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Figure 1: WhisperX: We present a system for efficient speech transcription of long-form audio with word-level time alignment. The
input audio is first segmented with Voice Activity Detection and then cut & merged into approximately 30-second input chunks with
boundaries that lie on minimally active speech regions. The resulting chunks are then: (i) transcribed in parallel with Whisper, and (ii)
forced aligned with a phoneme recognition model to produce accurate word-level timestamps at high throughput.

Abstract
Large-scale, weakly-supervised speech recognition models,
such as Whisper, have demonstrated impressive results on
speech recognition across domains and languages. However,
the predicted timestamps corresponding to each utterance are
prone to inaccuracies, and word-level timestamps are not avail-
able out-of-the-box. Further, their application to long audio via
buffered transcription prohibits batched inference due to their
sequential nature. To overcome the aforementioned challenges,
we present WhisperX, a time-accurate speech recognition sys-
tem with word-level timestamps utilising voice activity detec-
tion and forced phoneme alignment. In doing so, we demon-
strate state-of-the-art performance on long-form transcription
and word segmentation benchmarks. Additionally, we show
that pre-segmenting audio with our proposed VAD Cut & Merge
strategy improves transcription quality and enables a twelve-
fold transcription speedup via batched inference. The code is
available open-source1.

1. Introduction
With the availability of large-scale web datasets, weakly-
supervised and unsupervised training methods have demon-
strated impressive performance on a multitude of speech pro-
cessing tasks; including speech recognition [1, 2, 3], speaker
recognition [4, 5], speech separation [6], and keyword spot-
ting [7, 8]. Whisper [9] utilises this rich source of data to an-
other scale. Leveraging 680,000 hours of noisy speech training
data, including 96 other languages and 125,000 hours of English
translation data, it showcases that weakly supervised pretrain-
ing of a simple encoder-decoder transformer [10] can robustly
achieve zero-shot multilingual speech transcription on existing
benchmarks.

Most of the academic benchmarks are comprised of short
utterances, whereas real-world applications typically require

1https://github.com/m-bain/whisperX

transcribing long-form audio that can easily be hours or minutes
long, such as meetings, podcasts and videos. Automatic Speech
Recognition (ASR) models are typically trained on short audio
segments (30 seconds for the case of Whisper) and the trans-
former architectures prohibit transcription of arbitrarily long in-
put audio due to memory constraints.

Recent works [11] employ heuristic sliding window style
approaches that are prone to errors due to overlapping or incom-
plete audio (e.g. words being cut halfway through). Whisper
proposes a buffered transcription approach that relies on accu-
rate timestamp prediction to determine the amount to shift the
subsequent input window by. Such a method is prone to severe
drifting since timestamp inaccuracies in one window can ac-
cumulate to subsequent windows. The hand-crafted heuristics
employed have achieved limited success.

A plethora of works exist on “forced alignment”, aligning
speech transcripts with audio at the word or phoneme level. Tra-
ditionally, this involves training acoustic phoneme models in
a Hidden Markov Model (HMM) [12, 13, 14, 15] framework
using external boundary correction models [16, 17]. Recent
works employ deep learning strategies, such as a bi-directional
attention matrix [18] or CTC-segmentation with an end-to-end
trained model [19]. Further improvements may come from
combining a state-of-the-art ASR model with a light-weight
phoneme recognition model, both of which are trained with
large-scale datasets.

To address these challenges, we propose WhisperX, a sys-
tem for efficient speech transcription of long-form audio with
accurate word-level timestamps. It consists of three additional
stages to Whisper transcription: (i) pre-segmenting the input
audio with an external Voice Activity Detection (VAD) model;
(ii) cut and merging the resulting VAD segments into approxi-
mately 30 seconds input chunks with boundaries lying on mini-
mally active speech regions enabling batched whisper transcrip-
tion; and finally (iii) forced alignment with an external phoneme
model to provide accurate word-level timestamps.



2. WhisperX
In this section we describe WhisperX and its components for
long-form speech transcription with word-level alignment.

2.1. Voice Activity Detection

Voice activity detection (VAD) refers to the process of identi-
fying regions within an audio stream that contain speech. For
WhisperX, we first pre-segment the input audio with VAD. This
provides the following three benefits: (1) VAD is much cheaper
than ASR and avoids unnecessary forward passes of the lat-
ter during long inactive speech regions. (2) The audio can be
sliced into chunks with boundaries that do not lie on active
speech regions, thereby minimising errors due to boundary ef-
fects and enabling parallelised transcription. Finally, (3) the
speech boundaries provided by the VAD model can be used to
constrain the word-level alignment task to more local segments
and remove reliance on Whisper timestamps – which we show
to be too unreliable.

VAD is typically formulated as a sequence labelling
task; the input audio waveform is represented as a sequence
of acoustic feature vectors extracted per time step A =
{a1, a2, ..., aT } and the output is a sequence of binary labels
y = {y1, y2, ..., yT }, where yt = 1 if there is speech at time
step t and yt = 0 otherwise.

In practice, the VAD model ΩV : A → y is instantiated as
a neural network, whereby the output predictions yt ∈ [0, 1] are
post-processed with a binarize step – consisting of a smoothing
stage (onset/offset thresholds) and decision stage (min. duration
on/off) [20].

The binary predictions can then represented as a sequence
of active speech segments s = {s1, s2, ..., sN}, with start and
end indexes si = (ti0, t

i
1).

2.2. VAD Cut & Merge

Active speech segments s can be of arbitrary lengths, much
shorter or longer than the maximum input duration of the ASR
model, in this case Whisper. These Longer segments cannot be
transcribed with a single forward pass. To address this, we pro-
pose a ‘min-cut’ operation in the smoothing stage of the binary
post-processing to provide an upper bound on the duration of
active speech segments.

Specifically, we limit the length of active speech segments
to be no longer than the maximum input duration of the ASR
model. This is achieved by cutting longer speech segments at
the point of minimum voice activation score (min-cut). To en-
sure the newly divided speech segments are not exceedingly
short and have sufficient context, the cut is restricted between
1
2
|Atrain| and |Atrain|, where |Atrain| is the maximum duration of

input audio during training (for Whisper this is 30 seconds).
With an upper bound now set on the duration of input seg-

ments, the other extreme must be considered: very short seg-
ments, which present their distinct set of challenges. Transcrib-
ing brief speech segments eliminates the broader context bene-
ficial for modelling speech in challenging scenarios. Moreover,
transcribing numerous shorter segments increases total tran-
scription time due to the increased number of forward passes
required.

Therefore, we propose a ‘merge’ operation, performed after
‘min-cut‘, merging neighbouring segments with aggregate tem-
poral spans less than a maximal duration threshold τ where τ ≤
|Atrain|. Empirically we find this to be optimal at τ = |Atrain|,
maximizing context during transcription and ensures the distri-

bution of segment durations is closer to that observed during
training. Pseudo-code outlining both the min-cut and merge op-
erations can be found in the ArXiv version of the paper.

2.3. Whisper Transcription

The resulting speech segments, now with duration approxi-
mately equal to the input size of the model, |si| ≈ |Atrain| ∀i ∈
N , and boundaries that do not lie on active speech, can be ef-
ficiently transcribed in parallel with Whisper ΩW , outputting
text for each audio segment ΩW : s → T . We note that
parallel transcription must be performed without conditioning
on previous text, since the causal conditioning would otherwise
break the independence assumption of each sample in the batch.
In practice, we find this restriction to be beneficial, since con-
ditioning on previous text is more prone to hallucination and
repetition. We also use the no timestamp decoding method of
Whisper.

2.4. Forced Phoneme Alignment

For each audio segment si and its corresponding text tran-
scription Ti, consisting of a sequence of words Ti =
[w0, w1, ..., wm], our goal is to estimate the start and end
time of each word. For this, we leverage a phoneme recog-
nition model, trained to classify the smallest unit of speech
distinguishing one word from another, e.g. the element p in
“tap”. Let C be the set of phoneme classes in the model
C = {c1, c2, ..., cK}. Given an input audio segment, a phoneme
classifier, takes an audio segment S as input and outputs a logits
matrix L ∈ RK×T , where T varies depending on the temporal
resolution of the phoneme model.

Formally, for each segment, si ∈ s, and its corresponding
text Ti: (1) Extract the unique set of phoneme classes in the
segment text Ti common to the phoneme model, denoted by
CTi ⊂ C. (2) Perform phoneme classification over the input
segment si, with the classification restricted to CTi classes. (3)
Apply Dynamic Time Warping (DTW) on the resulting logits
matrix Li ∈ RCTi

×T , to obtain the optimal temporal path of
phonemes in Ti. (4) Obtain start and end times for each word
wi in Ti by taking the start and end time of the first and last
phoneme within the word respectively.

For transcript phonemes not present in the phoneme
model’s dictionary C, we assign the timestamp from the next
nearest phoneme in the transcript. The for loop described above
can be batch processed in parallel, enabling fast transcription
and word-alignment of long-form audio.

2.5. Multi-lingual Transcription and Alignment

WhisperX can also be applied to multilingual transcription, with
the caveat that (i) the VAD model should be robust to different
languages, and (ii) the alignment phoneme model ought to be
trained on the language(s) of interest. Multilingual phoneme
recognition models [21] are also a suitable option, possibly gen-
eralising to languages not seen during training – this would
just require an additional mapping from language-independent
phonemes to the phonemes of the target language(s).2

2We were unable to find non-English ASR to evaluate multilingual
word segmentation, but we show successful qualitative examples in the
open-source repository.



2.6. Translation

Whisper also offers a “translate” mode that allows for translated
transriptions from multiple languages into English. The batch
VAD-based transcription can also be applied to the translation
setting, however phoneme alignment is not possible due to there
no longer being a phonetic audio-linguistic alignment between
the speech and the translated transcript.

2.7. Word-level Timestamps without Phoneme Recognition

We explored the feasibility of extracting word-level timestamps
from Whisper directly, without an external phoneme model, to
remove the need for phoneme mapping and reduce inference
overhead (in practice we find the alignment overhead is mini-
mal, approx. <10% in speed). Although attempts have been
made to infer timestamps from cross-attention scores [22], these
methods under-perform when compared to our proposed exter-
nal phoneme alignment approach, as evidenced in Section 3.4,
and are prone to timestamp inaccuracies.

3. Evaluation

Our evaluation addresses the following questions: (1) the ef-
fectiveness of WhisperX for long-form transcription and word-
level segmentation compared to state-of-the-art ASR models
(namely Whisper and wav2vec2.0); (2) the benefit of VAD Cut
& Merge pre-processing in terms of transcription quality and
speed; and (3) the effect of the choice of phoneme model and
Whisper model on word segmentation performance.

3.1. Datasets

The AMI Meeting Corpus. We used the test set of the AMI-
IHM from the AMI Meeting Corpus [23] consisting of 16 audio
recordings of meetings. Manually verified word-level align-
ments are provided for the test set used to evaluate word seg-
mentation performance. Switchboard-1 Telephone Corpus
(SWB). SWB [24] consists of ∼2,400 hours of speech of tele-
phone conversations. Ground truth transcriptions are provided
with manually corrected word alignments. We randomly sub-
sampled a set of 100 conversations. To evaluate long-form au-
dio transcription, we report on TEDLIUM-3 [25] consisting of
11 TED talks, each 20 minutes in duration, and Kincaid46 [26]
consisting of various videos sourced from YouTube.

3.2. Metrics

For evaluating long-form audio transcription, we report word
error rate (WER) and transcription speed (Spd.). To quantify
the amount of repetition and hallucination, we measure inser-
tion error rate (IER) and the number of 5-gram word duplicates
within the predicted transcript (5-Dup.) respectively. Since this
does not evaluate the accuracy of the predicted timestamps, we
also evaluate word segmentation metrics, for datasets that have
word-level timestamps, jointly evaluating both transcription and
timestamp quality. We report the Precision (Prec.) and Recall
(Rec.) where a true positive is where a predicted word seg-
ment overlaps with a ground truth word segment within a collar,
where both words are an exact string match. For all evaluations
we use a collar value of 200 milliseconds to account for differ-
ences in annotation and models.

Table 1: Default configuration for WhisperX.

Type Hyperparameter Default Value

VAD

Model pyannote [29]
Onset threshold 0.767
Offset threshold 0.377
Min. duration on 0.136
Min. duration off 0.067

Whisper
Model version large-v2
Decoding strategy greedy
Condition on previous text False

Phoneme
Model

Architecture wav2vec2.0
Model version BASE 960H
Decoding strategy greedy

3.3. Implementation Details

WhisperX: Unless specified otherwise, we use the default con-
figuration in Table 1 for all experiments. Whisper [9]: For
Whisper-only transcription and word-alignment we inherit the
default configuration from Table 1, and use the official imple-
mentation3 for inferring word timestamps. Wav2vec2.0 [2]:
For wav2vec2.0 transcription and word-alignment we use the
default settings in Table 1 unless specified otherwise. We obtain
the various model versions from the official torchaudio reposi-
tory4. Base 960h and Large 960h models were trained on Lib-
rispeech [27] data, whereas the VoxPopuli model was trained on
the Voxpopuli [28] corpus. For benchmarking inference speed,
all models are measured on an NVIDIA A40 gpu, as multiples
of Whisper’s speed.

3.4. Results

3.4.1. Word Segmentation Performance

Comparing to previous state-of-the-art speech transcription
models (Table 2), Whisper and wav2vec2.0, we find that
WhisperX substantially outperforms both in word segmentation
benchmarks, WER, and transcription speed. Especially with
batched transcription, WhisperX even surpasses the speed of
the lightweight wav2vec2 model. However, solely using Whis-
per for word-level timestamps extraction significantly underper-
forms in word segmentation precision and recall on both SWB
and AMI corpuses, even falling short of wav2vec2.0, a smaller
model with less training data. This implies the insufficiency of
Whisper’s large-scale noisy training data and current architec-
ture for learning accurate word-level timestamps.

3.4.2. Effect of VAD Chunking

Table 3 demonstrates the benefits of pre-segmenting audio
with VAD and Cut & Merge operations, improving both
transcription-only WER and word segmentation precision and
recall. Batched transcription without VAD chunking, however,
degrades both transcription quality and word segmentation due
to boundary effects.

Batched inference with VAD, transcribing each segment in-
dependently, provides a nearly twelve-fold speed increase with-
out performance loss, overcoming the limitations of buffered
transcription [9]. Batch inference without VAD, using a sliding

3https://github.com/openai/whisper/releases/tag/v20230307
4https://pytorch.org/audio/stable/pipelines.html#module-

torchaudio.pipelines



Table 2: State-of-the-art comparison of long-form audio transcription and word segmentation on the TED-LIUM, Kincaid46, AMI,
and SWB corpora. Spd denotes transcription speed, WER denotes Word Error Rate, 5-Dup denotes the № 5-gram duplicates, Precision
& Recall are calculated with a collar value of 200ms. †Word timestamps from Whisper are not directly available but are inferred via
Dynamic Time Warping of the decoded tokens attention scores.

Model TED-LIUM [25] Kincaid46 [26] AMI [23] SWB [24]

Spd.↑ WER↓ IER↓ 5-Dup.↓ WER↓ IER↓ 5-Dup.↓ Prec.↑ Rec.↑ Prec.↑ Rec.↑

wav2vec2.0 [2] 10.3× 19.8 8.5 129 28.0 5.3 29 81.8 45.5 92.9 54.3
Whisper [9] 1.0× 10.5 7.7 221 12.5 3.2 131 78.9 52.1 85.4 62.8

WhisperX 11.8× 9.7 6.7 189 11.8 2.2 75 84.1 60.3 93.2 65.4

Table 3: Effect of WhisperX’s VAD Cut & Merge and batched
transcription on long-form audio transcription on the TED-
LIUM benchmark and AMI corpus. Full audio input corre-
sponds to WhisperX without any VAD pre-processing, VAD-
CMτ refers to VAD pre-processing with Cut & Merge, where
τ is the merge duration threshold in seconds.

Input Batch
Size

TED-LIUM AMI

WER↓ Spd.↑ Prec.↑ Rec.↑

Full audio 1 10.52 1.0× 82.6 53.4
32 78.78 7.1× 43.2 25.7

VAD-CM15
1 9.72 2.1× 84.1 56.032 7.9×

VAD-CM30
1 9.70 2.7× 84.1 60.332 11.8×

window, significantly degrades WER due to boundary effects,
even with heuristic overlapped chunking as in huggingface5.

The optimal merge threshold value for Cut & Merge op-
erations τ is found to be the input duration that Whisper was
trained on |Atrain| = 30, which provides the fastest transcrip-
tion speed and lowest WER. This confirms that maximum con-
text yields the most accurate transcription.

3.4.3. Hallucination & Repetition

In Table 2, we find that WhisperX reports the lowest IER on
the Kincaid46 and TED-LIUM benchmarks, confirming that the
proposed VAD Cut & Merge operations reduce hallucination in
Whisper. Further, we find that repetition errors, measuring by
counting the total number of 5-gram duplicates per audio, is
also reduced by the proposed VAD operations. By removing
the reliance on decoded timestamp tokens, and instead using
external VAD segment boundaries, WhisperX avoids repetitive
transcription loops and hallucinating speech during inactivate
speech regions.

Whilst wav2vec2.0 underperforms in both WER and word
segmentation, we find that it is far less prone to repetition er-
rors compared to both Whisper and WhisperX. Further work is
needed to reduce hallucination and repetition errors.

3.4.4. Effect of Chosen Whisper and Alignment Models

We compare the effect of different Whisper and phoneme recog-
nition models on word segmentation performance across the
AMI and SWB corpuses in Table 4. Unsurprisingly, we see
consistent improvements in both precision and recall when us-
ing a larger Whisper model. In contrast, the bigger phoneme

5https://huggingface.co/openai/whisper-large

Table 4: Effect of whisper model and phoneme model on
WhisperX on word segmentation. Both the choice of whisper
and phoneme model has a significant effect on word segmenta-
tion performance.

Whisper
Model

Phoneme
Model

AMI SWB

Prec. Rec. Prec. Rec.

base.en
Base 960h 83.7 58.9 93.1 64.5
Large 960h 84.9 56.6 93.1 62.9
VoxPopuli 87.4 60.3 86.3 60.1

small.en
Base 960h 84.1 59.4 92.9 62.7
Large 960h 84.6 55.7 94.0 64.9
VoxPopuli 87.7 61.2 84.7 56.3

large-v2
Base 960h 84.1 60.3 93.2 65.4
Large 960h 84.9 57.1 93.5 65.7
VoxPopuli 87.7 61.7 84.9 58.7

model is not necessarily the best and the results are more nu-
anced. The model trained on the VoxPopuli corpus significantly
outperforms other models on AMI, suggesting that there is a
higher degree of domain similarity between the two corpora.

The large alignment model does not show consistent gains,
suggesting the need for additional supervised training data.
Overall the base model trained on LibriSpeech performs con-
sistently well and should be the default alignment model for
WhisperX.

4. Conclusion
To conclude, we propose WhisperX, a time-accurate speech
recognition system enabling within-audio parallelised tran-
scription. We show that the proposed VAD Cut & Merge
preprocessing reduces hallucination and repetition, enabling
within-audio batched transcription, resulting in a twelve-fold
speed increase without sacrificing transcription quality. Further,
we show that the transcribed segments can be forced aligned
with a phoneme model, providing accurate word-level seg-
mentations with minimal inference overhead and resulting in
time-accurate transcriptions benefitting a range of applications
(e.g. subtitling, diarisation etc.). A promising direction for
future work is the training of a single-stage ASR system
that can efficiently transcribe long-form audio with accurate
word-level timestamps.
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