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Abstract— Continuous appearance shifts such as changes in
weather and lighting conditions can impact the performance of
deployed machine learning models. While unsupervised domain
adaptation aims to address this challenge, current approaches
do not utilise the continuity of the occurring shifts. In partic-
ular, many robotics applications exhibit these conditions and
thus facilitate the potential to incrementally adapt a learnt
model over minor shifts which integrate to massive differences
over time. Our work presents an adversarial approach for
lifelong, incremental domain adaptation which benefits from
unsupervised alignment to a series of intermediate domains
which successively diverge from the labelled source domain.
We empirically demonstrate that our incremental approach
improves handling of large appearance changes, e.g. day to
night, on a traversable-path segmentation task compared with
a direct, single alignment step approach. Furthermore, by
approximating the feature distribution for the source domain
with a generative adversarial network, the deployment module
can be rendered fully independent of retaining potentially large
amounts of the related source training data for only a minor
reduction in performance.

I. INTRODUCTION

Appearance changes based on lighting, seasonal, and

weather conditions provide a significant challenge for outdoor

robots relying on machine learning models for perception.

While providing high performance in their training domain,

visual shifts occurring in the environment can result in

significant deviations from the training distribution, severely

reducing accuracy during deployment. Commonly, this chal-

lenge is partially counteracted by employing additional

training methods to render these models invariant to their

application domain [1].

For scenarios where labelled data is unavailable in the

target domain, the problem can be addressed in the context

of unsupervised domain adaptation [2], [3]. Recent state-

of-the-art approaches which address this challenge operate

by training deep neural networks within an adversarial

domain adaptation (ADA) framework. These approaches

are characterised by the optimisation of potentially multiple

encoders with the objective to confuse a domain discriminator

operating on their output [3], [4], [5] in additional to their

main objective. The main intuition behind this framework

is that by training the encoder to obtain a domain invariant

embedding, we allow the main supervised task to be robust

to changes in the application domain.

Recent successes based on adversarial domain adaptation

have achieved state-of-the-art performance on toy datasets [3],

1The authors are with the Applied Artificial Intelligence Lab, Oxford
Robotics Institute, University of Oxford, United Kingdom;
markus, bewley, ingmar@robots.ox.ac.uk

ADAPTED
Mapping

Supervised
Mapping

Source Domain

Target Domains

Predic-
tions

Training Labels

Target
Predictions

08:00 - 10:00 - 12:00 - 14:00 - 16:00 - 18:00 - 20:00

08:00
Labels

08:00 - 10:00 - 12:00 - 14:00 - 16:00 - 18:00 - 20:0

Fig. 1: Incremental Adversarial Domain Adaptation. Instead

of performing domain adaptation over large shifts at once,

IADA splits domain alignment into simpler subtasks. After

adapting the feature embedding of the initial target domain,

the approach incrementally refines all modules to the currently

perceived target domains.

[6], [7], [8] as well as real-world applications for autonomous

driving within changing environmental conditions [9], [5].

However, domains with a significant difference in appearance

- such as day and night - continue to present a substantial

challenge [5]. We conjecture that the observed change in

environmental conditions in many domains of continuous

deployment (e.g. in autonomous driving) is up to some extend

composed via a gradual process which accumulates to produce

massive differences over extended periods. This work exploits

the incremental changes observed throughout deployment

to continuously counteract the domain shift by updating

discriminator and encoder incrementally while observing the

visual shift (as illustrated in Figure 1).

During domain adaptation training, existing methods rely

on data from the source domain to ensure training the

discriminator based on a balanced distribution of source

and target data to prevent overfitting to the target domain.

These approaches therefore require the storage of potentially

massive datasets, which can provide a challenge in particular

for mobile applications with limited available memory.

Similar to work on synthetic dataset extension [10], we

remove this requirement by training a generative adversarial

network (GAN) [11] to imitate the marginal encoder feature

distribution in the source domain. We empirically demonstrate

that domain adaptation via aligning target encoder features

with GAN generated samples instead of source domain feature

embeddings only results in minor performance reduction.

Crucially, this means that the deployment module is fully

independent of the size of source domain dataset, enabling ap-
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plication on mobile platforms with limited memory resources.

The approach is evaluated both on synthetic and real-

world data. An artificial dataset is created with direct control

over the number of intermediate domains and the strength

of the incremental shifts for illustration and demonstration

purposes. The following real-world evaluation focuses on a

drivable-path segmentation task for autonomous driving based

on segments from the Oxford RobotCar Dataset [12] with

different illumination conditions from different times of day.

The contributions of our work are as follows:

• Introduction of a method for incremental unsupervised

domain adaptation for platforms deployed in continu-

ously changing environments.

• Presentation of an additional method to remove the

requirement of retaining extensive amounts of source

data by modelling the feature representation of source

domain data with a generative model.

• Quantitative investigation of the influence of dividing the

adaptation task into incremental alignment over smaller

shifts based on a synthetic toy example.

• Application of the proposed method to the real-world

task of drivable-terrain segmentation and proof of

feasibility for online application in the context of run-

time evaluation on an NVIDIA GPU.

II. RELATED WORK

Continuously changing environment appearances have been

a long-standing challenge for robot deployment as shifts

between training and deployment data can seriously degrade

model performance. Considerable efforts have been focused

on designing and comparing various feature transformations

with the goal of creating representations invariant to environ-

mental change [13]. Other approaches address the problem

through retaining multiple experiences [14] or synthesising

images between discrete domains [15]. However, it is unclear

how these systems can efficiently scale to a continuous shift

in the domain distribution.

In recent years, there has been a steady trend towards

applying deep networks for various robotics tasks, where

early layers act as a feature encoder with a supervised loss for

the desired task on the output of the network. Unfortunately,

even such powerful models still suffer from the problem of

shifts in domain appearance. This has prompted a number of

works which try to address this issue [3], [9], [16], [5].

The possibility to directly optimise complete feature

representations via backpropagation for domain invariance [3]

or target-source mappings [2] has lead to significant success

of deep architectures in this field. Long et al. [2] focus on

minimising the Maximum Mean Discrepancy for the feature

distributions of multiple layers of the network architecture.

Rozantsev et al. [17] extend in a similar direction and impose

a penalty for deviations in the network parameters across

domains. Sun et al. [18] align second order statistics of layer

activations for source and target domains. Hoffman et al.
[9] match the label statistics between the true source and

predicted target labels for semantic classification.

Furthermore, adversarial approaches to domain adaptation

have been introduced [3], [4], [6], which rely on training

a domain discriminator to classify the domains underlying

an encoder’s feature distribution. While adversarial training

techniques have been shown to be notoriously unstable and

difficult to optimise, there has been a pronounced body

of work towards improving their stability, including more

dominant use of the confusion loss [11] and more recently

the Wasserstein GAN framework [19].

All the above mentioned works treat the unsupervised

domain adaptation problem as a batch transition without ex-

ploiting temporal coherence commonly available to robots in

continuous deployment. Continuous refinement has however

been actively researched in supervised learning for many

years (e.g. [20], [21], [22]), yet there has been little work on

methods for unsupervised domain adaptation. One notable

exception is the work by Hoffman et al. [23], which addresses

the problem with predefined features and focuses on the

challenges of aligning to a continuously reshaping target

domain. This work seeks to extend the recently developed

approach of adversarial domain adaption to a continuously

evolving target domain by capitalising on the perpetual

observations made by a robot.

III. METHOD

Incremental Adversarial Domain Adaptation addresses the

problem of degraded model performance due to continuously

shifting environmental conditions. This includes changes

caused by weather and lighting occurring in outdoor scenarios.

Compared to the regular single-step domain adaptation

paradigm, we benefit in applications building on continual

deployment through exploitation of the incremental changes

that integrate to large domain shifts. Continuously observable

lighting or seasonal shifts in outdoor robotics and other

applications constitute a prime example for this paradigm.

The approach extends adversarial domain adaptation ap-

proaches [3] aiming to facilitate learning a feature encoding

f which is invariant with respect to the origin domain of its

input data. In this way, the method enables the application

of a supervised module trained only on source domain data

to incoming unsupervised data from the application domain

as depicted in Figure 2.

In comparison to existing methods [3], [7], [5] which

frame the task of unsupervised domain adaptation as a one-

step approach between distinct source and target domains,

IADA treats the incoming data as a stream of incrementally

changing domains. Exploiting access to data from these

incremental changes facilitates alignment over greater overall

shifts between the target and source domains. The encoder

and discriminator models are updated gradually to enable

alignment for each incrementally shifted domain.

Adversarial domain adaptation [3] generally tends to

be hyperparameter search intensive [5] as it - in addition

to the adversarial min-max problem - is affected by the

potential conflict of the domain invariance objective and

the supervised objective. Intuitively, by dividing the domain

alignment procedure into smaller incremental shifts, we
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Fig. 2: Network architecture and information flow for IADA.

After the optimisation of source encoder and supervised

model, the target encoder is trained to confuse the domain

discriminator, leading to domain invariant feature represen-

tations. During deployment, the target encoder is connected

to the supervised module. Dotted arrows represent only

forward passes while solid lines display forward and gradient

backward pass.

simplify the overall task which can minimise the loss of

relevant information.
The training procedure is split into two principal segments:

offline supervised optimisation on source domain data and the

unsupervised domain adaptation procedure, which potentially

can be run online during platform deployment as displayed

in Figure 2.
Hereinafter, let θX be the parametrisation of module X and

i the incoming images. Source and target domains are repre-

sented with subscripts s and t respectively. The supervised

training procedure optimises the supervised module S with

the predicted label l = S(f, θS) as well as the source domain

encoder Es based on a supervised task (e.g. classification or

segmentation as in Section IV).
The parameters of both of these modules remain unchanged

during training for domain adaptation, which enables us to

keep source performance unaffected (an approach suggested

for regular ADA in [8]). Only the target encoder Et and

discriminator D are trained via their respective objectives

LEt
and LD in Equations 1 and 2 to align the target and

source encoder feature spaces. Let fs = Es(is, θEs
) and

ft = Et(it, θEt
) respectively denote the feature encoding of

source and target images is and it.

LEt(θEt , θD) = −Eit∼T [log(D(ft, θD))] (1)

LD(θEs , θEt , θD) = −Eis∼S [log(D(fs, θD))] (2)

−Eit∼T [log(1−D(ft, θD))]

The target encoder weights are initialised with parameters

from the source encoder trained on the supervised task. These
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Fig. 3: Network architecture and information flow for training

with a generative model approximating the marginal source

feature distribution. The approach additionally trains a GAN

during the source training procedure but does not propagate

gradients for the adversarial loss to the source encoder to

ensure unmodified source domain performance. Subsequently

the target encoder is trained to mimic the feature distribution

of the - now fixed - GAN. Dotted arrows represent only

forward passes while solid lines display forward and gradient

backward pass.

inchoate parameters are then subsequently adapted to align

to the currently encountered target data by optimising both

the target encoder and discriminator using the objectives in

Equations 1 and 2 respectively. Intuitively, this procedure

entails using the optimised parameters from the previously

encountered target domain as initialisation for adapting to the

current domain. The currently encountered unsupervised data

is hereby utilised to fill a buffer from which is continuously

sampled for the domain adaption training procedure.

A. Source Distribution Modelling

As IADA’s benefits apply in the context of continuously

deployed platforms, the inherent requirement of ADA-based

methods to retain potentially large amounts of source train-

ing data can constrain its application. Limitations on the

weight and size of platforms often leads to restrictions on

computational resources including data storage. To counteract

this requirement, we additionally extend our method with a

GAN-based approach to mimic the source domain’s feature

distribution, thus rendering the approach independent of the

amount of source data during the domain adaptation task.

More concretely, we optimise a generator G which maps

from n-dimensional, normally distributed noise z ∼ N (μ =
0, σ = 1) to approximate the feature distribution in our source

domain during the offline training step. While the original

GAN framework [11] aims at mimicking natural images,

our approach simply aims to imitate the feature encoding

of images (displayed in Figure 3). The resulting objectives

for generator LG and discriminator LD are displayed in
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Equations 3 and 4. Let fg denote the generator features

generated as fg = G(z, θG).

LG(θG, θD) = −Ez∼N (μ,σ)[log(D(fg, θD))] (3)

LD(θG, θEs , θD) = −Ei∼S [log(D(fs, θD))] (4)

−Ez∼N (μ,σ)[log(1−D(fg, θD))]

Subsequently during the domain adaptation procedure, the

target encoder is optimised to align to the feature distribution

of the GAN, whose parameters remain static to model the

source domain. Instead of optimising the discriminator to

classify between source and target domain, in this scenario it

learns to distinguish between synthetically generated source

features and actual target features encoding target images.

Target encoder and discriminator are optimised towards the

objectives LEt and LD in Equations 5 and 6 respectively.

LEt(θEt , θD) = −Ei∼T [log(D(ft, θD))] (5)

LD(θG, θEt , θD) = −Ez∼N (μ,σ)[log(D(fg, θD))] (6)

−Ei∼T [log(1−D(ft, θD))]

Similar to IADA , we utilise all models, which are trained

in the source domain, as initialisation for training in the target

domain. For SDM, this procedure additionally includes the

discriminator. Lastly, the deployment setup is equivalent to

IADA.

IV. EXPERIMENTS

Our evaluation is split into two parts: we first investigate

a toy scenario with artificially induced domain shift for the

purpose of visualisation and clarification, then we demonstrate

performance gains in a continuous deployment scenario for

drivable-path segmentation for autonomous mobility.

The evaluation compares IADA against its one-step counter-

part ADA, and furthermore investigates the influence of source

domain modelling based on Section III-A. The evaluation

metric depends on the supervised task in the respective target

domains, classification accuracy for the toy example and

mean average precision for the drivable-path segmentation

task.

While ADA only utilises the final source domain, IADA has

access to all incremental domains. To evaluate if the cause of

IADA’s advantages simply is the reliance on a larger dataset,

we additionally introduce ADA Union. The method combines

all target domains into a single dataset and performs regular

ADA with respect to this union over all target domains.

A. Toy Example: Incrementally Transformed MNIST

To quantify the benefits of IADA in relation to the

strength of domain shifts and the number of intermediate

domains, we first evaluate the approach in a scenario based on

increasingly, synthetically deformed versions of the popular

MNIST dataset.

We create additional, transformed copies of the original

dataset with height-rescaled digits of between 0.9 to 0.5

Fig. 4: Incremental deformation of MNIST digits from

full to half height over 5 intermediate domains. Top row:

original source data. Bottom row: maximally transformed

target domain.

times the original height, which are visualised in Figure 4.

These synthetically transformed domains enable us to create

a scenario with full control over the underlying domain shift

and ensure that the occurring changes can be observed and

utilised for domain adaptation in arbitrary detail.

We employ a Network-in-Network like architecture [24]

with exponential linear activation functions [25] splitting

after the last hidden layer and applying a discriminator with

2 hidden layers and each 512 neurons. All parameters before

the split are duplicated for source and target encoders while

the supervised module consists of the last fully connected

layer. The adversarial loss is weighted by a factor of 0.001

for domain adaptation as well as training the GAN as part

of the source domain modelling step.

target

domains

only

source
ADA

ADA

SDM

ADA

Union
IADA

IADA

SDM

0.9 99.31 - - - 99.61 99.52

0.8 99.20 - - - 99.53 99.36

0.7 98.40 - - - 99.20 99.01

0.6 93.51 - - - 95.68 95.11

0.5 84.11 87.10 86.83 87.62 89.90 89.51

TABLE I: Target classifier accuracy on incrementally trans-

formed MNIST dataset. The last row represents the final

accuracy on the maximally transformed input samples. While

the naive alignment to the union of all target datasets already

improves in performance of an approach with only access

to the final domain, IADA results in further significant

accuracy improvement. SDM only slightly affects the target

performance and the combination IADA SDM continues to

outperform the original ADA baseline.

Table I shows the target domain classification accuracy of 1-

step adaptation methods against their incremental counterparts

which continue optimising the target encoder across domains

with incrementally increasing domain shift. Furthermore, we

test the methods in combination with GAN-based Source

Domain Modelling (SDM) introduced in Section III-A.

As displayed in Table I, all domain adaptation approaches

outperform pure source-optimised models, while incremental
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domain adaptation provides additional benefits over regular

ADA. Utilising the union of all target domains as target

domain for regular ADA increases model accuracy in the

final target domain only slightly above using only one target

domain and still performs worse than IADA. Finally, the SDM

variants of all approaches only result in minor performance

reductions, while reducing memory requirements significantly.

To investigate classification accuracy in dependence of

the number of available intermediate domains, the MNIST

digits are rescaled further to 0.3 of the original height and

evaluated with varying numbers of equally spread intermediate

domains with IADA and IADA SDM. We chose to increase

the deformation in comparison to the earlier experiment to

increase the complexity of the domain adaptation task and

enable evaluating a wider range of sub-domain discretisations.

Fig. 5: Classifier accuracy of IADA in final target domain

with varying number of intermediate domains for horizontal

compression of 0.3. The strong digit deformation leads to a

challenge for domain adaptation. Results show the benefits

of separating large domain shifts into incremental domain

adaptation steps for IADA. Maximal performance for this

adaptation scenario is achieved between 10 and 20 incremental

domains and further increase does not significantly influence

the final target accuracy.

Separating larger shifts into incremental steps as displayed

in Figure 5 enables us to address the problem with a

curriculum of easier tasks. Above a certain threshold however

target performance remains consistent with further increase

of the number of target domains. For the domain adaptation

from MNIST to its rescaled copy, the benefits of incremental

domain adaptation saturate at around 10 to 20 intermediate

domains. However, more complex transformations can rely

on even more incremental approaches.

B. Free Space Segmentation

An area of active research in autonomous driving is the

detection of traversable terrain. Especially when utilising

images as input, methods often rely on collecting data in all

possible deployment domains and weather conditions.

We evaluate IADA in this context for a drivable-path

segmentation method based on segments of the Oxford

RobotCar dataset [12]. The employed path segmentation

labels are generated in a self-supervised setting based on

[26]. The dataset consists of approximately hour-long driving

sessions from different days collected over the course of a

Fig. 6: Incremental changes of lighting conditions in the

Oxford10k dataset from early morning (top row) to late night

(bottom row).

year. Based on the nature of the dataset, we approximate the

scenario of continuous application by picking five datasets

to represent different daylight conditions from morning to

evening and train on a labelled source dataset based on

morning data as seen in Figure 6.

The resulting 5 intermediate domains were chosen to

represent incremental change in lighting conditions and serve

as a proxy for the online deployment scenario. Each domain

consists of about 2000 images, rescaled for the evaluation to a

size of 128 by 320 pixels. Pixel-wise segmentation labels for

training are available only for the source domain, while the

approach utilises test labels for the evaluation in all domains.

For all segmentation tasks, we employ an adaptation of the

ENet [27] architecture which presents a compromise of model

performance and size. The architecture focuses on strong

segmentation accuracy as well as reasonable computational

requirements, which makes it a strong contender for online

deployment on mobile platforms. For the discriminator, we

split the ENet architecture just before the upsampling stages

(see [27]) and employ an additional 4-layer convolutional

discriminator. Similar to Section IV-A we duplicate all

parameters before the architecture split to be utilised as source

and target encoders.

The results for drivable-path segmentation are represented

in Table II. Similar to the application on the synthetic domain

shift dataset in Section IV-A, IADA outperforms one-step

domain adaptation. ADA with respect to the union over all

incremental target domains is more accurate than with only the

final domain but not as exact as IADA. Again, SDM slightly

reduces the target performances, however rendering the

storage of significant source datasets unnecessary.

In real-world scenarios, we cannot ensure smoothness over

the appearance changes and the turning-on of street lights

for the final target domain indeed represents a step change in

our environment. It is to be expected that more continuous

domain shifts would increase the advantages of IADA as

displayed in the context of synthetic data in Section IV-A.

In comparison to the toy example, the combination of all

target domains only leads to minor improvement over the

regular application of ADA with only the final target domain.

The final target domain’s instantaneous change in lighting

due to the switching-on of the street lights leads to significant
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target

domains

only

source
ADA

ADA

SDM

ADA

Union
IADA

IADA

SDM

morning 91.62 - - - 91.60 91.77

midday 90.70 - - - 91.05 90.50

afternoon 89.10 - - - 89.91 89.53

evening 87.08 - - - 89.01 87.34

night 76.27 78.67 77.12 78.83 80.21 79.37

TABLE II: Mean average precision results for segmentation

task in continuous deployment scenario. Applying domain

adaptation with respect to the union of all target domains

slightly increases performance. The incremental adaptation ap-

proach leads to further improvement, while the approximation

of the source domain only slightly reduces performance.

differences to previous target domains. This scenario renders

domain adaptation to the union over all target domains less

efficient and emphasising the importance of an incremental

method, which focuses on the current target domain.

With computation times of approximately 26 minutes for

the adaptation to a new incremental target domain on an

NVIDIA GeForce GTX Titan Xp GPU, we can potentially

deploy the system on vehicles to adapt to the currently

encountered domain at a rate of about 55 times a day in

continuous deployment. The extension with source domain

modelling reaches computation times of 29 minutes resulting

in nearly 50 updates per day.

V. DISCUSSION

While IADA’s principal benefits are based on continuous

access to the incremental shifts between source and target

domains, the evaluation for drivable-path segmentation with

our offline datasets builds on a sequence of distinct target

domains extracted from the Oxford RobotCar Dataset. The

approach can be extended easily to more continuous alignment

to the online perceived data domain via the utilisation of

sliding window sampling during deployment. Interestingly,

it was shown in Section IV-A that the benefits of dividing

the target domains further for IADA can saturate when the

intermediate domains are becoming increasingly similar.

IADA relies on access to the incremental shifts in the ap-

pearance of our environment. With limited access or step-wise

changes in the perceived environment the approach degrades

to regular adversarial domain adaptation. In particular, this

paradigm becomes visible in our segmentation datasets where

the turning-on of the streetlights leads to an instantaneous

change in the appearance of the environment.

However, this instantaneous domain shift caused by the

final domain’s lighting change further emphasises the benefits

of an incremental approach over simply using the union over

all target domains for regular domain adaptation. IADA sig-

nificantly outperforms this method as it specifically optimises

for the currently relevant target domain.

All experimental results noted in our work are based on the

confusion loss for domain adaptation [5]. An adaptation of the

Wasserstein GAN framework [28] for domain adaptation leads

to (on average) slightly more stable training and statistically

insignificantly improvement in performance. However, we

focused on the confusion loss formulation as, due to the

additional critic training rounds required for the WGAN

framework, it leads to significantly lower training duration.

While increased computational effort might not be critical

for server-side computation, it can limit applications of

embedded systems. In the context of cloud computing or

larger platforms with significant data storage volumes, the

minor accuracy loss can be prevented when applying the

original formulation for IADA in Section III.

VI. CONCLUSION AND FUTURE WORK

We present a method for addressing the task of domain

adaptation in an incremental fashion, adapting to a continuous

stream of changing target domains. Furthermore, we introduce

an approach for source domain modelling, training a GAN to

approximate the feature distribution in the source domain to

render the domain adaptation step independent of retaining

large amounts of source data. Both methods are evaluated first

on synthetically shifted versions of rescaled MNIST digits for

illustration purposes and full access to the number of inter-

mediate domains. Furthermore, we empirically demonstrate

their performance on the real-world task of drivable-path

segmentation in the context of autonomous driving.

The field of continual training during deployment provides

many possible benefits as models can be adapted to the

currently encountered environment and learn from data un-

available during offline training. However, the approach also

opens up new security challenges. The well-known problem

of perpetrators introducing adversarial samples to the system

could lead to not only corruption of the current prediction

but prolonged distortion of the model. This area represents

an essential direction for further research on defending

against adversarial examples. Further indispensable extensions

of this work include addressing the additional problem of

catastrophic forgetting in lifelong-learning scenarios. This

direction has the potential to further reduce computational

requirements as it will discard the necessity to readapt to

once encountered target domains.
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