations, and evaluate it in
terms of performance and code size. The results suggest that the
RVSDG combines the abstractions and benefits of data centric IRs
with the CFG’s advantages to generate efficient control flow.

In the future, we plan to employ the RVSDG for the extraction
of TLP from programs. This requires further research into the en-
coding of analyses information into the IR, and the exploitation of
the discovered concurrent computations.

REFERENCES

[1] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-
Yeon Wei, and David Brooks. 2012. HELIX: Automatic Parallelization of Irregular
Programs for Chip Multiprocessing. In Proceedings of the International Symposium
on Code Generation and Optimization. ACM, 84-93.

[2] Jong-Deok Choi, Vivek Sarkar, and Edith Schonberg. 1996. Incremental Com-
putation of Static Single Assignment Form. In Proceedings of the International
Conference on Compiler Construction. Springer-Verlag, 223-237.

[3] Clang. 2017. Clang: A C Language Family Frontend for LLVM. https://clang.llvm.
org. Accessed: 2017-12-13.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. K Zadeck.
1991. Efficiently Computing Static Single Assignment Form and the Control Depen-
dence Graph. Technical Report.

https://clang.llvm.org
https://clang.llvm.org

RVSDG: An Intermediate Representation for the Multi-Core Era

[10
(1
[12

[13

[14

[15

(16

]

]
]

]

Neil E. Johnson. 2004. Code size optimization for embedded processors. Technical
Report. University of Cambridge, Computer Laboratory.

Alan C. Lawrence. 2007. Optimizing compilation with the Value State Dependence
Graph. Technical Report. University of Cambridge, Computer Laboratory.
LLVM. 2018. https://bugs.llvm.org/show_bug.cgi?id=31851. Accesssed: 2018-05-
07.

LLVM. 2018. https://bugs.llvm.org/show_bug.cgi?id=37202. Accesssed: 2018-05-
07.

LLVM. 2018. https://bugs.llvm.org/show_bug.cgi?id=31183. Accesssed: 2018-05-
07.

Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. 2005. Auto-
matic Thread Extraction with Decoupled Software Pipelining. In Proceedings of
the ACM/IEEE International Symposium on Microarchitecture. IEEE, 105-118.
Louis-Noél Pouchet. 2017. Polybench/C 4.2. http://web.cse.ohio-state.edu/
~pouchet.2/software/polybench/. Accessed: 2017-12-13.

Nico Reissmann. 2017. jlm. https://github.com/phate/jlm. Accessed: 2017-12-13.
B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers and
Redundant Computations. In Proceedings of the ACM SIGPLAN Symposium on
Principles of Programming Languages. ACM, 12-27.

James Stanier and Des Watson. 2013. Intermediate Representations in Imperative
Compilers: A Survey. ACM Computing Surveys (CSUR) 45, 3 (2013), 26:1-26:27.
Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with
Conditional Branches. ACM Transactions on Programming Languages and Systems
13, 2 (1991), 181-210.

Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. 1994. Value
Dependence Graphs: Representation Without Taxation. In Proceedings of the ACM
SIGPLAN Symposium on Principles of Programming Languages. ACM, 297-310.

MCC’18, November 2018, Gothenburg, Sweden

https://bugs.llvm.org/show_bug.cgi?id=31851
https://bugs.llvm.org/show_bug.cgi?id=37202
https://bugs.llvm.org/show_bug.cgi?id=31183
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/phate/jlm

	Abstract
	1 Introduction
	2 Motivation
	2.1 Simplifying Conventional Compilation
	2.2 Exposing Concurrent Computations

	3 Evaluation
	3.1 Performance
	3.2 Code Size

	4 Conclusion and Future Work
	References

