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1 Introduction

This project will use a combination of graph theory and topology to investigate
graph coloring theorems. To color a graph means to assign a color to each vertex
in the graph so that two adjacent vertices are not the same color. A very famous
coloring theorem is the Four Color Theorem. This answers the question "Can
a planar graph be colored with four colors such that adjacent vertices are not
colored with the same color?" Before we can begin to understand the answer
to this question, we must know what a planar graph is. A planar graph is one
that can be drawn on a plane in such a way that there are no edge crossings, i.e.
edges intersect only at their common vertices. This question was �rst asked
in 1852 by Francis Guthrie but at that time no one was able to give a de�nite
answer. The problem was ignored until 1878 when Arthur Cayley presented
it to the London Mathematical Society. Mathematicians presented proofs but
each time gaps were found. However, in 1890 mathematician P.J. Haewood
was able to give the �rst proof of the Five Color Theorem which stated that
every planar graph can be colored with �ve colors [2]. In this project, I will
provide a proof of the Five Color Theorem. It was not until quite recently
that the Four Color Theorem was proven. This accomplishment was made by
Kenneth Appel and Wolfgang Haken at the University of Illinois. However, not
all mathematicians approve of their work because it relies mostly on work done
by computer. There is still not a proof of the Four Color Theorem that can be
completed by hand.
For this reason, we are going to put more focus on the coloring of graphs on a

torus and other non-planar surfaces. P.J. Haewood was the �rst mathematician
to describe a map of the torus. He was also the �rst to prove that each map on
the torus is colorable with 7 colors. He did this by proving an inequality that
provided an upper bound on the number of colors required to a color a graph on
any surface. In the case of the torus, the inequality proved that the chromatic
number for the torus had to be less than or equal to 7. Haewood was able
to provide an example of a coloring on the torus which required 7 colors [2].
This example provided a lower bound for the chromatic number. Therefore,
the chromatic number of the torus has to equal 7. I will provide a proof of this
Seven Color Theorem.
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The coloring theorems that will be discussed for planar graphs can actually
be thought of as graphs on the sphere since a graph on the sphere can be made
a graph on the plane by removing one point from the sphere.
I �rst learned of graph coloring and the Four Color Theorem when I took

Math 423 and I found it to be very interesting. That is the main reason why I
chose to work on this project. I knew that the Four Color Theorem was not able
to be proven by hand, but when I heard that topology could be used to prove
related theorems I thought that would be an intriguing project. Most people
believe me when I tell them that the map of the world can be colored using
only four colors but when I add the restrictions of the theorem they become a
little more skeptical. In fact, I have presented the problem to my high school
students who are in disbelief until we begin to discuss it. That is the other
reason why I am glad that I chose this topic. There may not be a lot of practical
applications to coloring a torus but I have been able to describe a collegiate level
math problem to high school students and explain it in such a way that they
can at least grasp the basic concepts. This has given some of them an interest
in mathematics and curiosity in the subject which they hope to �ll in their own
educational experiences.

2 De�nitions

The following de�nitions use a lot of notation. To make things a little easier,
I have set up some common notation that will be used throughout the entire
project. The number of vertices in a graph will be denoted by v, the number
of edges will be denoted by e, and similarly the number of faces will be denoted
by f .
I have already given the de�nition for a planar graph, but we should also

have a clear de�nition for a graph.

De�nition 1 A graph is an ordered pair (V;E) where V is a set of vertices
and E is a set of two element subsets of V called edges. Informally, a graph is
a collection of vertices and edges that join pairs of the vertices.

There is a mathematical term for the number of colors required to color a
graph. This term is the chromatic number. Therefore, if we say that a graph is
four colorable, then that graph has a chromatic number of 4. We are also going
to be considering the coloring of surfaces, speci�cally the torus. Therefore, we
also need to know the de�nition for the chromatic number of a surface.

De�nition 2 The chromatic number �(G) of a graph G is the minimum
number of colors required to color G such that two adjecent vertices are not the
same color.

Before we can de�ne the chromatic number of a surface, we need to know
the de�nition for a graph being embedded in a surface.
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De�nition 3 The graph G can be embedded into the surface S if there exists
a polyhedron P on S such that the 1-skeleton of P has a subgraph homeomorphic
to G [2].

De�nition 4 The chromatic number �(S) of the surface S is the maxi-
mum chromatic number of the graphs embedded in S.

Some of the theorems that we will be using only apply to critical graphs.
However, the de�nition of a critical graph requires us to study each proper
subgraph of the graph G. Therefore, let�s �rst look at the de�nition for a
proper subgraph.

De�nition 5 If H = (V 0; E0) and G = (V;E) are two graphs and V 0 � V and
E0 � E and if fv; wg 2 E0 then v; w 2 V 0, then H is called a subgraph of G. If
H 6= G, then H is a proper subgraph of G [2].

De�nition 6 A graph G is critical if each proper subgraph has a chromatic
number smaller than that of G [3].

Since we are going to be studying graphs on the torus, we will need to
understand properties of polyhedra. The de�nition for a polyhedron relies on
having a closed pseudograph, so let�s �rst de�ne a pseudograph.

De�nition 7 A pseudograph consists of a set of vertices V and a set of two
element subsets or one element subsets of V called edges.

De�nition 8 Given a �nite number of polygons, let the total number of all of
the sides be even. Suppose these sides are given in pairs. Label the sides with
letters so that both sides of a pair get the same letter. Also, assume that each
side is given an orientation indicated by an arrow. Now identify each pair of
sides such that the heads of the two arrows coincide. Two superimposed sides
are called an edge. The �gure obtained is called a polyhedron [2].

In order to relate topology and coloring theorems to each other, we are going
to need to use the Euler Characteristic of a polyhedron.

De�nition 9 Let F be any polyhedron. Then after identi�cation, the number
v � e+ f is called the Euler Characteristic of the polyhedron and is denoted
by E(F ) [1].

The polygons that form the polyhedron are called the faces of the poly-
hedron. Sometimes it is di¢ cult to draw a polyhedron and therefore fully
understand it. So, in most cases we will look at the plane representation of the
polyhedron.

De�nition 10 The collection of the polygons, the pairing of the sides, and the
orientation of the sides before identi�cation is de�ned to be the plane repre-
sentation of the polyhedron [2].
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Figure 1: Tetrahedron

Example 1 Consider an octagon. We will want to label all of the edges with
letters and we also want to make sure that each letter gets assigned to
two di¤erent edges. Therefore, we will use the �rst four letters of the
alphabet two times each for our labeling. Now, we can label the edges
of the polygon using those letters in any order that we want. Once the
labeling is �nished, we will assign an orientation to each edge by drawing
an arrow on the edge. The direction of the arrow is the direction of the
edge. Consider the two edges that are labeled with an a. Give them
opposite orientations. This is true for each pair of edges that are labeled
the same letter. Now that we have labeled the edges of the polygon and
assigned orientations to the edges, we are left with the plane representation
of the polyhedron. To obtain the polyhedron, we will begin to match up
the edges that are labeled with the same letter so that their orientations
coincide. Therefore, we want the heads of the arrows to be pointing in the
same direction after we match up the sides. After we have done that, we
should end up with a closed �gure which is the polyhedron. I should note
that di¤erent polyhedra can result from the same polygon. The resulting
polyhedron is completely dependent on the plane representation that is
chosen.

Example 2 This example shows how to determine the plane representation of
the tetrahedron. You start by labeling the sides of the tetrahedron. This
is shown in Figure 1. Then, draw the tetrahedron net which is to draw
an unfolding of the tetrahedron. You should label the edges of the net
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Figure 2: Tetrahedron net

the same way you labeled the tetrahedron. You will also want to draw
in any arrows necessary so you know the orientation in which the sides
must match up. The tetrahedron net is shown in Figure 2. Now, you
can use the tetrahedron net to develop the plane representation. This is
when the direction of the arrows is most important. Figure 3 is the plane
representation of the tetrahedron in Figure 1.

De�nition 11 If P is a polyhedron we de�ne the pseudograph consisting of all
the edges and vertices of P to be the 1-skeleton of P [2].

In some cases, we may not want to consider a polyhedron in its entirety. If
that is the case, we can study what is known as the partial polyhedron. When
we study a partial polyhedron, there are edges of the polyhedron that are not
being identi�ed. These edges are called boundary edges. Once we identify
the boundary edges and any vertices that are incident to at least one boundary
edge, we can form a pseudograph.

De�nition 12 Consider a proper subset D of polygon sides. Let the number of
sides in D be even. Label these sides with letters such that each letter appears
exactly twice and assign arrows to the sides so that they are oriented in some
manner. This gives us the plane representation of a partial polyhedron. When
we match up the sides that are labeled with the same letter such that the direction
of their arrows coincide, we have the partial polyhedron. There must be at
least one polygon side that is not included in D. The polygon side(s) that are
not included in the proper subset D are not labeled or oriented. These side(s)
are called the boundary edges of the partial polyhedron. In a partial
polyhedron the boundary edges and the vertices which are incident with at least
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Figure 3: Plane representation of tetrahedron

one boundary edge form a pseudograph. This pseudograph is de�ned to be the
boundary pseudograph of the partial polyhedron [2].

We are also going to discuss two operations that can be applied to a polyhe-
dron. These are a subdivision of dimension one or a composition of dimension
one.

De�nition 13 A subdivision of dimension one is the process by which an
edge a of the polyhedron P is divided into two new edges b and c by taking an
inner point of a as an additional vertex [2].

De�nition 14 A composition of dimension one is the process by which two
edges b and c that are incident to a common point are composed into one edge a
by removing the common point. Essentially, this is the reverse of a subdivision
of dimension one [2].

Some theorems that we are going to use require us to compare graphs in order
to reach our result, however, we cannot just choose any two graphs that we want.
The two graphs must be homeomorphic. The de�nition for homeomorphic also
requires the de�nition for isomorphic graphs.

De�nition 15 Two graphs G, G0 are called isomorphic if there exists a one-
to-one correspondence between the set of vertices of G and the set of vertices
of G0 such that two vertices are adjacent in G if and only if the corresponding
vertices in G0 are adjacent [2].
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De�nition 16 Two graphs G and G0 are homeomorphic if G can be trans-
formed into a graph isomorphic to G0 solely by applying compositions of dimen-
sion one and subdivisions of dimension one a �nite number of times [2].

Also, there are a few proofs that require us to consider paths and circuits.

De�nition 17 A path is a sequence of distinct vertices with an edge connecting
each pair of successive vertices.

De�nition 18 A path is a circuit if there is an edge connecting the �rst and
last vertices.

3 Results

The �rst theorem we are going to look at is Euler�s Formula. This theorem
shows us the relationship between the number of vertices, edges, and faces in
a polyhedron. We will be able to use the following results for graphs on any
surface.

Theorem 19 (Euler�s Formula)Let S be a polyhedron with v vertices, e edges,
and f faces. Let G be the 1-skeleton of S. Then v � e + f = 2 � g for some
g 2 N [2].

This proof is beyond the scope of this project.

Now that we know Euler�s Formula, we can prove a corollary to the theorem.
This corollary provides us with an algorithm that we can use to �nd the number
of edges a planar graph has as long as the graph has three or more vertices.

Corollary 20 A graph with v � 3 vertices has at most 3v � 6 + 3g edges [3].

Proof. Assume a graph has v � 3 vertices. Let each edge be made of two
directed edges that go in opposite directions of each other. Then, to calculate
the degree of a face, start at one vertex and walk your way around the face
counting all of the directed edges you must take to return to the vertex you
started at. This way of calculating the degree of a face is unique to this proof.
Note then that the sum of the degrees of the faces is exactly twice the number
of edges in the graph because each edge is counted exactly twice, either two
times in the same face or once in 2 adjoining faces. Since each face must have
degree greater than or equal to 3, it follows that

2e =
P
deg(F ) � 3f

where F is a face and the sum is taken over all of the faces. Therefore, 23e � f .
Using Euler�s Formula, f = e� v + 2� g, we get

e� v + 2� g � 2

3
e.
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Then, it follows that e
3 � v � 2 + g which shows us that e � 3v � 6 + 3g:

The next theorem is commonly known as the Handshake Theorem. Basi-
cally, this explains how the number of edges is overcounted by a factor of 2.
Consider a group of people who are meeting each other for the �rst time. They
all shake hands with one another. Each handshake is counted by two di¤erent
people. Therefore, if you would ask each person in the room the number of
people they shook hands with and then took the sum of their responses, the
answer would actually be double the number of handshakes that actually took
place. The same is true when counting the number of edges in a graph. This
is because each edge is incident to two vertices. Therefore, when we take the
sum of the degrees of all of the vertices in a graph, each edge is being considered
twice.

Theorem 21 (Handshake Theorem)If P1; P2; :::; Pv are the vertices in a graph,

then
vP
i=1

deg(Pi) = 2e where e is the number of edges in G [2].

Proof. Let P1; P2; :::; Pv be the vertices in a graph. The degree of a vertex is
de�ned to be the number of edges incident to that vertex. Therefore, each edge
is being counted twice since every edge has two endpoints. So, the sum of the
degrees of the vertices will be twice the number of edges in the graph G.

I have already mentioned that the Four Color Theorem cannot be proven by
hand. However, the Five Color Theorem can be. Even though this theorem
is less restrictive than the Four Color Theorem, it is still bene�cial to see the
proof.

Theorem 22 Every planar graph is �ve colorable [3].

Proof. Assume towards a contradiction that G is a planar graph with the
fewest number of vertices that cannot be 5-colored. Let w be a vertex in G
that has the minimum degree. Using the Handshake Theorem, 2e =

P
deg(u)

where u is the set of all the vertices in G. Suppose that there are v vertices and
that each vertex has degree greater than or equal to 6. Then, the

P
deg(u)

� 6v which means that 2e � 6v. Dividing both sides of the inequality tells us
that e � 3v which is greater than 3v � 6. Thus, we have e � 3v � 6 which
contradicts Corollary 20. So, we must negate our statement that each vertex
has degree greater than or equal to 6. This gives us the statement that there
exists at least one vertex with degree less than 6. We will let that vertex be w.
So, we know that deg(w) < 6.

Case 1 deg(w) � 4. We will de�ne the graph G�w to be graph G with the
vertex w removed and therefore all of the edges incident to w removed
as well. Thus, the graph G�w is 5-colorable by de�nition. At most
4 colors have been used for the neighbors of w. Therefore, there is
one color left for w. So, G is 5-colorable which is a contradiction.
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Case 2 deg(w) = 5. The graph G � w is 5-colorable. If at least 2 vertices
neighboring w are the same color, then w can be the �fth color. If
not, then we can assume the 5 neighbors of w are colors 1, 2, 3,
4, and 5. Construct a circle around w such that it intersects all
of the edges between w and its 5 neighboring vertices and contains
no other vertices or edges. Pick a point on the circle to be north.
Then, we can label the vertices in clockwise order from north as
w1; w2; w3; w4; w5. Assume wi is color i. Consider the subgraph
of G that contains all of the vertices that are colors 1 and 3 along
with the edges that connect only those vertices. If this subgraph
does not contain a path between w1 and w3, then w1 and w3 are
disconnected. If w1 and w3 are disconnected, then we can color
w3 color 1 instead. Take the connected component of the subgraph
containing w3, and change all of the color 3 vertices to color 1 and
all of the color 1 vertices to color 3. This process will not have any
e¤ect on the rest of the graph since there are no vertices of color 1
or color 3 that are not included in the subgraph. Therefore, this
allows color 3 for w. However, this is then a contradiction to our
original statement that G is the smallest planar graph that isn�t 5-
colorable. Therefore, there must be a path between w1 and w3 in
the subgraph. Now, let�s consider w2 and w4. Once again, we must
look at a subgraph of G, but this time we will look at the subgraph
that contains the vertices that are colors 2 and 4 along with the
edges that connect only those vertices. If there is no path in this
subgraph that connects w2 and w4, then we can color them both
color 2. Now, take the connected component of this subgraph that
contains w4, and change all of the color 4 vertices to color 2 and all
of the color 2 vertices to color 4. Then, w can be color 4. However,
this leads to the same contradiction as before. Thus, there must be
a path between these two vertices as well. However, there is already
a circuit between w1 and w3 which establishes two regions. I will call
these the inside and outside regions. The vertex w2 is in the inside
region and w4 is in the outside region. Therefore, the only way for
a path to connect w2 and w4 is by crossing the circuit. So, there is
no possible way to insert a path between w2 and w4 and maintain
planarity. Thus, we must be able to color G with �ve colors.

Theorem 23 K5 is not planar.

I am �rst going to show a proof of this theorem using an algorithm I learned
in Math 423. I believe that this proof allows you to use more intuition than
actual rigor.

Proof. Start by constructing C5 which is the cycle graph with 5 vertices. Then,
we can add two edges that are in the center of our graph and still maintain

9



planarity. Without loss of generality, choose the edge between v1 and v3 and
the one between v1 and v4. Now, no other edges can be placed in the center
without crossing over these two edges. We must connect v5 to v2 and v3. We
can make an edge from v5 to v2 that blocks v1. Now, we have two choices
for the edge between v5 and v3. We can either block v1 and v2 or block v4.
Keeping in mind that we still need an edge connecting v2 and v4, we see that
either choice will result in a non-planar graph. Thus, we will choose to draw
the edge between v5 and v3 by blocking v1 and v2. Of course, now that v2 is
blocked we cannot construct the edge from v2 to v4 so K5 cannot be a planar
graph.

I am now going to provide a more rigorous proof which uses the corollary of
Euler�s Formula.

Proof. The graph K5 has 5 vertices and
5(4)
2 = 10 edges. From Corollary 20,

we know that e � 3v � 6 in every planar graph. Therefore, we can see that
this corollary is not satis�ed since 3(5)� 6 = 9 < 10. So K5 is not planar.

The following theorem provides us with a relationship between the chromatic
number of a graph and the degree of each vertex in the graph.

Theorem 24 If G is critical with chromatic number �, then the degree of each
vertex of G is greater than or equal to �� 1 [2].

Proof. Let G be a critical graph with chromatic number �. We will assume
by contradiction that G has a vertex P of degree d < � � 1. We will label
the d vertices adjacent to P by P1; P2; :::Pd. Next, remove vertex P and all of
the edges connected to P . We now have the graph G � P which is a proper
subgraph of G. Thus, �(G�P ) < �(G) and there is a coloring of G�P using
less than or equal to �� 1 colors. Consider such a coloring of G� P . For the
d vertices, P1; P2; :::Pd, no more than d � ��2 di¤erent colors are used. Then,
there is at least one of the � � 1 colors not being used for the d neighbors of
P . Assigning this color to P gives a coloring of G with � � 1 colors or less.
Therefore, � is not the chromatic number of G which is a contradiction to the
original assumption. Thus, the degree of each vertex of G is greater than or
equal to �� 1.

There is also a relationship between the number of vertices, edges, and the
chromatic number of a graph G. The proof of this theorem uses both the
Handshake Theorem and the previous theorem.

Theorem 25 If G is a critical graph with v vertices and e edges, and G has
chromatic number �, then the relation (�� 1)v � 2e holds [2].

Proof. Assume G is a critical graph with v vertices, e edges and chromatic
number �. By Theorem 24 each vertex of G has degree greater than or equal
to �� 1. Then, using Theorem 21, we get (�� 1)v � 2e.
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We know that two graphs can be homeomorphic. If that is the case, then
the di¤erence between the number of edges and vertices is the same for both
graphs.

Theorem 26 If the graphs G and G0 are homeomorphic, then v � e = v0 � e0
[2].

Proof. In a subdivision of dimension one, one edge is replaced by two edges
and one additional vertex. Therefore, we are adding a vertex and adding an
edge so the value of v� e is unchanged. We must also consider if this holds for
a composition of dimension one. In a composition of dimension one, two edges
are composed into one edge by removing the common vertex. Therefore, we
are subtracting a vertex and an edge so it stays balanced. Therefore, the value
of v � e is unchanged.

Usually, a vertex can have any degree greater than or equal to 1. This is not
the case for vertices in a boundary pseudograph. The next theorem shows us
that each vertex in a boundary pseudograph has degree 2. This unique quality
will be useful later.

Theorem 27 Each vertex of the boundary pseudograph of a partial polyhedron
is of degree 2 [2].

Proof. Consider the plane representation of a polyhedron with a vertex v0
incident with a boundary edge. If this vertex v0 is incident with no labeled
edge of the polygon then the degree of v0 is 2 even after identifying all of the
labeled edges. If not, the only other option for v0 is for it to be incident
to one boundary edge and one labeled edge. Then, it could get identi�ed to
another vertex that is either incident to a boundary edge and a labeled edge
or one that is incident to two labeled edges. In regard to the �rst case, the
identi�cation process would be over and the vertex would have degree 2. In
regard to the second case, the identi�cation process would continue until the
vertex was incident to one boundary edge. At that point, the identi�cation
process would have to stop and the vertex would have degree 2.

We have already established a bound for the Euler characteristic of a polyhe-
dron. Now, we will prove that the Euler characteristic for a partial polyhedron
also has an upper bound.

Theorem 28 If T is a partial polyhedron, then E(T ) � 1 [2].

Proof. Let T be a partial polyhedron. The boundary pseudograph B of T has
only vertices of degree 2. Therefore, B consists of k circuits where k � 1. Let
s1; s2; :::; sk be the lengths of these circuits. Then take k additional polygons,
namely, an s1� gon, an s2� gon,..., and an sk� gon. Identify the boundary
of the si� gon with the corresponding circuit of boundary sides of T where
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Figure 4: Graph G

i = 1; 2; :::; k. The polyhedron P which is obtained has f + k polygons where
f is the number of faces of T . So, we have

E(P ) = v � e+ (f + k) = E(T ) + k � 2.

Since k � 1, we have shown that E(T ) � 1.

The next theorem requires us to form partial polyhedra by cutting a poly-
hedron along a graph. This can be di¢ cult to imagine, so we will look at two
examples that show how partial polyhedra are formed. Let Figure 4 be Graph
G. We are going to use composition of dimension one to make this a graph
with only three vertices and three edges. Then we can embed the graph onto
the tetrahedron. This is shown in Figure 5 and is now known as the graph G0.
To create the partial polyhedra, we will cut along the edges of G0. This will
form two partial polyhedra which are shown in Figure 6 and Figure 7. The �rst
partial polyhedron, T1 is the tetrahedron with one face removed. The second
partial polyhedron, T2 is the face of the tetrahedron. Now, we will change our
initial graph slightly. Let Figure 8 be Graph H. Again, we will use compo-
sition of dimension one but this time we will get a graph, H 0, that has three
vertices and only two edges. We will embed this graph onto the tetrahedron
as shown in Figure 9. When we cut along the edges of H 0 this time it will not
completely split the tetrahedron into seperate pieces. Instead, we are left with
the polyhedron but one of the faces is now a �ap, meaning it is only connected
by one edge. Hopefully, this example helps explain the process of making the
partial polyhedra. It also shows that in some instances, there is only one partial
polyhedra formed.

Theorem 29 Let G be a graph where each vertex has degree greater than or
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Figure 5: Graph G0 on the Tetrahedron

Figure 6: Partial Polyhedron T1
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Figure 7: Partial Polyhedron T2

Figure 8: Graph H

14



Figure 9: Graph H 0 on the Tetrahedron

Figure 10: Partial Polyhedron
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equal to 2. If G can be embedded into a closed surface S, then e � 3v � 3E(S)
[2].

Proof. Let G be a graph in which each vertex has degree greater than or equal
to 2. Also, let v be the number of vertices and e be the number of edges in G.
Assume G can be embedded into a closed surface S. Then, by de�nition, there
exists a polyhedron P on S and a subgraph G0 of the 1-skeleton of P which
is homeomorphic to G. Each edge of G0 corresponds to two polygon sides
in the plane representation of P . Therefore, there are 2e0 polygon sides which
correspond to the edges of G0. Now, omit the labeling of these 2e0 polygon sides.
By doing this, the polyhedron is broken down into partial polyhedra T1; T2; :::Tt.
You may think of this process as cutting the polyhedron along G0. Let �(i)0 be
the number of vertices, �(i)1 be the number of edges, and �(i)2 be the number of
faces in Ti where i = 1; 2; :::; t. Let �0; �1; �2 be these values for the polyhedron
P . We want to �nd these values. When we cut the polyhedron along G0, one
vertex could get split into several di¤erent partial polyhedron. Consider a
disc around a speci�c vertex. If that disc gets split into two regions after the
cutting process, then that speci�c vertex becomes two vertices. Similary, if the
disc gets split into three regions, then the speci�c vertex will become a vertex in
three di¤erent partial polyhedra. Therefore, we are adding deg(v)� 1 vertices
for every vertex in G0. So, the number of vertices in the polyhedron is

�0 =
tX
i=1

�
(i)
0 �

X
v2G0

deg v +
X

1
v2G0

=

tX
i=1

�
(i)
0 �

X
v2G0

deg v + v0:

To �nd �1, we will �nd the sum of the edges in all of the partial polyhedra.
Here, we must remember that the edges we cut along became an edge in two
di¤erent partial polyhedra. Therefore, we must subtract the number of edges
in G0. So, the number of edges in the polyhedron is

�1 =

tX
i=1

�
(i)
1 � e0:

The last value we need to �nd is the number of faces in the polyhedron. This
is simply the sum of the faces in all of the partial polyhedra.

�2 =
tX
i=1

�
(i)
2

By the Handshake Theorem, the sum of the degrees of all vertices in the graph
G0 is equal to 2e0. Let E(S) be the Euler characteristic. Then, using Euler�s
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formula we get

E(S) = �0 � �1 + �2

=
tX
i=1

�
�
(i)
0 � �(i)1 + �

(i)
2

�
� 2e0 + v0 + e0

=
tX
i=1

�
�
(i)
0 � �(i)1 + �

(i)
2

�
+ v0 � e0

=
tX
i=1

E(Ti) + v
0
� e

0

Using Theorem 26 we obtain

E(S) =
tX
i=1

E(Ti) + v � e.

Then, we can use Theorem 28 to get

E(S) � t+ v � e.

Now, let�s compare t to e. Since G has no vertex with degree less than or equal
to 1, each circuit must have at least length 3. Each edge in G is represented
by a path in G0. Therefore, the boundary pseudograph of each Ti represents
at least 3 edges of G. Each edge in G corresponds to 2 or 1 of the partial
polyhedra Ti. Thus, 3t � 2e so we obtain that

3E(S) � 3t+ 3v � 3e
3E(S) � 3t+ 3v � 2e� e
3E(S) � 3v � e.

Therefore, we have shown that if G can be embedded into a closed surface S,
then e � 3v � 3E(S).

4 Main Result

The main goal of this project is to prove that every graph on the torus is seven
colorable. I have included Figure 11 along with a description of the �gure that
can be used as some intuition into the 7 Color Theorem. I also have a rigorous
proof of Haewood�s Map Coloring Problem.

Figure 11 shows a torus that has been broken down into rectangles. Label
one of the rectangles color 1. That rectangle is adjacent to six others. All six of
these rectangles are adjacent to six others as well because of the way they wrap
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Figure 11: A map on the torus that requires 7 colors.
http://en.wikipedia.org/wiki/Four_color_theorem

around the edges to form the torus. So, every vertex has degree 6. Therefore,
in order to color this graph we must use at least 7 colors.
The following theorem requires us to know that there is an upper bound on

the number of colors required to color any graph on a �xed surface. This is
not immediately clear. The degree of a vertex can be as large as we want it to
be. Intuitively, then, the chromatic numbers of the graphs on a surface could
keep getting larger and larger. Therefore, it seems as if the chromatic number
of a surface could be in�nite. This is not the case, however. We will show
that the 1-skeleton of a polyhedron is colorable. Euler�s Formula states that
v�e+f = 2�g where g 2 N. Earlier, we also determined that e � 3v�6+3g.
Now, let�s consider the critical graph G that cannot be seven colored. Let w
be the vertex in G with the minimum degree. Suppose deg(w) � k8w 2 G.
Then kv �

P
deg(w) = 2e, so kv

2 � e. We can now substitute this in for e in
the above equation. Then, we have

kv

2
� 3v � 6 + 3 _g

kv � 6v � 12 + 6g

k � 6v � 12 + 6g
v

k � 6� 12 + 6g

This relationship now lets us set an upper bound to the chromatic number of
the 1-skeleton of a polyhedron. Since every embedded graph on the torus is
homeomorphic to a subgraph of the 1-skeleton, they can be colored as well.
Therefore, every graph on the torus is colorable. For instance, if we set g = 2
we �nd that

k � 6� 12 + 6(2)
k � 6:

Therefore, there must be at least one vertex in the graph that has degree less
than or equal to 6 so the degw � 6. If we remove w from G, then G is seven
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colorable. Since w has degree less than or equal to 6, it can have at most 6
neighbors. Color the neighbors. If each of the neighbors needs a di¤erent
color, then only 6 colors have been used. Therefore, there is a seventh color
still available for w.
This seems to be a nice way to prove that the Seven Color Theorem for

graphs on a torus is true, however, it is not as sharp as Theorem 30. This is
because Theorem 30 can be used for graphs on any surface and it turns out that
this method only works nicely for g = 0 or g = 2. Beyond that, this method
extremely overestimates the number of colors required. It is a useful tactic
though since it does show us that for a �xed surface there is an upper bound
on �(S).

Theorem 30 If S is a closed surface with Euler characteristic E(S) 6= 2 then

�(S) �
�
7+
p
49�24E(S)
2

�
[2].

Proof. There exists a graph G which can be embedded into S such that �(G) =
�(S). We can assume that G is critical, therefore, each proper subgraph of G
has a chromatic number smaller than that of G. If G were not critical, we could
choose a critical subgraph of G that has the same chromatic number. Since
G is critical, we know that every vertex in G has degree at least � � 1 from
Theorem 24. Also, K4 can be embedded on every surface since it is planar
and the degree of every vertex in K4 is 3. Therefore, � must be at least 3 so
every vertex in G must have degree greater than or equal to 2. By Theorems
25 and 29 it follows that if �(G) = � and E(S) = E then (� � 1)v � 2e and
e � 3v � 3E where v is the number of vertices and e is the number of edges in
G. By substitution of those two inequalities, we �nd that (�� 1)v � 6v � 6E.
Now, dividing both sides of this inequality by v gives

�� 1 � 6� 6E
v
:

We will now assume that E(S) � 0 since we want to prove this true for graphs
on a surface with g = 0. Since � is de�ned to be the number of colors required
to color the graph, we know that � will not exceed the number of vertices in
the graph and � � 1. Thus, v � � so we can replace v with �. This gives
� � 1 � 6 � 6E

� . We will now multiply by � to get rid of the fraction which
gives

�2 � � � 6�� 6E:
To solve this inequality, we want to move everything to the left hand side which
makes the right hand side 0. Thus, we have

�2 � 7�+ 6E � 0:

Using the quadratic formula, we can rewrite this inequality in the form�
�� 7 +

p
49� 24E
2

��
�� 7�

p
49� 24E
2

�
� 0:
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Since E � 0, it follows that
p
49� 24E � 7. Also, since � � 1, the second factor

of our inequality will always be positive. It follows then that the �rst factor must

be less than or equal to 0. Thus, we have proven that �(S) �
�
7+
p
49�24E(S)
2

�
.
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