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Abstract

A very general 3 level learning method is presented,
aiming at self-improvement of the parameters of a
force feedback conmtroller demonstrated in contour
tracking tasks. It is assumed that no model is known
a priori, neither of the robot nor of the contour to be
tracked. The spstem identifies such a model, including
information about its reliability. Model and estimated
noise are used lo generate optimal control actions for
the sample irajectory. Thep are then used for esti-
mation of the parameters of the controller. Thir con-
troller then produces a new trajectory, which in turn
may be optimized and trained thereafter. Kalman filter
techniques are applied in all adaptation levels involved.
Learning is possible off-line or on-line. Model and
controller may be based on linear difference equations
or include nonlinear mappings as associative or tabular
memories or neural networks. [t is shown, that even for
a linear controller substantial improvements can be
atiained, the more as no assumptions are needed about
the bandwidth.

1. Introduction

Conventional robot controllers in general show up
fairly robust performance when moving the robot to
desired positions. If force-feedback via the position
control interface and corresponding compliance con-
cepts is realized, performance especially in terms of
bandwidth tends to decrease considerably, partly due
to excessive delays in the internal control loops. A
very fast yet stable controller might request an inverse
model of the dynamies of the robot, and, even better,
direct joint torque control [1]. This assumes that a
precise model is known, and that it can be calculated
within the sampling time. If both is true, the method
presented in this paper might be inferior. For many
applications, however, no such model is available
because of limited calculation power or unknown
dynamics.
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This is the justification of the presented learning
system. On one hand it does not need an a priori
known model, on the other hand the controller gen-
erated is as simple as possible.

Iterative improvement of controllers is not new.
There exist many learning systems to refine the
tracking of known trajectorics by feedforward control
(trajectory learning), as e. g. Arimoto et al. [2].
Atkeson et al. [3] or others.

For improving feedback control, in general a
coarse model is used to determine the corrections of
the controller. This model is assumed 1o be known
or to be identifiable in advance (see e. g. [12]). The
speed of adaptation of the controller is dependent on
the supposed accuracy of the model. If the model is
difficult to identify, no improvement is possible.
Otherwise, uncertain model parameters can lead to
instabilities.

For adaptive feedback contral, there is another
common approach for uncertain  models. The
dynamics of the controller can be reduced by a given
reference model (see e. g. [7]). This, however, may
reduce the bandwidth of the whole loop.

What are the advantages of the method proposed
here? A model built up during the learning process is
used, weighted with its reliability. This vields robust-
ness against noise in the data as well as poor excita-
tion during identification of the process or inadequate
model assumptions, (f course, if the data are not
sufficient, the improvement will be minimal. In any
case control will be stable.

Beyond that, no explicit design of a controller is
required, and no formulation of a sub-goal for min-
imization of the trajectory errors is needed (see ¢. g.
Ersi and Tolle [4] or the time inversion tramning
[11]). Instead learning of the controller by reduction
of control errors takes into account all preceding
control actions as well as the estimated noise, which
is an implicit design criterion.

For the reason of clarity, model and controller are
chosen to be linear here. The extension of the leam-
ing sysiem 1o nonlinear models, using associative or



tabular memories or neural networks is possible and
has been demonstrated for a different process [9].

2. The task to be solved

In our lab a 6 axis industrial robot (manutec 12) is
position controllable with sampling intervals of at
least 8 ms, in which cartesian position commands are
sent to the internal cascaded control system (so called
cartesian interpolation system). As typical for many
classical robot controllers there is a delay time of
several sampling periods between the commands and
the beginning of execution,

Forces and torques are measured with a 6-dof
compliant sensor. Tor the endeffector system used,
| mm of translation corresponds to about 2 N of
stationary force.

For simplicity movements are resiricted to the
x-y-plane. According to Mason's constraint frame
concept [10] further distinction is made between
force and position control. Neglecting friction the
direction of the measured force vector defines the
time-variant one-dimensional frame of force control
{via positional commands), while the remaining one-
dimensional frame is purely position controlled. This
reduction to a minimal number of controlled vari-
ables was chosen mainly for on-line learning of the
control laws.

The foree controller is defined to be linear,
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with e(k) denoting the difference between the actual
force at time instant k and the desired value (10 N
here), while u(k) is the controller’s output.

For position control the desired position is simply
incremented along the estimated tangential of the
contour. The total set-up is shown in Figure 1
showing the robot at the starting position. The
experiments shown later are reduced to tracking of
the curved parts at the lower part of the figure. F'or
the chosen tangential speed of 0.3 mm/step, corre-
sponding to 37.5 mm/s, this part of the contour has
curvatures up to 5°/step, corresponding to more than
600° /5.

3. The learning system

The determination of the parameters of the linear
controller (1) is performed by the learning system
SLC (=supervised learning control), which 15
recommended because the availability of a correct
model is not assured, as well as the influence of the
curvature of the contour is not known.

The learning systemn consists of three levels:

l. determination of the controller
2. determination of actuator signals
3. determination of a process model

Each level uses information provided by the
uppernext one as it is shown in Figure 2.

The third level estimates a maodel of the process,
using the i/o-data of the preceding attempt to control

the plant. The model is defined by the parameters .’;

and @, of the difference equation
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where n, is the time-delay, caused by signal processing
and other (e. g. kinematic) computations in the loop.
Here, y denotes the one-dimensional process output,

Figure 1. Robot endeffector and contour to he tracked



the absolute value of the foree vector, while u denotes
the one-dimensional controller output,

Experimental investigations with different indus-
trial robots in our lab indeed have shown that for a
restricted workspace (i. ¢, similar joint configurations)
second or third order linearized model approxi-
mations are adequate.

This information about the process can be used to
optimize the trajectory, from which the model was
estimated. To do so, the model is converted to the
parameters g, of the impulse response function. This
vields a system of linear equations
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(3)
where e(k) denotes the control error, and w, (k) are
the unknowns, determining the optimal control
actions for eliminating the disturbances of the pre-
ceding contral,

For asymptotically stable processes, which for
constant control actions converge to a constant con-
trol error, many of the elements of the impulse
response matrix can be dropped, leading to a band
matrix. Hence the increase of the computational
effort is only linear with respect to the number of
control cycles.

Finally, the controller can be trained from the
examples, provided by the second level. This again is
a problem of parameter estimation which can be
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Figure 2. Structure of the learning system (upper part:
off-line learning. lower part: on-line control)
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performed by standard estimation techniques as the
correction of the model. Thereafter the controller
should be able to issue the optimal control actions,
when the same disturbances as in the preceding tra-
jectory oceur. This will not yield vanishing errors due
to the design as a feedback controller. Fstimating the
control parameters using a stochastic approach results
in a linear controller (1) which may be applied to
arbitrary non-trained contours, too,

FFor all estimations Kalman filter technology was
chosen, minimizing the square error of the corre-
sponding parameters. In this way model and control-
ler are estimated in the third and first level. The sec-
ond level uses the inverse Kalman filter to take
advantage of the special from of the impulse response
matrix to estimate the optimal control actions.

Treating the calculations as estimation problems
allows to deal with noisy data or incomplete models.
In each level, corrections take place weighted by the
reliability of the input data. As additional output the
precision of the determined values can be estimated.
The reliability of the input data of one level can be
expressed by the output errors of the uppernext level.
For the third level itsclf, the disturbances are esti-
mated by a special algorithm. This yields convergence
of the learning system even under unknown condi-
tions,

As an example for the use of the reliability, the
correction of the controller is discussed: The variance
o’ of the disturbance, being an input for the Kalman
filter, is determined by the varance of the optimal
control actions provided by the second level and by
the variance of the disturbances of the control errors.
used in (1) The disturbances of the control crrors
consist of two parts 1. ¢. uncorrelated and correlated
noise, both being estimated in the third level by
comparing predicted and real measurements |

The Kalman filter algorithm
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automatically adapts the parameters in relation to the
assumed disturbance of the input data, the corrections
being minimal for high disturbance o, {Tor the esti-
mation of the controller 8 denotes the parameter
vector 0 = (r,, ra, ... fur, .- )’ being estimated, while
(kY = (e(k), etk — 1), ..tk — 1), ..)7 and  pik) =



w(k) are the coefficients and the left side in (1),
respectively, which can be measured.).

4. Structure of control

The task as well as the learning system are explained
so far as a one dimensional control problem. How-
ever, an interface is necessary, because of the fime-
varant definition of the force controlled frame.

This interface has to simulate an asymptotically
stable process for the learning system to allow the

simplification of the second level. Therefore an inte-
grating system is unfavourable. This means that the
controller should command fictive (1. e. one-dimen-
sional) positions instead of increments. On the other
hand, sensor signals only describe differences between
desired and actual position. The resulting control
structure is shown in Figure 3. It shows the com-
manded position vector w as the sum of increments,
which are provided by differentiating the scalar con-
troller output u. The force vector [ is converted into
the absolute value y = |f] and the unit direction vec-

torr=f/1/1.

[
I Process For Learning System of Chapter 4 _.1[

|

| Contour|

| |

w e ul du du u &— |
--o—= Controller ; 0- X = Robot >QF :
| l__ - J - T

| z 1 ]F z L |

| |

| |

| |

| ok |

| [N |

ul I

| £k |

.- N

Figure 3. Structure of Force Control (27! denoting a delay of one sample period)

5. Experimental results

The task was presented in chapter 2.. It is solved by
I.  Select arbitrary controller parameters,

2. Control with this controller, until the absolute
value of the force leaves the allowed range, or the

end of the contour is reached,
3. Measure the performance,
Go back near the starting position,

5. Start the learning algorithm to get a new con-
troller,

Continue at point 2 as long as the performance
is not satisfying. Otherwise store the parameters.

It should be emphasized that the starting positions
are varied intentionally for every iteration, so that no
feedforward control is possible. This yields different
parts of the contour to be tracked and, finally, a
controller to be estimated which is able to track arbi-
trary contours within the same bandwith,
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For every trajectory the root mean square error is
computed. It stands for the mean force error in N.
Because of the similar sequence of curvatures in the
training phase, these errors can be compared. During
the learning phase, they decrease considerably , as can
be seen in Table 1.

The first iterations are plotted in Figure 4. It can
be seen that the error is reduced substantially within
the two first correetions. Then the controller 1s able
to track the whole contour. The remaining control
error can hardly be reduced with this simplified

Iteration Mean foree crror
off-line 1 4.380
2 3.337
3 1.167
4 0.698
on-line 1 1.545
2 1.058
Table 1. Mean force error in N during learning of the

controller
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Figure 4. Absolute values of the force vector during off-line learning (experimental data)

approach due to noisc or time delay. It may be
interpreted, however. After about 0.8 s the robot tool
passes the edge in the contour, causing an immeadiate
decrease of force. Thercafter the long concave curva-
ture effects a small overshoot of force. In contrast, the
following convex area 15 the reason for the forces
being too small. Finally the tracking experiment ends
soon after the next concave region.

This is one of several experiments. Others may be
better, tracking the whole contour already in the 2nd
attempt, or worse, needing 4 or 5 iterations to learn.
Nevertheless the final quality is always as good as in
the dotted curve in Figure 4,

In the first iteration, the behaviour depends only
on the initially chosen controller, as learning so far

takes place only off-line. So the controller looses
contact at the edge (after about 0.8 s in Figure 4).
This can be improved by learning on-line.

The lower part of Table 1 and Figure 5 shows the
first iteration, when learning begins as soon as there
is enough information. For the model to be identified,
typically 15 sampling intervals are needed until the
controller can be modified the first time.

For on-line learning on the computer used
(microVAX III) the sampling time has to be changed
ta 16 ms, thus increasing the tangential and the
angular motion per step to 0.6 mm and 10°, respee-
tively. This has to be kept in mind when comparing
the performances of Figure 4 and Figure 5.

st iteration
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Absolute values of the force vector during on-line learning (starting with the same unsatisfactory initial controller
as in Figure 4 and using a less suitable sampling time)

Figure 5.
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6. Discussion

The learning system as proposed here yields substan-
tial improvements in relation to the initial chosen
controller, because no a prion information concern-
ing the reachable model accuracy, noise, or curvature
of the contour is needed.

The learning system produces all necessary infor-
mations for the correction of the controller, as far as
this is possible due to noise. So our approach does
not need a given model but can be superior than
methods with process independent adaption laws.

For higher speed, the initial controller has to be
rather good, for being able to track at least for several
steps. In this case it may be useful to learn a control-
ler for low speed first, and to use this controller as the
initial one for the higher speed. Likewise speed can
be increased several times, until the speed, as is
desired for the application, is reached.

The main performance limit lies in the sampling
period and the delay between commands and
reactions. For higher sampling rates and higher speed
along the contour, however, two other problems will
oeeur,

Iiirst, the dynamics of the robot strictly speaking
are nonlinear, so that the linear approach will not be
satisfactory any more. The concept of our learning
method, however, is capable of handling nonlinear
meodels and controllers as associative or tabular
memories or neural networks. Associative mappings
have been successfully used in the past [B]. Presently,
application of neural nets is investigated, final results
not being available yet.

It is not necessary, however, to process all joint
values in the model, as would be necessary for exact
decoupling. Typically only one or two nonlinear
influences will be sufficient, e. g. the direction of
control movements or the absolute value of the force.
The first takes into account that different directions
are controlled with different joints, which have dif-
ferent characteristics, the latter considers changes of
the dynamics due to the closed kinematic chain when
the robot is in foree contact.

The other problem is the one-dimensional formu-
lation of force control. The wsed approach of sepa-
ration between force and position control is the best
solution for one-dimensional handling of the two
controllers. For fast movements along curved surfaces
it 15 not adeguate. In this case at least the frame for
force control should be time-invariant.

Although the learning scheme presented has been
discussed here in the context of force controlled con-
tour tracking, it may be applied in any kind of sensory
feedback. The space robot technology experiment

1404

ROTEX to fly in early 93 will use these techniques
in the telerobotic groundstation for self-improvement
of the local on-board sensory feedback loops [5][6].
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