Point-based valueiteration: An anytime algorithm for POMDPs

Joelle Pineau, Geoff Gordon and Sebastian Thrun
Carnegie Mellon University
Robotics Institute
5000 Forbes Avenue
Pittsburgh, PA 15213
{jpineau,ggordon,thrur@cs.cmu.edu

Abstract for distinct histories. But, they can act independentiyarpl
ning complexity can grow exponentially with horizon even
in problems with only a few states, and problems with a
) : . = . large number of physical states may still only have a small
imates an exact value Iteration SO.IUt'On by selectlng_ & number of relevant histories. In most domains, the curse
small set of representative belief points f_:mdthen tracking of history affects POMDP value iteration far moré strongly
the value and its derivative for those points only. By US- 41 the curse of dimensionalifaelbling et al, 1998;
ing stochastic trajectories to choose belief points, and by 1 0., and Hansen, 20D1That is, the number of distinct his-
maintaining only one value hyper-plane per point, PBVI 404 which the algorithm maintains is a far better preatict
successfully solves large problems: we presentresults on ¢ \nning time than is the number of states. The main claim
a robotic I_aser tag problem as well as three test domains of this paper is that, if we can avoid the curse of historytghe
from the literature. are many real-world POMDPs where the curse of dimension-
ality is nota problem.
1 Introduction Building on this insight, we presefoint-Based Value It-
b- eration (PBVI), a new approximate POMDP planning al-
0gorithm. PBVI selects a small set of representative belief
points and iteratively applies value updates to those point
The point-based update is significantly more efficient than
an exact update (quadratic vs. exponential), and because it
updates both value and value gradient, it generalizesrbette
to unexplored beliefs than interpolation-type grid-baapd
proximations which only update the vallileovejoy, 1991;
rafman, 1997; Hauskrecht, 2000; Zhou and Hansen, 2001,
onet, 2009). In addition, exploiting an insight from policy
search methods and MDP exploratittg and Jordan, 2000;
Thrun, 1992, PBVI uses explorative stochastic trajectories to

This paper introduces theoint-Based Value Iteration
(PBVI) algorithm for POMDP planning. PBVI approx-

The value iteration algorithm for planning in partially o
servable Markov decision processes (POMDPs) was intr
duced in the 19708Sondik, 1971 Since its introduction
numerous authors have refined[@assandraet al, 1997;
Kaelblinget al, 1998; Zhang and Zhang, 20040 that it can
solve harder problems. But, as the situation currentlydstan
POMDP value iteration algorithms are widely believed not to
be able to scale to real-world-sized problems.

There are two distinct but interdependent reasons for th
limited scalability of POMDP value iteration algorithmsh&
more wi?ely—known reason ig the so-called curse of dimen
sionality[Kaelblinget al,, 1999: in a problem withn, phys- ] ; . . .
ical states, POMDP planners must reason about belief statégleCt belief points, thus reducmg the number of beheﬁpx)l
in an (n — 1)-dimensional continuous space. So, naive ap_necessary to find a good solution compared to earlier ap-

. - . . . proaches. Finally, the theoretical analysis of PBVI ineldd
\?vri?r?fr?:iﬂlrfb(grsggtlgltgg the belief space scale expaaibnt in this paper shows that it is guaranteed to have bounded erro

The less-well-known reason for poor scaling behavior is_ 1 NS Paper presents empirical results demonstrating the
what we will call the curse of history: POMDP value iter- successful performance of the algorithm on a large (870

ation is in many ways like breadth-first search in the spac tates) robqt QOmain calletiag, ir]spired by the game of
of belief states. Starting from the empty history, it grows asertag. This is an order of magnitude larger than othdy-pro

a set of histories (each corresponding to a reachable be"elrem_s.commo_nly used to test scalable POMDP algorithms. In

by simulating the POMDP. So, the number of distinct action—a?]d't'on' we |.nclut()j|e results fﬁr t_hree weI:—knO\?_/n Pt?MD.Pr‘T"

observation histories considered grows exponentiallly thie ¥V ere PBVI is able to match (in control quality, but wit

planning horizon. Various clever pruning stratediettman ewer belief points) the performance of earlier algorithms

et al, 1995; Cassandrat al, 1997 have been proposed to .

whittle down the set of histories considered, but the prgnin 2 Anoverview of POMDPs

steps are usually expensive and seem to make a differenddhe POMDP framework is a generalized model for plan-

only in the constant factors rather than the order of growth. ning under uncertaintyKaelblinget al, 1998; Sondik, 1971
The two curses, history and dimensionality, are relategl: thA POMDP can be represented using the following n-tuple:

higher the dimension of a belief space, the more room it ha$S, 4,0, by, T, ), R, v}, whereS is a (finite) set of discrete



states,A is a set of discrete actions, aidlis a set of dis-  Next we creatd™® (Va € A), the cross-sum over observa-

crete observations providing incomplete and/or noisyestat  tions, which includes one®° from eachl’*-° (Step 2)

formation. The POMDP model is parameterized by(s), @ pa a,01 a,00

the initial belief distribution:T'(s, a, s') i= Pr(si1, — s | o= rermero. . ©

a; = a,s; = s), the distribution describing the probability Finally we take the union df* sets(Step 3)

of transitioning from state to states’ when taking actiom; V = U..I® 7

Q(o0,s,a) == Pr(og41 = o | ax = a,si41 = s), the dis- = Uaea (7

tribution describing the probability of observimdrom state In practice, many of the vectors in the final $étmay be

s after taking actiom; R(s,a), the reward signal received completely dominated by another vectas ( b < a; - b,VDb),

when executing actioa in states; andvy, the discount factor.  or by a combination of other vectors. Those vectors can be

. Akey assumption of POMDPs is that the state is only parpruned away without affecting the solution. Finding dom-

g'?alllt)éoﬁiﬁrovtzglefo-rreegfefgé%},vae Lerg’b%%m@ Cd?gt(ﬁi%%ttgna%jvee“r inated vectors can be expensive (checking whether a single
! Lo - e : . vector is dominated requires solving a linear program)jsut

states. The belief is a sufficient statistic for a given higto usually worthwhile to avoid an explosion of the solutioresiz

b= Pr(si | bo, a0, 01, ..y 011, 411, 00) @) To better understand the complexity of the exact update, let
and is updated at each time-step to incorporate the latest aj’’| be the number ofi-vectors in the previous solution set.
tion, observation pair: Step 1 creategd| |O| |V'| projections and Step 2 generates
be(s') = 19(0, 5, a) ZT(S,(LS’)bt—I(S) @ |4 [V'[19! cross-sums. So, in the worst case, the new solu-
= tion |V| has sizd A| |V'|I0! (time|S|?|A| [V'[I°]). Given that

wherey is the normalizing constant. this exponential growth occurs for every iteration, the émp

The goal of POMDP planning is to find a sequence of aci@nce of pruning away unnecessary vectors is clear. It also
tions {ao, . . ., a;} maximizing the expected sum of rewards highlights the impetus for approximate solutions.
E[>,v'R(s¢,a;)]. Given that the state is not necessarily
fully observable, the goal is to maximize expected reward fo3 Point-based value iter ation

each belief. The value function can be formulated as: Itis a well understood fact that most POMDP problems, even

given arbitrary action and observation sequences of igfinit
length, are unlikely to reach most of the points in the belief
o . o ) simplex. Thus it seems unnecessary to plan equally for all
When optimized exactly, this value function is always piece beliefs, as exact algorithms do, and preferable to conatntr
wise linear and convex in the beli¢Sondik, 1971 (see planning on most probable beliefs.
Fig. 1, left side). Aftem consecutive iterations, the solution Thepoint-based value iteratio(PBVI) algorithm solves a
consists of a set af-vectors:V,, = {ag, a1, .., &, }. EaCh  poMDP for a finite set of belief point8 = {bo, by, ..., b, }-
a-vector represents gi¥|-dimensional hyper-plane, and de- ¢ jnjtializes a separate-vector for each selected point, and
fines the value function over a bounded region of the be'repeatedly updates (via value backups) the value ofdhat
lief: Vi,(b) = maxaey, > cqa(s)b(s). In addition, each yecior. As shown in Figure 1, by maintaining a falvector
a-vectoris assocated Wlt_h an action, defining the be;st ImMmesor each belief point, PBVI preserves the piece-wise linear
diate policy assuming optimal behavior for the followifig- ity and convexity of the value function, and defines a value
1) steps (as defined respectively by the 4&fs_,, ..., Vo }). function over the entire belief simplex. This is in contrast
_Then-th horizon value function can be built from the pre- to grid-based approachékovejoy, 1991; Brafman, 1997:
o soLtont 1 J5ing IheBackupoperalon e USe  ausirecht, 2000; Zfou and Hansen, 2001; Boriet, 002
which update only the value at each belief grid point.

V(b) = max | R(b.a) + > T,a, b)) ®3)
beB

V(B) = max > R(s,a)b(s)+ (4)
s€S .
vy Z nax, Z Z T(s,a,s)Qo,s, a)a'(s’)b(s)‘| i . . |
0€0 s€ES s'€S :

A number of algorithms have been proposed to implement
this backup by directly manipulating-vectors, using a com-
bination of set projection and pruning operatid@ondik, Figure 1: POMDP value function representation using PBVI (on the
1971; Cassandraet al, 1997; Zhang and Zhang, 2001 |eff) and a grid (on the right).
We now describe the most straight-forward version of exact
POMDP value iteration. The complete PBVI algorithm is designed asanytime
. B , '
int-le—cr’r'nrgg!gtmezrgéﬁ?*egﬁg;ggd\?ve - f g ,é/vgfl(rsstegeg)erate algorithm, interleaving steps of value iteration and steps
s o Ve » VO P belief set expansion. It starts with an initial set of beieints
"« a"(s) = R(s,a) (5)  for which it applies a first series of backup operations. étth
I« a%°(s) =~ Z T(s,a,5)Q(0, s, a)al(s'), Vo, € V' growsthe set of belief points, and finds a new solution for the
expanded set. By interleaving value backup iterations with

b2 bl b0 b3 b2 bl b0 b3

s'eS



expansions of the belief set, PBVI offers a range of solwjon the new belieh,, which is farthest away from any point al-

gradually trading off computation time and solution qualit ready inB.? PBVI tries to generate one new belief from each

We now describe how we can efficiently perform point-basedrevious belief; soB at most doubles in size on each ex-

value backups and how we select belief points. pansior Since expansion phases are interleaved with value
iteration, PBVI offers aranytimesolution.

3.1 Point-based value backup

- . . . 3.3 Convergence and error bounds
To plan for a finite set of belief point®, we modify the i ) .
backup operator (Egn 4) such that only aneector per be- For any belief sef3 and horizom, PBVI produces an esti-

lief point is maintained. For a point-based update= 7V, ~ MateV,”. The error betwee,,” and the true value function
we start by creating projections (exactly as in Eqrve)e ;' is bounded. The bound depends on how densesam-
A, Yo € O (Step 1) ples the belief simplex\; with denser samplingV,” con-

. . verges toV ¥, the true value functioh. As n — o, V.2
"« a""(s) = R(s,a) (8) does not necessarily converge; but, our error bound stiiho

I« a%(s) =~ Z T(s,a,s)2o,s',a)al(s)),Va, € v/ Cutting off the PBVI iteration aainy sufficiently large hori-
zon, we know that the difference betwegjf and the op-

timal infinite-horizonV* is not too large. (The overall er-

Next, the cross-sum operation (Eqn 6) is much simplified byror is bounded by|V,? — V¥ || + ||V} — V*||oo. The first

the fact that we are now operating over a finite set of pointsterm is bounded by our theorem below; the second is bounded

s'eS

We constructb € B,Va € A (Step 2) by 7|V — V*||.) The remainder of this section states and
. - proves our error bound.
= I'"+ Zargg{a}(“ -b) ©) Define the density; of a set of belief points to be the
oco M€ maximum distance from any legal belief 8. More pre-

Finally, we find the best action for each belief poiitep 3) ~ CiSelV:es = maxy ea minyep [[b—b'l|:. Then, we can prove:

Lemma 1l The error introduced by PBVI's pruning step is at
(Rmax—Rmin)eB
1—v :

V  « argmax(l'; b), Vbe B (10)
FESVaeA( b ) mOStnprune =

) ) Proof: Letd’ € A be the point where PBVI makes its worst

When performing point-based updates, the backup creatqsuning error, and € B be the closest (1-norm) sampled
|A||O] V"] projections as in exact VI. However the final so- pelief tob'. Let« be the vector which is maximal atanda’
lution V' is limited to containing onlyB| components (in  be maximal at’. By erroneously pruning’, PBVI makes an
time |S| |A||V'] |O] | B]). Thus a full point-based value up- error of at mosty’ - o' — « - b'. On the other hand, sineceis
date takes only polynomial time, and even more crucial, thenaximal ath, thena’ - b < « - b. So,
size of the solution sét remains constant. As a result, the o —a b
pruning ofa vectors (and solving of linear programs), so cru- o b —a-b+(@-b-a-b) addzero
cial in exact POMDP algorithms, is now unnecessary. The b —ab4+aboa b o opt. ath

prune

<
<
only pruning step is to refrain from adding 16 any vector = (o) —a) (b —b) collect terms
already included, which arises when two nearby belief goint < o' —alls|lb’ = bl Holder
support the same vector (elg., b- in Fig. 1). < o' —allwen def'nofep
In problems with a finite horizoh, we runh value backups < fmexcTaine, see text

before expanding the set of belief points. In infinite-honz , )
problems, we select the horizon so thBt, s — Rumin)y" < The last inequality holds because eacivector represents
) ’ the reward achievable starting from some state and follgwin

some sequence of actions and observations. [

3.2 Belief point set expansion Theorem 1 For any belief seB and any horizom, the error

As explained above, PBVI focuses its planning on relevanff the PBVI algorithmy, = [|[V;? — V;*||« is bounded by
beliefs. More specifically, our error bound below suggests (R

that PBVI performs best when its belief set is uniformly dens N < 242 2
in the set of reachable beliefs. So, we initialize the Beb (1=9)

pontaln the initial behe_bo and e_xpan(B by greedily choos- . 2The actual choice of norm doesn’t appear to matter in pragctic
ing new reachable beliefs that improve the worst-case 8ensi gome of our experiments below used Euclidean distanceéidsif
as rapidly as possible. . _ _ L) and the results appear identical.

For a givenb € B, PBVI stochastically simulates a single-  3we experimented with other strategies such as adding a fixed
step forward trajectory using each action to produce new beaumber of new beliefs, but since value iteration is much nere
liefs {ba,, ba, , ... .1 Itthen measures thie, distance fronb,,, pensive than belief computation the above algorithm wotlest. If
to B, and throws away,, if b,, € B. Finally, it keeps only desired, we can impose a maximum size®iased on time con-

straints or performance requirements.

1To simulate an action, first sample a statefrom the distribu- 4If not all beliefs are reachable, we don't need to samplefall o
tion b. Then sample an observation according%@, a, o) for the densely, but replacé by the set of reachable beliefs below. The
givens anda. Finally computé,, using a Bayesian update (Egn 2). error bounds and convergence results hold\on

€.

- Rmin)EB




Proof:

= VP~ Vil def'n of 1, F_igure 3 shows the performance of PBVI on the Tag_do-
— HVE, —HV |le def'n of H, { main. Resglts are averaged over 10 runs of Fhe algorithm,
< [HVE, - HVP |« + times 100 different (randoml_y chosen) start positions &ate
- NHVE | — HV: ]l triangle ineq. run. It shows the gradual improvement in performance as
< Norane + [|[HVE L — HV? 1lo defn of nprune sample; are added _(each shown data point represents a new
< prune +IVE L - Vs contraction expansion of the belief set with value backups). In additton
= prane + Vo1 def'n of 1,1 PBVI, we also apply the QMDP approximation as a baseline
< UimaeBmin)en | op lemma 1 comparisoriLittman et al, 1993. The QMDP approxima-
< (Rumae LR i en series sum s tion is calculated by solving a POMDP as though it were fully
= )2 observableQ(s,a) = R(s,a) + 7> 5T (s,a,8)V(s'),

and linearizing acrosg-values to obtain the value at a be-

. lief: V(b) = mazaea Y ,cqb(5)Q(s,a). This approxima-
4 Experimental results tion is c(1u)ick to computXe:, and (is)regnarIZably effective in some
The domain ofTagis based on the popular game of lasertag.domains. In the Tag domain, however, it lacks the represen-
The goal is to search for and tag a moving oppofBosen-  tational power to compute a good policy.
crantzet al, 2003. Figure 2a shows the live robot as it
moves in to capture an opponent. In our POMDP formula5  Additional experiments
tion, the opponent moves stochastically according to a fixed .
policy. The spatial configuration of the domain used for plan 2-1 ~ Comparison on well-known problems
ning is illustrated in Figure 2b. This domain is an order of To further analyze the performance of PBVI, we applied it
magnitude larger (870 states) than most other POMDP prolto three well-known problems from the POMDP literature.
lems considered thus far in the literatd@assandra, 1999  We selected Maze33, Hallway and Hallway2 because they are
and is proposed as a new challenge for fast, scalable, POMD&dmmonly used to test scalable POMDP algoritfhigman
algorithms. A single iteration of optimal value iterationa et al, 1995; Brafman, 1997; Poon, 200Figure 3 presents
problem of this size could produce ouér*’ a-vectors before  results for each domain. Replicating earlier experimamts,
pruning. sults for Maze33 are averaged over 151 runs (reset after goal
terminate after 500 steps); results for Hallway and Hallvay
are averaged over 251 runs (terminate at goal, max 251 steps)

26 [27 |28 In all cases, PBVI is able to find a good policy. Table 1

23 24 |25 compares PBVI's performance with previously published re-

5353 sults, comparing goal completion rates, sum of rewards, pol

A icy computation time, and number of required belief points.

1011112 113 14 f‘gj}i& 17118 119 In all domains, PBVI achieves competitive performance, but
0@ 12 3 (456 |7 ]8 with fewer samples.

a. Robots playing Tag b. Tag configuration 5.2 Validation of the belief set expansion

Figure2: Tag domain (870 states, 5 actions, 30 observations) 10 further investigate the validity of our approach for gen-
erating new belief states (Section 3.2), we compared our

The state space is described by the cross-product GiPProach with three other techniques which might appear
two features,Robot = {s,...,s20} and Opponent =  promising. In all cases, we assume that the initial belief
{80, .-, 829, Staggea}. BOth agents start in independently- (given as part of the model) is the sole point in the initidl se
selected random positions, and the game finishes wheand consider four expansion methods:

Opponent= s:444¢4. The robot can select from five actions: 1. RandomRA)
{North, South, East, West, TagA reward of 1 is imposed 2. Stochastic Simulation with Random ActioBSRA)

for each motion action; th&ag action results in a+10 re- e . . .
ward if Robot= Opponentor — 10 otherwise. Throughout 3: Stochastic Simulation with Greedy ActicBGA)

the game, the Robot’s position is fully observable, and the e4- Stochastic Simulation with Explorative ActioB$EA)

fect of aMoveaction has the predictable deterministic effect, The RA method consists of sampling a belief point from a

€.9. uniform distribution over the entire belief simpleSSEA is
Pr(Robot = s10 | Robot = so, North) =1 the standard PBVI expansion heuristic (Section 3S5RA

The position of the opponent is completely unobservable un§|mllarly uses s_lngle-step forward simulation, but ramhmn
less both agents are in the same cell. At each step, the offY @ll actions, it randomly selects one and automaticatly a

ponent (with omniscient knowledge) moves away from theC€PtS the posterior belief unless it was alreadyinFinally,

robot with Pr = 0.8 and stays in place witfPr = 0.2, e.g.: SSGA uses the most recent value function solution to pick the
greedy action at the given beligfand performs a single-step

Pr(Opponent = s16 | Opponent = s15&Robot = s) = 0.4 simulation to get a new beliéf — B.

Pr(Opponent = s20 | Opponent = s15& Robot = sp) = 0.4 We revisited the Hallway, Hallway2, and Tag problems

Pr(Opponent = s15 | Opponent = s15& Robot = s9) = 0.2 from sections 4 and 5.1 to compare the performance of these
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Figure 3: PBVI performance for four problems: Tag(left), Maze33(es-left), Hallway(center-right) and Hallway2(right)
Method Goal% Reward Time(s) |B] restricting value updates to a finite set of (reachablegbzli
Maze33/ Tiger-Grid . . . .
QMDP} na. 0.198 0.19 na. There are several approximate value iteration algorlthms
Grid [Brafman, 1997 n.a. 0.94 NV, 174  Wwhich are related to PBVI. For example, there are many grid-
PBUA [Poon, 2001 n.a. 2.30 12116 660 based methods which iteratively update the values of discre
PBVI[ n.a. 2.25 3448 470  belief points. These methods differ in how they partitioa th
Hallway belief space into a grifBrafman, 1997; Zhou and Hansen,
QMDPY 47 0.261 0.51 n.a. 2001].
QMDP [Littmanet al,, 1995 47.4 n.v. n.v. n.a. o .
PBUA [Poon, 2001 100 0.53 450 300 More similar to PBVI are those approaches which update
PBVI[¥ 96 0.53 288 86 both the value and gradient at each grid pbimivejoy, 1991;
Hallway? Hauskrecht, 2000; Poon, 200While the actual point-based
QMDP 22 0.109 1.44 n.a.  update is essentially the same between all of these, the over
QMDPILittmanetal, 199§~ 25.9 n.v. n.v. na.  all algorithms differ in a few important aspects. Whereas
Grid [Brafman, 1997 98 n.v. n.v. 337 Poon only accepts updates that increase the value at a grid
EE\%‘*[POO”' 2001 19%0 8-32 237288 153;0 point (requiring special initialization of the value fuiant),
Tag [ : and Hauskrecht always keeps earkevectors (causing the
OMDPY 17 16769 1355 na  Settogrowtoo quickly), PBVI requires no such assumptions.

PBVI 59 9180 180880 1334 A more important benefit of PBVI is the theoretical guaran-
tees it provides: our guarantees are more widely applicable
and provide stronger error bounds than those for other point

) based updates.
Table 1: Results for POMDP domains. Those marked [*] were com-

n.a.=not applicable n.v.=not available

puted by us; other results were likely computed on differgat- In addition, PBVI is significantly smarter than previous
forms, and therefore time comparisons may be approximdiesit  algorithms about how it selects belief points. PBVI selects
All results assume a standard (fobkaheadl controller. only reachable beliefs; other algorithms use random Islief

o ) or (like Poon’s and Lovejoy’s) require the inclusion of agar
four heuristics. For each problem we apply PBVI using eacthumber of fixed beliefs such as the corners of the probabil-
of the belief-point selection heuristics, and include thé@P  jty simplex. Moreover, PBVI selects belief points which im-
approximation as a baseline comparison. Figure 4 shows thgrove its error bounds as quickly as possible. In practiae, o
computation time versus the reward performance for each daxperiments on the large domain of lasertag demonstrate tha
main. PBVI's belief-selection rule handily outperforms seveabl

The key result from Figure 4 is the rightmost panel, whichternate methods. (Both Hauskrecht and Poon did consider
shows performance on the largest, most complicated domaifysing stochastic simulation to generate new points, but nei
In this domain our SSEA rule clearly performs best. Inther found simulation to be superior to random point place-
smaller domains (left two panels) the choice of heuristit-ma ments. We attribute this result to the smaller size of thest t
ters less: all heuristics except random exploration (RA) pe domains. We believe that as more POMDP research moves to
form equivalently well. larger planning domains, newer and smarter belief selectio

rules will become more and more important.)

6 Related work Gradient-based policy search methods have also been used
Significant work has been done in recent years to improvéo optimize POMDP solution§Baxter and Bartlett, 2000;

the tractability of POMDP solutions. A number of increas- Kearnset al,, 1999; Ng and Jordan, 20)®uccessfully solv-
ingly efficient exact value iteration algorithms have beening multi-dimensional, continuous-state problems. In our
proposed[Cassandrat al, 1997; Kaelblinget al, 1998; view, one of the strengths of these methods lies in the fact
Zhang and Zhang, 2001 They are successful in finding op- that they restrict optimization to reachable beliefs (assdo
timal solutions, however are generally limited to very dmal PBVI). Unfortunately, policy search techniques can be ham-
problems (a dozen states) since they plan optimally for alpered by low-gradient plateaus and poor local minima, and
beliefs. PBVI avoids the exponential growth in plan size bytypically require the selection of a restricted policy slas
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Figure 4: Belief expansion results for three problems: Hallwayjldflallway2(center) and Tag(right)

7 Conclusion [Hauskrecht, 2000 M. Hauskrecht. Value-function approximations

This paper presents PBVI, a scalable anytime algorithm for f:rt.?qrtila;u)t/ ﬂbservabée Mark%';;gdggnz%ggessgs“ma' of

approximately solving POMDPs. We applied PBVI to a “ '.C'a niefiigence Researg e

robotic version of lasertag, where it successfully devetbp [Kaelblingetal, 1994 L. P. Kaelbling, M. L. Littman, and A. R.

a policy for capturing a moving opponent. Other POMDP Cassgndra. .F?Ignnlng qnd acting |r.1 partially observabthasiic

solvers had trouble computing useful policies for this doma domains. Artificial Intelligence 101:99-134, 1998.

PBVI also compared favorably with other solvers on threelKearnsetal, 1999 M. Kearns, Y. Mansour, and A. Y. Ng. Ap-

well-known smaller test problems. We attribute PBVI's suc- Proximate planning in large POMDPs via reusable trajeegori

cess to two features, both of which directly target the curse NIPS 12 1999.

of history. First, by using a trajectory-based approacheto s [Litmanet al, 1999 M. L. Littman, A. R. Cassandra, and L. P.

lect belief points, PBVI focuses planning on reachable be- Kaelbling. Learning policies for partially obsevable eovi-

liefs. Second, because it uses a fixed set of belief points, it Ments: Scaling up. IfCML, 1995.

can perform fast value backups. [Lovejoy, 1991 W. S. Lovejoy. Computationally feasible bounds
In experiments, PBVI beats back the curse of history far for partially observed Markov decision processeSperations

enough that we can solve POMDPs an order of magnitude Research39(1):162-175, 1991.

larger than most previous algorithms. With this success, wéNg and Jordan, 2000A. Y. Ng and M. Jordan. PEGASUS: A pol-

can now identify the next hurdle for POMDP research: con- icy search method for large MDPs and POMDPsURI, 2000.

trary to our expectation, it turns out to be the old-fashine [poon, 2001 K.-M. Poon. A fast heuristic algorithm for decision-

MDP problem of having too many distinct physical states. theoretic planning. Master's thesis, The Hong-Kong Ursiitgr
This problem hits us in the cost of updating the point-based of Science and Technology, 2001.

value function vectors. (This cost is quadratic in the NUM-ponart and Boutilier, 2003P. Poupart and C. Boutilier.
ber of physical states.) While this problem is not necessar- gjrected compression of POMDPs. NMiPS 15 2003.

ily easy to overcome, we believe that sparse matrix comput
tions, together with other approaches from the existireg-lit
ature[Poupart and Boutilier, 2003; Roy and Gordon, 2003
will allow us to to scale PBVI to problems which are at least
another order of magnitude larger. So, PBVI represents
considerable step towards making POMDPs usable for real-

Value-

a[_Rosen(:rantzet al, 2003 M. Rosencrantz, G. Gordon, and
S. Thrun. Locating moving entities in dynamic indoor enmiro
ments with teams of mobile robots. MAMAS 2003.

H?oy and Gordon, 20Q3N. Roy and G. Gordon. Exponential fam-
ily PCA for belief compression in POMDPs. MIPS 15 2003.

world problems. [Sondik, 1971 E. J. Sondik.The Optimal Control of Partially Ob-
servable Markov ProcessesPhD thesis, Stanford University,
1971.
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