
Copyright © 2010, SAS Institute Inc. All rights reserved.

Utilizing Best Practices
with SAS
and
Macros made easy

Presented by: Josée Ranger-Lacroix
SAS Canada - Education

1

2

What Are Best Practices?

As programmers, you want to perform data driven tasks
as efficiently as possible and optimize the use of the
following resources:

� I/O

� CPU

� memory

� data storage space

� network bandwidth

� programmer time

2

Reducing one resource often increases another.

3

Understanding Efficiency Trade-offs

3

Data Data

Space

CPU

12

6

39

12

6

39

...

Decreasing the size of a
SAS data set can result in
an increase in CPU usage.

4

Understanding Efficiency Trade-offs

4

I/O

Memory

Decreasing the
number of I/O
operations comes
at the expense of
increased memory
usage.

5

Techniques to Reduce Network Traffic (I/O)

� Manipulate the data as close to the source of the data
as possible.

� Transfer subsets of data or summarized data.

6

5 Techniques for Conserving CPU

� Execute only necessary statements.

� Eliminate unnecessary passes of the
data.

� Read and write only the data that you
require.

� Do not reduce the length of numeric
variables.

� Do not compress SAS data sets.

Copyright © 2010, SAS Institute Inc. All rights reserved.

Executing Only
Necessary Statements

8

data totals;

set ia.sales;

PercentCap =

sum(Num1st,NumEcon,NumBus)/CapPassTotal;

NumNonEconomy = sum(Num1st,NumBus);

CargoKG = CargoWeight*0.454;

Month = month(FltDate);

if PercentCap < 0.8;

run;

Subsetting IF Statement at Bottom of Step

Create a new SAS data set from ia.sales. The new

SAS data set should contain four new variables and only
those flights filled to less than 80% capacity.

9

Subsetting IF Statement as High as Possible

data totals;

set ia.sales;

PercentCap =

sum(Num1st,NumEcon,NumBus)/CapPassTotal;

if PercentCap < 0.8;

NumNonEconomy = sum(Num1st,NumBus);

CargoKG = CargoWeight*0.454;

Month = month(FltDate);

run;

10

Comparing Techniques

Technique CPU I/O Memory

I. Subsetting IF at Bottom 2.3 1226.0 265.0

II. Subsetting IF near Top 1.3 1226.0 265.0

Percent Difference 42.8 0.0 0.0

CPU I/O Memory

11

Using Parallel IF Statements

data month;

set ia.sales;

if month(FltDate) = 1 then Month = 'Jan';

if month(FltDate) = 2 then Month = 'Feb';

if month(FltDate) = 3 then Month = 'Mar';

if month(FltDate) = 4 then Month = 'Apr';

if month(FltDate) = 5 then Month = 'May';

if month(FltDate) = 6 then Month = 'Jun';

if month(FltDate) = 7 then Month = 'Jul';

if month(FltDate) = 8 then Month = 'Aug';

if month(FltDate) = 9 then Month = 'Sep';

if month(FltDate) = 10 then Month = 'Oct';

if month(FltDate) = 11 then Month = 'Nov';

if month(FltDate) = 12 then Month = 'Dec';

run;

For the data in ia.sales, create a variable named

Month, based on the existing variable FltDate.

12

Using ELSE-IF Statements

data month;

set ia.sales;

if month(FltDate) = 1 then Month = 'Jan';

else if month(FltDate) = 2 then Month = 'Feb';

else if month(FltDate) = 3 then Month = 'Mar';

else if month(FltDate) = 4 then Month = 'Apr';

else if month(FltDate) = 5 then Month = 'May';

else if month(FltDate) = 6 then Month = 'Jun';

else if month(FltDate) = 7 then Month = 'Jul';

else if month(FltDate) = 8 then Month = 'Aug';

else if month(FltDate) = 9 then Month = 'Sep';

else if month(FltDate) = 10 then Month = 'Oct';

else if month(FltDate) = 11 then Month = 'Nov';

else if month(FltDate) = 12 then Month = 'Dec';

run;

13

Using the Function Only Once

data month(drop=mon);

set ia.sales;

mon = month(FltDate);

if mon = 1 then Month = 'Jan';

else if mon = 2 then Month = 'Feb';

else if mon = 3 then Month = 'Mar';

else if mon = 4 then Month = 'Apr';

else if mon = 5 then Month = 'May';

else if mon = 6 then Month = 'Jun';

else if mon = 7 then Month = 'Jul';

else if mon = 8 then Month = 'Aug';

else if mon = 9 then Month = 'Sep';

else if mon = 10 then Month = 'Oct';

else if mon = 11 then Month = 'Nov';

else if mon = 12 then Month = 'Dec';

run;

14

Using a SELECT Block

data month;

set ia.sales;

select(month(FltDate));

when(1) Month = 'Jan'; when(2) Month = 'Feb';

when(3) Month = 'Mar'; when(4) Month = 'Apr';

when(5) Month = 'May'; when(6) Month = 'Jun';

when(7) Month = 'Jul'; when(8) Month = 'Aug';

when(9) Month = 'Sep'; when(10) Month = 'Oct';

when(11) Month = 'Nov'; when(12) Month = 'Dec';

otherwise;

end;

run;

15

Comparing Techniques

Technique CPU I/O Memory

I. ALL IF Statements 15.9 6797.0 280.0

II. ELSE-IF Statements 9.7 6797.0 288.0

III. Using a Function Once 3.0 6797.0 272.0

IV. SELECT/WHEN Block 3.0 6795.0 263.0

The I/O for each technique is the same.

CPU Memory

16

� Use IF-THEN/ELSE statements when the
following circumstances exist:

− There are few conditions to check.

− The data values are not uniformly
distributed.

− The values are character or discrete numeric
data.

� Check the most frequently occurring condition
first.

Guidelines for Writing Efficient IF/THEN Logic

Copyright © 2010, SAS Institute Inc. All rights reserved.

Eliminating Unnecessary
Passes through the Data

18

Multiple DATA Steps

data rdu;

set ia.sales;

if Dest = 'RDU';

run;

data bos;

set ia.sales;

if Dest = 'BOS';

run;

continued...

Create six subsets from ia.sales, one for each

destination on the East Coast.

19

Multiple DATA Steps

data iad;
set ia.sales;
if Dest = 'IAD';

run;
data jfk;

set ia.sales;
if Dest = 'JFK';

run;
data mia;

set ia.sales;
if Dest = 'MIA';

run;
data pwm;

set ia.sales;
if Dest = 'PWM';

run;

20

Single DATA Step

data rdu bos iad jfk mia pwm;

set ia.sales;

if Dest = 'RDU' then output rdu;

else if Dest = 'BOS' then output bos;

else if Dest = 'IAD' then output iad;

else if Dest = 'JFK' then output jfk;

else if Dest = 'MIA' then output mia;

else if Dest = 'PWM' then output pwm;

run;

21

Comparing Techniques

Technique CPU

I. Multiple DATA Steps 5.2

II. Single DATA Step 1.3

Percent Difference 74.8

CPU

22

DATA Step / PROC SORT Step

data east;

set ia.sales;

where Dest in

('RDU','BOS','IAD','JFK','MIA','PWM');

run;

proc sort data = east;

by Dest;

run;

Create a sorted subset of ia.sales that contains the

flights to the East Coast.

23

PROC SORT Step

proc sort data = ia.sales out = east;

by Dest;

where Dest in

('RDU','BOS','IAD','JFK','MIA','PWM');

run;

24

Comparing Techniques

Technique CPU I/O Memory

I. DATA/SORT 1.8 3490.0 18199

II. SORT with WHERE 1.4 1745.0 18355

Percent Difference 23.4 50.0 -0.9

CPU I/O Memory

2525

Eliminate steps – True for all applications

These 2 processes give you the same results in
Enterprise Guide.

26

Var Name Var Format

ia.sales FlightID $7.

FltDate DATE9.

ia.salesc FlightIDNumber $7.

FltDate MMDDYYP10.

Business Task
Change the variable attributes in ia.salesc to be

consistent with those in ia.sales.

27

DATA Step / PROC DATASETS

data ia.salesc;

set ia.salesc;

rename FlightIDNumber = FlightID;

format FltDate date9.;

run;

proc datasets library=ia nolist;

modify salesc;

rename FlightIDNumber=FlightID;

format FltDate date9.;

quit;

28

Comparing Techniques

Technique CPU IO Memory

I. DATA Step 1.8 9.0 264.0

II. PROC DATASETS 0.1 10.0 173.0

Percent Difference 97.1 -11.1 34.5

Copyright © 2010, SAS Institute Inc. All rights reserved.

Reading and Writing Only
Essential Data

30

Subsetting IF versus WHERE

data west;

set ia.sales;

if Dest in ('LAX','SEA','SFO');

run;

data west;

set ia.sales;

where Dest in ('LAX','SEA','SFO');

run;

Create a subset of the sales data that contains data for
West Coast destinations.

31

Subsetting Using IF

23 data year99;
24 set year8300;
25 if year = 1999;
26 run;

NOTE: There were 40250204 observations read from
the data set YEAR8300.
NOTE: The data set WORK.YEAR99 has 2413228
observations and 14 variables.
NOTE: DATA statement used (Total process time):

real time 5:11.07
cpu time 1:10.04

32

Subsetting Using WHERE

23 data year99;
24 set year8300;
25 where year = 1999;
26 run;

NOTE: There were 2413228 observations read from the
data set YEAR8300.
NOTE: The data set WORK.YEAR99 has 2413228
observations and 14 variables.

NOTE: DATA statement used (Total process time):
real time 2:47.32
cpu time 45.80

33

data west;
infile rawdata ;
input FlightID $7. RouteID $7.

Origin $3. Dest $3.
DestType $13. FltDate date9.
Cap1st 8. CapBus 8.
CapEcon 8. CapPassTotal 8.
CapCargo 8. Num1st 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. Rev1st 8.
RevBus 8. RevEcon 8.
CargoRev 8. RevTotal 8.
CargoWeight 8.;

if Dest in ('LAX','SEA','SFO');
run;

Reading All Variables and Subsetting

34

data west;
infile rawdata ;
input @18 Dest $3. @;
if Dest in ('LAX','SEA','SFO');
input @1 FlightID $7. RouteID $7.

Origin $3.
@21 DestType $13. FltDate date9.
Cap1st 8. CapBus 8.
CapEcon 8. CapPassTotal 8.
CapCargo 8. Num1st 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. Rev1st 8.
RevBus 8. RevEcon 8.
CargoRev 8. RevTotal 8.
CargoWeight 8.;

run;

Reading Selected Variable(s) and Subsetting

Add

35

Comparing Techniques

Technique CPU I/O Memory

I. Subsetting at bottom 4.3 433.0 227.0

II. Subsetting higher up 1.4 425.0 243.0

Percent Difference 67.2 1.8 -7.0

CPU I/O Memory

36

If you process fewer variables and observations,
CPU and/or I/O operations can be affected significantly.

Read and Write Data Selectively

37

Reading and Writing All Variables

Create a report that contains the average and median of
the total number of passengers on the flights for each

destination in ia.sales that has 21 variables.

data totals;

set ia.sales;

NonEconPass =

sum(Num1st,NumBus);

run;

proc means data = totals mean median;

title 'Non-Economy Passengers';
class Dest;

var NonEconPass;

run;

38

Reading All Variables/Writing Two Variables

data totals(keep = Dest NonEconPass);

set ia.sales;

NonEconPass =

sum(Num1st,NumBus);

run;

proc means data = totals mean median;

title 'Non-Economy Passengers';

class Dest;

var NonEconPass;

run;

39

Reading Three Variables

data totals;

set ia.sales(keep = Dest Num1st

NumBus);

NonEconPass =

sum(Num1st,NumBus);

run;

proc means data = totals mean median;

title 'Non-Economy Passengers';

class Dest;

var NonEconPass;

run;

40

Reading Three Variables/Writing Two
Variables

data totals(keep = Dest NonEconPass);

set ia.sales(keep = Dest Num1st

NumBus);

NonEconPass =

sum(Num1st,NumBus);

run;

proc means data = totals mean median;

title 'Non-Economy Passengers';

class Dest;

var NonEconPass;

run;

41

Reading Three Variables/Reading Two
Variables

data totals;
set ia.sales(keep = Dest Num1st

NumBus);
NonEconPass =

sum(Num1st,NumBus);
run;

proc means data = totals
(keep = Dest NonEconPass)
mean median;

title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

42

Comparing Techniques

Technique CPU I/O Memory

I. KEEP not used 2.9 7177 8140

II. KEEP on DATA statement 2.3 656 8138

III. KEEP on SET statement 2.4 1625 8138

IV. KEEP on SET and DATA statements 2.2 662 8138

V. KEEP on SET and PROC statements 2.4 1625 8139

V.

CPU

43

Comparing Techniques

V.

I/O

V.V.

Memory

Copyright © 2010, SAS Institute Inc. All rights reserved.

Use the right tools

45

Using Procedures

Example of selecting appropriate procedures for data
processing:

Use the SUMMARY procedure…

proc summary data=orion.shoe_vendors nway;

var Mfg_Suggested_Retail_Price;

class Line_Name;

output out=summary(keep=Line_Name Avg_MSP)

mean=Avg_MSP;

run;

46

Using Procedures

…instead of the DATA step.

proc sort data=orion.shoe_vendors(keep=Line_Name
Mfg_Suggested_Retail_Price

out=shoe_vendors;
by Line_Name;

run;

data sum;
keep Line_Name Avg_MSP;
set shoe_vendors;
by Line_Name;
if first.Line_Name then do;

Tot_MSP=0;
Count=0;

end;
Tot_MSP + Mfg_Suggested_Retail_Price;
if Mfg_Suggested_Retail_Price ne . then Count+1;
if last.Line_Name then do;

Avg_MSP=Tot_MSP/Count;
output;

end;
run;

47

Using Procedures

Use PROC SQL…

…instead of several DATA and PROC steps.

proc sql;

create table CustOrdProd as

select Customer_Name, Quantity ,Total_Retail_Price,

Product_Name, Supplier

from CustOrd as co,

product_dim as p,

customer as c,

order_fact as o

where co.product_id=p.product_id and

c.customer_id=o.customer_id

order by product_id;

quit;

…instead of several DATA and PROC steps.

48

Using PROC SQL
proc sort data=orion.order_fact out=work.order_fact;

by Customer_ID;

run;

proc sort data=orion.customer out=work.customer_id;

by Customer_ID;

run;

data CustOrd;

merge work.customer(in=cust)

work.order_fact(in=order);

by Customer_ID;

if cust=1 and order=1;

keep Customer_Name Quantity Total_Retail_Price Product_ID;

run;

proc sort data=CustOrd;

by Product_ID;

run;

proc sort data=orion.product_dim out=work.product_dim;

by Product_ID;

run;

data CustOrdProd;

merge CustOrd(in=ord)

product_dim(in=prod);

by Product_ID;

if ord=1 and prod=1;

keep Customer_Name Quantity Total_Retail_Price Product_Name Supplier;

run;

49

Advantages of the SQL over the DATA Step

SQL DATA Step

Is very flexible when joining
multiple tables that do not
have key variables in
common

Can require several steps to
join multiple tables with
different key variables

Can, in some cases, replace
multiple SAS steps

Can require several steps

Is the native language of
databases

Might need to generate SQL
to get to data that is not SAS
data

49

50

Advantages of the DATA Step over SQL

50

DATA Step SQL

Can read data from many
different sources

Can only read from SAS
database tables

Can create multiple tables in
a single pass of the data

Can only output one table at
a time

Has comprehensive
conditional processing

Only has the CASE clause

Can deal with repetitive
programming using loops
and arrays

Does not support loops or
arrays

Choose the right tool for the task to be completed.

51

Selecting Appropriate Functions

Example of selecting appropriate functions for data
processing:

Use one of the CAT functions…

…instead of the concatenation operator and the TRIM
function.

data description;
set orion.organization_dim;
Employment_Description=trim(Company)||' - '||

trim(Department)||' - '||
trim(Section)||' - '||
trim(Org_Group)||' - '||
trim(Job_Title);

run;

data description;
set orion.organization_dim;
Employment_Description=catx(' - ', of Company -- Job_Title);

run;

52

Keeping up to date

Every releases new language elements are added:

Functions:

• PROPCASE, CATX, PERL Regular Expressions…

Formats/Informats:

• ANYDT…, NL …

New/enhanced procedures:

• POWER, GAREABAR, IMPORT …

Macros:

• %SYSMACDELETE, %SYSMACEXEC

Objects & Modules:

• ODS, XMLMAP engine, HASH…

53

Hash Objects: Merging 2 tables

53

data both(drop=rc);

declare Hash Plan ();

rc = plan.DefineKey ('Plan_id');

rc = plan.DefineData ('Plan_desc');

rc = plan.DefineDone ();

do until (eof1) ; /* loop to read records from Plan */

set plans end = eof1;

rc = plan.add (); /* add each record to the hash table */

end;

do until (eof2) ; /* loop to read records from Members */

set members end = eof2;

call missing(Plan_desc);

rc = plan.find (); /* lookup each plan_id in hash Plan */

output; /* write record to Both */

end;

stop;

run;

54

Hash Objects

In the following paper, I cut my processing time by 90%
using hash tables – You can do it too! ,Jennifer K.
WarnerFreeman looked at different ways to merge tables.

“In my own experience I took a process … that was
taking between 2 and 4 hours (depending on network
traffic) to run using a PROC SQL join, and using hash
tables cut the execution time to a consistent 11
minutes.”

http://www.nesug.info/Proceedings/nesug07/bb/bb16.
pdf

55

Conclusion

� BENCHMARK all approaches on realistic
data and hardware

56

Other Techniques to Explore

� BUFNO= and BUFSIZE=

� SGIO option

� SASFILE statement

� HASH tables, Arrays, MERGE, PROC SQL

� Indexes

� SORTSIZE=

� THREADS=

� CLASS statement instead of BY statement

� GROUPFORMAT option

� PERL expressions

� Data step views

Copyright © 2010, SAS Institute Inc. All rights reserved.

SAS Macro made “easy”

58

What Are Best Practices?

As programmers, you want to perform these tasks
as efficiently as possible and optimize the use of the
following resources:

� I/O

� CPU

� memory

� data storage space

� network bandwidth

� programmer time

58

59

Purpose of the Macro Facility

The macro facility is a text processing facility for
automating and customizing flexible SAS code.

The macro facility supports

� symbolic substitution within SAS code

� automated production of SAS code

� dynamic generation of SAS code

� conditional construction of SAS code.

60

Macro Terminology

2 components

� macro processor

� macro language

2 delimiters

� macro variable reference (&name)

� macro call (%name)

2 types of macro variables

� automatic

� user defined

Scope of variables

� global

� local

61

Substitution within a SAS Literal

footnote1 "Created 10:24 Wednesday, 25AUG2008";
footnote2 "on the WIN system using Release 9.1";
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=perm.all;

where upcase(location)="DALLAS";
class course_title;
var fee;
table course_title=" " all="TOTALS",

fee=" "*(n*f=3. sum*f=dollar10.)
/ rts=30 box="COURSE";

run;

62

Substitution within a SAS Literal

Example: Substitute system information in footnotes.

footnote1 "Created &systime &sysday, &sysdate9";
footnote2 "on the &sysscp system using Release
&sysver";
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=perm.all;

where upcase(location)="DALLAS";
class course_title;
var fee;
table course_title=" " all="TOTALS",

fee=" "*(n*f=3. sum*f=dollar10.)
/ rts=30 box="COURSE";

run;

Automatic macro variables, which store system
information, can be used to avoid hardcoding these values.

63

Substitution within a SAS Literal
REVENUES FOR DALLAS TRAINING CENTERREVENUES FOR DALLAS TRAINING CENTERREVENUES FOR DALLAS TRAINING CENTERREVENUES FOR DALLAS TRAINING CENTER

„„„„ƒƒ…………ƒƒƒƒƒƒƒƒƒƒƒƒ…………ƒƒ††††
‚‚‚‚COURSE COURSE COURSE COURSE ‚‚‚‚ N N N N ‚‚‚‚ Sum Sum Sum Sum ‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚Artificial Intelligence Artificial Intelligence Artificial Intelligence Artificial Intelligence ‚‚‚‚ 25252525‚‚‚‚ $10,000$10,000$10,000$10,000‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚Basic Telecommunications Basic Telecommunications Basic Telecommunications Basic Telecommunications ‚‚‚‚ 18181818‚‚‚‚ $14,310$14,310$14,310$14,310‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚Computer Aided Design Computer Aided Design Computer Aided Design Computer Aided Design ‚‚‚‚ 19191919‚‚‚‚ $30,400$30,400$30,400$30,400‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚Database Design Database Design Database Design Database Design ‚‚‚‚ 23232323‚‚‚‚ $8,625$8,625$8,625$8,625‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚Local Area Networks Local Area Networks Local Area Networks Local Area Networks ‚‚‚‚ 24242424‚‚‚‚ $15,600$15,600$15,600$15,600‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚Structured Query Language Structured Query Language Structured Query Language Structured Query Language ‚‚‚‚ 24242424‚‚‚‚ $27,600$27,600$27,600$27,600‚‚‚‚
‡‡‡‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰‰‰‰
‚‚‚‚TOTALS TOTALS TOTALS TOTALS ‚‚‚‚133133133133‚‚‚‚ $106,535$106,535$106,535$106,535‚‚‚‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒŒŠƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒŒŠƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒŒŠƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒŒ

Created 14:56 Friday, 29AUG2008Created 14:56 Friday, 29AUG2008Created 14:56 Friday, 29AUG2008Created 14:56 Friday, 29AUG2008
on the WIN system using Release 9.1on the WIN system using Release 9.1on the WIN system using Release 9.1on the WIN system using Release 9.1

64

Substituting User-Defined Information

Example: Include the same value repeatedly throughout
a program.

proc print data=perm.schedule;
where year(begin_date)=2004;
title "Scheduled Classes for 2004";

run;
proc means data=perm.all sum;

where year(begin_date)=2004;
class location;
var fee;
title "Total Fees for 2004 Classes";
title2 "by Training Center";

run;

What if you have 50 lines of code you need to
update?

65

Substituting User-Defined Information

Example: Include the same value repeatedly throughout
a program.

%Let yr=2008;
proc print data=perm.schedule;

where year(begin_date)=&YR;
title "Scheduled Classes for &YR";

run;
proc means data=perm.all sum;

where year(begin_date)=&YR;
class location;
var fee;
title "Total Fees for &YR Classes";
title2 "by Training Center";

run;

User-defined macro variables enable you to define a
value once, then substitute that value as often as
necessary within a program.

66

Defining a Macro

A macro or macro definition enables you to write macro
programs.

macro-name (follows SAS naming conventions)

macro-text

Can include the following:

� any text

� SAS statements or steps

� macro variables, functions, statements, or calls

� any combination of the above

%MACRO macro-name;
macro-text

%MEND <macro-name>;

67

Generating Data-Dependent Steps

Example: Create a separate data set for each value of a
selected variable in a selected data set. Use the

variable location in perm.schedule.

Listing of PERM.SCHEDULEListing of PERM.SCHEDULEListing of PERM.SCHEDULEListing of PERM.SCHEDULE

Course_ Course_ Begin_Course_ Course_ Begin_Course_ Course_ Begin_Course_ Course_ Begin_
Obs Number Code Location Date TeacherObs Number Code Location Date TeacherObs Number Code Location Date TeacherObs Number Code Location Date Teacher

1 1 C001 Seattle 26OCT2004 Hallis, Dr. George1 1 C001 Seattle 26OCT2004 Hallis, Dr. George1 1 C001 Seattle 26OCT2004 Hallis, Dr. George1 1 C001 Seattle 26OCT2004 Hallis, Dr. George
2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice
3 3 C003 Boston 11JAN2005 Forest, Mr. Peter3 3 C003 Boston 11JAN2005 Forest, Mr. Peter3 3 C003 Boston 11JAN2005 Forest, Mr. Peter3 3 C003 Boston 11JAN2005 Forest, Mr. Peter
4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia
5 5 C005 Dallas 01MAR2005 Hallis, Dr. George5 5 C005 Dallas 01MAR2005 Hallis, Dr. George5 5 C005 Dallas 01MAR2005 Hallis, Dr. George5 5 C005 Dallas 01MAR2005 Hallis, Dr. George
6 6 C006 Boston 05APR2005 Berthan, Ms. Judy6 6 C006 Boston 05APR2005 Berthan, Ms. Judy6 6 C006 Boston 05APR2005 Berthan, Ms. Judy6 6 C006 Boston 05APR2005 Berthan, Ms. Judy
7 7 C001 Dallas 24MAY2005 Hallis, Dr. George7 7 C001 Dallas 24MAY2005 Hallis, Dr. George7 7 C001 Dallas 24MAY2005 Hallis, Dr. George7 7 C001 Dallas 24MAY2005 Hallis, Dr. George
8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice
9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter
10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia
11 11 C005 Boston 20SEP2005 Tally, Ms. Julia11 11 C005 Boston 20SEP2005 Tally, Ms. Julia11 11 C005 Boston 20SEP2005 Tally, Ms. Julia11 11 C005 Boston 20SEP2005 Tally, Ms. Julia
12 12 C006 Seattle 04OCT2005 Berthan, Ms. Judy12 12 C006 Seattle 04OCT2005 Berthan, Ms. Judy12 12 C006 Seattle 04OCT2005 Berthan, Ms. Judy12 12 C006 Seattle 04OCT2005 Berthan, Ms. Judy
13 13 C001 Boston 15NOV2005 Hallis, Dr. George13 13 C001 Boston 15NOV2005 Hallis, Dr. George13 13 C001 Boston 15NOV2005 Hallis, Dr. George13 13 C001 Boston 15NOV2005 Hallis, Dr. George
14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice
15 15 C003 Dallas 10JAN2006 Forest, Mr. Peter15 15 C003 Dallas 10JAN2006 Forest, Mr. Peter15 15 C003 Dallas 10JAN2006 Forest, Mr. Peter15 15 C003 Dallas 10JAN2006 Forest, Mr. Peter
16 16 C004 Boston 24JAN2006 Tally, Ms. Julia16 16 C004 Boston 24JAN2006 Tally, Ms. Julia16 16 C004 Boston 24JAN2006 Tally, Ms. Julia16 16 C004 Boston 24JAN2006 Tally, Ms. Julia
17 17 C005 Seattle 28FEB2006 Hallis, Dr. George17 17 C005 Seattle 28FEB2006 Hallis, Dr. George17 17 C005 Seattle 28FEB2006 Hallis, Dr. George17 17 C005 Seattle 28FEB2006 Hallis, Dr. George
18 18 C006 Dallas 28MAR2006 Berthan, Ms. Judy18 18 C006 Dallas 28MAR2006 Berthan, Ms. Judy18 18 C006 Dallas 28MAR2006 Berthan, Ms. Judy18 18 C006 Dallas 28MAR2006 Berthan, Ms. Judy

68

Generating Data-Dependent Steps

SAS Program and Log
MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;
MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;
MPRINT(SITES): select(location);MPRINT(SITES): select(location);MPRINT(SITES): select(location);MPRINT(SITES): select(location);
MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;
MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;
MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;
MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;
MPRINT(SITES): end;MPRINT(SITES): end;MPRINT(SITES): end;MPRINT(SITES): end;
MPRINT(SITES): run;MPRINT(SITES): run;MPRINT(SITES): run;MPRINT(SITES): run;

NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.
NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.
NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.
NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.

69

Generating Data-Dependent Steps

SAS Program and Log
MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;
MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;
MPRINT(SITES): select(location);MPRINT(SITES): select(location);MPRINT(SITES): select(location);MPRINT(SITES): select(location);
MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;
MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;
MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;
MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;
MPRINT(SITES): end;MPRINT(SITES): end;MPRINT(SITES): end;MPRINT(SITES): end;
MPRINT(SITES): run;MPRINT(SITES): run;MPRINT(SITES): run;MPRINT(SITES): run;

NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.
NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.
NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.
NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.

70

Generating Data-Dependent Steps

Step1: Store data values in macro variables.

You can copy the current value of a DATA step variable into a macro variable
by using the name of a DATA step variable as the second argument to the
SYMPUTX routine.

%let month=1;
%let year=2007;
data orders;

keep order_date order_type quantity total_retail_price;
set orion.order_fact end=final;
where year(order_date)=&year and month(order_date)=&month;
if order_type=3 then Number+1;
if final then call symputx('num', Number);

run;

proc print data=orders;
title "Orders for &month-&year";
footnote "&num Internet Orders";

run;

CALL SYMPUTX('macro-variable', DATA-step-variable);

71

Generating Data-Dependent Steps

%macro sites (data=, var=);
proc sort data=&data(keep=&var)

out=values nodupkey;
by &var;

run;
data _null_;
set values end=last;
call symputx('site'||left(_n_),location);
if last then call symputx('count',_n_);

run;
%put _local_;

Step1: Store data values in macro variables.

LOOP4

continued...

72

Generating Data-Dependent Steps

Partial SAS log with result of %put _local_;

SITES DATA perm.scheduleSITES DATA perm.scheduleSITES DATA perm.scheduleSITES DATA perm.schedule
SITES ISITES ISITES ISITES I
SITES COUNT 3SITES COUNT 3SITES COUNT 3SITES COUNT 3
SITES VAR locationSITES VAR locationSITES VAR locationSITES VAR location
SITES SITE3 SeattleSITES SITE3 SeattleSITES SITE3 SeattleSITES SITE3 Seattle
SITES SITE2 DallasSITES SITE2 DallasSITES SITE2 DallasSITES SITE2 Dallas
SITES SITE1 BostonSITES SITE1 BostonSITES SITE1 BostonSITES SITE1 Boston

The _local_ argument of the %PUT statement lists the
name and value of macro variables local to the currently
executing macro.

73

Generating Data-Dependent Steps

proc print data=orion.year2008;
run;

proc print data=orion.year2009;
run;

proc print data=orion.year2010;
run;

Step 2: Generate the DATA step, using macro loops
for iterative substitution

74

Iterative Processing

Example : generate the same summary report for each
year between 2008 and 2012.

A sas macro program can generate iterative SAS code by
substituting different values in each iterations.

%Macro Loop;
%do i=2008 %to 2012;

proc print data=orion.year&i;
run;

%end;
%Mend;

75

Generating Data-Dependent Steps
Step 2: Generate the DATA step, using macro loops for
iterative substitution. Call the macro.

data
%do i=1 %to &count;
&&site&i

%end;
;
set &data;
select(&var);
%do i=1 %to &count;
when("&&site&i") output &&site&i;

%end;
otherwise;

end;
run;
%mend sites;
%sites(data=perm.schedule, var=location)

76

Generating Data-Dependent Steps

Partial SAS Log

MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;MPRINT(SITES): data Boston Dallas Seattle ;
MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;MPRINT(SITES): set perm.schedule;
MPRINT(SITES): select(location);MPRINT(SITES): select(location);MPRINT(SITES): select(location);MPRINT(SITES): select(location);
MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;MPRINT(SITES): when("Boston") output Boston;
MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;MPRINT(SITES): when("Dallas") output Dallas;
MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;MPRINT(SITES): when("Seattle") output Seattle;
MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;MPRINT(SITES): otherwise;
MPRINT(SITES): end;MPRINT(SITES): end;MPRINT(SITES): end;MPRINT(SITES): end;
MPRINT(SITES): run;MPRINT(SITES): run;MPRINT(SITES): run;MPRINT(SITES): run;

NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.NOTE: There were 18 observations read from the data set PERM.SCHEDULE.
NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.
NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.
NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.

77

Generating Data-Dependent Code

Use a macro loop to create excel sheets by regions.

proc freq data=regions noprint;

table region/ out=tabreg;

run;

Data _null_;

set tabreg end=eof;

call symputx('reg'!!left(_n_),region);

if eof=1 then do;

call symputx('end',_n_);

end;

run;

%macro loop;

%do i=1 %to &end;

libname test&i excel "c:\temp\&®&i...xls";

Data test&i..&®&i;

set regions;

where region="&®&i";

run;

libname test&i clear;

%end;

%mend;

78

Generating Data-Dependent Code

Use a macro loop to print every data set in the library.

%macro printlib(lib=WORK,obs=5);
%let lib=%upcase(&lib);
data _null_;
set sashelp.vstabvw end=final;
where libname="&lib";
call symputx('dsn'||left(_n_),memname);
if final then call symputx('totaldsn',_n_);

run;
%do i=1 %to &totaldsn;
proc print data=&lib..&&dsn&i(obs=&obs);

title "&lib..&&dsn&i Data Set";
run;

%end;
%mend printlib;
%printlib(lib=orion)

79

What’s new in SAS Macro

Creating and Deleting Directory Using Macros

filename testdir 'c:\saspaper';

%let newdir = %sysfunc(DCREATE(New_SASpaper, c:\));

NOTE: directory needs to be empty for this to work

%let deldir = %sysfunc(FDELETE(testdir));

New automatic variables:

&SYSENCODING

&SYSERRORTEXT, &SYSWARNINGTEXT

&SYSHOSTNAME

&SYSLOGAPPLNAME

&SYSTCPIPHOSTNAME

Copyright © 2010, SAS Institute Inc. All rights reserved.

From Macros to the Prompting
Framework

81

What Is the SAS Prompting Framework?

The SAS Prompting Framework provides a standard way
for passing user selections to the various SAS platform
applications.

The prompting framework has the following
characteristics:

� provides a consistent user interface across
applications

� is customizable to meet the needs of various user
input requirements

� creates an interactive mechanism for requesting user
input

82

Two “Flavors” of SAS

With SAS®9 there are two different types of SAS
installations.

82

SAS
Foundation

The traditional SAS installation, which
enables you to write SAS programs or
use a point-and-click application such
as SAS Enterprise Guide to assist with
program creation

Platform
for SAS
Business
Analytics

Enterprise software that utilizes multiple
machines throughout the organization
and consists of applications that help you
accomplish the various tasks for
accessing and creating information, as
well as creating analysis and reporting

83

Dynamic Subsetting of Data

The SAS Prompting Framework, which is available from
many of the SAS platform applications, provides a
common interface for requesting user input.

SAS Add-In for

Microsoft Office

SAS Data

Integration Studio

SAS Information

Map Studio

SAS Visual BISAS Web

Report Studio

SAS Information

Delivery Portal

SAS Enterprise

Guide

84

Prompt Types

The SAS Prompting Framework enables you to create
many different types of prompts, including the following:

� color

� data source

� data source item

� date, time, timestamp

� hyperlink

� library

� numeric

� text

� variable

Because there are different types
of SAS platform applications, the
way that the prompting framework
displays information is slightly
different between desktop
applications and Web applications.

85

Prompt Categories

In addition to the different types of prompts provided by
the SAS Prompting Framework, several categories of
prompts provide additional functionality, including the
following:

� dynamic prompts

� cascading prompts

� relative date/time prompts

� range prompts

86

Dynamic Prompts

Dynamic prompts populate a list of possible values from
a dynamic data source. The list is generated at run time
rather than at design time.
Depending on the SAS application where the prompt
is built, the data source can be a physical table or an
information map based on relational tables.

87

Cascading Prompts

Cascading prompts populate prompt values based on
selections in other prompts.

Example: When a department is selected, the list of
sections is dynamically generated based
on the selected department.

88

Relative Date/Time Prompts

In addition to being able to specify an exact date or time
(or both) for a prompt value, relative date/time prompts
enable you to incorporate relative time frames into
prompting.

89

Range Prompts

Range prompts enable users to enter ranges of values,
such as minimum and maximum, in one combined prompt.

Range prompts provide the user with
one question to answer instead of two
and ensure that both values are entered.

Date/time range prompts enable you
to select from different range types.

90

Shared Prompts

In addition to prompts being defined for a specific use,
prompts can be shared.

Shared prompts are stored in metadata and can be used
in multiple applications.

The benefits of shared prompts include the following:

� a single point of maintenance

� the ability to create prompts with complex
configurations one time

� sharing prompt functionality across multiple
applications within the organization

91

What Is a SAS Stored Process?

A SAS Stored Process is a special type of SAS program.

Stored processes enable you to run a SAS program
and view the results in many different types of
SAS applications.

Stored processes consist of a SAS program file along with
a metadata definition that describes how the stored
process should execute.

92

Advantages of Stored Processes

SAS Stored Processes have several advantages over
traditional SAS programs.

� Stored processes can prompt users for input through
parameters. This allows for code that is not static and
can be easily run with different values.

� Because stored process code is not embedded into
client applications, there is only one copy of the code
to maintain.

� Every application that runs a stored process always
gets the latest version of the results.

� Stored process programs use security to ensure that
each user has access only to the information that he
or she is allowed to see.

93

Running a SAS Stored Process

A stored process without parameters will execute and
immediately return results to the requesting client
application. However, if a stored process is defined with
parameters, the user is prompted to select parameter
values. The stored process uses those values, as coded
in the stored process program, and results are then
displayed.

A user selects
2003, and the
stored process
uses that value
for the report.

94

Creating Prompts

When creating prompts, you begin by specifying general
information. You then define the prompt type and specify
how the prompt values are populated.

95

Creating Prompts in SAS Enterprise Guide
and SAS Stored Processes
SAS Enterprise Guide enables you to create prompts for
the project as well as prompts for stored processes.

The Prompts selection in the Stored Process Manager
enables you to create
stored process prompts.

The Prompt Manager
enables you to create
project
prompts.

96

SAS Add-In for Microsoft Office

97

SAS Add-In for Microsoft Office

98

SAS/Stored Process

99

SAS/Stored Process

100

To learn more

� Courses:

Programming 3:

Advanced Techniques and Efficiences

SAS Macro Language 1: Essentials

� www.sas.com/canada

For documentation, papers and examples

Copyright © 2010, SAS Institute Inc. All rights reserved.

Questions?

Thank you for
attending!

josee.ranger-lacroix@sas.com

