
DroidGuard: A Deep Dive into SafetyNet

Romain Thomas – me@romainthomas.fr

Abstract
SafetyNet is the Android component developed by Google to verify the devices’ integrity. These checks
are used by the developers to prevent running applications on devices that would not meet security re-
quirements but it is also used by Google to prevent bots, fraud & abuse.

In 2017, Collin Mulliner & John Kozyrakis made one of the first public presentations about SafetyNet and
a glimpse into the internal mechanisms. Since then, the Google anti-abuse team improved the strength
of the solution which moved most of the original Java layer of SafetyNet, into a native module called
DroidGuard. This module implements a custom virtual machine that runs a proprietary bytecode pro-
vided by Google to perform the devices integrity checks.

This paper aims at providing a state-of-the-art of the current implementation of SafetyNet. In particular,
it presents the internal mechanisms behind SafetyNet and the DroidGuard module. This includes an
overview of the VM design, its internal mechanisms, and the security checks performed by SafetyNet to
detect Magisk, emulators, rooted devices, and even Pegasus.

Keywords: Android, Obfuscation, Remote Attestation, SafetyNet, VM-based Obfuscation, Mixed Boolean-
Arithmetic

1 Introduction to SafetyNet
SafetyNet aims at providing information about the integrity of an Android device to make sure that appli-
cations which have to deal with sensitive assets, are not running in an environment that could threaten or
weaken the security of these assets.
From a developer’s point of view, SafetyNet can be seen as an oracle that basically outputs two information
about the device’s integrity[1]:
CTS Profile Match: detect unlocked bootloader, custom ROM, uncertified device, …
Basic Integrity: detect emulator, rooted devices, hooking frameworks, …
Depending on the values of Basic Integrity and/or CTS Profile Match, the developers could perform specific
actions like disabling functionalities or stopping the application.
The current implementation of SafetyNet relies on a Google’s internal component named DroidGuard.
This component is quite obscure with very few information about its internal functionalities but it seems
widely involved for detecting misuse of the Android platform (bot, spam, root state, ad fraud, …).
By trying to understand how SafetyNet works, I ended up with reverse-engineering the virtual machine
implemented by DroidGuard. This analysis of SafetyNet was motivated by the end-of-life of Magisk-hide.
The analysis of Android applications — especially in the gaming and banking industries — can require to
circumvent SafetyNet checks and this article aims at providing a better understanding about the strength
and the weaknesses of SafetyNet.

2 SafetyNet Workflow
When an application requests a SafetyNet attestation, different layers, and different processes are involved
in the generation of this attestation. The Figure 1 depicts an overview of the attestation process.

1

DroidGuard

GMS Core

Protobuf Message

SafetyNet API

app.apk

play-services-safetynet
Google Backend

SafetyNetClient.attest(
nonce,
API_KEY

);

1. Intent to trigger SafetyNet processing
2. DroidGuard request
3. Download the VM bytecode
4. Return the analysis from DroidGuard
5. Protobuf += DroidGuard results
6. Return the JWS based on the protobuf data
7. Forward the result to the application

SafetyNet

Figure 1: SafetyNet Workflow

Firstly, the application creates a SafetyNet request with the high-level API exposed by the Google SafetyNet
SDK 1. This API takes a nonce and an API key that are bundled into an Android intent which is sent to the
Google Mobile Service (GMS). The SafetyNet SDK adds other information to the Android intent such as
the package name of the application.
The nonce is mostly used to prevent replay attacks while the API key is used by Google to identify the app
developers.
When GMS Core receives the intent, it starts to build a Protobuf message that will be used by the Google
backend to determine if the device has been tamperedwith or not. In particular, the information embedded
in this message are used to determine the values of Basic Integrity and CTS Profile Match.
The structure of this Protobuf message has already been reversed and is publicly available on Github[3]. By
monitoring the network communications going through Cronet[9], we can intercept the Protobuf message
given in the Listing 1.

1com.google.android.gms:play-services-safetynet

2 of 24

https://mvnrepository.com/artifact/com.google.android.gms/play-services-safetynet

SafetyNetData = {
nonce = [ca ee FF.]
packageName = "com.demo.snet"
signatureDigest = [66 49 FF.]
fileDigest = [fa 0a FF.]
gmsVersionCode = 213918046
suCandidates = {
fileName = "/system/bin/su"
digest = [25 53 FF.]

}
seLinuxState = {
supported = true
enabled = true

}
currentTimeMs = 1638672572674
googleCn = false

}

Listing 1: Protobuf Data Associated with a SafetyNet Request

As we can observe in the Listing 1, the Protobuf message embeds information about the application (pack-
age name, signature, APK checksum) as well as device healthy checks such as:
SELinux state: If SELinux is present and enforced
Root check: If su binaries are found on the device
The root checks are performed in a Java class of GMS Core and consist in checking predefined su paths:
package p000;
F* renamed from: aljb F/
final class RootChecker {

F* renamed from: a F/
private static final String[] f23781a = {
"/system/bin/su",
"/system/xbin/su",
"/system/bin/.su",
"/system/xbin/.su"

};

F* renamed from: a F/
public static List getRootFile() {
FF.
return arrayList;

}
}

There are similar checks for the SELinux status in another part of GMS Core.
The information of SafetyNetData are wrapped into another Protobuf message[4] that basically extends
the previous information with data coming from DroidGuard.
The Listing 2 shows the layout of this extended Protobuf message.

{
SafetyNetData = { nonce = [ca ee FF.], packageName = "com.demo.snet"}
DroidGuardResult = "CgZpApMYiWYSi9cB [FF.]"

}

Listing 2: Protobuf Message with the DroidGuard Data

As it is explained in the next sections, DroidGuard is an APK that implements a custom virtual machine
used to run a proprietary bytecode.
More concretely, and in the context of SafetyNet, DroidGuard is used to run a bytecode that collects
evidence about the device’s integrity. In particular, the running bytecode performs the advanced root
checks, collects information about the bootloader, check if Frida is running ….

3 of 24

This bytecode is also used to encode and generate the DroidGuardResult attribute of the Protobuf message
previously mentioned (Listing 2).
The Protobuf message wrapping both, SafetyNetData and DroidGuardResult is sent by GMS Core to the
Google SafetyNet backend that returns a JWS with the following payload:
{

"nonce": "<base64 encoded>",
"timestampMs": 1638672572674,
"apkPackageName": "com.demo.snet",
"apkCertificateDigestSha256": ["<base64 certs>"],
"ctsProfileMatch": false,
"basicIntegrity": true,
"advice": "RESTORE_TO_FACTORY_ROM",
"evaluationType": "BASIC,HARDWARE_BACKED"

}

The values of ctsProfileMatch and basicIntegrity are determined by the results of DroidGuard and,
to a lesser extent, by the early checks on SELinux and the su binaries. Finally, this JWS is forwarded by
GMS Core to the application that created the request.

Key Points
• SafetyNet’s detection logic relies on:

1. Quick & simple Java checks (su candidates and SELinux status)
2. Heavy and expensive DroidGuard checks

• DroidGuard implements a custom VM that runs proprietary bytecode provided by Google.
• The result of DroidGuard is used by the Google backend to determine the values of ctsProfileMatch

and basicIntegrity.
• The final JWS is generated in the Google backend, not on the device.

i

This section highlighted the role of DroidGuard in the attestation process. The next section deals with the
internal structures of DroidGuard.

3 DroidGuard: The VM behind SafetyNet
DroidGuard is part of the Google Mobile Service but it is not, strictly speaking, embedded in the GMS
APK2. By looking at the manifest file of the GMS application, we can observe a service associated with
DroidGuard:
<service android:name=".droidguard.DroidGuardService" android:process="com.google.android.gms.unstable">

<intent-filter>
<action android:name="com.google.android.gms.droidguard.service.INIT"F>
<action android:name="com.google.android.gms.droidguard.service.PING"F>
<action android:name="com.google.android.gms.droidguard.service.START"F>
<category android:name="android.intent.category.DEFAULT"F>

F/intent-filter>
F/service>

We can also notice that this service runs in a different process (com.google.android.gms.unstable) than
GMS Core (com.google.android.gms). When an application requests a SafetyNet attestation, at some
point the DroidGuardService is triggered and spawn a new process if it is not already running.
DroidGuardService encompasses different functionalities, and one of those is to check if the device has
the latest version of DroidGuard. It turns out that the real implementation of DroidGuard is actually
located in an apk stored in /data/data/com.google.android.gms/app_dg_cache/<hash>/the.apk and
dynamically loaded by DroidGuardService.

2com.google.android.gms

4 of 24

The value associated with the DroidGuardResult attribute of the Protobuf message mentioned in the
Listing 2) is actually generated from this apk (the.apk).
As it will be discussed in this section, the.apk implements a virtual machine (VM) that is used to generate
the DroidGuardResult value referenced in the Listing 2
The bytecode executed by the DroidGuard virtual machine is dynamically downloaded from the Google
backend servers and unique for each attestation request.

SafetyNet Attestation Flow
1. Upon receiving a SafetyNet attestation’s request, GMS Core download the latest version of

DroidGuard (if not already downloaded)
2. DroidGuard downloads a unique VM bytecode from the Google’s servers (unique for each attes-

tation request).
3. DroidGuard runs the bytecode which performs integrity’s checks, generates a token and, bind

the token with the attestation’s parameters.
4. The token is sent to the Google’s servers to determine ctsProfileMatch and basicIntegrity

3.1 Overview
The APK (the.apk) embedding the VM is relatively small compared to GMS Core. It embeds about 60
classes (compared to ∼ 63 000 classes in GMS Core) in which only a few of them are relevant. The
important methods are implemented in the class:

com.google.ccc.abuse.droidguard .DroidGuard
This class declares a set of native methods among which we find:

• long initNative(Context context, String Flow, byte[] bytecode, FF.)
• byte[] ssNative(long j, String[] strArr)
• void closeNative(long j, String[] strArr)

On a typical attestation request, initNative is called first to initialize the DroidGuard VM and to run the
bytecode provided in the third parameter. Most of the SafetyNet checks (root checks, bootloader status)
are performed during this call.
Then, it follows ssNative that takes a pointer to the CF+ DroidGuard VM object as the first parameter
(long j). The second parameter is a content binding which turns out to be the SHA-256 checksum of
the SafetyNetData Protobuf message (cf. Listing 1). The output of this ssNative function is the actual
DroidGuardResult. While initNative runs and generates integrity’s information independantly of the
application that triggered the request, ssNative ensures that the DroidGuardResult is bound and unique
for the application.
Finally, closeNative cleans the VM, cleans the buffers dynamically allocated and the Java references.
By tracing the parameters of these functions, we get the following sequence:
DroidGuard.initNative(DroidGuardChimeraService@a5bdb0b,

Flow: 'attest', vmBytecode: Bytes Array, FF.)
DroidGuard.ssNative("{contentBinding=<Protobuf SHA-256 Hash}"): CgZpApMYiWYSi9cB[FF.]
DroidGuard.closeNative();

Thesemethods are implemented in a native library for which the name is notmeaningful (e.g. libd58FDD24B24CD.so)
but in which the ELF metadata is more relevant:
F> readelf -d libd58FDD24B24CD.so|grep SONAME

0x000000000000000e (SONAME) Library soname: [libdroidguard.so]

5 of 24

libdroidguard.so and the running bytecode contain the main logic of SafetyNet. Compared to the
analysis of J. Kozyrakis and C. Mulliner in 2017, it looks like the current architecture of SafetyNet drop
most of the Java layers and only relies on DroidGuard3

From the section 2 SafetyNetWorkflow, we identified that the content of DroidGuardResult is significantly
used to determine the boolean values of basicIntegrity and ctsProfileMatch. Therefore at this point,
the main challenge is to figure out how the output of ssNative is generated.

3.2 The Virtual Machine Internals
By Googling about DroidGuard, we find very few information about this component. Nevertheless, one
blog post[5] references some keywords that ring the bell.
The blog post is two years old but it turns out that after analysis, the current implementation is still based
on a VM. Compared to the blog post, we can notice some changes such as using JNI_OnLoad to register
initNative and ssNative instead of exporting them through JNIEXPORT.
libdroidguard.so is pretty small, about 400 functions in a 350KiB file, and most of the strings are en-
coded. Needless to say that the library is stripped and does not contain metadata like RTTI. The analysis
of libdroidguard.so has been performed in a pure blackbox approach.
While skimming over the library’s functions, we can quickly figure out that libdroidguard.so is written
in CF+ and mostly relies on two STL containers:

1. stdF:vector
2. stdF:string (or stdF:basic_string<uint8_t>)

Actually, the stdF:string container is far more used in the code than the stdF:vector container. One
hypothesis is that this container is preferred by the DroidGuard developers to leverage the small strings
optimization made by the STL[6]. The other hypothesis is that this container is used because it’s a bit
more complicated to deal with when reverse-engineering CF+ code (cf. 6 Reverse-Engineering CF+: What
We Should Be Aware Of?).
The main CF+ object implemented and managed by libdroidguard.so is the implementation of the VM
itself which is a CF+ class. We will name this object DroidGuardVM in the rest of this paper.
To get a good understanding of the high-level functionalities behind the VM, we have to address at least
two points:

1. Figure out the memory layout of the DroidGuardVM object
2. Understand the purpose of the VM handlers

Through static analysis, we can infer that the first class attribute of the DroidGuardVM object, is a pointer
to the current registers frame. The DroidGuardVM can use up to 256 typed registers that are indexed by
a uint8_t integer.
A typed VM register is defined as a pair of two values:

1. Its effective value (uintptr_t)
2. Its type (enum:uint8_t)

After the analysis of the library functions which manipulate these registers, we can figure out the different
types supported by the DroidGuardVM:

DG Type Raw Type
Long int64_t
Int int32_t
Double double
Pointer void*
JNI Object jobject
String stdF:string*

3DroidGuard was mentioned by J. Kozyrakis and C. Mulliner in their talk/blog post though

6 of 24

Regarding the values of the registers, the Google anti-abuse team put a lot of effort to protect the content
of the VM registers, and more generally, the data flow of the VM. In particular, all the registers’ values are
encoded such as when accessing regs[0x12], we actually get an encoded representation of the original
value:

regs[0x12] F= enc(original_value)
In addition to registers values encoding, DroidGuard encodes the content of the string buffers (stdF:string)
with a key derived from the register index and from the VM key. The buffers are only decoded when the
VM needs to access the original content.
It is worth mentioning that the data flow of the VM is critical enough to have a dedicated library function
that aims at transferring an encoded buffer from a register into another without clearly decoding the orig-
inal content of the source buffer. More information about the data flow obfuscation are given in the next
section (3.3 Data Flow Obfuscation).
The enum mapping of the register’s types is changing for each new update of DroidGuard. It means, for
instance, that the long type can be associated with the integer 2 for a given version of DroidGuard and 5
in another version.
During the setup of the VM, some of these registers are initialized with contextual values. The Table 1 lists
some of these values that are set by a function closes to the DroidGuardVM constructor.

Register Initial Value
r[03] Extra parameters
r[04] Flow (e.g. attest)
r[08] JNI ref on DroidGuardChimeraService
r[0a] Syscall function
r[0d] Bytecode buffer address
r[0e] Error code?
r[10] JNIEnv*
… …

Table 1: Some Initial Registers Values

Identifying the initial register values can be helpful while reverse-engineering the VM handlers. For in-
stance, the syscall helper function is accessed when doing a function call:
void DroidGuardVMF:make_call() {
F* 0x03c75c: F/ thisF>read_byte_vector(key: 0x9849e8d9ba42ccdc): {0x09, 0xe4, 0x09};

F/ ==

F* 0x03c824: F/ thisF>get_pointer(reg: 0xa): &vm_syscall_helper

F/ ==

F* 0x03c8a0: F/ thisF>prepare_params(in_reg: {0x09, 0xe4, 0x09},
out_str: {/data/user/0/com.google.android.gms/cache/.xfhrfg}):

{&vm_syscall_helper, F* openat F/ 0x38, 0x0, F* file.c_str() F/ 0x7c23bdda50, 0x0}
F* 0x008598: F/ openat("/data/user/0/com.google.android.gms/cache/.xfhrfg"): -1
F* 0x03c930: F/ thisF>set_register(0x29, REG_TYPESF:INT, -1)
FF.

}

These registers are used by the VM handlers which provide low-level primitives for the dedicated byte-
code. As in most of the VM-based obfuscation schemes, we find handlers for arithmetical operations (xor,
addition, subtraction), conditional branches, comparison, and we also find more specialized handlers such
as:

• Calling a Java function through the JNI
• Doing a syscall
• Dynamically resolving a symbol (through dlsym)

7 of 24

• Accessing a Java field
• Doing sha256_init, sha256_update and sha256_final
• …

From a reverse-engineering’s point of view, the VMhandlers seem to bemember functions of the DroidGuardVM
object. In particular, they do not take any parameters and they do not return a value. The handlers only
update the internal state of the VM which includes the register values.
From a memory point of view, the VM handlers are indexed right after the register frames:
class DroidGuardVM {

private:
registers_t* registers;
stdF:vector<registers_tF> frames;
stdF:array<void(DroidGuardVMF:*)(), 0x200> handlers;
FF.

};

For each new version of libdroidguard.so, the position of the handlers in the handlers array attribute
is shuffled. For instance, DroidGuardVMF>handlers[4] can point to the VM handler associated with a JNI
call and, in a new release of DroidGuard it could then be associated with the SHA-256 processing handler.
This randomization is likely used to prevent fingerprinting and automation from past reverse-engineering.
There are no universal methods to reverse the different VM handlers, but most of them share the following
schema, which could be used as a VM’s handler footprint template:
void DroidGuardVMF:handler() {

decode_operands();

perform_handler_operation();

write_register_results();
}

To concretely understand these operations, let’s consider the VM handler that aims at comparing two
registers:

void DroidGuardVMF:cmp_equal()
First of all, the handler starts by decoding the instruction’s operands:
static constexpr uint8_t PC_REG_IDX = 0x12;

uint32_t pc;
uint8_t tmp;

F/ F= Read the first operand F=
pc = read_register(PC_REG_IDX);
pc = decode(&tmp, pc, sizeof(tmp));
set_register(PC_REG_IDX, pc);

uint8_t OP_DST_IDX = MBA1_DECODE(tmp);

F/ F= Read the second operand F=
pc = read_register(PC_REG_IDX);
pc = decode(&tmp, pc, sizeof(tmp));
set_register(PC_REG_IDX, pc);

uint8_t OP_LHS_IDX = MBA2_DECODE(tmp);

F/ F= Read the third operand F=
pc = read_register(PC_REG_IDX);
pc = decode(&tmp, pc, sizeof(tmp));
set_register(PC_REG_IDX, pc);

uint8_t OP_RHS_IDX = MBA3_DECODE(tmp);

The cmp_equal handler uses three operands:
OP_DST_IDX: The destination register for the comparison result.

8 of 24

OP_LHS_IDX: The left-hand side register to compare with.
OP_RHS_IDX: The right-hand side register to compare with.
After decoding the instruction’s operands, the decoded operands are processed through inlined Mixed
Boolean-Arithmetic (MBA) functions.
These MBA are specific to each handler and they change for each new version of DroidGuard. As a result,
if somehow we were able to disassemble or lift the bytecode from DroidGuard, we would have to extract
or reverse all the MBA associated with the VM handlers. More details about the MBA are given in the
section 3.3 Data Flow Obfuscation.
After the instruction decoding, we find the handler’s payload which consists in the handler’s logic. In our
example, this logic consists in checking if two registers are equal according to their types:
bool are_equal = false;

reg_t& RHS = get_reg(OP_RHS_IDX); reg_t& LHS = get_reg(OP_LHS_IDX);

if (RHS.type F= LHS.type) {
switch (RHS.type) {
case JNI:
are_equal = thisF>env_F>IsSameObject(decode(RHS.value), decode(LHS.value)); break;

case LONG:
are_equal = decode(RHS.value) F= decode(LHS.value); break;

case INT:
are_equal = (int)decode(RHS.value) F= (int)decode(LHS.value); break;

case DOUBLE:
are_equal = (double)decode(RHS.value) F= (double)decode(LHS.value); break;

case STR:
F/ byte-per-byte comparison

case NONE:
default:
are_equal = false;

}
}

Finally, the result of the comparison is stored in the register read during the instruction decoding:
thisF>set_register(OP_DST_IDX, are_equal);

Among the 98 VM handlers implemented in the reverse-engineered version of DroidGuard, I managed to
recover the functionalities of 66 of them. To bypass the basicIntegrity checks, only 5 of them are worth
identifying.
The reverse-engineering of the VM handlers helps to understand the layout of the DroidGuardVM object
and vice versa. In the end, we get the class layout for the DroidGuardVM object listed in the Annex 5.
We can notice that this layout embeds an array of HMAC_CTX. Actually, it seems that DroidGuard is able
to protect the integrity and the authenticity of the VM registers. During the analysis of the VM, I noticed
that only one register leverages this functionality which is the register that contains the DroidGuardResult
token. The DroidGuard’s HMAC-SHA256 is based on the BoringSSL’s functions4 which are triggered when
appending data to the register that holds the DroidGuardResult
VMH_concat_buffer() {

F/ [FF.]
if (!init) {
HMAC_Init(thisF>hmac[REG_RES_IDX], key, key_len, EVP_sha256());

}
HMAC_Update(thisF>hmac[REG_RES_IDX], data, len);
F/ [FF.]

}

The HMAC’s secret key is embedded and decoded (xor between two integer) by the bytecode and stored
as a long integer in a VM’s register. By hooking5 HMAC_Init() we can easily observe the HMAC’s secret
key.

4stripped in the library
5Hooking functions in DroidGuard requires to bypass internal internal integrity checks which is out of scope of this article

9 of 24

Key Points
• DroidGuard is a virtual machine with 256 typed registers and about 100 VM handlers.
• The VM’s bytecode is dynamically downloaded from the Google’s servers and unique per attes-

tation.
• The VM operands are protected with MBA which hinders running the bytecode outside the

DroidGuard library.
• The VM implements registers integrity based on BoringSSL’s HMAC-SHA-256. This integrity

seems only used for the register that contains the DroidGuardResult though.

i

3.3 Data Flow Obfuscation
As mentioned in the previous section, the data flow of DroidGuard is protected with different techniques.
We define the data flow of DroidGuard as the registers values, the internal buffers, the strings and the
instructions operands.
One of these protections is to apply Mixed Boolean-Arithmetic expressions (MBA) on the instructions’
operands6. There are many MBA expressions across libdroidguard.so and the Table 2 references a few
of them.

MBA Expressions
((X ∧ 1) ≪ 1 + X ⊕ 1

((−1 ⊕ X ≪ 1) + X) ⊕ 0xffffffff

(X | ∼ Y) + (Y | ∼ X) − (X ⊕ ∼ Y) × 2

Table 2: Examples of MBA Expressions Found in DroidGuard

TheMBA expressions change for each new version of the DroidGuard VM but most of them can be automat-
ically simplified by combining Miasm and msynth[8]. The Table 3 lists the simplification of the previous
MBA expressions.

MBA Expressions Resolution
((X ∧ 1) ≪ 1 + X ⊕ 1 X +1

((−1 ⊕ X ≪ 1) + X) ⊕ 0xffffffff X × 3
(X | ∼ Y) + (Y | ∼ X) − (X ⊕ ∼ Y) × 2 X ⊕ Y

Table 3: MBA Expressions Resolved with msynth

The second mechanism widely used to protect the data flow is the encoding of the string buffers. Basically,
the string buffers associated with registers holding this kind of value are xored with a keystream derived
from the register index and an encoding key bound to the libdroidguard.so (i.e. a static value). The
Figure 2 summarizes the decoding process.

6Actually the MBA are not limited to the instruction’s operands and are widely used in DroidGuard.

10 of 24

20 6b 65 65 70 20 70 75
63 6b 20 74 68 65 20 6c
61 79 20 68 69 20 74 6f
61 72 64 2d 68 65 6c 6c
XX XX XX XX XX XX XX XX
65 2e 63 6f 6d

59 6f 75 20 6a 75 73 74
6c 6c 69 6e 67 20 62 61
61 79 65 72 73 21 20 53
20 64 72 6f 69 64 67 75
6f 2b XX XX XX XX XX XX
XX XX 40 67 6f 6f 67 6c

You just keep pu
lling back the l
ayers! Say hi to
 droidguard-hell
o+XXXXXXXXXXXXXX
XX@google.com

f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e

f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e
f7 a5 39 f2 ea 64 9d 9e

f7 a5 39 f2 ea 64 9d 9e

..9..d....9..d..

..9..d....9..d..

..9..d....9..d..

..9..d....9..d..

..9..d....9..d..

..9..d....9..d..
9e9d64eaf23...

..L.......\..D..

..P..D..........

..\..E.......D..

..K.......].....

................

..y.......Z..

ae ca 4c d2 80 11 ee ea
9b c9 50 9c 8d 44 ff ff
96 dc 5c 80 99 45 bd cd
d7 c1 4b 9d 83 00 fa eb
98 8e XX XX XX XX XX XX
XX XX 79 95 85 0b fa f2

d7 ce 5c 97 9a 44 ed eb
94 ce 19 86 82 01 bd f2
96 dc 19 9a 83 44 e9 f1
96 d7 5d df 82 01 f1 f2
XX XX XX XX XX XX XX XX
92 8b 5a 9d 87

std::string*

You just keep pulling back the layers! Say
hi to droidguard-hello@google.com

r33: 0xfaedcdefdfds | Type: String

Encoded Bu er

XOR

Decoded Bu er

Key

MBA_decode(...)

Figure 2: Registers Content Protection

The buffers are decoded only when there are used. It means that their clear content cannot be naively
observed while iterating over the VM’s registers. It can also be mentioned that when transferring an en-
coded buffer into another register (e.g. reg[0xcd] F> reg[0xab]), DroidGuard takes care of not leaking
the content in a temporary variable. Because of the xor encoding operation, the encoded buffer can be
transferred with this relationship:

regs[0xab].buffer[i] = regs[0xcd].buffer[i] ⊕ ke yab[i] ⊕ ke ycd[i]
Even if the MBA can be — to some extent — resolved, and the buffers encoding algorithm reversed, the
trade-off between the time it takes and the outcome was not advantageous. Moreover, the anti-abuse team
could completely get rid of these protections and use functions more resilient against reverse-engineering.
After trial and error, I decided to address all the encoding layers of DroidGuard through code lifting. With
this technique, I did not have to reverse and deeply understand the MBA nor the inner mechanisms of the
key derivation for the new versions of the VM. I based the code lifting approach with open-source tools
like QBDL [13] and Unicorn [14].
Code lifting enables to run the instructions that are relevant to meet our needs, regardless of the global
complexity of the function. The main reverse-engineering task was only identifying these relevant instruc-
tions.

Key Points
• DroidGuard mainly protects its data flowwith Mixed Boolean-Arithmetic Expressions and buffer

encodings.
• The MBA are small enough to be simplified with msynth[8].
• More generally, the encodings and the MBA can be attacked with code lifting which scales with

the regular updates.

i

11 of 24

3.4 Code Integrity
In addition to data-flow obfuscation, DroidGuard implements anti-hooks mechanisms through code in-
tegrity checks. If the integrity of the (in-memory) .text section is not correct, at some point the bytecode
takes a branch that performs irrelevant operations.
Hooking is a strong reverse-engineering primitive and bypassing these integrity checks greatly simplifies
the analysis of libdroidguard.so.
During the initialization of the VM, DroidGuard stores the address of JNI_OnLoad in a virtual register:
reg_move_info_t minfo;
minfo.reg_idx = 0x13;
minfo.keys = thisF>keys_;
minfo.reg_ptr = &thisF>registers[0x13]
minfo.env = thisF>env_;
thisF>set_register(&minfo, TYPES_POINTER, (uintptr_t)&JNI_OnLoad ^ 0xcf7dba8687cac60e)

Later on during the execution of the bytecode, this register is accessed and the address of JNI_OnLoad is
used to compute the range of addresses to verify.
thisF>set_pointer() {

r[20] F= 0xcf7dba8687cac60e;
}
thisF>sha256_init();
thisF>xor() {

r[21] F= r[20] ^ r[13]; F/ r[21] F= &JNI_OnLoad
}
thisF>add() F/ Compute the .text addresses range to check
FF.
thisF>sha256_update() {

sha256_update(.text!0x123, 0x456);
}
thisF>sha256_final()

By hooking the BoringSSL SHA-256 functions7 and by checking if the input buffer encloses the .text
section, we can change the pointer to an address that points to a copy of the original .text section. As
a result, the checksum is computed on the copied .text section and its value is consistent with the value
compared for the integrity check. The DroidGuard native library is pretty small such as a copy of the
.text section has a small memory footprint.

Key Points
• DroidGuard implements code integrity checks on the .text section.
• This integrity checks can prevent hooking and software breakpoints.
• The checksum used to verify the .text section is SHA-256 from BoringSSL.
• It can be bypassed by changing the input of the SHA-256 to a copy of the .text section.

i

4 The Device Integrity Checks
With a good overall understanding of the VM internals and the VM handlers, we can target specific handlers
to highlight the SafetyNet checks and/or disable some of them.
Regardless of the obfuscation scheme used to protect the control flow and the data flow of the detection
algorithm, at some point the detection logic needs to interact with the operating system through public
API or syscalls. This is the critical point where we can observe the functions and their parameters with
clear values.
In the case of DroidGuard, we just have to target 5 VM handlers to get a good overview of the devices
integrity checks.

7which were stripped and reverse-engineered

12 of 24

Magisk & Root Detections As in most of the root detections techniques, the bytecode running through
DroidGuard checks predefined su paths listed in the Annex 8.1
To enhance the predefined su path checks, DroidGuard iterates over the content of some directories (like
/sdcard) to verify if they contain files that match keywords like giefroot or sbin_orig. In that case,
DroidGuard performs extended checks on these directories and files. By looking at the list of these key-
words, we can notice entries like pegasus.apk or coldboot_init which suggests that DroidGuard is able
to identify devices that would have been compromised by Pegasus. The list of the identified keywords is
given in the Annex 8.5.
In addition to the file checks, DroidGuard tries to detect Magisk by looking for system properties like
init.svc.magisk_pfsd and by inspecting the current mounting points (/proc/self/mounts). The list of
the system properties is given in the Annex 8.1.1.
DroidGuard also covers legacy rooting tools like KingRoot[11]. The detection of this tool seems to be
performed through an analysis of the environment variables (cf. Annex 8.1.2)

Hooking Frameworks As mentioned in the API documentation[1], SafetyNet aims at detecting ”Signs
of other active attacks, such as API hooking”. Basically, this detection is done through:

• Inspecting the modules loaded in /proc/self/maps
• Iterating over the loaded modules with dl_iterate_phdr
• Inspecting /system/bin/app_process in the case of the Xposed detection

The Annex 8.2 contains the list of the modules monitored by SafetyNet.
The design of SafetyNet is such that these checks are exclusively achieved in the context of the process
com.google.android.gms.unstable. In particular, it means that these checks do not enable SafetyNet
to detect Frida in the application that requested the SafetyNet attestation.

Emulators Since DroidGuard is also involved in the detection of bots and protocol emulating script, it
aims at detecting emulators.
The logic behind this detection mostly relies on the system properties (cf. Annex 8.3.1), but also on the
device hardware characteristics like the memory, the battery, and the device’s screen (cf. Annex 8.3.2).

Bootloader Verification The information about the bootloader are decisive in the determination of the
ctsProfileMatch value. SafetyNet collects the status of the bootloader from different sources:
1. System Properties: ro.boot.Flash.locked, ro.boot.vbmeta.device_state (cf. Annex 8.4.1)
2. Java API: getSystemService("persistent_data_block").getFlashLockState()
3. Hardware Attestation: KeyStore.getCertificateChain()
The values of the system properties and the Java API can be easily modified but the result of the certification
chain is a bit more tricky to circumvent.
The SafetyNet’s hardware attestation relies on the Android public API which is described in the Android
developers website[12]. To perform this attestation, the bytecode running through DroidGuard uses VM’s
handlers dedicated to JNI calls. As it is listed in the Listing 3, it creates and instantiates all the Java objects
required to build the attestation. This part of the VM execution has been translated in Java in the Annex
8.4.3.

13 of 24

VMH_read_buffer()
VMH_read_buffer()
VMH_JNI_CallMethod() {

CallObjectMethodA("KeyGenParameterSpec$Builder.build()"): KeyGenParameterSpec@ca74d81
}
VMH_read_buffer()
VMH_read_buffer()
VMH_read_buffer()
VMH_read_string_at_offset()
VMH_JNI_GetStaticField() {

GetStaticObjectField("KeyProperties.KEY_ALGORITHM_EC"): "EC"
}
VMH_read_buffer()
VMH_read_buffer()
VMH_set_uint32()
VMH_read_buffer()
VMH_read_buffer()
VMH_JNI_FindClass()
VMH_read_buffer()
VMH_read_string_at_offset()
VMH_read_buffer()
VMH_JNI_CallStaticObjectMethod() {

NewStringUTF("AndroidKeyStore"): 0x41
CallStaticObjectMethodA("KeyPairGenerator", "KeyPairGenerator.getInstance",

"EC", "AndroidKeyStore"): "KeyPairGenerator$Delegate@f9f7e26"
}

Listing 3: VM Trace Associated With the Hardware Attestation

At the end of the execution, DroidGuard calls getCertificateChain() which contains the certificates
chain as described in the documentation[12]. It is worth mentioning that the root certificate is signed
by a Google’s hardware-backed private key and this chain contains a certificate which embeds hardware-
signed information among which the status of the bootloader (c.f Annex 8.4.3).
DroidGuard does not read and does not take any integrity decision regarding this certificate chain. The
whole chain is sent in the DroidGuardResult & Telemetry Data that defers the integrity decision by the
Google’s backend.
As a result of this analysis, it has been possible to bypass most of these checks and get a basicIntegrity
value at true[10]. Bypassing the ctsProfileMatch flag is another challenge that shifts the attack to
finding an boot chain or a low-level vulnerability.

Key Points
• The device’s integrity checks associated with the basicIntegrity flag rely on external API

(libc’s function, syscalls, Java API) that are possible to monitor and modify.
• Some strings suggest that the SafetyNet’s bytecode embeds heuristics to identify if Pegasus is

present on the device.
• All the checks are done in a process different from the app that requests the SafetyNet attesta-

tion. This limits the detection of hooking frameworks like Frida.
• The hardware-backed attestation relies on KeyStore.getCertificateChain().

i

5 DroidGuardResult & Telemetry Data
All the DroidGuard reverse-engineering was motivated by the understanding of the content behind the
DroidGuardResult value referenced in the Listing 2.
After analysis, it turns out that this value is actually a Protobuf message that wraps telemetry data. These
data are collected throughout the execution of the bytecode and they are stored in a dedicated register.

14 of 24

Compared to classical string encoding (cf. 3.3 Data Flow Obfuscation), the buffer that contains the teleme-
try data is protected with another layer of encoding that involves an HMAC secret key and other encoding
keys. Nevertheless, it is still possible to access the underlying content through hooking and code lifting.
Without really reversing the encoding layers, we can extract the telemetry data listed in the Annex 8.7.

6 Reverse-Engineering CF+: What We Should Be Aware Of?
As mentioned in the previous sections, DroidGuard is written in CF+ and manages a class that we called
DroidGuardVM. For better or for worse, the ABI and the STL optimizations can be tricky. This section deals
with non-trivial CF+ ABI features.

6.1 The Pointer this
Non-static member functions of CF+ classes always start with this as the first parameter of the function.
While reverse-engineering, and more precisely, while trying to understand the layout of the DroidGuard
VM, this property can help to identify the VM class member functions that aims at interacting with class
data from those that are helpers.
Nevertheless, it exists an exception where non-static class member functions do not have this as the first
parameter.

6.2 Copy Elision
To avoid a copy of a CF+ object returned by a function, the CF+ standard8 requires to reference the returned
object in the parameter of the function such as it can be constructed in-place by the function.
Concretely, if the consider the following DroidGuardVM function:
stdF:vector<uint8_t> DroidGuardVMF:read_byte_vector(size_t enc_size)

The real prototype of the function is actually:
void read_byte_vector(stdF:vector<uint8_t>* out, DroidGuardVM* vm, size_t enc_size)

So from a reverse-engineering point of view, we observe 3 parameters but in fact, two of them are ABI
specific.

6.3 stdF:string Optimization
Whenwe need to store small bytes, the stdF:string container can bemore interesting over a stdF:vector<uint8_t>
as most of the CF+ Standard Template Library (STL) implements an optimization for small strings[6].
From a reverse-engineering point of view, this optimization can be tricky to spot in particular when the
stdF:string functions are inlined.

void* x1;
uint64_t x2;

uint64_t x3 = *x1
if ((x3 & 1) F= 0) {

x2 = *(x1 + 8)
} else {

x2 = x1 F> 1;
}

stdF:string* x1;
uint64_t x2;

uint64_t cap = x1F>cap
if ((cap & 1) F= 0) {
x2 = x1F>size();

} else {
x2 = x1 F> 1; F/ Small string optimization

}

Listing 4: Generated Code when accessing stdF:stringF:size

If we consider the function stdF:string.size(), on the left-hand side of the Listing 4 we have the code
generated by the compiler which does not contain hints about the type of the variable x1. The main

8since CF+ 11

15 of 24

reverse-engineering effort is to understand the type of this variable for which the memory dereference
and the shift makes sense on the right-hand side according the stdF:string optimization.
During the analysis of DroidGuard, we can encounter this kind of optimization in different places and it
was frequent that the condition (cap & 1) F= 0 was re-written with the following MBA:

X ⊕ 0xfffffffffffffffe + 1 ̸= (X | 1) ⊕ 0xfffffffffffffffe

7 Conclusion
Generally speaking, DroidGuard/SafetyNet successfully achieves its purpose: provide a reliable and ef-
ficient solution to detect compromised/tampered devices. Regardless of the low-level protections like the
Mixed Boolean-Arithmetic expressions or the buffers encoding, its global design with regular updates, a
unique bytecode per-request or the dedicated unstable process, makes its analysis difficult.

7.1 The Reverse-Engineering Cost
Evaluating the robustness of a solution is a difficult exercise as it depends on the motivation and the
experience of the reverser as well as its tools. This research has been done during week-ends and early
in the morning which could represent about five straight weeks. In addition, it had to develop dedicated
tools to inspect the VM (like dumping all the registers), to trace the VM’s handlers and to ease the reverse-
engineering of a new version of the VM based on the previous version.
This part adds two straight weeks of work. After having the suitable toolset, I could handle a new version
of DroidGuard in a couple of hours.

7.2 The Limits of the DroidGuard/SafetyNet Design
As it has been discussed in the section 2 SafetyNet Workflow, DroidGuard and its integrity checks are
performed in a dedicated process9 and not in the process of the application that triggered the SafetyNet
request. It means that DroidGuard is able to identify system-wide tampering (like Magisk or a bootloader
unlocked) but it is not able to detect local applications tampering like Frida gadget or native hooking.
There are no integrity checks in the memory space of the application that perfomed the request.

Therefore, RASP10 solutions are relevant to ensure the application is not locally tampered. In addition,
SafetyNet aims at running on a large number of Android devices with disparate brands, versions, hardware
etc. On the top of that, SafetyNet must take care of not raising false-positives alerts as it could have a direct
impact on the app’s developer business. This universality and this attention to avoid false-positives (or not)
can be a weakness. For instance, one solution to get rid of the hardware attestation is to make believe
that the device does not support hardware attestation11. On the other hand, the documentation about the
trustworthy of the ctsProfileMatch value is also clear:
[... false for] ”Genuine but uncertified device, such as when the manufacturer doesn’t apply for certification”
This is not an issue for applications that aim at running on a specific range of devices, like SoftPOS12
solutions but it can be a critical issue in the video games industry if the gamers cannot play the game
because of a non-Google certified device.
This article intentionally eludes the technicals details to bypass SafetyNet security measures or to perform
the attacks, as it is a cat-and-mouse game that everyone can enjoy playing.

9com.google.android.gms.unstable
10Runtime Application Self Protection
11https://github.com/kdrag0n/safetynet-fix/blob/57b726c260bb40b838c5d942965282a5a482bdbe/java/app/src/main/

java/dev/kdrag0n/safetynetfix/proxy/ProxyKeyStoreSpi.kt#L45
12Software Point Of Sale is a solution that allows merchants to accept contactless payments on their smartphones

16 of 24

https://github.com/kdrag0n/safetynet-fix/blob/57b726c260bb40b838c5d942965282a5a482bdbe/java/app/src/main/java/dev/kdrag0n/safetynetfix/proxy/ProxyKeyStoreSpi.kt#L45
https://github.com/kdrag0n/safetynet-fix/blob/57b726c260bb40b838c5d942965282a5a482bdbe/java/app/src/main/java/dev/kdrag0n/safetynetfix/proxy/ProxyKeyStoreSpi.kt#L45

8 Annexes
8.1 Root Checks

• /data/local/tmp/su
• /sbin/su
• /data/local/xbin/su
• /bin/su
• /data/local/bin/su
• /product/bin/su
• /system/bin/.ext/su
• /system_ext/bin/su
• /system/bin/su
• /system/xbin/su
• /odm/bin/su
• /vendor/bin/su
• /vendor/xbin/su

8.1.1 Magisk Detection
System Properties:

• init.svc.magisk_service
• persist.magisk.hide
• init.svc.magisk_pfs
• init.svc.magisk_pfsd
• magisk.version
• ro.magisk.disable

Files Content:
• /proc/self/mounts
• /proc/self/mountinfo

8.1.2 KingRoot Checks
• TANGBOX
• REDIRECT_SRC1
• REDIRECT_DST1
• FORBID_SRC1
• WHITELIST_SRC1

8.2 Dynamic Instrumentation Checks
• libarthook_native.so
• libsandhook.edxp.so
• libsandhook-native.so

17 of 24

• libsandhook.so
• libxposed_art.so
• libfrida-gadget.so
• libmemtrack_real.so
• frida-agent-64.so
• libvaF+.so
• librfbinder-cpp.so
• frida-agent-32.so
• libva-native.so
• libwhale.edxp.so
• libriru_edxp.so
• libriru_snet-tweak-riru.so
• libriru_edxposed.so

8.2.1 Xposed Detection
It checks the content of /system/bin/app_process

8.3 Emulator Checks
8.3.1 System Properties

• init.svc.droid4x
• init.svc.noxd
• init.svc.qemud
• init.svc.goldfish-setup
• init.svc.goldfish-logcat
• vmos.browser.home
• init.svc.ttVM_x86-setup
• ro.trd_yehuo_searchbox
• qemu.sf.fake_camera
• vmos.camera.enable
• init.svc.microvirtd
• init.svc.vbox86-setup
• ro.rf.vmname

8.3.2 Devices Features
Memory:

• getSystemService(Context.ACTIVITY_SERVICE).getMemoryInfo().totalMem
• ApplicationPackageManager.hasSystemFeature(PackageManager.FEATURE_RAM_NORMAL)

Screen Information from getSystemService(Context.WINDOW_SERVICE).getDefaultDisplay()
• getMetrics()

18 of 24

– DisplayMetrics.widthPixels
– DisplayMetrics.heightPixels
– DisplayMetrics.density
– DisplayMetrics.xdpi
– DisplayMetrics.ydpi

• getRealMetrics()
– android.util.DisplayMetrics.widthPixels
– android.util.DisplayMetrics.heightPixels

Battery Information
getSystemService(Context.POWER_SERVICE).isInteractive()
BatteryManager.EXTRA_LEVEL
BatteryManager.EXTRA_SCALE
BatteryManager.EXTRA_STATUS
BatteryManager.EXTRA_PLUGGED

8.4 Bootloader Status
8.4.1 System Properties

• ro.boot.Flash.locked
• ro.boot.vbmeta.device_state
• ro.boot.verifiedbootstate
• ro.boot.vbmeta.digest

8.4.2 Java API
• getSystemService("persistent_data_block").getFlashLockState()
• ApplicationPackageManager.hasSystemFeature(PackageManager.FEATURE_VERIFIED_BOOT)

8.4.3 Hardware Attestation
KeyStore ks = KeyStore.getInstance("AndroidKeyStore")
ks.load(null);
ks.aliases(); F/ Iterate and check the aliases

long rndLong = (new Random()).nextLong()
String alias = "unstable.<hash>." + rndLong.toString()

KeyGenParameterSpec spec = new KeyGenParameterSpec.Builder(alias, KeyProperties.PURPOSE_SIGN)
.setAlgorithmParameterSpec(new ECGenParameterSpec("secp256r1"))
.setDigests(KeyProperties.DIGEST_SHA512)
.setAttestationChallenge(<unique number>)
.build();

KeyGenerator keyGenerator = KeyPairGenerator.getInstance("EC", "AndroidKeyStore")
keyGenerator.initialize(spec);
keyGenerator.generateKeyPair();

F/ The first certificate extends an ASN.1 structure described here
F/ https:F/developer.android.com/training/articles/security-key-attestation#certificate_schema_keydescription
F/ Among the information, it contains the bootloader status
Certificate certificates[] = keyStore.getCertificateChain(alias);

19 of 24

Certificate Extension Data Schema
KeyDescription FF= SEQUENCE {

attestationVersion 3,
attestationSecurityLevel SecurityLevel,
keymasterVersion INTEGER,
keymasterSecurityLevel SecurityLevel,
attestationChallenge OCTET_STRING,
uniqueId OCTET_STRING,
softwareEnforced AuthorizationList,
teeEnforced AuthorizationList,

}
SecurityLevel FF= ENUMERATED {

Software (0),
TrustedEnvironment (1),
StrongBox (2),

}
AuthorizationList FF= SEQUENCE {

purpose [1] EXPLICIT SET OF INTEGER OPTIONAL,
algorithm [2] EXPLICIT INTEGER OPTIONAL,
keySize [3] EXPLICIT INTEGER OPTIONAL,
digest [5] EXPLICIT SET OF INTEGER OPTIONAL,
padding [6] EXPLICIT SET OF INTEGER OPTIONAL,
ecCurve [10] EXPLICIT INTEGER OPTIONAL,
rsaPublicExponent [200] EXPLICIT INTEGER OPTIONAL,
rollbackResistance [303] EXPLICIT NULL OPTIONAL,
activeDateTime [400] EXPLICIT INTEGER OPTIONAL,
originationExpireDateTime [401] EXPLICIT INTEGER OPTIONAL,
usageExpireDateTime [402] EXPLICIT INTEGER OPTIONAL,
noAuthRequired [503] EXPLICIT NULL OPTIONAL,
userAuthType [504] EXPLICIT INTEGER OPTIONAL,
authTimeout [505] EXPLICIT INTEGER OPTIONAL,
allowWhileOnBody [506] EXPLICIT NULL OPTIONAL,
trustedUserPresenceRequired [507] EXPLICIT NULL OPTIONAL,
trustedConfirmationRequired [508] EXPLICIT NULL OPTIONAL,
unlockedDeviceRequired [509] EXPLICIT NULL OPTIONAL,
allApplications [600] EXPLICIT NULL OPTIONAL,
applicationId [601] EXPLICIT OCTET_STRING OPTIONAL,
creationDateTime [701] EXPLICIT INTEGER OPTIONAL,
origin [702] EXPLICIT INTEGER OPTIONAL,
rootOfTrust [704] EXPLICIT RootOfTrust OPTIONAL,
osVersion [705] EXPLICIT INTEGER OPTIONAL,
osPatchLevel [706] EXPLICIT INTEGER OPTIONAL,
attestationApplicationId [709] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdBrand [710] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdDevice [711] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdProduct [712] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdSerial [713] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdImei [714] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdMeid [715] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdManufacturer [716] EXPLICIT OCTET_STRING OPTIONAL,
attestationIdModel [717] EXPLICIT OCTET_STRING OPTIONAL,
vendorPatchLevel [718] EXPLICIT INTEGER OPTIONAL,
bootPatchLevel [719] EXPLICIT INTEGER OPTIONAL,

}
RootOfTrust FF= SEQUENCE {

verifiedBootKey OCTET_STRING,
deviceLocked BOOLEAN,
verifiedBootState VerifiedBootState,
verifiedBootHash OCTET_STRING,

}
VerifiedBootState FF= ENUMERATED {

Verified (0),
SelfSigned (1),
Unverified (2),
Failed (3),

}

8.5 Conditional Checks on Files Matching Specific Keywords
• daemonsu

20 of 24

• pegasus.apk
• androVM-prop
• busybox
• mu
• .coldboot_init (related to Pegasus: [7] page 29)
• su
• temp_su
• init.magisk.rc
• baservice
• badamon
• droid4x-prop
• ttVM-prop
• igpi
• qemu_props
• giefroot
• microvirt-prop
• smsdamon
• waw
• smsservice
• libimcrc_64.so
• wland
• microvirtd
• libinjector.so
• nox-prop
• su
• su2
• sbin_orig
• magisk
• supersu
• .author

21 of 24

8.6 DroidGuardVM Layout
static constexpr size_t NB_REGISTERS = 0x100;

enum REG_TYPES : uint8_t {
STRING, F/ |
INT, F/ | The enum is randomized for each new release
LONG, F/ | of DroidGuard
DOUBLE, F/ |
JOBJ, F/ |
POINTER, F/ |

NONE = 6, F/ | "6" does not change across the versions
}; F/ |
struct reg_t {

REG_TYPES type; F/ |
uintptr_t value; F/ |

};
struct registers_t {

DroidGuardVM* vm; F/ |
uintptr_t _; F/ |
stdF:array<reg_t, NB_REGISTERS> r; F/ |

};
class DroidGuardVM {

private:
registers_t* registers; F/ |
stdF:vector<registers_tF> frames; F/ |
stdF:array<uintptr_t, 0x200> handlers; F/ |
uint32_t counter; F/ |
uint32_t pc; F/ |
stdF:array<HMAC_CTXF*, 0x100> hmac; F/ | BoringSSL HMAC_CTX for the VM registers
F_uint128_t enc_key; F/ | Key involved in pointer and buffer encodings
int32_t enc_register; F/ |
stdF:string bytecode; F/ | The current running bytecode

F/ |
uintptr_t crypto_key_1; F/ |
uintptr_t crypto_key_2; F/ |
int32_t count; F/ |
stdF:array<uint64_t, 0x42> constants; F/ |

F/ |
pthread_t thread; F/ |
uintptr_t tagged_buffer; F/ |

F/ |
stdF:array<uint8_t, 0x400> scratch_buffer_1; F/ | Mostly used by syscalls when reading content
stdF:array<uint8_t, 0x410> scratch_buffer_2; F/ |

F/ |
JavaVM jvm; F/ |
JNIEnv* env; F/ |
jobject mDroidGuard; F/ |
jobject mDroidGuardChimeraService; F/ |
jobject jobj1; F/ |
jobject jobj2; F/ |
jobject mRuntimeAPI; F/ |
jobject mJavaLangString; F/ |
stdF:string Flow; F/ |
jobject mExtra; F/ |
bool has_error; F/ |

};

Listing 5: DroidGuardVM Class Layout

22 of 24

8.7 DroidGuardResult Protobuf Content
classes_info = {

info = [
{
"class": "com.google.android.gms.droidguard.DroidGuardChimeraService"
"methods": ["a" "b" "onBind" "onCreate"]

},
{
"class": "com.google.android.gms.framework.tracing.wrapper.TracingIntentService"
"methods": ["a" "attachBaseContext" "onHandleIntent"]

},
{
"class": "com.google.android.chimera.IntentService"
"methods": ["onBind" "onCreate" "onDestroy" "onHandleIntent"

"onStart" "onStartCommand" "setIntentRedelivery"]
},
{
"class": "com.google.android.chimera.Service"
"methods": ["dump" "getApplication" "getChimeraImpl" "getContainerService"

"getForegroundServiceType" "onBind" "onConfigurationChanged" "onCreate" FF.]
},
{
"class": "android.content.ContextWrapper"

}
]

}

ro_zygote = "zygote64_32"
pointer_info = "7f3669240000-7f3669241000 rw-p 00000000"
cmdline = "com.google.android.gms.unstable"
env_path = "/product/bin:/apex/com.android.runtime/bin:/apex/com.android.art/bin:[FF.]"
cache_dir = "/data/user/0/com.google.android.gms/cache"

vbmeta_device_state = "locked"
vbmeta_digest = "5c43a03e2a47d742deefb3a05c2bcdd1afadedb89ddbdba7651f99fdc92438f8"
verifiedbootstate = "green"
security_patch = "2021-12-12"
f134 = "com.google.android.gms" # Output of com.google.android.gms.droidguard.loader.RuntimeApi.c()
kernel_info = "5.4.223-ga45ffa6db-74ceeb #1 SMP PREEMPT Tue Jul 21 01:52:07 UTC 2021"
Flow = "attest"
installer = "com.android.vending"
proc_self_stat = "561 (id.gms.unstable) S 949 949 0 0 -1 107832 324 0 0 0 "

current_class_loaders = """
dalvik.system.PathClassLoader[

DexPathList[
[zip file "/data/app/F~**********************F=/com.google.android.gms-*************-******-*AF=/base.apk"]
nativeLibraryDirectories=[/system/lib64, /system/product/lib64]

]
]
"""
f242 = [

List of KeyStore.getCertificateChain
]
file_info = [

{"path": "/data", "Flag": 13},
{"path": "/data/agents", "Flag": 2},
{"path": "/data/local", "Flag": 13},
{"path": "/data/local/tmp", "Flag": 13},
{"path": "/data/local/bin", "Flag": 2},
{"path": "/bin", "Flag": 13},
{"path": "/data/local/xbin", "Flag": 2},
{"path": "/system/bin/.ext", "Flag": 2},
FF.

]

23 of 24

mount_info = [
"/dev/block/loop22 /apex/com.android.art@1" "/dev/block/loop22 /apex/com.android.art",
"/dev/block/loop23 /apex/com.android.i18n@1" "/dev/block/loop23 /apex/com.android.i18n"
"/dev/block/loop27 /apex/com.android.vndk.v30@1" "/dev/block/loop27 /apex/com.android.vndk.v30"

]

proc_self_maps_info = [
"/apex/com.android.art/javalib/bouncycastle.jar",
"/system/framework/boot-ims-common.vdex",
"/data/data/com.google.android.gms/app_dg_cache/1FEFB755F7DFAAFB69E71C4B872D96A200EC65BF/the.apk"
FF.

]

References
[1] https://developer.android.com/training/safetynet/attestation#

potential-integrity-verdicts
[2] https://github.com/microg/RemoteDroidGuard
[3] https://github.com/microg/GmsCore/blob/ad12bd5de4970a6607a18e37707fab9f444593a7/

play-services-core-proto/src/main/proto/snet.proto#L15-L25
[4] https://github.com/microg/GmsCore/blob/ad12bd5de4970a6607a18e37707fab9f444593a7/

play-services-core-proto/src/main/proto/snet.proto#L27-L30
[5] https://habr.com/en/post/446790/
[6] https://joellaity.com/2020/01/31/string.html
[7] https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.

pdf
[8] https://github.com/mrphrazer/msynth
[9] https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/cronet

[10] https://www.romainthomas.fr/projects-images/safetynet/
[11] https://kingrootapp.net/
[12] https://developer.android.com/training/articles/security-key-attestation
[13] https://www.sstic.org/2021/presentation/qbdl_quarkslab_dynamic_loader/
[14] https://github.com/unicorn-engine/unicorn

24 of 24

https://developer.android.com/training/safetynet/attestation#potential-integrity-verdicts
https://developer.android.com/training/safetynet/attestation#potential-integrity-verdicts
https://github.com/microg/RemoteDroidGuard
https://github.com/microg/GmsCore/blob/ad12bd5de4970a6607a18e37707fab9f444593a7/play-services-core-proto/src/main/proto/snet.proto#L15-L25
https://github.com/microg/GmsCore/blob/ad12bd5de4970a6607a18e37707fab9f444593a7/play-services-core-proto/src/main/proto/snet.proto#L15-L25
https://github.com/microg/GmsCore/blob/ad12bd5de4970a6607a18e37707fab9f444593a7/play-services-core-proto/src/main/proto/snet.proto#L27-L30
https://github.com/microg/GmsCore/blob/ad12bd5de4970a6607a18e37707fab9f444593a7/play-services-core-proto/src/main/proto/snet.proto#L27-L30
https://habr.com/en/post/446790/
https://joellaity.com/2020/01/31/string.html
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-android-technical-analysis.pdf
https://github.com/mrphrazer/msynth
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/cronet
https://www.romainthomas.fr/projects-images/safetynet/
https://kingrootapp.net/
https://developer.android.com/training/articles/security-key-attestation
https://www.sstic.org/2021/presentation/qbdl_quarkslab_dynamic_loader/
https://github.com/unicorn-engine/unicorn

	Introduction to SafetyNet
	SafetyNet Workflow
	DroidGuard: The VM behind SafetyNet
	Overview
	The Virtual Machine Internals
	Data Flow Obfuscation
	Code Integrity

	The Device Integrity Checks
	DroidGuardResult & Telemetry Data
	Reverse-Engineering C++: What We Should Be Aware Of?
	The Pointer this
	Copy Elision
	std::string Optimization

	Conclusion
	The Reverse-Engineering Cost
	The Limits of the DroidGuard/SafetyNet Design

	Annexes
	Root Checks
	Magisk Detection
	KingRoot Checks

	Dynamic Instrumentation Checks
	Xposed Detection

	Emulator Checks
	System Properties
	Devices Features

	Bootloader Status
	System Properties
	Java API
	Hardware Attestation

	Conditional Checks on Files Matching Specific Keywords
	DroidGuardVM Layout
	DroidGuardResult Protobuf Content

