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Abstract— We present a replanning algorithm for repairing
Rapidly-exploring Random Trees when changes are made to the
configuration space. Instead of abandoning the current RRT,
our algorithm efficiently removes just the newly-invalid parts
and maintains the rest. It then grows the resulting tree until
a new solution is found. We use this algorithm to create a
probabilistic analog to the widely-used D* family of deterministic
algorithms, and demonstrate its effectiveness in a multirobot
planning domain.

I. INTRODUCTION

In the field of robotic path planning, probabilistic sampling-
based approaches have recently become very popular. In
particular, Rapidly-exploring Random Trees (RRTs) have been
shown to be effective for solving single-shot path planning
problems in complex configuration spaces [1], [2]. By com-
bining random sampling of the configuration space with biased
sampling around the goal configuration, RRTs efficiently pro-
vide solutions to problems involving vast, high-dimensional
configuration spaces that would be intractable using determin-
istic approaches. As a result, they have been widely-used in
robotics [3], [4], [5], [6]. See Fig. 1 for an example of an RRT
constructed for a two-dimensional path planning problem.

It is often the case in real world scenarios that the initial
information available concerning the environment is incom-
plete or that the environment itself is dynamic. In these cases,
the initial solution may become invalid as new information is
received, for example, through an onboard sensor. When this
occurs, typically the current RRT is abandoned and a new RRT
is grown from scratch. This can be a very time-consuming
operation, particularly if the planning problem is complex.
On the other hand, in the deterministic planning community
there exist replanning algorithms that are able to efficiently
repair the previous solution when such changes occur without
needing to replan from scratch.

In this paper, we present a replanning algorithm for re-
pairing RRTs when new information concerning the config-
uration space is received. Instead of abandoning the current
RRT entirely, our approach mimics deterministic replanning
algorithms by efficiently removing just the newly-invalid parts
and maintaining the rest. It then grows the remaining tree until
a new solution is found. The resulting algorithm, Dynamic
Rapidly-exploring Random Trees, is a probabilistic analog
to the widely-used D* family of deterministic replanning
algorithms [7], [8].

Fig. 1. An RRT created for planning a path from one end to the other
of a binary environment. Obstacles are shown in black. The start and goal
locations are shown as large red squares, with nodes of the tree small squares.

We begin by describing the basic RRT algorithm and a
number of extensions that have been made to this algorithm
to facilitate both initial planning and replanning. We then
introduce Dynamic Rapidly-exploring Random Trees and how
they can be used for mobile robot navigation in unknown
or dynamic environments. We go on to present a number of
results from a multirobot constrained exploration domain and
conclude with discussions and extensions.

II. RAPIDLY-EXPLORING RANDOM TREES

The essential RRT algorithm is outlined in Fig. 2. Beginning
with the initial robot configuration as the root node, it incre-
mentally grows a tree until the tree reaches the goal configura-
tion. To grow the tree, (lines 3-8 in function GrowRRT), first
a target configuration qtarget is randomly selected from the
configuration space using the function ChooseTarget. Then,
a NearestNeighbor function selects the node qnearest in the
tree closest to qtarget. Finally, a new node qnew is created
in an Extend function by growing the tree some distance
from qnearest towards qtarget. If extending the tree towards
qtarget requires growing through an obstacle, no extension
occurs. This process is repeated until the tree grows to within
some user-defined threshold of the goal (line 3). A very nice
property that follows from this method of construction is that
the tree growth is strongly biased towards unexplored areas
of the configuration space. Consequently, exploration occurs
very quickly.

Several extensions to this basic algorithm tend to improve
the speed of the search. Firstly, the basic algorithm uniformly



InitRRT()
1 T .add(qstart);

GrowRRT()
2 qnew = qstart;
3 while (Distance(qnew , qgoal) > distance-threshold)
4 qtarget = ChooseTarget();
5 qnearest = NearestNeighbor(qtarget);
6 qnew = Extend(qnearest, qtarget);
7 if (qnew 6=null)
8 T .add(qnew);

ChooseTarget()
10 p = RandomReal([0.0, 1.0]);
11 i = RandomInt([1, num-waypoints]);
12 if (p < goal-sampling-prob)
13 return qgoal;
14 else if (p < goal-sampling-prob + waypoint-prob)
15 return WaypointCache[i];
16 else
17 return RandomNode();

Fig. 2. The (Extended) RRT Algorithm.

grows the tree by always selecting ntarget randomly. However,
we can increase efficiency by biasing the search towards the
goal: in the ChooseTarget function, we let qtarget be the goal
with probability p and choose it randomly with probability
1−p. As p increases, the RRT behaves increasingly like best-
first search.

In many domains where plans are executed by robots,
planning and execution are interleaved: the robot creates a
tree, executes the returned path for some number of steps or
until it is no longer valid, then grows a new tree, and so
on until the goal is reached. The Execution-extended RRT
(ERRT) algorithm is a further extension that is useful in
these scenarios because it reuses information from previous
planning episodes when generating new trees [3]. After a plan
is returned, some of its nodes are stored in a waypoint cache.
In future searches, the node qtarget is set to one of these
nodes with some probability (lines 11, 14-15), thus biasing the
growth towards previously successful solutions. However, even
the ERRT algorithm rebuilds an RRT from scratch every time
new information invalidates the current solution, regardless of
how much of the solution is affected. This usually results in
far more work than is necessary for generating a new solution.

On the other hand, researchers have developed methods
of reusing as much previous computation as possible when
performing multiple-query path planning with Probabilistic
Roadmaps (PRMs) [9], [10]. In particular, the Reconfigurable
Random Forest (RRF) approach of Li and Shie creates a
roadmap of the environment using several different RRTs, each
rooted at different locations [9]. Periodically, the individual
RRTs are checked to see if they can be connected together,
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Fig. 3. Replanning with RRTs. (a) An initial RRT generated from a start
position (red) to a goal position (blue). (b) A new obstacle is added to the
configuration space. (c) Parts of the previous tree that are invalidated by the
new obstacle are marked. (d) The tree is trimmed: invalid parts are removed.
(e) The trimmed tree is grown until a new solution is generated.

as in the RRT-Connect algorithm [11]. When changes are
made to the configuration space, the newly-invalid edges in
the forest are removed and new trees are formed from the
branches that were connected to these edges. This approach
effectively updates roadmaps of the environment and is useful
for multiple-query path planning in changing environments.

In the following section we describe a related extension of
the RRT algorithm that allows for efficient repair of the tree
when changes are made to the configuration space. As with
RRFs, this approach prunes sections of the tree that are no
longer valid. However, it maintains only a single tree rather
than an entire forest and thus it is particularly suited to single-
shot path planning problems. The resulting approach is simple
to implement and can be much more efficient than replanning



RegrowRRT()
1 TrimRRT();
2 GrowRRT();

TrimRRT()
3 S = ∅; i = 1;
4 while (i < T .size())
5 qi = T .node(i); qp = Parent(qi);
6 if (qp.flag = INVALID)
7 qi.flag = INVALID;
8 if (qi.flag 6= INVALID)
9 S = S ∪ {qi};

10 i = i + 1;
11 T = CreateTreeFromNodes(S);

InvalidateNodes(obstacle)
12 E = FindAffectedEdges(obstacle);
13 for each edge e ∈ E

14 qe = ChildEndpointNode(e);
15 qe.flag = INVALID;

Fig. 4. The Dynamic RRT Algorithm.

from scratch when small changes are made to the configuration
space. Further, as we will show, it can be used to develop an
incremental replanning algorithm for mobile robot navigation.

III. DYNAMIC RAPIDLY-EXPLORING RANDOM TREES

Deterministic replanning algorithms such as D* efficiently
repair previous solutions when changes occur in the environ-
ment [7], [8]. They do this by determining which parts of the
solution are still valid and which parts need to be recomputed.
We can use this same basic idea to improve the efficiency of
replanning with probabilistic algorithms such as RRTs.

The general process is illustrated in Fig. 3. We begin
with an RRT generated from an initial configuration to a
goal configuration (Fig. 3(a)). When changes occur to the
configuration space (e.g. through receiving new information),
we mark all the parts of the RRT that are invalidated by these
changes (Fig. 3(b) and (c)). We then trim the tree to remove
all these invalid parts (Fig. 3(d)). At this point, all the nodes
and edges remaining in the tree are guaranteed to be valid, but
the tree may no longer reach the goal. Finally, we grow the
tree out until the goal is reached once more (Fig. 3(e)).

We call this approach Dynamic Rapidly-exploring Random
Trees (DRRTs). Pseudocode for trimming and regrowing the
tree is presented in Fig. 4. When an obstacle is added to the
configuration space, first the edges in the current tree that
intersect this obstacle are found (line 12). Each of these edges
will have two endpoint nodes in the tree: one will be the parent
of the other in the RRT. In other words, one of these nodes
(the parent) will have added the other (the child) to the tree
through an Extend operation. The child endpoint node of each
edge is then marked as invalid (line 15).

Main()
1 qstart = qgoal; qgoal = qrobot;
2 InitRRT();
3 GrowRRT();
4 while (qgoal 6= qstart)
5 qgoal = Parent(qgoal);
6 Move to qgoal and check for new obstacles;
7 if any new obstacles are observed
8 for each new obstacle o

9 InvalidateNodes(o);
10 if solution path contains an invalid node
11 RegrowRRT();

Fig. 5. Using DRRTs for Mobile Robot Navigation.

After all the child endpoint nodes of the affected edges have
been marked, the solution path is checked for invalid nodes.
If any are found, the RRT needs to be regrown. This involves
trimming the tree and growing the trimmed tree out to the
goal (RegrowRRT, lines 1 - 2). Trimming the tree involves
stepping through the RRT in the order in which nodes were
added and marking all child nodes as invalid whose parent
nodes are invalid. This effectively breaks off branches where
they directly collide with new obstacles and removes all nodes
on these branches.

Once the tree has been trimmed, it can be grown out to
the goal. This can be performed in exactly the same manner
as the basic RRT algorithm for initial construction. However,
depending on how the configuration space has changed, it may
be more efficient to focus the growth towards areas that have
been affected, as discussed in the following section.

DRRTs can be used to provide a probabilistic analog to
D* for mobile robot navigation in unknown or dynamic envi-
ronments. To do this, we first reverse the direction of growth
of the RRT so that it grows from the desired configuration
towards the current robot configuration. This is a common
modification made by deterministic replanning algorithms and
allows us to reuse the previous tree when the robot configura-
tion changes (as the robot moves through the environment) and
new obstacles appear. Otherwise, the root of the tree would
constantly be changing and so the entire tree would need to be
regrown. Further, since observations are typically being made
in the vicinity of the robot (through onboard sensors), this
modification allows us to maintain more of the previous tree
during repair, as only the tips of the tree will be affected by
newly-observed obstacles.

Fig. 5 presents pseudocode for using the DRRT as a real-
time replanning algorithm for mobile robot navigation. Note
that this algorithm can be used for the navigation of either a
single robot or a team of robots.

IV. EXPERIMENTS AND RESULTS

The motivation behind this work was efficient multirobot
path planning. In particular, we are interested in the problem
of constrained exploration [12], where a team of robots is



Fig. 6. Coordinated Path Planning. A path is planned for three robots
from one side to the other of an environment, while maintaining line-of-sight
communication constraints among the team. (top) The RRT. In order to show
the 6D RRT in only two dimensions, it has been split into three 2D trees. Each
2D tree encodes all the information about a single robot from the 6D tree,
including edges between parent and child nodes. The red tree corresponds to
the positions of robot 1 in the 6D RRT, the blue to robot 2, and the green to
robot 3. The black regions depict areas through which communication cannot
be made. (bottom) The corresponding solution path for each robot (before
smoothing).

tasked with exploring an environment while abiding by some
constraints on their paths. For instance, imagine a known,
static environment containing areas through which no com-
munication is possible (due to eavesdropping adversaries or
environmental characteristics), and all robots must remain
in line-of-sight communication with the rest of the team at
all times. Planning a path for the group in such a scenario
becomes a joint planning problem and is exponential in the
number of robots.

As the number of robots in the team increases, deterministic
algorithms for planning such as A* or Dijkstra’s simply
cannot cope with the size of the corresponding state space.
Randomized approaches such as RRTs, on the other hand,
are a good choice for solving this problem since they are not
crippled by its high dimensionality. For example, Fig. 6 shows
an RRT and the corresponding set of paths for 3 robots moving
through a 300×600 environment containing obstacles through
which communication cannot be made. The size of the state
space for this problem was 6 × 1015, however the RRT was
able to find a path in under a second1. In fact, even for large
teams, RRTs are able to generate paths in a reasonable amount
of time (see Fig. 8).

1Using a 1.5 GHz Powerbook G4.

Fig. 8. Coordinated path planning with 10 robots. On the left is an example
RRT and on the right are the associated robot paths (before smoothing). The
state space for this problem had a size of 1054 and the RRT generated a path
in 13 seconds. See Fig. 6 for an explanation of the domain and how the RRT
is displayed.

Now, to efficiently solve such problems in unknown or dy-
namic environments where we may have to update the solution
during execution, we need dynamic randomized approaches
such as the DRRT algorithm.

To test the performance of DRRTs against current ap-
proaches, we ran a number of experiments simulating a
small team of robots moving through an environment while
maintaining line-of-sight communication across the team. As
the robots moved through the environment, they received new
information concerning the traversability of areas within some
sensor field of view. If obstacles were encountered along
their solution paths, a new RRT was generated that took
into account the new obstacles. For comparison, this RRT
was generated using both the ERRT approach and the DRRT
approach presented in Fig. 5.

To efficiently determine which edges in the RRT collided
with a new obstacle (for the DRRT approach), for each (x, y)
position in our discretized map we kept track of the nodes in
the RRT that had one of the robots located at that position.
Then, when a new obstacle appeared at location (x′, y′), we
could quickly find any nodes that were invalidated. To find
edges that were invalidated, we simply carved a 2D circle out
with center (x′, y′) and radius equal to the maximum length
of any edge in the tree, then checked if any nodes of the tree
resided within this circle and had an edge that intersected the
new obstacle. Because the edges in our tree were typically
quite small (on the order of 5 map cells in distance for each
robot), this was very fast. The overhead of maintaining the list
of nodes for each (x, y) position and determining which are
affected when new obstacles are observed are included in our
runtime comparisons.

We also focussed re-growth of the DRRT to areas that
had been affected by changes to the configuration space.
Specifically, with some probability we chose a random sample
point in the vicinity of the recently-affected area of the
configuration space. This has the effect of focussing growth
of the tree in the region just trimmed, which is also close
to the current configuration of the team. In our results, this



Number of nodes added to tree
Num. Robots ERRT DRRT
1 5443 933
2 14299 2232
3 12855 2692
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Fig. 7. Runtimes for the ERRT (red/solid) and DRRT (blue/dashed) approaches in our three constrained exploration scenarios. For each approach, the runs
are ordered in terms of runtime. (a) Shown above are results for the single robot case. Shown below are the average total number of nodes added to the
respective trees over the course of each traverse, for each experiment. (b) Results for the two-robot team. The bottom of the two graphs shows the same
results but for only the quickest 400 runs. (c) Results for the three-robot team. The bottom graph shows the quickest 350 runs.

probability was set equal to the probability used by the ERRT
approach to select a previous waypoint, which was 0.4. Each
approach selected a sample very close to qgoal with probability
0.1. We found these parameters gave the best performance for
both the ERRT and DRRT approaches.

Results for teams ranging from a single robot to three robots
are shown in Fig. 7. For each case, the task was to navigate
across a 300×600 environment containing randomly generated
obstacles. For the single robot case, as the robot traversed the
environment, new obstacles appeared at random: with each
step the robot took along its path there was some chance
a randomly placed obstacle would appear within the robot’s
sensor range (25 cells), potentially requiring that the robot
repair its previous solution path. We repeated the process 5
times each for 100 different environments.

To ensure each approach was fairly compared, we had them
operate over exactly the same traverses. To do this, we ran
the DRRT approach first and recorded the path taken and
new obstacles encountered, and then had the ERRT approach
operate over the same path and obstacles. Since the agent
did not move very far in between replanning episodes, this
did not place the ERRT approach at a disadvantage. We also
used kd-trees to efficiently compute nearest neighbors in both
approaches.

For the multirobot cases, the situation was similar, ex-
cept that the robots had to maintain line-of-sight commu-
nication between team members. The team started with a
map specifying the areas of the environment through which

communication was not possible. These areas acted as line-
of-sight connectivity obstacles: if a straight-line connecting
two robots passed through one of these areas, the robots
were not within direct line-of-sight communication of each
other. Further, as the robots moved, they observed navigation
obstacles that they had to avoid but which did not affect
communication. These multirobot experiments were designed
to simulate the constrained exploration task, where the areas of
the environment through which communication is not possible
(e.g. adversary areas) are known apriori, but the nature of the
environment (e.g. in terms of terrain or navigability) is not.

Navigation obstacles also appeared at random in the multi-
robot experiments: for the two-robot case an obstacle would
appear within each robot’s sensor range with probability 0.4
and for the three-robot case an obstacle would appear in front
of each robot’s sensor range with probability 0.15. Again,
one hundred different random environments were used with
each traversed 5 times. Because of their use of randomness,
the same problem may take RRTs vastly different amounts
of computation depending on the random values generated.
Thus, in order to see clearly the relative performance of the
algorithms, we have shown the most efficient 90% of the 500
runs for each approach (and, for the same reason, we have
limited the runtime of each run to 100 seconds2). The runtimes
reported are for a 1.5 GHz Powerbook G4.

2We also limited the number of nodes added to any single tree to be 30000.
If no solution was found within this limit we marked the run as a failure and
set the time to be the default maximum of 100 seconds.



On average, DRRTs outperformed ERRTs in each case by
a factor of 5, in both the average number of nodes added
to the tree during each traverse and in the computation time
required. The average time spent per replanning episode for
the three robot team was 146 milliseconds for ERRTs and 27
milliseconds for DRRTs.

V. DISCUSSION

We have presented Dynamic Rapidly-exploring Random
Trees (DRRTs), a replanning algorithm for repairing Rapidly-
exploring Random Trees when changes are made to the
configuration space. Our algorithm efficiently removes just the
newly-invalid parts of the tree and regrows a solution from
what remains. We have demonstrated its effectiveness in a
single robot navigation domain and a multirobot constrained
exploration domain.

The basic DRRT approach can be thought of as a single-tree
variant of the RRF approach described in Section II. However,
by only maintaining a single tree, DRRTs offer a number of
advantages in regards to the problem of real-time multirobot
planning.

Firstly, DRRTs are simple to implement and involve very
few parameters. Because there is only one tree, we need not
worry about which tree to grow next, when to try to connect
different trees together, how to trim the different trees, and so
on. DRRTs clearly extend basic single-tree RRTs to partially-
known or dynamic environments.

Secondly, when edges are invalidated in the tree, DRRTs
remove the entire affected branch rather than using the branch
to create a new tree. This can be beneficial in navigation
scenarios as often either these branches are very small (since
changes are typically taking place in the vicinity of the robot(s)
and so near the leaves of the tree), or the branches extend out
into areas of the configuration space already passed by the
robot(s) and no longer useful for planning. Further, by using
biased sampling to focus towards recently invalidated edges,
parts of the pruned branches that may have been useful will
be regrown quickly by the DRRT.

As we have shown, DRRTs can be used to provide a prob-
abilistic analog of the widely-used D* family of deterministic
replanning algorithms. To our knowledge, this is the first
effort to incorporate the principles behind D* into probabilistic
algorithms. Our results demonstrate the usefulness of this
combination; consequently, we believe DRRTs are a good
substitute for D* in high-dimensional problems.

There are a number of directions for future research. As
discussed in Section III, for DRRTs to be effective for mobile
robot navigation, we need to direct the tree growth from the
goal to the position of the robot(s). However, if we want
to model the complex kinematics of the robot(s), then this
may not be possible. In deterministic planning, usually this is
performed by combining a global backwards-searching path
planner such as D* with a local forwards-searching planner
that incorporates the kinematic constraints of the vehicle (e.g.
as in [13]). Using DRRTs, we could address this issue by
combining the global DRRT grown from the goal to the

position of the robot(s) with a local tree grown outwards from
the position of the robot(s) that incorporates all the kinematic
constraints of the vehicle(s). Existing research in the use of
bidirectional RRTs would certainly be applicable here [11].

We are also looking at how we can improve the quality
of the solutions obtained using RRTs. Specifically, we are
interested in how heuristics can be used to bias the growth of
the tree in order to arrive at shorter or less-expensive solutions,
as looked at by Urmson and Simmons [14]. Finally, we plan to
implement the DRRT approach on a team of three autonomous
John Deere E-gator robots that we are using for constrained
exploration.
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