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EXISTENCE OF THE SOLUTIONS OF FORCED PENDULUM 
EQUATION BY VARIATIONAL METHODS 

Irina MEGHEA1, Victoria STANCIU2 

In această lucrare este reluat un rezultat de calcul variaţional şi prezentat 
într-o variantă îmbunătăţită a enunţului şi a demonstraţiei. Impreună cu alte două 
rezultate clasice ale calcului variaţional, teorema menţionată este implicată în  
demonstrarea unui rezultat ce caracterizează existenţa a cel puţin două soluţii de 
perioada T care nu diferă între ele printr-un multiplu de 2π în anumite condiţii 
pentru ecuaţia pendulului forţat. 

A result of variational calculus is taken and presented in an improved form 
both of the statement and proof. Together with other two classical results, the 
announced theorem is used to demonstrate a statement which characterizes the 
existence of at least two T-periodic solutions which not differ by a multiple of 2π in 
some prescribed conditions for the equation of the forced pendulum. 

  
Key words: variational calculus, forced pendulum, T-periodic solution, minimax  
                    theorem, critical point, (PS)c, F condition,  

1. Introduction 

In this paper two variant of the minimax theorem in Finsler manifold and a 
corollary of the second of them are discussed in order to obtain as an application 
of these three results a characterization of the solutions of forced pendulum 
equation. 

A minimax theorem (here 2.3, [1], [2]) is retaken and improved, giving 
also an improved proof (by using Ekeland variational principle, [3], [4], [2]) 
together with other variant of minimax theorem in Finsler manifold with a 
corollary of it ([1], [2]). 

This approach of the problem of the forced pendulum was used in papers 
[1-2]. A characterization of two T-periodic solutions for the forced pendulum 
equation which not differ by a multiple of 2π obtained under some conditions is 
here presented using the above three minimax results.  
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For the classical forced pendulum equation,  

sin ( )x A x f t+ =��  

where A=g/l is a constant with g being the gravity constant and l being the length 
of the pendulum, and f is a T-periodic function which is regarded as an external 
force, the existence or nonexistence of periodic solutions with prescribed minimal 
periods is involved in many modeling problems of similar complex fenomena. 
Other approaches with new results are obtained by applying also the critical point 
theory and by using a decomposition technique to better estimate the critical 
values associated with a variational functional [5]. 

2. Tools: two minimax results and some definitions 

In order to prove one important variational theorem of minimax, one gives 
two classical statements which are used in the demonstrations of our statements. 

2.1 Ekeland principle. Let (X, d) be a complete metric space and ϕ : X →  
→ (− ∞, + ∞] bounded  from below, lower semicontinuous and proper. For any 
ε > 0 and u of  X with 

ϕ(u) ≤  inf ϕ(X) + ε 
and for any λ > 0, there exists vε  in X such that 

                                 ϕ(vε) < ϕ(w) + λ
ε

d(vε , w) ∀ w ∈ X \ {vε} 

and 
        ϕ(vε) ≤ ϕ(u),          d(vε, u) ≤ λ 

([3], [2]). 
 2.2 Ghoussoub deformation lemma. Let X be a Finsler C1-manifold 

connected and complete, φ : X → R of  C1class, and A, B nonempty disjoint 
subsets, A closed and B compact.  

If ||dφ(x)|| > 2ε, ε > 0, ∀ x ∈ B, then ∀ λ > 1 there exist g : X → R+ 
continuous, α in C([0, 1] × X; X) and t0 in (0, 1]  such that, ∀ t from [0, t0), we 
have 

1○ α(t,x) = x ∀ x ∈ A, α(0, x) = x ∀ x ∈ X; 
2○ ρ(α(t, x), x) ≤ λt ∀ x ∈ X; 
3○ ϕ(α(t, x)) − φ(x) ≤ − εg(x)t ∀ x ∈ X; 
4○ g(x) = 1 ∀ x ∈ B 

([1], [2]). 
Explanation. ρ is the Finsler metric on X. The elements of C([0, 1] × X; X) 

are called deformations. 
 Remark. Ghoussoub lemma remains true by removal only of the property 

1○ α(t, x) = x ∀ x ∈ A, in the case A = ∅ (obviously B ≠ ∅) − the only change in 
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the proof being undergone by the function ν (see (4)) : ν(x) = 1 for x ∈ B, ν (x) = 0 

for x ∈ X \∪
n

1k
k

=

V . 

Definition. Let X be a topological space, M a  compact subset and K  a 
nonempty set of compact nonempty subsets of X. 

K is homotopy-stable with boundary M (homotopy-stable, in the case 
M = ∅ ) if 

1○ M ⊂ A ∀ A ∈ K ; 
2○ For every α in C([0, 1] × X ; X), with the property 

α(t, x) = x ∀ (t, x) ∈ ({0} × X) ∪ ([0, 1] × M), 
and for every A in K   we have 

α({1} × A) ∈ K . 
One presents the two announced minimax results. 
2.3 Minimax theorem. Let X be a Finsler C1-manifold connected 

complete, φ: X → R of C1 class, K a set of nonempty compact subsets 
homotopy-stable with  boundary M and 

c = c(φ, K ) : =
K∈A

inf sup φ(A). 

If 
(F0)                                                sup φ(M) < c, 
then for every sequence (An)n≥1 from K  with 

∞→n
lim sup φ(An) = c there is a 

sequence (xn)n≥1 in X with the properties 
1○ 

∞→n
lim φ(xn) = c, 

2○ 
∞→n

lim ||dφ(xn)|| = 0, 

3○ 
∞→n

lim dist (xn , An) = 0. 

The statement of the theorem remains true in the case M = ∅ considering 
sup φ(∅) = − ∞. 

Proof. For every An ∃ ρ > 0 such that c ≤ sup φ(An) ≤ c + ρ, let γ n be the 
infimum of this numbers ρ, thus c ≤ sup φ(An) ≤ c + γ n . We have

∞→n
lim γ n = 0: 

supposing  par absurdum the contrary, one finds u > 0 such that nkγ > u ∀ n, 

( nkγ ) a subsequence of  (γ n); but for n ≥ N sup ϕ(An) ≤ c + u, hence for a kn > N 

we have sup φ(
nkA ) ≤ c + u < c + nkγ , a contradiction . Then denoting εn : = γ n 

+ n
1

, we have 

∀ n  c ≤ sup φ(An) ≤ c + εn , εn > 0 and εn → 0. 
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This relation shows that if, by means of (1) c ≤ sup φ(A) < c + ε2, where A ∈ K  
and ε > 0, one can find xε in X such that 

c ≤ φ(xε) ≤ c + ε2, ||dφ(xε)|| ≤ 4ε, dist (xε , A) ≤ ε, 
then the proof is finished. 

Consider the subset D of C([0, 1] × X; X) of the deformations η with 
                       η(t, x) = x for (t, x) ∈ ({0} × X) ∪ ([0, 1] × M) (2) 

and 
                           sup{ρ(η(t, x), x): (t, x) ∈ [0, 1] × X} < + ∞   (3) 

(ρ the Finsler metric on X). 
Endow D with the distance (use (3) and the triangle inequality) 

                  d(η1 , η2) = sup{ρ(η1 (t, x), η2 (t, x)): (t, x) ∈ [0, 1] × X}  (4) 
and one obtains a complete metric space (attention, X is complete!). 

Consider the function Φ : D → R, 
                                       Φ(η) = sup{η(1, x): x ∈ A}.    (5) 

This definition is correct since x → φ(η(1, x)) is continuous and A compact. Φ is 
lower bounded by c (η({1} × A) ∈ K !) and lower semicontinuous. 

Designate by η1 the deformation from D 
η1 (t, x) = x on [0, 1] × X (it is correct, ρ(x, x) = 0). 

We have 

                    Φ(η1) = sup φ(A)
(1)
< c + ε2 ≤ inf{Φ(η): η ∈ D } + ε2.  (6) 

Apply Ekeland principle (2.1) with ε2 and λ = ε, ∃ η0 in D such that 
                                                Φ(η0) ≤ Φ(η1),     (7) 
                                                 d(η0 , η1) ≤ ε,     (8) 
                             Φ(η0) − εd(η, η0) ≤ Φ(η) ∀ η ∈ D.   (9) 

Let be B0 : ={x ∈ η0 ({1} × A) : φ(x) = Φ(η0)}, a nonempty compact set (η0 

({1} × A) is compact). By the hypothesis (F0) we have 
                                                      B0 ∩ M = ∅    (10) 

(par absurdum, η0 ({1} × A) ∈ K  (the homotopy-stability), the definition of c). It 
remains to prove 

                                 ∃ xε in B0 such that ||dφ(xε)|| ≤ 4ε,   (11) 

since xε ∈ B0 ⇒ c ≤ φ(xε) < c + ε2 (φ(xε) = Φ(η0)
(7)
≤ Φ(η1)

(6)
< c + ε2) and dist (xε , A) 

≤ ε   (d (η0 , η1)
(8)
≤ ε ⇒

Ax
sup

∈
ρ(η0 (1, x), x) ≤ ε, but xε = η0 (1, a) with a ∈ A, hence 

ρ(xε , a) ≤ ε, dist (xε , A) ≤ ε). 
Let us prove (11). Suppose par absurdum the contrary, (12) ||dφ(x)|| > 4ε 

∀ x ∈ B0 . Let λ be from the interval (1,2). One applies Lemma 2.2 to the compact 
nonempty disjoint sets M and B0 ((10),(12)), there exists g, α and t0 with the 
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agreed properties. For every τ from (0, t0) consider the function η τ : [0,1] × X → 
→ X, 

                                           ητ (t, x) = α(t τ, η0 (t, x)).    (13) 
η τ ∈ D : ητ is continuous; (t, x) ∈ ({0} × X) ∪ ([0,1] × M) ⇒ ητ (t, x) = α(t τ, (14) 

η0 (t, x)) = α(tτ, x) = x (Lemma 2.2, 1○); sup {ρ(ητ (t, x), x): t ∈ [0, 1], x ∈ X} < + ∞ 
(use (13) and 2○ of Lemma 2.2 with a triangle inequality). 

d (η τ  , η0) = sup {ρ(ητ (t, x), η0 (t, x)): (t, x) ∈ [0, 1] × X} = 
sup{ρ(α(tτ, η0 (t, x)), η0 (t, x)): 

(t, x) ∈ [0, 1] × X}
022.2 ,

≤ λτ and hence, taking into account (9), 
                                         Φ(ητ) ≥ Φ(η0) − ελτ.    (15) 

Let xτ be in A such that (16) Φ(ητ) = φ(ητ (1, xτ)) ((5), A is compact). Then taking 
into account (15), (16) and (57), 

                        φ(ητ (1, xτ)) − φ(η0 (1, x)) ≥ − ελτ ∀ x ∈ A.   (17) 
On the other hand, according to 3○ of Lemma 2.2, 
        φ(ητ (1, xτ)) − φ(η0 (1, xτ)) = φ(α(τ, η0 (1, xτ)) − φ(η0 (1, xτ)) ≤  

− 2ετg(η0 (1, xτ)).   
Combining (17) and (18), one finds 

                                        − ελ ≤ − 2εg(η0 (1, xτ)).     (19) 

Take τ = m
1

, m ∈ N and let (
mk
1x )m≥1 be a convergent subsequence of  (

mk
1x )m≥1, 

mk
1x → x0 . Obviously x0 ∈ A. Replacing into (13) and passing to the limit for 

m → ∞, we get 

(20) 
∞→n

lim
mk
1η (t, 

mk
1x ) = 

∞→n
lim α (

mk
t , η0 (t, 

mk
1x )) = α(0, η0 (t, x0)) = η0 (t, x0) (take 

t = 0 in 2.2,1○ ). But φ(ητ (1, xτ))
(16)(15),

≥ Φ(η0) − ελτ. Take τ =
m

1
k , then the limit for 

m → ∞ and combining with (20) one finds φ(η0 (1, x0)) ≥ Φ(η0), whence φ(η0 (1, 

x0))
(5)
=  Φ(η0), i.e. φ(η0 (1, x0)) ∈ B0. Consequently, g(η0 (1, x0)) = 1 (Lemma 2.2, 

4○), which, confronted with (19) in which τ =
m

1
k  and passing to the limit, gives 

λ ≥ 2, contradiction, and hence (11). 
Finally, in the case M = ∅, it only remains to point out the remark to 

Lemma 2.2 in order to finish the proof (for instance (14) remains true since 
M = ∅ ). ■ 

Definition. The sequence (An)n≥1 from K  is min-maxing for φ if 
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∞→n
lim sup φ(An) = c. 

2.4 Minimax theorem. Let X be a complete connected Finsler 
C1-manifold, φ: X → R of C1 class, K  a set of nonempty compact subsets 
homotopy-stable with boundary M, 

c = c(φ, K ): =
K∈A

inf sup φ(A) ∈ R 

and F a closed nonempty subset of  X. If 
(F1)                           F ∩ M = ∅ and F ∩ A ≠ ∅ ∀ A ∈ K 

and 
(F2)                                                  inf φ(F) ≥ c, 
then for every sequence (An)n≥1 from K  which is min-maxing for φ there is a 
sequence (xn)n≥1 in X with the properties 

1○ 
∞→n

lim φ(xn) = c, 

2○ 
∞→n

lim ||dφ(xn)|| = 0, 

3○ 
∞→n

lim dist (xn , F) = 0, 

4○ 
∞→n

lim dist (xn , An) = 0. 

The assertion of the theorem remains also true in the case M = ∅. 
Remark. Theorem 2.4 justifies the name of „strong form” with respect to 

the Theorem 2.3, since if (F0) is verified, then F : = {x ∈ X : φ(x) ≥ c} satisfies 
(F1) and (F2), and consequently there is a sequence (xn)n≥1 in X with the properties 
1○, 2○, 3○ and 4○ , and 1○, 2○ and 4○ are stated in Lemma 2.3. 

Definition. Let (An)n≥1 be a sequence from K . φ verifies 
(PS)c, F condition along of (An)n≥1 

if every sequence (xn)n≥1 from X with the properties 

∞→n
lim φ(xn) = c,

∞→n
lim ||dφ(xn)|| = 0,

∞→n
lim dist (xn , F) = 0 and 

∞→n
lim dist (xn , An) = 0 

has a convergent subsequence. 
2.5 Corollary. In the assumptions of Theorem 2.4, if in addition φ verifies 

(PS)c, F along a min-maxing sequence (An)n≥1 from K , then there is a critical 
point x0 of φ at the level c situated in F and 

∞→n
lim dist (x0 , nkA ) = 0. 

Proof. Let (xn)n≥1 be a sequence in X given by Theorem 2.4 and a 
convergent subsequence ( nkx )n≥1, nkx → x0 . Then, since φ( nkx ) → φ(x0) and 

dφ( nkx ) → dφ(x0), we have φ(x0) = c and dφ(x0) = 0. Moreover, since dist (x0 , F) 

≤ ρ(x0 , nkx ) + dist ( nkx , F), we have x0 ∈ F. It is also obvious that dist (x0 , nkA ) 
→ 0. ■ 
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Remark. Using the notations Kc : = {x ∈ X : ϕ(x) = c, ∇β (x) = 0}and A∞ : = 
{x ∈ X : 

∞→n
lim dist (x, An) = 0}, the assertion of Corollary 2.5 can be expressed by 

F ∩ A∞ ∩ Kc (φ) ≠ ∅. 

3. Formulation of the problem for the forced pendulum 

Let h : R → R be a 2π-periodic function of C1 class and  f : R → R a 
T-periodic continuous function. Consider the differential equation 
(21)                                             u�� + h′(u) = f (t) a.e. 
(the forced pendulum equation for h(u) = − cos u; the point indicates the 
derivative with respect to t, the time). 

We use Theorem 2.3 and Corollary 2.5 to obtain a proposition about the 
existence of the solutions of (21). 

Let H be the Hilbert space of T-periodic absolutely continuous functions u on R 

for which ∫
T

0

2|)(| tu� dt < + ∞ with the scalar product 

                                           u ⋅ v = ∫ +
T

0

)( dtuvvu �� .    (22) 

H is a connected complete Finsler manifold. 
 The solutions of (21) are the critical points of the action – functional 
ϕ : H → R,  

                                φ(u) = ∫ +−
T

0

2 )]()())((2
1[ tutftuhu� dt    (23) 

(the coherence of the assertion is provided by the corresponding theorems of 
Lebesgue, Jordan and Riesz). 

4. Solutions of the problem and their characterization 

2.6 Suppose ∫
T

0

f(t) dt = 0. Then the equation (21) has at least two 

T-periodic solutions which not differ by a multiple of 2π. 
Proof. Put for every u in H 
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                                   ku : = T
1 ∫

T

0

)(tu dt, vu : = u − ku .    (24) 

Thus 

                                  φ(u) = ∫ ++−
T

0
uuu

2 ))(2
1( vfkvhu� dt.    (25) 

Obviously φ(u + 2π) = φ(u). 
Prove 

                                             φ is lower bounded.    (26) 
One finds, using Schwarz and Wirtinger inequalities (a : = sup h(R), ρ > 0), 

           φ(u) ≥ ∫
T

0

2
u2

1 v� dt – aT –
2
1

T

0

2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtf
2
1

T

0

2
u ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtv ≥ ∫
T

0

2
u2

1 dtv� − aT –  (27) 

− ρ
2
1

T

0

2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtf
2
1

T

0

2
u ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtv� =
2
1

T

0

2
u ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtv� [ 2
1

2
1

T

0

2
u ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtv�  − ρ
2
1

T

0

2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∫ dtf ] – aT 

and consequently (26). 
Consider, for every N in N, 

                                 FN : = {u ∈ H : ∫
T

0

)(1 dttuT ≤ 2Nπ}.   (28) 

Prove 
                     ϕ verifies ( )

NFc,PS for every c ∈ R and N ∈ N.   (29) 
Let (un)n≥1 be a sequence in H with (30) 

∞→n
limφ(un) = c, 

∞→n
limφ′(un) = 0 and         

∞→n
lim dist (un , FN) = 0. Using again Wirtinger inequality to (27) we find that 

( )
nuv n≥1 is bounded in H. Moreover, (30) allows us to admit that ( )

nuk n≥1 , and 
consequently also (un)n≥1 , is bounded in H. Since H has a compact embedding in 
L2(R), there is a subsequence (un)n≥1, denote it identically, with the properties 
(31)                un → u uniformly on [0, T ], nu� → u�  weakly in L2(R). 
Then, for m and n arbitrary, 

ϕ′(un − um)(un − um) = ∫ −
T

0

2
m

2
n )dt( uu �� − ∫ −−′

T

0
mnmn ))(( dtuuuuh ≥ 2

2mn uu �� −  − α||un − 

um||∞ , α > 0. Taking into account (30) and (31) one gets 2mn uu �� − → 0 for 
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m, n → ∞, this imposes (un)n≥1 Cauchy sequence and consequently convergent 
in H. 

Now combining (26) with (29) we get that φ has a global minimum u0 in H and    
φ(u0 + 2π) = φ(u0). 

Let K  be the set of continuous paths in H that joint u0 with v : = u0 + 2π (v ∈ 
H !). K  is homotopy-stable with boundary M : = {u0 , v}. Let F : = Sρ be the 
sphere centred at u0 with radius ρ, ρ < ||u0 − v||. F is dual of K  and (F3) is 
verified: 
(32)                  sup φ(M) = sup {φ(u0), φ(u0 + 2π)}= φ(u0) ≤ inf φ(F), 
u0 being a global minimum point. 

Let be c : = c (φ, K ). Only the following two situations are possible and in 
each of these we find two T-periodic solutions of (21) which do not differ by a 
multiple of 2π. 

The case c = φ(u0). Let Sρ be as above, ρ < ||2π||. Since for N high enough we 
have Sρ ⊂ FN , (29) validates the assertion ϕ verifies (PS)c,

ρS . As (F1) and (F2) are 

also verified with respect to Sρ , Corollary 2.5 gives a critical point uρ for φ in Sρ 
at the level c, i.e. uρ is a solution of (21). There is ρ0 such that 0ρu ≠ u0 + 2π, in the 
opposite case, contracting the spheres in u0 , one finds a sequence (un)n≥1 , un = u0 + 
2π , with un → u0, contradiction. Thus u0 and 0ρu verify the statement. 

The case c > φ(u0). Since sup φ(M)
(2.2)
= φ(u0), we have in fact sup φ(M) < c, 

apply Theorem 2.3 and one finds (un)n≥1 a sequence in H with 
∞→n

lim φ(un) = c, 

∞→n
lim φ′(un) = 0. But the periodicity of φ allows to admit un ∈ F1 ∀ n ≥ 1, then enter 

in action (29) and one gets v0 a critical point at the level c. Since c ≠ φ(u0), a 
fortiori v0 ≠ u0 + 2π. ■ 

5. Applications 

For the classical forced pendulum equation, h from (21) has the particular 
form: 

                                               h (u) = – cos u.     (33) 
 The functional ϕ : H → R takes its particular form: 

                              ϕ (u) = ∫ ++
T

0

2 )]()())(cos(2
1[ dttutftuu� .   (34) 
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 When we have in the classical forced pendulum equation a function f 

which verifies: ∫
T

0
f(t) dt = 0, the equation (21) has at least two T-periodic solutions 

which not differ by a multiple of 2π (see Proposition 2.6). These solutions are 
obtained as critical points of the action - functional ϕ. 

 If the problem of classical pendulum equation is under the conditions 
asked in Proposition 2.6, we can construct u0 as a global minimum for ϕ. Another 
solution, different from u0 not by a multiple of 2π, can be obtained using 
Corollary 2.5 when c = ϕ (u0) and by using Theorem 2.3 if c > ϕ (u0). 

6. Conclusions 

One variational result was improved. It was applied, together with other 
two classical variational statements, to state a proposition characterizing the 
existence of T-periodic solutions. 

One can construct at least two T-periodic solutions which differ by a 
multiple of 2π, first like the global minimum of the action - functional ϕ and the 
second as another critical point for the same function ϕ. 
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