Utilizing Best Practices
with SAS

and
Macros made easy

Presented by: Josée Ranger-Lacroix
SAS Canada - Education

OSas .

What Are Best Practices?

As programmers, you want to perform data driven tasks

as efficiently as possible and optimize the use of the
following resources:

/O

CPU

memory

data storage space
network bandwidth
programmer time

Reducing one resource often increases another.

¢

Understanding Efficiency Trade-offs

Decreasing the size of a
SAS data set can result in
an increase in CPU usage.

¢

Understanding Efficiency Trade-offs

Decreasing the
number of I/O
operations comes
at the expense of
iIncreased memory
usage.

Techniques to Reduce Network Trafflc (IIO)

s Manipulate the data as close to the source of the data
as possible.

m [ransfer subsets of data or summarized data.

5 Techniques for Conserving CPU

m Execute only necessary statements.

m Eliminate unnecessary passes of the
data.

m Read and write only the data that you
require.

m Do not reduce the length of numeric
variables.

m Do not compress SAS data sets.

Executing Only
Necessary Statements

OSas | .

Copyright © 2010, SAS Institute Inc. All rights reserved

Subsetting IF Statement at Bottom of Step

Create a new SAS data set from 1a.sales. The new

SAS data set should contain four new variables and only
those flights filled to less than 80% capacity.

data totals;
set l1a.sales;
PercentCap =

NumNonEconomy = sum(Numlst, NumBus);
CargoKG = CargoWeight*0.454;
Month = month (FltDate);

< 3if PercentCap < 0.8;>
run;

sum (Numlst, NumEcon, NumBus) /CapPassTotal;

eoece GSas | B,

Subsetting IF Statement as Hig as Possible

data totals;
set 1a.sales;
PercentCap =

sum (Numlst, NumEcon, NumBus) /CapPassTotal;
<af PercentCap < 0.8, >
NumNonEconomy = sum(Numlst, NumBus);
CargoKG = CargoWeight*0.454;
Month = month (FltDate);
run;

.‘.!

Comparing Technies

Technique
|. Subsetting IF at Bottom 2.3 1226.0 265.0
Il. Subsetting IF near Top 1.3 1226.0 265.0
Percent Difference 42.8 0.0 0.0
CPU /0 Memory
2.5 1400 300
2.0 1200-; 250“:
1000 y
] 200+
157 800 j
] 1504
1.0- 600 :
auu—f 100_:
*7 200-5 5‘3‘;
0.0- 0—: 0

|. Subsetting Il. Subsetting
IF at Bottom IF near Top

Technique

|. Subsetting Il. Subsetting
IF at Bottorn IF near Top

Technique

|. Subsetting Il. Subsetting
IF at Bottom IF near Top

Technique

10

Using Parallel IF Statements

Forthe datain 1a.sales, create a variable named
Month, based on the existing variable F1ltDate.

data month;

set i1a.sales;

if month(FltDate) = 1 then Month = 'Jan';
if month(FltDate) = 2 then Month = 'Feb';
if month(FltDate) = 3 then Month = 'Mar';
if month (FltDate) = 4 then Month = 'Apr';
if month (FltDate) 5 then Month = 'May';
if month(FltDate) = 6 then Month = 'Jun';
if month(FltDate) = 7 then Month = 'Jul';
if month (FltDate) 8 then Month = 'Aug’';
if month (FltDate) = 9 then Month = 'Sep';

if month (FltDate) 10 then Month = 'Oct’;

if month(FltDate) = 11 then Month

if month(FltDate) = 12 then Month
run;

I
"o
U 2
® O
Q <

12

Using ELSE-IF ltatements

data month;
set ia.sales;
if month (FltDate) 1 then
else if month (FltDate) =
else if month (FltDate) =
else if month (FltDate) =
else if month (FltDate) =
else if month (FltDate)
else if month (FltDate)
else if month (FltDate)
else if month (FltDate)
else if month (FltDate)
else if month (FltDate)
else if month (FltDate)

run;

oo do O WD

9

Month =

then
then
then
then
then
then
then
then

Month
Month
Month
Month
Month
Month
Month
Month

10 then Month
11 then Month
12 then Month

'Jan

Using the Function Only Once

data month (drop=mon) ;
set ia.sales;
mon = month (FltDate);

if mon = 1 then Month = 'Jan';

else if mon = 2 then Month = 'Feb';
else if mon = 3 then Month = 'Mar';
else if mon = 4 then Month = 'Apr';
else if mon = 5 then Month = 'May';
else if mon = 6 then Month = 'Jun';
else if mon = 7 then Month = 'Jul’;
else if mon = 8 then Month = 'Aug';
else if mon = 9 then Month = 'Sep';

else if mon = 10 then Month = 'Oct’';
else if mon = 11 then Month = 'Nov';
else if mon = 12 then Month = 'Dec'’';

run;

Using a SELECT Block

X X 9sas

THE
TO KNOW.

data month;

set ia.sales;
select (month (FltDate));

when (1)
when (3)
when (5)
when (7)
when (9)

when (1l1l) Month =

Month
Month
Month
Month
Month

otherwise;

end;
run;

'Jan';
'Mar';
'May';
'Jul';
'Sep’;
'"Nov';

when (2) Month
when (4) Month
when (6) Month
when (8) Month
when (10) Month
when (12) Month

14

15

Comparing Technies

.‘.!

Technique
|. ALL IF Statements 15.9 6797.0 280.0
Il. ELSE-IF Statements 9.7 6797.0 288.0
lll. Using a Function Once 3.0 6797.0 272.0
V. SELECT/WHEN Block 3.0 6795.0 263.0
CPU Memory

161 300

14]

] 250

124]

g-i 150-

6]

] 100

49 .

o =

l. II. Il Using V.
ALLIF IF.. THEN/ELSE a Function SELECTAVHEN

Technique

I I. lll. Using

V.

ALL IF IF... THEN/ELSE a Function SELECTAWHEN

Technique

The I/O for each technique is the same.

Guidelines for Writing Efficient IF/THEN Logic

m Use IF-THEN/ELSE statements when the
following circumstances exist:

— There are few conditions to check.

— The data values are not uniformly
distributed.

— The values are character or discrete numeric
data.

m Check the most frequently occurring condition
first.

16

Eliminating Unnecessary
Passes through the Data

OSas | .

Copyright © 2010, SAS Institute Inc. All rights reserved.

Multiple DATA Steps

Create six subsets from 1a.sales, one for each
destination on the East Coast.

data rdu;

set ia.sales;

i1f Dest = 'RDU';
run;
data bos;

set ia.sales;

if Dest = 'BOS’';
run;

continued...

18

19

Multiple DATA Steps

data iad;

set ia.sales;

i1f Dest = 'IAD';
run;
data jfk;

set ia.sales;

i1f Dest = 'JFK';
run;
data mia;

set ia.sales;

if Dest = 'MIA';
run;
data pwm;

set ia.sales;

i1f Dest = 'PWM';

run;

20

Single DATA Step

data rdu bos iad jfk mia pwm;
set ia.sales;

run;

i1f Dest = 'RDU' then output rdu;
else 1f Dest = 'BOS' then output
else 1f Dest = 'IAD' then output
else 1f Dest = '"JFK' then output
else 1f Dest = 'MIA' then output
else 1f Dest = 'PWM' then output

bos;
iad;
Jfk;
mia;
pwm,

21

Comparing Techniques

Technique

|. Multiple DATA Steps
Il. Single DATA Step
Percent Difference

5.2
1.3
74.8

CPU

I. Multiple Il. Single
DATA Steps DATA Step

Technique

22

DATA Step / PROC SORT Step

Create a sorted subset of 1a. sales that contains the
flights to the East Coast.

data east;
set ia.sales;
where Dest in
('"RDU', 'BOS', 'IAD', 'JFK', '"MIA', 'PWM') ;

run;
proc sort data = east;
by Dest;

run;

PROC SORT Step

proc sort data = ia.sales out = east;
by Dest;
where Dest in
('RDU', 'BOS', 'IAD', 'JFK', 'MIA', 'PWM') ;
run;

23

:V-‘ ’

Comparing Techniues

Technique /0
|. DATA/SORT 1.8 3490.0 18199
II. SORT with WHERE 1.4 1745.0 18355
Percent Difference 23.4 50.0 -0.9
CPU /0 Memory
2.0 35001 20000
3000 1
1.5-j 2500 15000-:
I 20001 _
1.0- 10000
‘ 1500 ‘
0.5 1000 -
] 500]
00- l. DATA/SORT IIl. SORT O~ DATA/SORT Il SORT 0- . DATA/SORT Il. SORT
with WHERE with WHERE with WHERE
Technique Technique Technique

24

Eliminate steps — True for all applications

These 2 processes give you the same results in
Enterprise Guide.

-B—H—zH—G—H—-B—e
customers Join Queryl_fo... Summary Summary Toph Top5 List Data HTML -
-/’ Source Ta... Statistics Stallst e Customers List Data
@)
ORDERS HTML - = ol |
Summary S... :¥ =l= -
- — a : =
_
Products customers Grouping HTML -
and Filte. .. Grouping ...

ORDERS

Products

25

Business Task

Change the variable attributes in 1a.salesc to be
consistent with those in 1a . sales.

Var Name Var Format
ia.sales FlightID $7.
FltDate DATED9.

ia.salesc FlightIDNumber $7.
FltDate MMDDYYP10.

26

DATA Step / PROC DATASETS

data ia.salesc;
set ia.salesc;
rename FlightIDNumber = FlightID;
format FltDate date9.;

run;

proc datasets library=ia nolist;
modify salesc;
rename FlightIDNumber=FlightID;
format FltDate date?9.;

quit;

27

Comparing Technies

Technique CPU
|. DATA Step 1.8 9.0 264.0
Il. PROC DATASETS 0.1 10.0 173.0
Percent Difference 97.1 -11.1 34.5
CPU o)
204 104 20 Memory
151 B‘: 250_;
]] 200
1 6] :
1.0 : 150
4
] : 100
0.5 - .
i 2] 50
00- LDATA I PROC 0- | DATA Il PROC B L DATA Il PROC
Step DATASETS Step DATASETS Step DATASETS
Technique Technique Technique

Reading and Writing Only
Essential Data

OSas | .

Copyright © 2010, SAS Institute Inc. All rights reserved

30

Subsetting IF versus WHERE

Create a subset of the sales data that contains data for

West Coast destinations.

data west;

set 1 G
if Dest in ('LAX',6 'SEA', 'SFO');

run;

)1

data west;

set 3] 7
where Dest in ('LAX', 'SEA', 'SFO');

run;

)1

31

Subsetting Using IF

23 data year99;

24 set year8300;
25 If year = 1999;
26 run;

NOTE: There were 40250204 observations read from
the data set YEARS8300.
NOTE: The data set WORK.YEAR99 has 2413228
observations and 14 variables.
NOTE: DATA statement used (Total process time):
real time 5:11.07
cpu time 1:10.04

32

Subsetting Using WHERE

23 data year99;

24 set year8300;
25 where year = 1999;
26 run;

NOTE: There were 2413228 observations read from the
data set YEARS8300.

NOTE: The data set WORK.YEAR99 has 2413228
observations and 14 variables.

NOTE: DATA statement used (Total process time):
real time 2:47.32
cpu time 45.80

Reading All Variables anSetting

data west;
infile rawdata ;
input FlightID $7. RouteID §7.
Origin $3. Dest $3.
DestType $13. FltDate date?d.
Caplst 8. CapBus 8.
CapEcon 8. CapPassTotal 8.
CapCargo 8. Numlst 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. Revlst 8.
RevBus 8. RevEcon 8.
CargoRev 8. RevTotal 8.
_Cargoleight—8-;
< if Dest in ('LAX','SEA',6 'SFO'); >
run;

33

Reading Selected Varlable(s) and Subsettlng

data west;
infile rawdata ;
input @18 pest §3 g @NEE
| <] if Dest in ('LAX', 'SEA', 'SFO') ;
input @I_?TIghtTD—$9T——RUUt€IU_$7T_;:>

Origin $3.

@21 DestType $13. FltDate date)9.
Caplst 8. CapBus 8.

CapEcon 8. CapPassTotal 8.
CapCargo 8. Numlst 8.

NumBus 8. NumEcon 8.

NumPassTotal 8. Revlst 8.

RevBus 8. RevEcon 8.

CargoRev 8. RevTotal 8.
CargoWeight 8.;

run;

.‘.!

Comparing Technies

Technique /10
|. Subsetting at bottom 4.3 433.0 227.0
Il. Subsetting higher up 1.4 425.0 243.0
Percent Difference 67.2 1.8 -7.0
CPU I/0 Memory
5 500 250
4_ 400-2 200‘3
3— 300-5 150—5
2— 200-2 100—f
1‘ 100-3 50
0': . Subsetting Il Subsetting D': . Subsetting Il. Subsetting 0': . Subsetting Il. Subsetting
at bottom higher up at bottom higher up at bottom higher up
Technique Technique Technique

35

Read and Write Data Selectively

If you process fewer variables and observations,

CPU and/or I/O operations can be affected significantly.
I =] X

36

37

Reading and Writing All Variables

Create a report that contains the average and median of
the total number of passengers on the flights for each
destination in 1a . sales that has 21 variables.

data totals;
set ia.sales;
NonEconPass =
sum (Numlst, NumBus) ;

run;

proc means data = totals mean median;
rtle Non-Econ assengers';
class Dest;

var NonEconPass;

run;

38

Reading All Variables/Writing Two Variables

data totdls (keep = Dest NonEconPass);

D

set ia.sales;
NonEconPass =
sum (Numlst, NumBus) ;

run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

39

Reading Three Variables

data totals;

set ia.salefjf%ep = Dest Numlst::::>
NumBus) ;

NonEconPass =
sum (Numlst, NumBus) ;

run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

40

Reading Three Variables/Writing Two
Variables

NumBus) ;

NonEconPass =
sum (Numlst, NumBus) ;

run;

proc means data = totals mean median;
title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

Reading Three Variables/Reading Two
Variables

data totals;

set ia.sal€s (keep = Dest Numlst
NumBus) ;

NonEconPass =
sum (Numlst, NumBus) ;

run;

proc means data =
(keep = Dest NonEconPass

title 'Non-Economy Passengers';
class Dest;
var NonEconPass;

run;

a1

42

N 4
Comparing Techniques

Gsas | Hs.

Technlque /O Memory

KEEP not used 7177 8140
. KEEP on DATA statement 2.3 656 8138
lll. KEEP on SET statement 2.4 1625 8138
V. KEEP on SET and DATA statements 2.2 662 8138
V. KEEP on SET and PROC statements 2.4 1625 8139

3.04
257
2.04

0.0-

159
1.0
0.5

CPU

|. KEEP Il. KEEP
not used on DATA stmt

. KEEP
on SET stmt

Technigue

V. KEEP on SET

and DATA stmt

X. KEEP on SET
and PROC stmts

43

Comparing Techniques

I/0

0 Il. KEEP ll. KEEP V. KEEP on SET V. KEEP on SET
not used on DATA stmt on SET stmt and DATA stmt and PROC stmts
Technigue
10000 1
80001
5000
4000
20001
Zg |. KEEP Il. KEEP . KEEP Y. KEEP on SET V. KEEP on SET
not used on DATA stmt on SET stmt and DATA stmt and PROC stmts
Technigue

Use the right tools

OSas | .

Copyright © 2010, SAS Institute Inc. All rights reserved.

Using Procedures

Example of selecting appropriate procedures for data
processing:

Use the SUMMARY procedure...

proc summary data=orion.shoe_vendors nway;
var Mfg Suggested_Retail_ Price;
class Line Name;
output out=summary (keep=Line_Name Avg_ MSP)
mean=Avg_MSP,;

run;

45

46

000 s GSsas

&

Using Procedures
...Instead of the DATA step.

THE
TO KNOW.

proc sort data=orion.shoe_vendors (keep=Line_Name
Mfg Suggested_Retail_ Price
out=shoe_vendors;
by Line_Name;
run;

data sum;
keep Line_Name Avg MSP;
set shoe_ vendors;
by Line_Name;
if first.Line Name then do;
Tot_MSP=0;
Count=0;
end;
Tot_MSP + Mfg Suggested_Retail_Price;
if Mfg_Suggested Retail_ Price ne . then Count+l;
if last.Line Name then do;
Avg_MSP=Tot_MSP/Count;
output;
end;
run;

47

Using
Use PROC SQL...

Procedures

proc sql;

create table CustOrdProd as
select Customer_ Name, Quantity , Total Retail_ Price,
Product_Name, Supplier

from

where

order
quit;

CustOrd as co,
product_dim as p,
customer as c,
order fact as o

co.product_id=p.product_id and
c.customer_id=o.customer_id
by product_id;

...Instead of several DATA and PROC steps.

48

Using PROC SQL

Gsas | .

proc sort data=orion.order_fact out=work.order_fact;
by Customer_1ID;
run;
proc sort data=orion.customer out=work.customer_id;
by Customer_1ID;
run;
data CustOrd;
merge work.customer (in=cust)
work.order_fact (in=order) ;
by Customer_1ID;
if cust=1 and order=1;
keep Customer_Name Quantity Total_Retail_ Price Product_1ID;
run;
proc sort data=CustOrd;
by Product_1ID;
run;
proc sort data=orion.product_dim out=work.product_dim;
by Product_1ID;
run;
data CustOrdProd;
merge CustOrd (in=ord)
product_dim(in=prod) ;
by Product_1ID;
if ord=1 and prod=1;
keep Customer_Name Quantity Total_ Retail_Price Product_Name
run;

Supplier;

49

Advantages of the SQL over the DATA Step

SQL

Is very flexible when joining
multiple tables that do not
have key variables in
common

Can, in some cases, replace
multiple SAS steps

Is the native language of
databases

DATA Step

Can require several steps to
join multiple tables with
different key variables

Can require several steps

Might need to generate SQL
to get to data that is not SAS
data

50

Advantages of the DATA Step over SQL

DATA Step SQL

Can read data from many Can only read from SAS
different sources database tables

Can create multiple tables in Can only output one table at

a single pass of the data a time

Has comprehensive Only has the CASE clause
conditional processing

Can deal with repetitive Does not support loops or
programming using loops arrays

and arrays

Choose the right tool for the task to be completed.

Selecting Appropriate Functions

Example of selecting appropriate functions for data
processing:

Use one of the CAT functions...

data description;

set orion.organization_dim,;
Employment_Description=catx('

run;

', of Company —- Job_Title);

...Instead of the concatenation operator and the TRIM

function.

data description;

run;

set orion.organization_dim,;

Employment_Description=trim(Company) | |'
trim (Department) | | '
trim(Section) ||
trim (Org_Group) | |
trim(Job_Title);

52

Keeping up to date

Every releases new language elements are added:
Functions:

PROPCASE, CATX, PERL Regular Expressions...
Formats/Informats:

ANYDT...,NL ...
New/enhanced procedures:

POWER, GAREABAR, IMPORT ...
Macros:

%SYSMACDELETE, %SYSMACEXEC
Objects & Modules:

ODS, XMLMAP engine, HASH...

53

000

Hash Objects: Merging 2 tables

data both (drop=rc);
declare Hash Plan ();
rc = plan.DefineKey ('Plan_id');
rc = plan.DefineData ('Plan_desc');
rc = plan.DefineDone ();
do until (eofl) ; /* 1oop to read records from Plan */
set plans end = eofl;
rc = plan.add (); /* add each record to the hash table */
end;
do until (eof2) ; /* 1oop to read records from Members */
set members end = eof2;
call missing(Plan_desc);
rc = plan.find (); /* lookup each plan id in hash Plan */
output,; /* write record to Both */
end;
stop;
run;

54

Hash Objects

In the following paper, | cut my processing time by 90%
using hash tables — You can do it too! ,Jennifer K.
WarnerFreeman looked at different ways to merge tables.

“In my own experience | took a process ... that was
taking between 2 and 4 hours (depending on network
traffic) to run using a PROC SQL join, and using hash
tables cut the execution time to a consistent 11
minutes.”

http://www.nesug.info/Proceedings/nesug07/bb/bb16.
pdf

Conclusion

» BENCHMARK all approaches on realistic
data and hardware

55

Other Techniques to Explore

BUFNO= and BUFSIZE=

SGIO option

SASFILE statement

HASH tables, Arrays, MERGE, PROC SQL
Indexes

SORTSIZE=

THREADS=

CLASS statement instead of BY statement
GROUPFORMAT option

PERL expressions

Data step views

56

SAS Macro made “easy”

OSas | .

Copyright © 2010, SAS Institute Inc. All rights reserved.

What Are Best Practices?

As programmers, you want to perform these tasks
as efficiently as possible and optimize the use of the
following resources:

m |/O

CPU

memory

data storage space
network bandwidth

m programmer time

58

Purpose of the Macro Facility

The macro facility is a text processing facility for
automating and customizing flexible SAS code.

The macro facility supports

symbolic substitution within SAS code
automated production of SAS code
dynamic generation of SAS code
conditional construction of SAS code.

59

Macro Terminology

2 components
m Macro processor
m macro language
2 delimiters
m macro variable reference (&name)
m macro call (%name)
2 types of macro variables
m automatic
m user defined
Scope of variables

m global
= |ocal

60

Substitution within a SAS Literal

footnotel "Created 10:24 Wednesday, 25AUG2008";
footnote2 "on the WIN system using Release 9.1";
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=perm.all;

where upcase (location)="DALLAS";

class course_title;

var fee;
table course title=" " all="TOTALS",
fee=" "* (n*f=3. sum*f=dollarl0.)

/ rts=30 box="COURSE";

run;

61

Substitution within a SAS Literal

Example: Substitute system information in footnotes.

footnotel "Created &systime &sysday, &sysdate9";
footnote2 "on the &sysscp system using Release
&sysver',;
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=perm.all;

where upcase(location)="DALLAS";

class course_title;

var fee;
table course_title=" " all="TOTALS",
fee=" "* (n*f=3. sum*f=dollarlO0.)

/ rts=30 box="COURSE";

run;

Automatic macro variables, which store system
iInformation, can be used to avoid hardcoding these values.

62

63

Substitution within a SAS Literal

REVENUES FOR DALLAS TRAINING CENTER

COURSE N Sum

Artificial Intelligence 25 $10,000
Basic Telecommunications 18 $14,310
Computer Aided Design 19 $30,400
Database Design 23 $8,625
Local Area Networks 24 $15,600
Structured Query Language 24 $27,600
TOTALS 133 $106,535

Created 14:56 Friday, 29AUG2008
on the WIN system using Release 9.1

64

Substituting User-Defined Information

Example: Include the same value repeatedly throughout

a program.

proc print data=perm.schedule;
where year (begin_date)=2004;
title "Scheduled Classes for 2004";
run;
proc means data=perm.all sum;
where year (begin_date)=2004;
class location;
var fee;
title "Total Fees for 2004 Classes";
title2 "by Training Center'";
run;

What if you have 50 lines of code you need to

update?

Substituting User-Defined Information

Example: Include the same value repeatedly throughout
a program.

$Let yr=2008;
proc print data=perm.schedule;
where year (begin_date)=&YR;
title "Scheduled Classes for &YR";
run;
proc means data=perm.all sum;
where year (begin_date)=&YR;
class location;
var fee;
title "Total Fees for &YR Classes";
title2 "by Training Center'";
run;

User-defined macro variables enable you to define a
value once, then substitute that value as often as

necessary within a program.
65

66

Defining a Macro

A macro or macro definition enables you to write macro

programs.

%MACRO macro-name;
macro-text
%MEND <macro-name>;

macro-name (follows SAS naming conventions)
macro-text

Can include the following:

m any text

m SAS statements or steps

®m macro variables, functions, statements, or calls
m any combination of the above

B
I

Generating Data-DepenentStéps

Example: Create a separate data set for each value of a
selected variable in a selected data set. Use the
variable location in perm. schedule.

Listing of PERM.SCHEDULE
Course_ Course_ Begin_
Obs Number Code Location Date Teacher
1 1 C001 Seattle 260CT2004 Hallis, Dr. George
2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice
3 3 C003 Boston 11JAN2005 Forest, Mr. Peter
4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia
5 5 C005 Dallas 01MAR2005 Hallis, Dr. George
6 6 C006 Boston 05APR2005 Berthan, Ms. Judy
7 7 C001 Dallas 24MAY2005 Hallis, Dr. George
8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice
9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter
10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia
11 11 C005 Boston 20SEP2005 Tally, Ms. Julia
12 12 C006 Seattle 040CT2005 Berthan, Ms. Judy
13 13 C001 Boston 15NOV2005 Hallis, Dr. George
14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice
15 15 C003 Dallas 10JAN2006 Forest, Mr. Peter
16 16 C004 Boston 24JAN2006 Tally, Ms. Julia
17 17 C005 Seattle 28FEB2006 Hallis, Dr. George
67 18 18 C006 Dallas 28MAR2006 Berthan, Ms. Judy

Generating Data-DepentStéps
SAS Program and Log

MPRINT (SITES): data Boston Dallas Seattle ;
MPRINT (SITES): set perm.schedule;

MPRINT (SITES) : select(location);

MPRINT (SITES): when("Boston") output Boston;
MPRINT (SITES): when("Dallas") output Dallas;
MPRINT (SITES): when("Seattle") output Seattle;
MPRINT (SITES): otherwise;

MPRINT (SITES): end;

MPRINT (SITES): run;

NOTE:
NOTE:
NOTE:
NOTE:

There were 18 observations read from the data set PERM.SCHEDULE.
The data set WORK.BOSTON has 6 observations and 5 variables.
The data set WORK.DALLAS has 6 observations and 5 variables.
The data set WORK.SEATTLE has 6 observations and 5 variables.

68

o
Xl
. -/

Generating Data-Dependent ts

SAS Program and Log

MPRINT (SITES): / data Boston Dallas Seattle ; \
MPRINT (SITES): set perm.schedule;

MPRINT (SITES) : select(location);

MPRINT (SITES): when("Boston") output Boston;

MPRINT (SITES): when("Dallas") output Dallas;

MPRINT (SITES): when("Seattle") output Seattle;

MPRINT (SITES): otherwise;

MPRINT (SITES): end;

MPRINT (SITES): \r‘un; /

NOTE: There were 18 observations read from the data set PERM.SCHEDULE.
NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.
NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.
NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.

69

70

Generating Data-Dependent Steps

Step1: Store data values in macro variables.

You can copy the current value of a DATA step variable into a macro variable
by using the name of a DATA step variable as the second argument to the
SYMPUTX routine.

CALL SYMPUTX('macro-variable', DATA-step-variable);

%let month=1;

%$let year=2007,;

data orders;
keep order_date order_type quantity total_ retail_price;
set orion.order_fact end=final;
where year (order_date)=&year and month (order_date)=&month;
if order_type=3 then Number+l;
if final then call symputx('num', Number);

run;

proc print data=orders;
title "Orders for &month-&year";
footnote "&num Internet Orders";
run;

Generating Data-Dependent Steps

Step1: Store data values in macro variables.

$macro sites (data=, var=);
proc sort data=&data (keep=&var)
out=values nodupkey;

by &var;
run;
data _null ;

set values end=last;
call symputx('site'||left(_n_),location);
if last then call symputx('count',_n_);
run;
sput _local_;

4l

continued...

72

000

Generating Data-Dependent Stés

Partial SAS log with result of %put _local_;

SITES DATA perm.schedule
SITES I

SITES COUNT 3

SITES VAR location

SITES SITE3 Seattle
SITES SITE2 Dallas

SITES SITE1 Boston

The local argument of the %PUT statement lists the
name and value of macro variables local to the currently
executing macro.

73

Generating Data-Dependent Stés

Step 2: Generate the DATA step, using macro loops
for iterative substitution

proc print data=orion.year2008;
run;

proc print data=orion.year2009;
run;

proc print data=orion.year2010;
run;

lterative Processing

Example : generate the same summary report for each
year between 2008 and 2012.

$Macro Loop;
$do 1=2008 %to 2012,
proc print data=orion.yearé&i;
run;
%send;
SMend;

A sas macro program can generate iterative SAS code by
substituting different values in each iterations.

74

Generating Data-Dependent Steps

Step 2: Generate the DATA step, using macro loops for
iterative substitution. Call the macro.

data
$do i1=1 %to &count;
&&siteé&l
%end;

4
set &data;
select (&var) ;
$do i=1 %to &count;
when ("&&site&i") output &&siteé&i;
%send;
otherwise;
end;
run;
smend sites;
%sites (data=perm.schedule, var=location)

75

Generating Data-DepentStéps

o

Partial SAS Log

MPRINT (SITES): data Boston Dallas Seattle ;
MPRINT (SITES): set perm.schedule;

MPRINT (SITES): select(location);

MPRINT (SITES): when("Boston") output Boston;
MPRINT (SITES): when("Dallas") output Dallas;
MPRINT (SITES): when("Seattle") output Seattle;
MPRINT (SITES): otherwise;

MPRINT (SITES): end;

MPRINT (SITES): run;

NOTE:
NOTE:
NOTE:
NOTE:

There were 18 observations read from the data set PERM.SCHEDULE.
The data set WORK.BOSTON has 6 observations and 5 variables.
The data set WORK.DALLAS has 6 observations and 5 variables.
The data set WORK.SEATTLE has 6 observations and 5 variables.

76

77

XX

Generating Data-Dependent Code

Use a macro loop to create excel sheets by regions.

proc freq data=regions noprint;
table region/ out=tabreg;
run;
Data _null_;
set tabreg end=eof;
call symputx('reg'!!left(_n_),region);
if eof=1 then do;
call symputx('end',_n_);
end;
run;
$macro loop;
$do i=1 %to &end;

libname testé&i excel "c:\temp\&®é&i.

Data testé&i..&®é&i;
set regions;
where region="&®é&i";
run;
libname testé&i clear;
$end;

$mend;

..xX1s";

Generating Data-Dependent Code

Use a macro loop to print every data set in the library.

$macro printlib (1ib=WORK, obs=5) ;
$let lib=%upcase(&1lib);
data _null ;
set sashelp.vstabvw end=final;
where libname="&lib";
call symputx('dsn'||left(_n_),6 memname);
if final then call symputx('totaldsn',_n_);

run;
$do i=1 %$to &totaldsn; A

proc print data=&lib. . &&dsné&i (obs=&obs);
title "&lib..&&dsn&i Data Set'";
run;
\ send; y
$mend printlib;
sprintlib (lib=orion)

78

79

What’s new in SAS Macro

Creating and Deleting Directory Using Macros

filename testdir 'c:\saspaper’;

%let newdir = %sysfunc(DCREATE(New_SASpaper, c:\));
NOTE: directory needs to be empty for this to work

Y%let deldir = %sysfunc(FDELETE(testdir));

New automatic variables:
&SYSENCODING

&SYSERRORTEXT, &SYSWARNINGTEXT
&SYSHOSTNAME

&SYSLOGAPPLNAME
&SYSTCPIPHOSTNAME

From Macros to the Prompting
Framework

OSas | .

Copyright © 2010, SAS Institute Inc. All rights reserved

81

What Is the SAS Promptlng Framework’?

The SAS Prompting Framework provides a standard way
for passing user selections to the various SAS platform
applications.

The prompting framework has the following
characteristics:

m provides a consistent user interface across
applications

m iS customizable to meet the needs of various user
Input requirements

m creates an interactive mechanism for requesting user
iInput

82

I 6Sas Ex
Two “Flavors” of SAS

With SAS®9 there are two different types of SAS
Installations.

SAS The traditional SAS installation, which
(2ol 1o :1i[oJs M enables you to write SAS programs or
use a point-and-click application such
as SAS Enterprise Guide to assist with
program creation

Platform Enterprise software that utilizes multiple
for SAS machines throughout the organization
Business and consists of applications that help you
Analytics accomplish the various tasks for
accessing and creating information, as
well as creating analysis and reporting

Dynamic Subsetting of Data

The SAS Prompting Framework, which is available from

many of the SAS platform applications, provides a

common interface for requesting user input.

["] Show only required items (denoted by %)

iOrinn Star Employees Prompting Reset aroup defaults

T Select a Department

[Marketing -]

T Select a Section

[Marketing ']

* Select a Group

’ Marketing -]

&
&a f

SAS Add-In for SAS Web SAS Information
Microsoft Office Report Studio Delivery Portal

83

\j
Nz
VN

SAS Data

Section1
*Select a Department

Marketing

f *Select a Section
ﬁ ’\ ? ﬁ Marketing

*Select a Group
Marketing

(| P

Reset to Default

=]

(=]

iew Report

Integration Studio Map Studio

B

SAS Information SAS Visual Bl

SAS Enterprise

Guide

Prompt Types

The SAS Prompting Framework enables you to create
many different types of prompts, including the following:

84

color

data source

data source item
date, time, timestamp
hyperlink

library
numeric
text
variable

Because there are different types
of SAS platform applications, the
way that the prompting framework
displays information is slightly
different between desktop
applications and Web applications.

Prompt Categories

In addition to the different types of prompts provided by
the SAS Prompting Framework, several categories of
prompts provide additional functionality, including the
following:

= dynamic prompts

m cascading prompts

m relative date/time prompts
m range prompts

85

86

Dynamic Prompts

Dynamic prompts populate a list of possible values from
a dynamic data source. The list is generated at run time
rather than at design time.

Depending on the SAS application where the prompt

IS built, the data source can be a physical table or an
iInformation map based on relational tables.

Data source

() Use the current information map

@ Specify a data source: [Orion Star/Marketing Department/Data/SALES_ANALYSIS(Table)

Data source:

SALES_ANALYSIS
Unformatted Values
Colurmn:

[Ploducts ubcategory v]

Formatted [Displayed) Values
Column: Format:

[Use ‘Unformatted Yalues” column v] Default format Select...

Cascading Prompts

Cascading prompts populate prompt values based on
selections in other prompts.

Example: When a department is selected, the list of
sections is dynamically generated based
on the selected department.

* Select a Department * Select a Department

[IS - Marketing v

- * .
* Select a Section Select a Section

[ISU . v] lEvents&F’Fi vl

CRM

Applications DotCom & Catalog
IS Management Events & PR
Marketing

P!anning & Design Organization
Till Systems Orion Club Member Service

87

Relative Date/Time Prompts

In addition to being able to specify an exact date or time
(or both) for a prompt value, relative date/time prompts
enable you to incorporate relative time frames into

prompting.

Select an Order Date

March 17, 2011

March 17, 2011

Today

Yesterday

Tomorow

Current day of last year
Current day of next year
Current day of last month
Current day of next month
N days ago

N days from now

H [Example: March 17, 2011)

Gsas | .

Select an Order Time

88

Current time
Current hour
Previous hour
Nesxt hour
Current minute
Previous minute
Next minute

N hours ago

N hours from now
N minutes ago

N minutes from now

[© (Example: 035208.M)

Select the Date and Time of the Order

Current date and time

Current date and time previous year
Current date and time next year
Current hour

Previous hour

Next hour

Current minute

Previous minute

Next minute

N hours ago

N hours from now

N minutes ago

N minutes from now

E B (Example: March 17, 2011 09:52:06 AM)

89

Range Prompts

Range prompts enable users to enter ranges of values,
such as minimum and maximum, in one combined prompt.

Range prompts provide the user with
one question to answer instead of two

and ensure that both values are entered. i“““”

Q:

200000
Select a Range of Order Dates Date/time range prompts enable you
Range type: .
— to select from different range types.
Month to date
Year to date
Previous N days
Next N days

Custom

Select a Salary Range
From:

90

Shared Prompts

In addition to prompts being defined for a specific use,
prompts can be shared.

Shared prompts are stored in metadata and can be used
iIn multiple applications.

The benefits of shared prompts include the following:
m a single point of maintenance

m the ability to create prompts with complex
configurations one time

m sharing prompt functionality across multiple
applications within the organization

91

XX

What Is a SAS Stored Process‘?

A SAS Stored Process is a special type of SAS program.

Stored processes enable you to run a SAS program
and view the results in many different types of
SAS applications.

Stored processes consist of a SAS program file along with
a metadata definition that describes how the stored
process should execute.

92

Advantages of Stored Processes

SAS Stored Processes have several advantages over
traditional SAS programs.

m Stored processes can prompt users for input through
parameters. This allows for code that is not static and
can be easily run with different values.

m Because stored process code is not embedded into
client applications, there is only one copy of the code
to maintain.

m Every application that runs a stored process always
gets the latest version of the results.

m Stored process programs use security to ensure that
each user has access only to the information that he
or she is allowed to see.

000

Running a SAS Stored Process

A stored process without parameters will execute and
Immediately return results to the requesting client
application. However, if a stored process is defined with
parameters, the user is prompted to select parameter

values. The stored process uses those values, as coded
In the stored process program, and results are then

displayed.

(%] Specify Values for Sales by Order Type and Age Group

[} Show only required items (denoted by =)

General

o

Beset qroup defaults

]

* Select a year for the repoit:]
(2003 |
J

A user selects
2003, and the
stored process
uses that value
for the report.

—r——r |

93

2003 Sales by Order Type and Age Group

~oTdeT Type

“AgeGToup

TotarSares,

Catalog Sale|15-30 years 13,850| $1,238,474
31-45 years 10,479 $907 574

46-60 years 10,392| $899,263

61-75 years 10,052| $B660,035

Internet Sale|15-30 years 11,138 $993 449
31-45 years 8,472 $767 835

46-60 years 7 999 $691 286

61-75 years 457 $46 098

Retail Sale|15-30 years 63,267| $5,195 396
31-45 years 43 B61| $4,047 945

46-60 years 45 837 | $3,740 596

61-75 years 30555 $2,461,.834

Creating Prompts

When creating prompts, you begin by specifying general
iInformation. You then define the prompt type and specify

how the prompt values are populated.

General | Prompt Type and Yalues|

Name:

Displayed text:

Parent group:

[Parameters -

Options
["] Hide from user ["] Requires a non-blank value

["] Read-only values

General | Prompt Type and Values l

Prompt type:

Text

Method for populating prompt: Number of values:

User enters values v | Single val

Text type:
-Single line

Minimum length:

Include Special Yalues
[] All possible values [] Missing values

Default value:

Hint:

lue

Maximurn length:

94

95

000

Creating Prompts in SAS Enterprise Guide
and SAS Stored Processes

SAS Enterprise Guide enables you to create prompts for
the project as well as prompts for stored processes.

The Prompts selection in the Stored Process Manager

[£) Stored Process Manager IE]
Name and Description Prompts
SaS Code
Execution Dpti
m Input Prompts:
Sumenar Y Displayed Text N Type New l
- @ General Standard group
(3 Select porty’ Numeric Edit
[e)
[Preview... l
< | » Delete
Output Parameters:
Na Type Displayed Text New...]
Edt...
Delete
More (F1)... ~
Save and Run] [Save

=)

enables you to create

stored process prompts.

The Prompt Manager
enables you to create

project
prompts.

Prompt Manager

=G A®)

Add Edit X Delete

MName -

CountryPrompt

DepartmentPrompt

Used By

Gsas | .

SAS Add-In for Microsoft Office

File Home Insert Page Layout Formulas Data Review View Developer | SAS o @ d

ARRELON RS 2

iz Properties
SAS Tasks Reports Refresh Manage Tools Help
Data =

Favorites * Content v v

'

Insert M Selection Tools

Al |Run areport

Enables you to open a report from a
shared repository. These reports can
be created by several SAS applications,
such as SAS Enterprise Guide and SAS
Web Report Studio.

G SAS Add-In 4.3 for Microsoft Office
Press F1 for add-in help.

96

97

Gsas | .

SAS Add-In for Microsoft Office

Home n Pa ayou 3 ata Reviey
B * O B g

SAS Tasks Reports SAS Refresh Manage Tools Help
Data = Favorites ~ Content = =

Insert] Selection Tools

A1 - |
A B [C D E F G H [| J [K | L M N |

1 -
;B -
3 Browse Isearch SAS Foldersl
4
5 Look in: [Samples - Q-'[-!:l[x = "(5
= |

(7 SAS Folders [£) Sample: European Demographic Data
7 i @Sample: European Demographic Data D...
8 (£} Sample: Frequency Analysis of Municipali...
9 [l servers £ Sample: Hello World

@S&mple: MEANS Procedure Web Service

10 (2} Desktop @Semple: Multiple Output Formats
11 [£] Sample: Server Test
12 3 My Documents @Sample: Shoe Sales by Region
13 1 [£] Sample: Shoe Sales Graphics

' @}Sample: Stored Process Macro Variables

Computer

14 3 My i [£] Sample: Year to Date Budget
15 &J My Network Places
16
alr/
18
19 |
20
21
22
23

SAS/Stored Process

4! Specify Values for Stored Processd X

I IGeneral Reset group defaults |

Please enter a year

all possible values)

98

Gsas | .

SAS/Stored Process

& =@~ ™ - |= = . . Bookl - Microsoft Excel |
Home Insert Page Layout Formulas Data Review View Developer SAS
_— Sicie - 4) xJ Modify =) -
p=- * O o > %
SAS Tasks Reports SAS Refresh Manage Tools Help
Data = Favorites ~ Content ~ ~
Insert ~ Selection Tools
G19 ~ & P
A B C D E F G H I
1 Employee_|ID| Quantity| Total_Retail_Price
2 121039 1 $16.50
3 120174 2 $32.00
a 120134 3 $63.60
121059 2 $75.00
=) 120149 1 $129.80
6 120134 2 $91.80
7 121066 1 $68.50
8 121045 4 $1,796.00
= 121060 1 $134.50
10 ‘ 121039 3 $68.40
11 121039 4 $268.00
120148 il $35.50
=2 121064 2 $265 60
13 121094 2 $109.20
il 121094 2 $56.00
15 121043 2 $33.00
16 121043 3 $97.20
17 ‘ 121086 2 $50.80
18 | 120145 1 $22.90
120145 1 $78.20
12 121064 2 Sioz.20

99

To learn more

m Courses:
Programming 3:
Advanced Techniques and Efficiences

SAS Macro Language 1: Essentials

= WwWWw.sas.com/canada
For documentation, papers and examples

100

Questions?

Thank you for
attending!

josee.ranger-lacroix@sas.com

OSas .

Copyright © 2010, SAS Institute Inc. All rights reserved.

