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Abstract. The objective of this paper is to recognize gestures in videos
– both localizing the gesture and classifying it into one of multiple classes.
We show that the performance of a gesture classifier learnt from a sin-
gle (strongly supervised) training example can be boosted significantly
using a ‘reservoir’ of weakly supervised gesture examples (and that the
performance exceeds learning from the one-shot example or reservoir
alone). The one-shot example and weakly supervised reservoir are from
different ‘domains’ (different people, different videos, continuous or non-
continuous gesturing, etc.), and we propose a domain adaptation method
for human pose and hand shape that enables gesture learning methods
to generalise between them. We also show the benefits of using the re-
cently introduced Global Alignment Kernel [12], instead of the standard
Dynamic Time Warping that is generally used for time alignment.
The domain adaptation and learning methods are evaluated on two large
scale challenging gesture datasets: one for sign language, and the other
for Italian hand gestures. In both cases performance exceeds the previous
published results, including the best skeleton-classification-only entry in
the 2013 ChaLearn challenge.

1 Introduction

Gesture recognition has recently received an increasing amount of attention due
to the advent of Kinect and socially important applications, e.g . sign language
to speech translation [8], becoming more tractable. However, the majority of ap-
proaches to gesture (and action) recognition rely on strongly supervised learning,
which requires ground truthing large quantities of training data. This is inher-
ently expensive and does not scale to large, evolving gesture languages with high
levels of variation. As a result, several recent works have attempted to learn
gestures at the other extreme – from single training examples using one-shot
learning [16,17,19,20,22,24,33]. However, given the vast variability in how ges-
tures are performed, and the variation in people and camera viewpoints, learning
accurate, generalizable models with so little supervision is somewhat challeng-
ing, to say the least. Another avenue of work has explored learning gestures
from practically infinite sources of data with weak supervision [7, 11, 23, 26, 28],
e.g . TV broadcasts with aligned subtitles (or similarly actions from movies with
aligned transcripts [1, 3, 14]). While these works have also shown promise, they
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Fig. 1: Domain-adaptive discriminative one-shot gesture learning.
Domain-adapted one-shot learning is used to obtain additional training data
from a huge weakly supervised gesture repository of another domain. These new
samples are used to ‘boost’ the one-shot learner with additional discriminative
power. Evaluations are carried out under further domain adaptation on another
one-shot learning dataset. Dashed line shows the baseline and the solid lines
show the proposed method.

have also demonstrated the limitations of the weak supervision available for ges-
tures today: it is so weak and noisy that it is very difficult to learn from it
alone [7, 11,28].

In this paper we show the benefit of combining these two gesture recognition
approaches, one-shot learning and weakly supervised learning. The key idea is
that, given suitable domain adaptations, one-shot learning can gain an enormous
performance boost from utilising weakly supervised data from different domains.

Consider a common gesture recognition scenario as depicted in Fig. 1. Here
we have one or more videos (one-shot learning examples; gesture ‘dictionaries’)
showing an example of each gesture, and a huge dataset of weakly labelled videos
from another domain (the ‘gesture reservoir’) containing some instances of the
same gestures. This scenario arises naturally in gesture languages, such as sign
language, which have many video dictionaries (online and on DVDs) with exam-
ples of signs, and a plentiful supply of signed data (e.g . sign language-translated
TV broadcasts, shown in Fig. 2 (right); or linguistic research datasets). In the
case of TV broadcasts the weak supervision is provided by aligned subtitles (that
specify a temporal interval where the word may occur), though the supervision
is also noisy as the subtitle word may not be signed. In the case of linguistic
research datasets (and some gesture datasets [19]) the supervision is often at the
video clip level, rather than a tighter temporal interval.

Our aim is to boost the performance of one-shot learning by using this large
‘reservoir’ of weakly supervised gestures. In the one-shot case there is strong
supervision (but only one example). In the reservoir there are many examples
exhibiting variations in people, expression, speed, but only weak supervision –
the temporal interval is not tight. The goal is to obtain a weak classifier from one-
shot learning and use it to select further examples from the reservoir. A stronger
classifier can then be trained from the gesture variations and large variation of
people in the reservoir. This is a form of semi-supervised learning, but here the
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Fig. 2: Sample frames from the four datasets with upper body pose estimates
overlaid. From left to right: BSL dictionary 1, BSL dictionary 2, ChaLearn and
BSL-TV.

affinity function requires domain adaptation in going between the one-shot and
gesture reservoir videos.

This is a very challenging task since the video dictionaries and gesture reser-
voir can be of wildly differing video domains (see Fig. 2): different size and res-
olutions; different people; and with gestures performed at significantly different
prosody and speed. Furthermore, one domain may contain continuous gestures
(e.g . most weakly supervised datasets) while another (e.g . most one-shot learn-
ing datasets) only contains gestures performed with clear breaks in-between.

In the remainder of this paper we show that not only can a weakly super-
vised gesture reservoir be used to significantly boost performance in gesture
recognition, but also that the availability of multiple one-shot learning datasets
enables evaluation of gesture recognition methods for problems where test data
was previously absent. Our contributions are: (i) a method for learning gestures
accurately and discriminatively from a single positive training example (in the
spirit of one-shot learning and exemplar SVMs/LDAs [21, 25]); (ii) a domain
adaptation method for human pose and hand shape that enables generalisation
to new domains; and (iii) a learning framework for gestures that employs the
recently introduced Global Alignment Kernel [12].

In the evaluations we show that our method achieves a significant perfor-
mance boost on two large gesture datasets. We also release pose estimates for
two gesture dictionaries1.

1 http://www.robots.ox.ac.uk/~vgg/research/sign_language

http://www.robots.ox.ac.uk/~vgg/research/sign_language
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2 Domain-adaptive Discriminative One-shot Learning

In this section we first overview the learning framework, and then describe the
details of the visual features (hand trajectory and hand shape) and their domain
transfer which involves space and time transformations.

Figure 1 shows an overview of the learning framework. There are three do-
mains: two gesture one-shot ‘dictionaries’ and one large weakly supervised ‘ges-
ture reservoir’. One dictionary is used for training, the other for testing.

The method proceeds in four steps: (1) train a discriminative one-shot gesture
detector from the first dictionary, separately for each gesture; (2) that detector is
then used to discover new samples of the same gesture in the weakly supervised
gesture reservoir – the search for the sample is restricted to a temporal interval
provided by the weak supervision; (3) these new samples are used to train what
is effectively a stronger version of the original one-shot gesture classifier; and
(4) this strong classifier is evaluated on a second one-shot dictionary.

2.1 Discriminative one-shot gesture learning framework

Given the two video dictionaries (one for training, the other for evaluation) and a
weakly labelled gesture reservoir, let δ1, δ2 and ν denote their respective features
(here the hand trajectories). For example, δ1 = {δ11 , . . . , δ1q , . . . } where δ1q is a
variable-length vector (depending on the length of the gesture video) of hand
positions over all frames in the qth gesture video of dictionary 1.

Imagine we are learning a gesture for ‘snow’ in BSL (shown in Fig. 3). We
first train a discriminative one-shot gesture detector for ‘snow’ on the features
of the first dictionary (δ1). To do this, we use a time-and-space-aligned gesture
kernel ψ (defined in Sect. 2.2) in a dual SVM to learn weights α from

max
αi≥0

∑
i

αi −
1

2

∑
jk

αjαkyjykψ(xj ,xk) ∀i 0 ≤ αi ≤ C
∑
i

αiyi = 0 (1)

where we set the learning feature to x = δ1 (hand trajectories of the videos in
dataset δ1), yi are binary video labels (1 for the ‘snow’ dictionary video, −1 for
others), and ψ(, ) is the kernel. This is the one-shot learning – as an exemplar
SVM [25].

In the second step, we use this model to discover new samples of ‘snow’ in the
weakly supervised gesture reservoir (restricted to the temporal intervals provided
by the weak supervision). A very large number of samples in the reservoir are
scored to find gestures that are most similar to ‘snow’ (and dissimilar to the
other gestures) in the first dictionary. This yields a vector of scores s

s(ν) =
∑
i

αiyiψ(xi,ν) + b (2)

where ν are the features for reservoir subsequences with a weakly supervised
label ‘snow’. Here, s(ν) is a vector of scores of length |ν| (the number of samples
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Fig. 3: Frames showing variation in gesture speed and prosody across two do-
mains (top and bottom). The example gesture shown here is ‘snow’ in BSL,
which mimics snow falling down. Although the frame rate is the same, the speed
at which the gestures are produced are considerably different.

in the weakly supervised sequences of the gesture reservoir). The top scored
samples represent gestures in the reservoir that are most similar to ‘snow’ in
the the first dictionary, but with high variability in space, time and appearance
(thanks to the time and space adaptations).

In the third step, the top samples of s(ν) (by score), along with a set of
negative samples from the gesture reservoir, are used to train a stronger version
of the original one-shot gesture classifier for ‘snow’ (training details are given in
Sect. 2.4). We do this by retraining (1) with this new training set x = νretrain

(of cardinality around 2,000 samples). Due to only selecting the top samples of
the gesture reservoir for training, we develop resilience to noisy supervision.

In the fourth and final step, this stronger model is evaluated on the second
dictionary by ranking all gesture videos using the score s(δ2) of the stronger clas-
sifier. This provides a measure of the strength of the classifier without requiring
any expensive manual annotation.

2.2 Domain adaptations

A major challenge in gesture recognition is that not only are the gestures per-
formed by different people with different body shapes, but the same gestures are
performed at very different speeds and prosody across domains and people (see
Fig. 3). We tackle this problem by measuring distance under domain adaptations
in both space and time. We next discuss the domain adaptations used to define
this kernel ψ.
Time alignment. Dynamic Time Warping (DTW) [30,31] is a popular method
for obtaining the time alignment between two time series and measuring their
similarity. However, there have been problems incorporating it into a discrim-
inative framework (e.g . into kernels [2, 18, 32, 35]) due to the DTW ‘distance’
not satisfying the triangle inequality. As a result, it cannot be used to define a
positive definite kernel. Furthermore, it is unlikely to be robust as a similarity
measure as it only uses the cost of the minimum alignment.
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(a) (b) (c) (d) (e) (f)

Fig. 4: Human pose transformation across domains. (top) BSL for ‘heart’
with overlaid wrist trajectory; (bottom) BSL for ‘gram’. (a) wrist trajectory for
domain 1, (b) trajectory for domain 2, (c) trajectory of domain 1 mapped onto
domain 2 with a spatial transformation, (d) transformation with minimisation of
the local position ‘slack’, (e) zoomed-in similarity without temporal alignment
(white lines represent wrist point correspondences across the two domains), and
(f) similarity with temporal alignment. As shown, the distance (proportional to
the sum of the lengths of the white point correspondence lines) is significantly
lower under alignment. Best seen in colour.

In this work we use a recently proposed positive definite kernel, the Global
Alignment (GA) kernel [12,13]. In addition to being positive definite, it has the
interesting property of considering all possible alignment distances instead of
only the minimum (as in DTW). The kernel computes a soft-minimum of all
alignment distances, generating a more robust result that reflects the costs of all
paths:

kGA(x,y) =
∑

π∈A(n,m)

e−Dx,y(π) (3)

where Dx,y(π) =
∑|π|
i=1 ‖xπ(i) − yπ(i)‖ denotes the Euclidean distance between

two time series x,y under alignment π, and A(n,m) denotes all possible align-
ments between two time series of length n and m. In our case x,y are two time
series of spatially aligned human joint positions, i.e. the joint ‘trajectories’ of
two gestures that are being compared. By incorporating all costs into the kernel
we improve classification results compared to only considering the minimal cost.

Spatial alignment. Since the hands play an important role in gestures, knowing
where the wrists are is valuable to any gesture recognition method. However,
an issue with human joint positions is that they are not directly comparable
across domains due to differences in both position, scale and human body shape.
We use two simple yet effective affine transformations, one global and another
local in time, that allow for translation and anisotropic scaling. This encodes
a typical setup in gesture datasets, where, for a particular gesture, the persons
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Fig. 5: Domain adaptation in space and time. Top: video sequence from
the gesture reservoir; Middle: automatic time alignments to another sequence
from a one-shot learning domain; Bottom: domain-adapted (space and time
aligned) sequences, with the middle sequence overlaid on the top one. For ease
of visualisation the example only uses a dominant hand, so only the dominant
hand is matched (this is determined from the one-shot learning dictionary). In
most cases, the transformation involves both hands.

stay at roughly the same distance from the camera (global transform), but may
move slightly left or right (local transform). The global transformation learns
the anisotropic scaling and translation, and the local transformation estimates
an x translation, mapping into a canonical frame in which poses from different
domains can be directly compared.

The global transform is computed from the median positions of the shoulders
and elbows (selected since they are comparable across videos) over the whole
video. The x translation is estimated locally from the median head and shoulder
positions over a small temporal window (50 frames). Fig. 5 shows a visualisation
of the transformation.

Even after spatial transformations, the absolute position for the gesture (rel-
ative to the torso) generally differs slightly. We solve that by adding some ‘slack’
to allow for slight absolute position differences. We do this by minimising the l2
distance between wrist trajectories (of the two videos that are compared) over a
small local square patch of width u = (dist. between shoulders)/10. Fig. 4(c-d)
shows an example of the original and corrected positions.

The composition of the global and local transformations define the spatial
transformation φ, i.e. φ(x) is the mapping from the trajectory in the video to
the spatial canonical frame.



8 T. Pfister, J. Charles and A. Zisserman

Final kernel. The final kernel is a composition of the the time alignment kGA

and spatial transformations φ, yielding the kernel ψ(x,y) = kGA(φ(x),φ(y)).

2.3 Hand shape filter

As Fig. 2 demonstrates, hand shape carries much of the discriminative informa-
tion in gestures, particularly in complex gesture languages such as sign language,
and needs to be included in order to successfully learn gestures. We use a hand
shape descriptor to discard false positives of reservoir samples where the wrist
trajectories of the one-shot learning domain and the gesture reservoir match,
but the hand shape is different (the similarity score is below a threshold).

Comparing hand shapes across domains is not straightforward since the do-
mains may be of different resolution, contain different persons, lighting etc. More-
over, our pose estimator only provides wrist positions (not hand centres). We
next describe a domain-independent, somewhat lighting-invariant hand shape
descriptor that addresses these challenges.

We follow the method of Buehler et al . [7] where hands are first segmented,
and then assigned to a cluster index. The clusters are used both to provide a
distance between hand shapes and also to aid in the segmentation. To compare
two hands in different domains, we assign them to their respective local domain
hand cluster exemplars and measure their similarity as the distance between the
HOGs of their cluster exemplars (shown in Fig. 6).

In detail, GraphCut [5,29] is used for an initial segmentation (with skin colour
posteriors obtained from a face detector), and the segmented hands are repre-
sented using HOG features (of dimensionality 15× 15× 31). The segmentation
is performed within a box defined by an estimate of hand centre position (based
on the elbow-wrist vector). Hand exemplars are then formed by clustering HOG
vectors for examples that are far away from the face using k-means (K = 1000).
These are effectively ‘clean’ hand clusters, without face regions in the foreground
segmentation. For an input image, HOG vectors are matched to their nearest
hand cluster, resulting in a ‘cleaned’ segmentation of the hand.

2.4 Implementation details

Learning framework. For each word, the positive training samples are ob-
tained from the top ranked positive samples of each reservoir video. If there
are wc occurrences of the word in the subtitles of a reservoir video, then the
top 5wc positive samples are used – note, no non-maximum suppression is used
when sliding the classifier window so there are multiple responses for each occur-
rence. The number of positives is capped at 1,000, and 1,000 randomly sampled
reservoir gestures are used as negatives.
Time alignment. We use the dual formulation of SVMs since our space and
time alignment method provides the alignments as kernels, not in feature space
(so primal optimisation is not suitable).
Hands. We precompute a K×K hand distance matrix offline for any pair of one-
shot learning domain and gesture reservoir videos. At runtime, the comparison
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L2 distance
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Fig. 6: Hand shape descriptor. (a) Badly segmented hands (due to overlap
with skin) in two domains, (b) hands assigned to their hand cluster exemplars,
(c) HOG of size-normalised exemplars, and (d) hands are compared across do-
mains in terms of l2 distance between the HOGs of the hand exemplars.

of two gestures is reduced to looking up the distance in the matrix for each pair
of time-aligned frames, and summing up the distances.
Computation time. The computation times for the preprocessing steps are:
pose estimation 0.4s/frame; hand segmentation 0.1s/frame. Time alignment is
approx 0.001s per gesture pair, or 1,000s for a 1000× 1000 kernel matrix. Other
costs (e.g . spatial alignments, SVM training and testing, subtitle preprocessing
etc.) are negligible in comparison (a few seconds per gesture/video).

3 Datasets

Four datasets are employed in this work: a sign language dataset extracted from
TV broadcasts; two sign language dictionaries; and a dataset of Italian hand
gestures. Samples from each gesture dataset are shown in Figure 2.

3.1 BSL-TV sign language dataset

This contains 155 hours of continuous British Sign Language (BSL), performed
by 45 signers, with over 1,000 different continuous signs per 1hr video (and an
estimated over 4,000 different signs in total). This dataset is particularly chal-
lenging to use as the supervision (in the form of subtitles) is both weak and
noisy. It is weak as the subtitles are not temporally aligned with the signs – a
sign (typically 8–15 frames long) could be anywhere in the overlapping subtitle
video sequences (typically 400 frames). Furthermore, it is noisy as the occurrence
of a word in the subtitle does not always imply that the word is signed (typically
the word is signed only in 20–60% of the subtitle sequences). Furthermore, the
gestures are continuous (no breaks between signs) and contain considerable vari-
ation (in terms of gesturing speed, signers, and regional gesturing differences).
Data preprocessing. Given a word, the subtitles define a set of subtitle se-
quences in which the word occurs (8–40 sequences depending on how many times
the word occurs), each around 15s long. As in [28], we slide a window along each
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subtitle sequence (fixed to 13 frames since that captures the majority of the
gestures; gestures shorter than 13 frames are ‘cropped’ by the time alignment).
This produces in total roughly 400 temporal windows per subtitle sequence,
which are reduced to 100 candidate temporal windows per subtitle sequence us-
ing the method of [28], where only windows in which the signer also mouths the
sign are considered. Upper body joint tracks are obtained automatically using
the Random Forest regressor of Charles et al . [9, 10,27].

3.2 Two BSL dictionary datasets

The video dictionaries are: ‘Signstation’ (BSL dictionary 1) [6] and ‘Standard
BSL dictionary’ (BSL dictionary 2) [4]. The first contains 3,970 videos (total 2.5
hours), one for each word; and the second contains 3,409 videos (total 3 hours),
and covers 1,771 words (the majority of words signed in one or more regional
variation). BSL dictionary 1 contains a single signer, whereas BSL dictionary 2
contains multiple signers and multiple regional variations. There is no overlap
of signers between the two dictionaries. The two datasets contain different sets
of gestures, and intersect (i.e. have common words) only for a subset of these.

Data preprocessing. Upper body joint tracks are obtained automatically using
the method of Charles et al . [9]. In order to effectively use this data (as one-shot
training and testing material), it is first necessary to find the pairs of gestures
(across the dictionaries) that are the same. This is made difficult by the fact
that the dictionaries contain different regional variations of the same gestures
(i.e., we cannot simply assume gestures with the same English word label are
the same). We therefore need to look for visual similarity as well as the same
English word label. We automatically find a subset of words pairs of the same
gesture performed the same way by computing a time-and-space aligned distance
(see Sect. 2.2) from upper body joint positions for all gesture pairs of the same
word, selecting pairs with distance below a threshold (set from a small manually
labelled set of pairs). This list of pairs is manually verified and any false matches
(mainly due to incorrect pose estimates) are filtered away. This results in 500
signs in common between the two dictionaries.

3.3 ChaLearn gesture dataset

The fourth dataset is the ChaLearn 2013 Multi-modal gesture dataset [15], which
contains 23 hours of Kinect data of 27 persons performing 20 Italian gestures.
The data includes RGB, depth, foreground segmentations and Kinect skeletons.
The data is split into train, validation and test sets, with in total 955 videos each
lasting 1–2min and containing 8–20 non-continuous gestures. In comparison, each
15s subtitle sequence in BSL-TV contains 30–40 gestures (in which the gesture
may or may not occur), and are continuous, so they cannot be easily segmented.
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4 Evaluation

Experiments are conducted on the four datasets introduced in Sect. 3. See our
website for example videos showing qualitative results.

4.1 One-shot detection of gestures in the gesture reservoir

Here we evaluate the first main component of our method, i.e. how well can
we spot gestures in the gesture reservoir given a one-shot learning example?
We compare it to previous work [28] that took a different approach (based on
Multiple Instance Learning, MIL) to extracting gestures from weakly supervised
gesture datasets. We show that we vastly outperform previous work on the same
data with our conceptually much simpler one-shot learning approach.
Manual ground truth. The test dataset, a six hour subset of BSL-TV, is
annotated for six gestures (bear, gram, heart, reindeer, snow and winter), with
on average 18 occurrences for each gesture, and frame-level manual ground truth
from Pfister et al . [28] (where we spent a week to label 41 words frame-by-frame).
A benefit of the domain adaptation method is that it renders this expensive
manual labelling unnecessary, since the training and test sets no longer need to
be of the same domain. This enables the use of supervised datasets from other
domains for testing (as done in the next experiment with a dictionary).
Task. The task for each of the six gestures is, given one of the 15s temporal win-
dows of continuous gestures, to find which windows contain the target gesture
and provide a ranked list of best estimates. Only about 0.5s out of 15s actu-
ally contain an instance of the gesture; the remainder contain other gestures. A
gesture is deemed ‘correct’ if it overlaps at least 50% with ground truth.
Results. Precision-recall curves for the gestures are given in Fig. 8(left). As
shown, thanks to our domain-adapted one-shot learning method, we vastly out-
perform the approach of Pfister et al . which uses MIL to pick temporal windows
that occur frequently where subtitles say they should occur (and infrequently
elsewhere). In contrast, [28] do not use any direct supervision (which our domain-
adapted one-shot learner provides). This shows very clearly the high value of
one-shot learning for extracting additional gesture training data. In fact, our
method can complement Pfister et al .’s by using it for gestures that exist in our
one-shot learning domains, and using [28] for other gestures.

4.2 Domain-adapted discriminative one-shot gesture learner

In this key experiment we evaluate our discriminative one-shot learning method
trained on the 155 hour BSL-TV gesture reservoir. The method is evaluated on
a second one-shot learning domain (‘BSL dictionary 2’) on the same gestures
as in the first one-shot learning domain (‘BSL dictionary 1’), but in a different
domain, signed at different speeds by different people. The second dictionary is
used as the testing set to reduce annotation effort (the BSL-TV reservoir does
not come with frame-level labels). Sect. 3 explains how these cross-dictionary
gesture ‘pairs’ that contain the same sign signed the same way are found.
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Fig. 8: Left: Gesture spotting accuracy on the gesture reservoir for BSL-TV,
with a comparison to Pfister et al . [28]. PR curves are for four gestures with
ground truth (see website for curves for remaining gestures). Right: Gesture
classifier accuracy evaluated on gesture dictionary ‘BSL dictionary 2’. The graph
shows the cumulative distribution function of the ranks for the baseline and our
proposed method. For example, 87% of gestures are ranked within the top 15.

Baseline one-shot learner. We compare our method to an enhanced one-shot
learning method trained on one one-shot learning domain (‘BSL dictionary 1’)
and tested on the other (‘BSL dictionary 2’), without any weakly supervised
additional training data from the gesture reservoir (as shown at the top of Fig. 1).
The method uses the time and space domain adaptations.

Training and testing set. The cross-dictionary gesture ‘pairs’ that contain
the same sign signed the same way (found as explained in Sect. 3) define an ‘in-
common’ set of 500 signs. The training set consists of the 150 gestures from BSL
dictionary 1 from the in-common set for which a sufficient number of examples
exist in the BSL-TV gesture reservoir (set to at least 16 subtitle occurrences).
The testing set consists of the same set of 150 gestures from BSL dictionary 2.

Test task & evaluation measure. Each of the 150 training gestures is evalu-
ated independently. For each gesture, the gesture classifier is applied to all 150
test gestures, one of which contains the correct gesture. The output of this step
is, for each gesture classifier, a ranked list of 150 gestures (with scores). The task
is to get the correct gesture first. Each gesture classifier is assigned the rank of
the position in the 150-length list in which the correct gesture appears.

Results. Fig. 8(right) shows a cumulative distribution function of the ranks for
the baseline and our proposed method using the gesture reservoir. We clearly
see that, although the baseline ranks 66% of the gestures within the first top 60,
learning from the reservoir beats it, with all gestures ranked within the first 25,
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13% as rank 1, 41% within the first 5, and 70% within the first 10. We believe this
is due to the high training data variability that the additional supervision from
the gesture reservoir provides (from multiple persons, with gestures performed
with many different speeds etc.).

There are two principal failure modes: first, the majority of gestures with
ranks above 15 are due to several gestures out of the test gestures having very
similar hand trajectories and hand shapes. With an already challenging discrim-
ination problem, this causes confusions when the gesture in the evaluation set is
performed very differently from any gesture in the training reservoir. The other
major problem source is inaccurate pose estimates, which results in inaccurate
hand trajectory and hand shape estimates.
Component evaluation. Each of the components of our method is evaluated
by switching one off at a time, and reporting rank-15 accuracy. Changing the
time alignment method from global alignment to DTW decreases the rank-15
accuracy from 87% to 51%; switching off hand shape lowers it to 72%; and
switching off time alignment for the one-shot dictionary learner drops it to 46%.

Our method works despite the domain adaptations between the one-shot dic-
tionaries and weakly supervised datasets being very challenging: different reso-
lutions, settings, people, gesture speed and regional variations; and one domain
(the one-shot dictionaries) containing non co-articulated gestures (i.e. having
breaks between gestures) whereas others (the gesture reservoir) only contain
continuous gestures. To add to all of this, the supervision in the weakly super-
vised datasets is very weak and noisy. Despite all these challenges, we show a
considerable performance boost. We consistently outperform the one-shot learn-
ing method, and achieve much higher precision and recall than previous methods
in selecting similar gestures from the gesture reservoir using weak supervision.

4.3 Comparison on ChaLearn multi-modal dataset

On the ChaLearn dataset we define the one-shot learning domain as the training
data for one person, and keep the remaining training data (of the 26 other
persons) as the unlabelled ‘gesture reservoir’. Only Kinect skeletons are kept for
the reservoir. We compare this setup to using all the ground truth for training.
Task. The task here is, given a test video (also containing distractors), to spot
gestures and label them into one out of 20 gesture categories.
Audio for gesture segmentation. Gestures only appear in a small subset of
the dataset frames, so it makes sense to spot candidate windows first. To this
end we use the same method as the top entries in the ChaLearn competition:
segment gestures using voice activity detection (the persons pronounce the word
they gesture). However, we do not use audio for classification since our purpose
is to evaluate our vision-based classifier. We therefore compare only to methods
that do not use audio for classification but only use it for segmentation (including
the winner’s method without audio classification).
Baseline, our method & upper bound. The baseline is domain-adapted
one-shot learning (where training data comes from a single person from the 27
person training dataset; we report an average and standard deviation over each
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possible choice). This is compared to our method that uses the one-shot learner
to extract additional training data from the unlabelled ‘gesture reservoir’. The
upper bound method uses all training data with manual ground truth.

Experiment overview. In Experiment 1 we compare in detail to the competi-
tion winner [34] with the same segmentation method (audio), using only skeleton
features for classification, and evaluating in terms of precision and recall on the
validation set. In Experiment 2 we compare to competition entrants using the
standard competition evaluation measure on test data, the Levenshtein distance
L(R, T ), where R and T are ordered lists (predicted and ground truth) corre-
sponding to the indices of the recognized gestures (1–20); distances are summed
over all test videos and divided by the total number of gestures in ground truth.

Results for Experiment 1. Our method achieves very respectable performance
using a fraction of the manually labelled data that the other competition entrants
use. The competition winner’s method gets Precision P = 0.5991 and Recall
R = 0.5929 (higher is better) using skeleton features for classification [34]. Using
this exact same setup and test data, our baseline one-shot learner achieves P =
0.4012 (std 0.015) and R = 0.4162 (std 0.011) – notably by only using a single
training example, whereas the winner used the whole training set containing
more than 400 training examples per class. Our results are improved further to
P = 0.5835 (std 0.021), R = 0.5754 (std 0.015) by using gestures extracted from
the gesture reservoir, still only using one manually labelled training example per
gesture. Using the whole training set yields P = 0.6124, R = 0.6237.

Results for Experiment 2. In terms of Levenshtein distance, our method
improves from the baseline 0.5138 (std 0.012) to 0.3762 (std 0.015) (lower is
better). With only a single training example (two orders of magnitude less man-
ually labelled training data than other competition entries) we achieve similar
performance to the best method using skeleton for classification (‘SUMO’, score
0.3165 [15]), and using the full training set we outperform them at 0.3015.

5 Conclusion

We have presented a method that utilises weakly supervised training data con-
taining multiple instances of a gesture to significantly improve the performance
of a gesture classifier. Another benefit of our framework with two dictionary
datasets is that it lets us avoid a very expensive laborious task that has been a
big issue for weakly supervised gesture recognition: large-scale evaluation. Our
approach is applicable to gesture recognition in general – where the upper body
and hands are mostly visible, and the person is communicating with gestures.
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